101
|
Abstract
More than 60 genomic loci have been implicated by genome-wide association studies (GWAS) and exome-wide association studies as conferring an increased risk of myocardial infarction and coronary artery disease (CAD). However, the causal gene and variant is often unclear. Using the functional analysis of genetic variants in experimental animal models, we anticipate understanding which candidate gene at a specific locus is associated with atherosclerosis and revealing the underlying molecular and cellular mechanisms, ultimately leading to the identification of causal pathways in atherosclerosis and may provide novel therapeutic targets for the treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yanhong Guo
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | - Laiyuan Wang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
102
|
Oh DY, Olefsky JM. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 2016; 15:161-72. [PMID: 26822831 DOI: 10.1038/nrd.2015.4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
103
|
Zheng L, Wu T, Zeng C, Li X, Li X, Wen D, Ji T, Lan T, Xing L, Li J, He X, Wang L. SAP deficiency mitigated atherosclerotic lesions in ApoE−/− mice. Atherosclerosis 2016; 244:179-87. [DOI: 10.1016/j.atherosclerosis.2015.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
|
104
|
Grimm M, Tischner D, Troidl K, Albarrán Juárez J, Sivaraj KK, Ferreirós Bouzas N, Geisslinger G, Binder CJ, Wettschureck N. S1P2/G12/13 Signaling Negatively Regulates Macrophage Activation and Indirectly Shapes the Atheroprotective B1-Cell Population. Arterioscler Thromb Vasc Biol 2015; 36:37-48. [PMID: 26603156 DOI: 10.1161/atvbaha.115.306066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Monocyte/macrophage recruitment and activation at vascular predilection sites plays a central role in the pathogenesis of atherosclerosis. Heterotrimeric G proteins of the G12/13 family have been implicated in the control of migration and inflammatory gene expression, but their function in myeloid cells, especially during atherogenesis, is unknown. APPROACH AND RESULTS Mice with myeloid-specific deficiency for G12/13 show reduced atherosclerosis with a clear shift to anti-inflammatory gene expression in aortal macrophages. These changes are because of neither altered monocyte/macrophage migration nor reduced activation of inflammatory gene expression; on the contrary, G12/13-deficient macrophages show an increased nuclear factor-κB-dependent gene expression in the resting state. Chronically increased inflammatory gene expression in resident peritoneal macrophages results in myeloid-specific G12/13-deficient mice in an altered peritoneal micromilieu with secondary expansion of peritoneal B1 cells. Titers of B1-derived atheroprotective antibodies are increased, and adoptive transfer of peritoneal cells from mutant mice conveys atheroprotection to wild-type mice. With respect to the mechanism of G12/13-mediated transcriptional control, we identify an autocrine feedback loop that suppresses nuclear factor-κB-dependent gene expression through a signaling cascade involving sphingosine 1-phosphate receptor subtype 2, G12/13, and RhoA. CONCLUSIONS Together, these data show that selective inhibition of G12/13 signaling in macrophages can augment atheroprotective B-cell populations and ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Myriam Grimm
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Denise Tischner
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Kerstin Troidl
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Julián Albarrán Juárez
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Kishor K Sivaraj
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Nerea Ferreirós Bouzas
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Gerd Geisslinger
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Christoph J Binder
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Nina Wettschureck
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.).
| |
Collapse
|
105
|
Lee CW, Chung SW, Bae MJ, Song S, Kim SP, Kim K. Peptidoglycan Up-Regulates CXCL8 Expression via Multiple Pathways in Monocytes/Macrophages. Biomol Ther (Seoul) 2015; 23:564-70. [PMID: 26535082 PMCID: PMC4624073 DOI: 10.4062/biomolther.2015.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 11/22/2022] Open
Abstract
Peptidoglycan (PG), the gram positive bacterial pathogen-associated molecular patterns (PAMP), is detected in a high proportion in macrophage-rich atheromatous regions, and expression of chemokine CXCL8, which triggers monocyte arrest on early atherosclerotic endothelium, is elevated in monocytes/macrophages in human atherosclerotic lesion. The aim of this study was to investigate whether PG induced CXCL8 expression in the cell type and to determine cellular signaling pathways involved in that process. Exposure of THP-1 cell, human monocyte/macrophage cell line, to PG not only enhanced CXCL8 release but also profoundly induced il8 gene transcription. PG-induced release of CXCL8 and induction of il8 gene transcription were blocked by OxPAPC, an inhibitor of TLR-2/4 and TLR4, but not by polymyxin B, an inhibitor of LPS. PG-mediated CXCL8 release was significantly attenuated by inhibitors of PI3K-Akt-mTOR pathways. PKC inhibitors, MAPK inhibitors, and ROS quenchers also significantly attenuated expression of CXCL8. The present study proposes that PG contributes to inflammatory reaction and progression of atherosclerosis by inducing CXCL8 expression in monocytes/macrophages, and that TLR-2, PI3K-Akt-mTOR, PKC, ROS, and MAPK are actively involved in the process.
Collapse
Affiliation(s)
- Chung Won Lee
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea ; Medical Research Institute, Pusan National University Hospital, Pusan 602-739, Republic of Korea
| | - Sung Woon Chung
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Mi Ju Bae
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Seunghwan Song
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Sang-Pil Kim
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University - School of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
106
|
Scipione CA, Sayegh SE, Romagnuolo R, Tsimikas S, Marcovina SM, Boffa MB, Koschinsky ML. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J Lipid Res 2015; 56:2273-85. [PMID: 26474593 DOI: 10.1194/jlr.m060210] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.
Collapse
Affiliation(s)
- Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sera E Sayegh
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Rocco Romagnuolo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sotirios Tsimikas
- Vascular Medicine Program, University of California San Diego, La Jolla, CA
| | - Santica M Marcovina
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle, WA
| | - Michael B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
107
|
Övünç Hacıhamdioğlu D, Zeybek C, Gök F, Pekel A, Muşabak U. Elevated Urinary T Helper 1 Chemokine Levels in Newly Diagnosed Hypertensive Obese Children. J Clin Res Pediatr Endocrinol 2015; 7:175-82. [PMID: 26831550 PMCID: PMC4677551 DOI: 10.4274/jcrpe.1917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Increasing evidence suggests that T helper (Th) cells play a significant role in the pathogenesis of hypertension. The aim of this study was to evaluate the effect of obesity and anti-hypertensive treatment on urinary Th1 chemokines. METHODS The study groups consisted of three types of patients: hypertensive obese, healthy, and non-hypertensive obese. Pre-treatment and post-treatment samples of the hypertensive obese group and one sample from the other two groups were evaluated for urinary chemokine: regulated on activation, normal T cell expressed and secreted (RANTES), interferon-gamma-inducible protein 10 (IP10), and monokine induced by interferon-gamma (MIG). In the hypertensive obese group, urine microalbumin: creatinine ratio was examined before and after treatment. We recommended lifestyle changes to all patients. Captopril was started in those who could not be controlled with lifestyle changes and those who had stage 2 hypertension. RESULTS Twenty-four hypertensive obese (mean age 13.1), 27 healthy (mean age 11.2) and 22 non-hypertensive obese (mean age 11.5) children were investigated. The pre-treatment urine albumin: creatinine ratio was positively correlated with pre-treatment MIG levels (r=0.41, p<0.05). RANTES was significantly higher in the pre-treatment hypertensive and non-hypertensive obese group than in the controls. The urinary IP10 and MIG levels were higher in the pre-treatment hypertensive obese group than in the non-hypertensive obese. Comparison of the pre- and post-treatment values indicated significant decreases in RANTES, IP10, and MIG levels in the hypertensive obese group (p<0.05). CONCLUSION Th1 cells could be activated in obese hypertensive children before the onset of clinical indicators of target organ damage. Urinary RANTES seemed to be affected by both hypertension and obesity, and urinary IP10 and MIG seemed to be affected predominantly by hypertension.
Collapse
Affiliation(s)
- Duygu Övünç Hacıhamdioğlu
- Gülhane Military Medical Academy, Haydarpaşa Training Hospital, Clinic of Child Health and Diseases, İstanbul, Turkey Phone: +90 216 542 20 20 E-mail:
| | - Cengiz Zeybek
- Gülhane Military Medical Academy Hospital, Department of Child Health and Diseases, Ankara, Turkey
| | - Faysal Gök
- Gülhane Military Medical Academy Hospital, Department of Child Health and Diseases, Ankara, Turkey
| | - Aysel Pekel
- Gülhane Military Medical Academy Hospital, Department of Immunology, Ankara, Turkey
| | - Uğur Muşabak
- Gülhane Military Medical Academy Hospital, Department of Immunology, Ankara, Turkey
| |
Collapse
|
108
|
Kim SM, Lee CW, Kim BY, Jung YS, Eo SK, Park YC, Kim K. 27-Oxygenated cholesterol induces expression of CXCL8 in macrophages via NF-κB and CD88. Biochem Biophys Res Commun 2015; 463:1152-8. [DOI: 10.1016/j.bbrc.2015.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 01/07/2023]
|
109
|
Affiliation(s)
- Madhur P Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom.
| |
Collapse
|
110
|
van der Vorst EPC, Döring Y, Weber C. MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Front Immunol 2015; 6:373. [PMID: 26257740 PMCID: PMC4508925 DOI: 10.3389/fimmu.2015.00373] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) as part of the cardiovascular diseases is a pathology caused by atherosclerosis, a chronic inflammatory disease of the vessel wall characterized by a massive invasion of lipids and inflammatory cells into the inner vessel layer (intima) leading to the formation of atherosclerotic lesions; their constant growth may cause complications such as flow-limiting stenosis and plaque rupture, the latter triggering vessel occlusion through thrombus formation. Pathophysiology of CAD is complex and over the last years many players have entered the picture. One of the latter being chemokines (small 8-12 kDa cytokines) and their receptors, known to orchestrate cell chemotaxis and arrest. Here, we will focus on the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1) and the chemokine-like function chemokine, macrophage migration-inhibitory factor (MIF). Both are ubiquitously expressed and highly conserved proteins and play an important role in cell homeostasis, recruitment, and arrest through binding to their corresponding chemokine receptors CXCR4 (CXCL12 and MIF), ACKR3 (CXCL12), and CXCR2 (MIF). In addition, MIF also binds to the receptor CD44 and the co-receptor CD74. CXCL12 has mostly been studied for its crucial role in the homing of (hematopoietic) progenitor cells in the bone marrow and their mobilization into the periphery. In contrast to CXCL12, MIF is secreted in response to diverse inflammatory stimuli, and has been associated with a clear pro-inflammatory and pro-atherogenic role in multiple studies of patients and animal models. Ongoing research on CXCL12 points at a protective function of this chemokine in atherosclerotic lesion development. This review will focus on the role of CXCL12 and MIF and their differences and similarities in CAD of high risk patients.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| |
Collapse
|
111
|
PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun 2015; 6:7770. [PMID: 26183159 PMCID: PMC4507293 DOI: 10.1038/ncomms8770] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor β (PDGFRβ) activation on VSMCs have not been studied in the context of atherosclerosis. Here, we present a new mouse model of atherosclerosis with an activating mutation in PDGFRβ. Increased PDGFRβ signaling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRβD849V amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE−/− or Ldlr−/− mice. Intriguingly, increased PDGFRβ signaling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRβ-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRβ pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis.
Collapse
|
112
|
Gao L, Xu Z, Yin Z, Chen K, Wang C, Zhang H. Association of hydrogen sulfide with alterations of monocyte chemokine receptors, CCR2 and CX3CR1 in patients with coronary artery disease. Inflamm Res 2015; 64:627-35. [PMID: 26123579 DOI: 10.1007/s00011-015-0844-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Recent data in human and mice suggest that monocyte chemokine receptors CX3CR1 and CCR2 are involved in the pathogenesis of atherosclerosis. Our previous study showed that hydrogen sulfide, a novel gaseous mediator hampered the progression of atherosclerosis in fat-fed apoE(-/-) mice with downregulating CX3CR1 and CX3CL1 expressions. However, there is a paucity of information regarding the clinical association between endogenous H2S metabolism and alterations of monocyte chemokine receptors in patients with cardiovascular disease. Therefore, in this study, we investigated circulating monocyte heterogeneity with differential expressions of CCR2 and CX3CR1 and its relevance to plasma H2S level in patients with coronary artery disease (CAD). METHODS Sixty-three CAD patients with acute coronary syndrome (ACS, n = 46) or stable angina pectoris (SAP, n = 17) undergoing either percutaneous coronary intervention or coronary angiography and eleven non-CAD patients were enrolled in the study. Plasma levels of H2S as well as chemokines (CCL2 and CX3CL1) and expressions of CCR2 and CX3CR1 on peripheral monocytes were measured. RESULTS It was found that plasma H2S level was significantly reduced, whereas plasma CCL2 and CX3CL1 levels were substantially elevated in patients with ACS, as compared with patients with SAP or non-CAD patients. Furthermore, patients with ACS had significantly higher proportion of CD14(+)CCR2(+)CX3CR1(+) and CD14(+)CCR2(-)CX3CR1(+) monocytes but lower percentage of CD14(+)CCR2(+)CX3CR1(-) monocytes than SAP or non-CAD patients did. Lastly, plasma H2S level showed a significantly negative correlation with the proportion of CD14(+)CCR2(+)CX3CR1(+) monocytes, but not other monocyte subsets. CONCLUSIONS These data indicate that decreased endogenous H2S production may predispose stable CAD patients to rupture of vulnerable plaque and thus to ACS, probably in relation to circulating monocyte phenotypic transformation with differential expressions of CCR2 and CX3CR1.
Collapse
Affiliation(s)
- Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | | | | | | | | |
Collapse
|
113
|
Sun K, Xiang X, Li N, Huang S, Qin X, Wu Y, Tang X, Gao P, Li J, Wu T, Chen D, Hu Y. Gene-Diet Interaction between SIRT6 and Soybean Intake for Different Levels of Pulse Wave Velocity. Int J Mol Sci 2015; 16:14338-52. [PMID: 26114387 PMCID: PMC4519845 DOI: 10.3390/ijms160714338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022] Open
Abstract
Soybean is a common food for the Chinese people. We aimed to investigate the risk for brachial ankle pulse wave velocity (baPWV) with inflammatory-related SNPs and soybean. baPWV was measured, and 16 inflammatory-related SNPs located on ADIPOQ, CDH13, SIRT3, SIRT6, CXCL12, CXCR4, NOS1, PON1 and CDKN2B were genotyped in 1749 Chinese participants recruited from various communities. ADIPOQ rs12495941 (GT/TT vs. GG: crude OR = 1.27, p = 0.044) and SIRT6 rs107251 (CT/TT vs. CC: crude OR = 0.74, p = 0.009) were associated with abnormal baPWV (baPWV ≥ 1700 cm/s). After adjustment for conventional environmental risk factors, rs12495941 was associated with abnormal baPWV (GT/TT vs. GG: adjusted OR = 1.43, p = 0.011), but the association between rs107251 and abnormal baPWV was not significant (CT/TT vs. CC: adjusted OR = 0.83, p = 0.173). The interaction between rs107251 and soybean intake for different levels of baPWV was statistically significant (p = 0.017). Compared with a high level of soybean intake, a low level of soybean intake can significantly decrease the risk of abnormal baPWV in individuals of rs107251 CT/TT genotypes (≤100 vs. >100 g/week: adjusted OR = 0.542, p = 0.003). In this study, associations between ADIPOQ rs12495941, SIRT6 rs107251 and baPWV, as well as an interaction between SIRT6 rs107251 and soybean intake for different levels of baPWV were found.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Xiao Xiang
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Na Li
- Fangshan District Center for Disease Control and Prevention, Beijing 102401, China.
| | - Shaoping Huang
- Fangshan District Center for Disease Control and Prevention, Beijing 102401, China.
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Xun Tang
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Pei Gao
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Jing Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Tao Wu
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
114
|
van der Toorn M, Frentzel S, Goedertier D, Peitsch M, Hoeng J, De Leon H. A prototypic modified risk tobacco product exhibits reduced effects on chemotaxis and transendothelial migration of monocytes compared with a reference cigarette. Food Chem Toxicol 2015; 80:277-286. [PMID: 25839901 DOI: 10.1016/j.fct.2015.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
Monocyte adhesion and migration to the subendothelial space represent critical steps in atherogenesis. Here, we investigated whether extracts from the aerosol of a prototypic modified risk tobacco product (pMRTP), based on heating rather than combusting tobacco, exhibited differential effects on the migratory behavior of monocytes compared with that from the reference cigarette, 3R4F. THP-1 cells, a monocytic cell line, and human coronary arterial endothelial cells (HCAECs) were used to investigate chemotaxis and transendothelial migration (TEM) of monocytes in conventional and impedance-based systems. THP-1 cells migrated through a monolayer of HCAECs in response to C-X-C motif ligand 12 (CXCL12), a chemokine involved in diverse cellular functions including chemotaxis and survival of stem cells. Treatment of THP-1 cells with extracts from 3R4F or pMRTP induced concentration-dependent increases in cytotoxicity (7-aminoactinomycin D), and inflammation (IL-8 and TNF-α). CXCL12-mediated chemotaxis and TEM were decreased in extract-treated THP-1 cells. Extracts from 3R4F were ~21 times more potent than those from pMRTP in all examined endpoints. Extracts from 3R4F and pMRTP induced concentration-dependent responses in assays of inflammation, cytotoxicity, chemotaxis, and TEM. Furthermore, our findings indicate that extracts from a pMRTP are significantly less cytotoxic and induce less inflammation than those from the reference cigarette, 3R4F.
Collapse
Affiliation(s)
- Marco van der Toorn
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Stefan Frentzel
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Peitsch
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Hector De Leon
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
115
|
Mirhafez SR, Zarifian A, Ebrahimi M, Ali RFA, Avan A, Tajfard M, Mohebati M, Eslami S, Rahsepar AA, Rahimi HR, Mehrad-Majd H, Ferns GA, Ghayour-Mobarhan M. Relationship between serum cytokine and growth factor concentrations and coronary artery disease. Clin Biochem 2015; 48:575-80. [DOI: 10.1016/j.clinbiochem.2015.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/07/2015] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
|
116
|
Vinci MC, Piacentini L, Chiesa M, Saporiti F, Colombo GI, Pesce M. Inflammatory environment and oxidized LDL convert circulating human proangiogenic cells into functional antigen-presenting cells. J Leukoc Biol 2015; 98:409-21. [PMID: 25990243 DOI: 10.1189/jlb.3a0814-412rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 04/23/2015] [Indexed: 11/24/2022] Open
Abstract
The function of human circulating PACs has been described extensively. However, little focus has been placed on understanding how these cells differ in their functions in the presence of microenvironments mimicking vascular inflammation. We hypothesized that exposure to proinflammatory cytokines or the oxLDL, an autoantigen abundant in advanced atherosclerotic plaques, converts PACs into immune-modulating/proinflammatory cells. Hence, we examined the effect of oxLDL and inflammatory stimuli on their phenotype by use of a functional genomics model based on secretome and whole genome transcriptome profiling. PACs obtained from culturing a PBMC fraction in angiogenic medium were primed with DC differentiation cytokines and then exposed to proinflammatory cytokines or oxLDL. Under these conditions, PACs converted into APCs, expressed maturation markers CD80 and CD83, and showed an increased up-regulation of CD86. APCcy and APCox induced a robust T cell BrdU incorporation. Despite a similar ability to induce lymphocyte proliferation, APCcy and APCox differed for the secretory pathway and mRNA expression. Analysis of the differentially expressed genes identified 4 gene "clusters," showing reciprocal modulation in APCcy vs. APCox, justifying, according to functional genomics analyses, a different putative function of the cells in antigen processing. Together, these data show that treatment with inflammatory cytokines or oxLDL converts human PAC phenotypes and functions into that of APCs with similar lymphocyte-activating ability but distinct maturation degree and paracrine functions.
Collapse
Affiliation(s)
- Maria Cristina Vinci
- *Unità di Ingegneria Tissutale Cardiovascolare and Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Luca Piacentini
- *Unità di Ingegneria Tissutale Cardiovascolare and Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Mattia Chiesa
- *Unità di Ingegneria Tissutale Cardiovascolare and Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Federica Saporiti
- *Unità di Ingegneria Tissutale Cardiovascolare and Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Gualtiero I Colombo
- *Unità di Ingegneria Tissutale Cardiovascolare and Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Maurizio Pesce
- *Unità di Ingegneria Tissutale Cardiovascolare and Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| |
Collapse
|
117
|
Kritikou E, Kuiper J, Kovanen PT, Bot I. The impact of mast cells on cardiovascular diseases. Eur J Pharmacol 2015; 778:103-15. [PMID: 25959384 DOI: 10.1016/j.ejphar.2015.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
118
|
Zou J, Redmond AK, Qi Z, Dooley H, Secombes CJ. The CXC chemokine receptors of fish: Insights into CXCR evolution in the vertebrates. Gen Comp Endocrinol 2015; 215:117-31. [PMID: 25623148 DOI: 10.1016/j.ygcen.2015.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/15/2022]
Abstract
This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
119
|
Expression of Human Tissue Factor Pathway Inhibitor on Vascular Smooth Muscle Cells Inhibits Secretion of Macrophage Migration Inhibitory Factor and Attenuates Atherosclerosis in ApoE
−/−
Mice. Circulation 2015. [PMID: 25677604 DOI: 10.1161/circulationaha.114.013423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background—
Tissue factor (TF) and coagulation proteases are involved in promoting atherosclerosis, but the molecular and cellular bases for their involvement are unknown.
Methods and Results—
We generated a new strain (ApX4) of apolipoprotein E–deficient mice expressing a membrane-tethered human tissue factor pathway inhibitor fusion protein on smooth muscle actin–positive cells, including vascular smooth muscle cells (SMCs). ApX4 mice developed little atherosclerosis on either a normal chow or high-fat diet. Lipid levels were similar to those in parental ApoE
−/−
mice, and there was no detectable difference in systemic (circulating) tissue factor pathway inhibitor levels or activity. The small lipid-rich lesions that developed had markedly reduced leukocyte infiltrates, and in contrast to ApoE
−/−
mice, SMCs did not express macrophage migratory inhibitory factor (MIF), including at sites distant from atheromatous lesions. Low levels of circulating MIF in ApX4 mice normalized to levels seen in ApoE
−/−
mice after injection of an inhibitory anti–human tissue factor pathway inhibitor antibody, which also led to MIF expression by tissue factor–positive medial SMCs. MIF production by SMCs in ApoE
−/−
mice in vitro and in vivo was shown to be dependent on tissue factor and protease-activated receptor signaling, which were inhibited in ApX4 mice.
Conclusions—
Our data indicate that tissue factor plays a hitherto unreported role in the generation of MIF by SMCs in atherosclerosis-prone ApoE
−/−
mice, inhibition of which significantly prevents the development of atherosclerosis, through inhibition of leukocyte recruitment. These data significantly enhance our understanding of the pathophysiology of this important pathology and suggest new potential translational strategies to prevent atheroma formation.
Collapse
|
120
|
Expression of chemokine receptors on peripheral blood T cells in children with chronic kidney disease. Mediators Inflamm 2015; 2015:536894. [PMID: 25866451 PMCID: PMC4381676 DOI: 10.1155/2015/536894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Chemokine receptors play a role in leukocyte recruitment, activation, and maintaining effector functions and regulate adaptive immune response and angiogenesis. The study aimed at flow cytometric analysis of T cell subsets with selected surface chemokine receptors (CCR4, CCR5, CCR7, CXCR3, and CXCR4) or receptor combination in peripheral blood of children with chronic kidney disease (CKD) on hemodialysis (HD). The percentage of T lymphocytes with CD8 and combined CD28,CCR7 expression was higher in HD children. The percentage of T lymphocytes expressing CCR7, CD28,CCR7, and CXCR4,CD8 was increased in children on conservative treatment. Total number (tn) of CXCR4+ cells was reduced in children on hemodialysis. The tn of T CXCR3+ cells was lower in children on conservative treatment. During HD the percentage of T CD4+ cells was higher and of T CXCR3+ lymphocytes was lower after HD session as compared to 15 min of session duration. During HD tn of T cells with expression of CCR4, CCR5, CCR7, CXCR3, and CXCR4 was constant. The alteration of chemokine receptors expression in children with CKD occurs early in the development. Diminished expression of CXCR3, CXCR4 on T cells in patients with CKD on HD might result in impaired inflammatory response. Increased CCR7+ T cell percentage could be responsible for the alteration of migration of cells into secondary lymphatic organs.
Collapse
|
121
|
Cheng JM, Akkerhuis M, Malaud E, Piquer D, Merle D, Meilhac O, van Geuns RJ, Boersma E, Kardys I, Fareh J. Evaluation of 42 cytokines, chemokines and growth factors for prediction of cardiovascular outcome in patients with coronary artery disease. Int J Cardiol 2015; 184:724-727. [DOI: 10.1016/j.ijcard.2015.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
|
122
|
Sohn C, Lee A, Qiao Y, Loupasakis K, Ivashkiv LB, Kalliolias GD. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol 2015; 67:86-95. [PMID: 25199798 DOI: 10.1002/art.38871] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE During the course of rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are chronically exposed to an inflammatory milieu. The purpose of this study was to test the hypothesis that prolonged exposure of FLS to tumor necrosis factor α (TNFα) augments inflammatory responses to secondary stimuli (priming effect). METHODS FLS obtained from RA patients were exposed to TNFα for 3 days and were then stimulated with interferons (IFNs). Expression of IFN target genes was measured by real-time quantitative reverse transcription-polymerase chain reaction analysis and enzyme-linked immunosorbent assay. Total STAT-1 protein and IFN-mediated STAT-1 activation were evaluated by Western blotting. Total histone levels, histone acetylation, and NF-κB p65 and RNA polymerase II (Pol II) recruitment were measured at the CXCL10 promoter (encodes IFNγ-inducible 10-kd protein [IP-10]) by chromatin immunoprecipitation assays. RESULTS Prolonged pre-exposure of FLS to TNFα enhanced the magnitude and extended the kinetics of CXCL10/IP-10, CXCL9, and CXCL11 production upon subsequent IFN stimulation. This phenotype was retained over a period of days, even after the removal of TNFα. Prolonged TNFα exposure decreased histone levels, increased acetylation of the remaining histones, and heightened recruitment of NF-κB p65 and Pol II to the CXCL10 promoter. In parallel, an increase in intracellular STAT-1 led to amplification of IFN-induced STAT-1 activation. CONCLUSION Our study reveals a novel pathogenic function of TNFα, namely, prolonged and gene-specific priming of FLS for enhanced transcription of inflammatory chemokine genes due to the priming of chromatin, the sustained activation of NF-κB, and the amplification of STAT-1 activation downstream of IFNs. These data also suggest that FLS gain an "inflammatory memory" upon prolonged exposure to TNFα.
Collapse
|
123
|
Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. THE JOURNAL OF IMMUNOLOGY 2015; 194:3463-74. [PMID: 25712213 DOI: 10.4049/jimmunol.1402097] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules are the key effectors of human MSC tumor homing in vitro and using an in vivo murine model. In this study, we discover a novel role for macrophage migration inhibitory factor (MIF) as the key director of MSC migration and infiltration toward tumor cells. We have shown this major role for MIF using in vitro migration and invasion assays, in presence of different receptor inhibitors and achieving a drastic decrease in both processes using MIF inhibitor. Additionally, we demonstrate physical interaction between MIF and three receptors: CXCR2, CXCR4, and CD74. CXCR4 is the dominant receptor used by MIF in the homing tumor context, although some signaling is observed through CXCR2. We demonstrate downstream activation of the MAPK pathway necessary for tumor homing. Importantly, we show that knockdown of either CXCR4 or MIF abrogates MSC homing to tumors in an in vivo pulmonary metastasis model, confirming the in vitro two-dimensional and three-dimensional assays. This improved understanding of MSC tumor tropism will further enable development of novel cellular therapies for cancers.
Collapse
Affiliation(s)
- Sofia Lourenco
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom;
| | - Vitor H Teixeira
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Tammy Kalber
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; University College London Centre of Advanced Biomedical Imaging, University College London, London WC1E 6DD, United Kingdom
| | - Ricardo J Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; and
| | - R Andres Floto
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
124
|
Fenning RS, Burgert ME, Hamamdzic D, Peyster EG, Mohler ER, Kangovi S, Jucker BM, Lenhard SC, Macphee CH, Wilensky RL. Atherosclerotic plaque inflammation varies between vascular sites and correlates with response to inhibition of lipoprotein-associated phospholipase A2. J Am Heart Assoc 2015; 4:jah3843. [PMID: 25672369 PMCID: PMC4345873 DOI: 10.1161/jaha.114.001477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Despite systemic exposure to risk factors, the circulatory system develops varying patterns of atherosclerosis for unclear reasons. In a porcine model, we investigated the relationship between site‐specific lesion development and inflammatory pathways involved in the coronary arteries (CORs) and distal abdominal aortas (AAs). Methods and Results Diabetes mellitus (DM) and hypercholesterolemia (HC) were induced in 37 pigs with 3 healthy controls. Site‐specific plaque development was studied by comparing plaque severity, macrophage infiltration, and inflammatory gene expression between CORs and AAs of 17 DM/HC pigs. To assess the role of lipoprotein‐associated phospholipase A2 (Lp‐PLA2) in plaque development, 20 DM/HC pigs were treated with the Lp‐PLA2 inhibitor darapladib and compared with the 17 DM/HC untreated pigs. DM/HC caused site‐specific differences in plaque severity. In the AAs, normalized plaque area was 4.4‐fold higher (P<0.001) and there were more fibroatheromas (9 of the 17 animals had a fibroatheroma in the AA and not the COR, P=0.004), while normalized macrophage staining area was 1.5‐fold higher (P=0.011) compared with CORs. DM/HC caused differential expression of 8 of 87 atherosclerotic genes studied, including 3 important in inflammation with higher expression in the CORs. Darapladib‐induced attenuation of normalized plaque area was site‐specific, as CORs responded 2.9‐fold more than AAs (P=0.045). Conclusions While plaque severity was worse in the AAs, inflammatory genes and inflammatory pathways that use Lp‐PLA2 were more important in the CORs. Our results suggest fundamental differences in inflammation between vascular sites, an important finding for the development of novel anti‐inflammatory therapeutics.
Collapse
Affiliation(s)
- Robert S Fenning
- Hospital of the University of Pennsylvania, Philadelphia, PA (R.S.F., D.H., E.G.P., E.R.M., S.K., R.L.W.)
| | - Mark E Burgert
- GlaxoSmithKline, King of Prussia, PA (M.E.B., B.M.J., S.C.L., C.H.M.)
| | - Damir Hamamdzic
- Hospital of the University of Pennsylvania, Philadelphia, PA (R.S.F., D.H., E.G.P., E.R.M., S.K., R.L.W.)
| | - Eliot G Peyster
- Hospital of the University of Pennsylvania, Philadelphia, PA (R.S.F., D.H., E.G.P., E.R.M., S.K., R.L.W.)
| | - Emile R Mohler
- Hospital of the University of Pennsylvania, Philadelphia, PA (R.S.F., D.H., E.G.P., E.R.M., S.K., R.L.W.)
| | - Shreya Kangovi
- Hospital of the University of Pennsylvania, Philadelphia, PA (R.S.F., D.H., E.G.P., E.R.M., S.K., R.L.W.)
| | - Beat M Jucker
- GlaxoSmithKline, King of Prussia, PA (M.E.B., B.M.J., S.C.L., C.H.M.)
| | - Stephen C Lenhard
- GlaxoSmithKline, King of Prussia, PA (M.E.B., B.M.J., S.C.L., C.H.M.)
| | - Colin H Macphee
- GlaxoSmithKline, King of Prussia, PA (M.E.B., B.M.J., S.C.L., C.H.M.)
| | - Robert L Wilensky
- Hospital of the University of Pennsylvania, Philadelphia, PA (R.S.F., D.H., E.G.P., E.R.M., S.K., R.L.W.)
| |
Collapse
|
125
|
Yu HT, Lee J, Shin EC, Park S. Significant Association between Serum Monokine Induced by Gamma Interferon and Carotid Intima Media Thickness. J Atheroscler Thromb 2015; 22:816-22. [PMID: 25739534 DOI: 10.5551/jat.28886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The immune system may play an important role in the pathogenesis of cardiovascular disease. T cell-driven inflammation in human hypertension and atherosclerosis has recently been revealed. In the present study, we evaluated the association between serum levels of the C-X-C chemokine receptor type 3 chemokines and the carotid intima media thickness (IMT) in humans. METHODS One hundred sixty-four consecutive patients undergoing baseline and 2-year follow-up carotid IMT (110 men, 62.4±10.0 years) were enrolled. The maximum carotid IMT (max-IMT) and the mean carotid IMT (mean-IMT) were measured at baseline and after 24 months. Clinical and laboratory variables, including serum levels of the monokine induced by gamma interferon (MIG) and interferon gamma-induced protein 10 (IP-10), were analyzed at the time of initial enrollment. RESULTS The baseline max- and mean-IMT were 0.992±0.235 and 0.793±0.191 mm, respectively. The serum levels of MIG and IP-10 significantly correlated with the carotid IMT. However, there was no significant correlation between the serum levels of MIG or IP-10 and IMT changes. A multivariate regression analysis revealed the serum MIG to be independently associated with the carotid IMT (max-IMT: β=0.194, p=0.010; mean-IMT: β=0.184, p=0.016) when controlled for age, sex, diabetes mellitus history, smoking history, body mass index, blood pressure, total cholesterol, high-density lipoprotein cholesterol, high-sensitivity C-reactive protein, and aspirin and statin medication. CONCLUSIONS Circulating MIG levels are independently associated with the carotid IMT, after adjusting for confounding factors and medications. These findings indicate the potential clinical implication of MIG with respect to early atherosclerosis in humans.
Collapse
Affiliation(s)
- Hee Tae Yu
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST
| | | | | | | |
Collapse
|
126
|
Cavnar SP, Ray P, Moudgil P, Chang SL, Luker KE, Linderman JJ, Takayama S, Luker GD. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis. Integr Biol (Camb) 2014; 6:564-76. [PMID: 24675873 DOI: 10.1039/c4ib00015c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemokines critically regulate chemotaxis in normal and pathologic states, but there is limited understanding of how multicellular interactions generate gradients needed for cell migration. Previous studies of chemotaxis of CXCR4+ cells toward chemokine CXCL12 suggest the requirement of cells expressing scavenger receptor CXCR7 in a source-sink system. We leveraged an established microfluidic device to discover that chemotaxis of CXCR4 cells toward distinct isoforms of CXCL12 required CXCR7 scavenging only under conditions with higher than optimal levels of CXCL12. Chemotaxis toward CXCL12-β and -γ isoforms, which have greater binding to extracellular molecules and have been largely overlooked, was less dependent on CXCR7 than the more commonly studied CXCL12-α. Chemotaxis of CXCR4+ cells toward even low levels of CXCL12-γ and CXCL12-β still occurred during treatment with a FDA-approved inhibitor of CXCR4. We also detected CXCL12-γ only in breast cancers from patients with advanced disease. Physiological gradient formation within the device facilitated interrogation of key differences in chemotaxis among CXCL12 isoforms and suggests CXCL12-γ as a biomarker for metastatic cancer.
Collapse
Affiliation(s)
- S P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Yang H, Wang C, Guo M, Zhou Y, Feng Z, Yin Z. Correlations between peroxisome proliferator activator receptor γ, Cystatin C, or advanced oxidation protein product, and atherosclerosis in diabetes patients. Pathol Res Pract 2014; 211:235-9. [PMID: 25543292 DOI: 10.1016/j.prp.2014.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
We aimed to explore the relationship between peroxisome proliferator activator receptor γ (PPAR γ), Cystatin C or advanced oxidation protein product (AOPP) and atherosclerosis (AS), and identify their diagnostic values for AS. Eighty AS patients above the age of 75 with type 2 diabetes were screened by brachial-ankle pulse wave velocity (baPWV) and ankle brachial index (ABI). The baseline level of patients was firstly analyzed, and then the expression of PPAR γ was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Meanwhile, a double-antibody sandwich enzyme-linked immunosorbent assay was performed to analyze the concentration of AOPP, and immunonephelometry was carried out to detect the concentration of Cystatin C. The baseline level of patients was basically consistent. The expression of PPAR γ was significantly higher in severe AS than mild AS patients (P < 0.05), while no differences were found in serum Cystatin C and AOPP between severe AS and mild AS patients (P > 0.05). Thus, PPAR γ exhibited a high diagnostic value for severe AS (AUC = 0.850), but not Cystatin C and AOPP (AUC = 0.553, AUC = 0.4780). Moreover, the combination of PPAR γ, Cystatin C and AOPP exhibited a quite high diagnostic value in AS (AUC = 0.961, Sen = 0.9, Spe = 0.975), which was also higher than PPAR γ alone. In conclusion, the contents of PPAR γ, Cystatin C and AOPP were closely related to AS in diabetes, indicating a potential clinical diagnostic value of PPAR γ, Cystatin C and AOPP in diabetes with AS.
Collapse
Affiliation(s)
- Haiyan Yang
- The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School, Nanjing 210008, Jiangsu Province, China
| | - Chun Wang
- The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School, Nanjing 210008, Jiangsu Province, China.
| | - Meizi Guo
- The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School, Nanjing 210008, Jiangsu Province, China
| | - Yihua Zhou
- The Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School, Nanjing 210008, Jiangsu Province, China
| | - Zhenhua Feng
- The Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School, Nanjing 210008, Jiangsu Province, China
| | - Zhenyu Yin
- The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
128
|
Lv YB, Jing J, Li JM, Zhong JP, Fang L, Yang B. Assessment of RANTES levels as the indicators of plaque vulnerability in rabbit models of atherosclerosis. Pathol Res Pract 2014; 210:1031-7. [DOI: 10.1016/j.prp.2014.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/03/2013] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
129
|
Fadini GP, Simoni F, Cappellari R, Vitturi N, Galasso S, Vigili de Kreutzenberg S, Previato L, Avogaro A. Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis 2014; 237:805-8. [PMID: 25463124 DOI: 10.1016/j.atherosclerosis.2014.10.106] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 02/01/2023]
Abstract
Monocyte-macrophages (MoMas) play a major role in atherosclerosis. In mice, hypercholesterolemia increases pro-inflammatory monocytes that promote plaque growth, but whether this is true also in humans in unknown. We herein analyzed monocyte subsets and MoMa phenotypes in familiar (FH, n = 22) and non-familiar (NFH, n = 20) hypercholesterolemic compared with normocholesterolemic (CTRL, n = 20) patients. We found that FH and NFH had higher circulating pro-inflammatory CD68(+)CCR2(+) M1 MoMas than CTRL, while anti-inflammatory CX3CR1(+)CD163(+)/CD206(+) M2 MoMas were reduced only in NFH. As a result, the M1/M2 polarization balance was increased in FH and, more markedly in NFH. M1 MoMas and the M1/M2 polarization ratio were directly correlated to pre-treatment LDL cholesterol levels and strongly associated with the presence of atherosclerotic plaques. In conclusion, we show for the first time that human hypercholesterolemia is associated with a pro-inflammatory imbalance of circulating monocytic cells, which can predispose to the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Nicola Vitturi
- Department of Medicine, University of Padova, Padova, Italy
| | - Silvia Galasso
- Department of Medicine, University of Padova, Padova, Italy
| | | | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
130
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall. Atherosclerotic lesions contain monocytes, macrophages, smooth muscle cells and T lymphocytes. Here, we review the role of T-lymphocyte subsets in atherosclerosis. Among CD4⁺T cells, T(h)1 cells are pro-atherogenic, T(reg) cells are athero-protective and the role of T(h)2 and T(h)17 cells remains unclear. The role of follicular helper T cells in atherosclerosis remains unknown, as is the role of CD8⁺T cells. NKT cells bind glycolipid antigens and exert a pro-atherogenic role. The antigen specificity of T-cell responses in atherosclerosis is poorly understood. In order to enable antigen-specific prevention or therapy, a better understanding of these mechanisms is needed.
Collapse
Affiliation(s)
- Kevin Tse
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of California at San Diego Medical Center, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
131
|
Guo Y, Apostalakis S, Blann AD, Lip GYH. Plasma CX3CL1 levels and long term outcomes of patients with atrial fibrillation: the West Birmingham Atrial Fibrillation Project. Cerebrovasc Dis 2014; 38:204-11. [PMID: 25301077 DOI: 10.1159/000365841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is growing evidence that chemokines are potentially important mediators of the pathogenesis of atherosclerotic disease. Major atherothrombotic complications, such as stroke and myocardial infarction, are common among atrial fibrillation (AF) patients. This increase in risk of adverse events may be predicted by a score based on the presence of certain clinical features of chronic heart failure, hypertension, age 75 years or greater, diabetes and stroke (the CHADS2 score). Our objective was to assess the prognostic value of plasma chemokines CCL2, CXCL4 and CX3CL1, and their relationship with the CHADS2 score, in AF patients. METHODS Plasma CCL2, CXCL4 and CX3CL1 were measured in 441 patients (59% male, mean age 75 years, 12% paroxysmal, 99% on warfarin) with AF. Baseline clinical and demographic factors were used to define each subject's CHADS2 score. Patients were followed up for a mean 2.1 years, and major adverse cardiovascular and cerebrovascular events (MACCE) were sought, being the combination of cardiovascular death, acute coronary events, stroke and systemic embolism. RESULTS Fifty-five of the AF patients suffered a MACCE (6% per year). Those in the lowest CX3CL1 quartile (≤ 0.24 ng/ml) had fewest MACCE (p = 0.02). In the Cox regression analysis, CX3CL1 levels >0.24 ng/ml (Hazard ratio 2.8, 95% CI 1.02-8.2, p = 0.045) and age (p = 0.042) were independently linked with adverse outcomes. The CX3CL1 levels rose directly with the CHADS2 risk score (p = 0.009). The addition of CX3CL1 did not significantly increased the discriminatory ability of the CHADS2 clinical factor-based risk stratification (c-index 0.60 for CHADS2 alone versus 0.67 for CHADS2 plus CX3CL1 >0.24 ng/ml, p = 0.1). Aspirin use was associated with lower levels of CX3CL1 (p = 0.0002) and diabetes with higher levels (p = 0.031). There was no association between CXCL4 and CCL2 plasma levels and outcomes. CONCLUSION There is an independent association between low plasma CX3CL1 levels and low risk of major cardiovascular events in AF patients, as well as a linear association between CX3CL1 plasma levels and CHADS2-defined cardiovascular risk. The potential for CX3CL1 in refining risk stratification in AF patients merits consideration.
Collapse
Affiliation(s)
- Yutao Guo
- Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | | | | | | |
Collapse
|
132
|
Manoharan P, Basford JE, Pilcher-Roberts R, Neumann J, Hui DY, Lingrel JB. Reduced levels of microRNAs miR-124a and miR-150 are associated with increased proinflammatory mediator expression in Krüppel-like factor 2 (KLF2)-deficient macrophages. J Biol Chem 2014; 289:31638-46. [PMID: 25248747 DOI: 10.1074/jbc.m114.579763] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous studies have shown that the myeloid-specific deficiency of the transcription factor Krüppel-like factor 2 (KLF2) accelerates atherosclerosis in hypercholesterolemic Ldlr(-/-) mice due to the enhanced adhesion of myeloid cells to activated endothelial cells in the vessel wall. This study revealed elevated basal inflammation with elevated plasma levels of Ccl2, Ccl4, Ccl5, and Ccl11 in the myeloid-specific KLF2 knock-out (myeKlf2(-/-)) mice. Peritoneal macrophages isolated from myeKlf2(-/-) mice showed increased mRNA levels of several inflammatory mediators, including Ccl2, Ccl5, Ccl7, Cox-2, Cxcl1, and IL-6. In contrast, the levels of two microRNAs, miR-124a and miR-150, were lower in Klf2(-/-) macrophages compared with Klf2(+/+) macrophages. Additional studies showed a direct inverse relationship between miR-124a levels with Ccl2 expression, with anti-miR-124a increasing Ccl2 mRNA levels in Klf2(+/+) macrophages, whereas the restoration of miR-124a levels in Klf2(-/-) macrophages significantly reduced Ccl2 mRNA expression. Likewise, the inverse relationship was observed between miR-150 levels and Cxcl1 expression in Klf2(+/+) and Klf2(-/-) mice. Moreover, miR150 likely regulates the miR124a expression and thus augments expression of inflammatory mediators in myeKlf2(-/-) macrophages. This study documented that the transcription factor KLF2 modulates inflammatory chemokine production via regulation of microRNA expression levels in immune cells.
Collapse
Affiliation(s)
| | - Joshua E Basford
- Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | - Jonathan Neumann
- From the Departments of Molecular Genetics, Biochemistry, and Microbiology and
| | - David Y Hui
- Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Jerry B Lingrel
- From the Departments of Molecular Genetics, Biochemistry, and Microbiology and
| |
Collapse
|
133
|
Ertelt K, Généreux P, Mintz GS, Brener SJ, Kirtane AJ, McAndrew TC, Francese DP, Ben-Yehuda O, Mehran R, Stone GW. Clinical profile and impact of family history of premature coronary artery disease on clinical outcomes of patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction: analysis from the HORIZONS-AMI Trial. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2014; 15:375-80. [PMID: 25288517 DOI: 10.1016/j.carrev.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND/PURPOSE Family history of coronary artery disease (CAD) is a well-established risk factor of future cardiovascular events. The authors sought to examine the relationship between family history of CAD and clinical profile and prognosis of patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). MATERIALS/METHODS Baseline features and clinical outcomes at 30 days and at 3 years from 3601 patients with STEMI enrolled in the HORIZONS-AMI trial were compared in patients with and without family history of premature CAD, which was present in 1059 patients (29.4%). RESULTS These patients were younger (median 56.7 vs. 62.1years, P<0.0001) and more often current smokers (52.4% vs. 43.5%, P<0.0001), had more dyslipidemia (47.7% vs. 41.1%, P=0.0003), less diabetes mellitus (14.1% vs. 17.5%, P=0.01) and had shorter symptom onset to balloon times (median 213 vs. 225 min, P=0.02). Patients with a family history of premature CAD had higher rates of final TIMI 3 flow (93.8% vs. 90.6%, P=0.002), and myocardial blush grade 2 or 3 (83.2% vs. 78.0% P=0.0008), and fewer procedural complications. Although the unadjusted 30-day and 3-year mortality rates were lower in patients with a family history of premature CAD (1.8% vs. 3.0%, P=0.046 and 4.8% vs. 7.7%, P=0.002, respectively), by multivariable analysis the presence of a family history of premature CAD was not an independent predictor of death at 3 years (HR [95%CI]=1.00 [0.70, 1.44], P=0.98). CONCLUSIONS A family history of premature CAD is not an independent predictor of higher mortality.
Collapse
Affiliation(s)
| | - Philippe Généreux
- Cardiovascular Research Foundation, New York, NY, USA; Columbia University Medical Center, New York, NY, USA; Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | - Gary S Mintz
- Cardiovascular Research Foundation, New York, NY, USA
| | - Sorin J Brener
- Cardiovascular Research Foundation, New York, NY, USA; New York Methodist Hospital, Brooklyn, NY, USA
| | - Ajay J Kirtane
- Cardiovascular Research Foundation, New York, NY, USA; Columbia University Medical Center, New York, NY, USA
| | | | | | | | - Roxana Mehran
- Cardiovascular Research Foundation, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregg W Stone
- Cardiovascular Research Foundation, New York, NY, USA; Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
134
|
Borghini A, Sbrana S, Vecoli C, Mercuri A, Turchi S, Carpeggiani C, L’Abbate A, Andreassi MG. Stromal cell-derived factor-1–3′A polymorphism is associated with decreased risk of myocardial infarction and early endothelial disturbance. J Cardiovasc Med (Hagerstown) 2014; 15:710-6. [DOI: 10.2459/jcm.0000000000000068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
135
|
Tajfard M, Ghayour Mobarhan M, Rahimi HR, Mouhebati M, Esmaeily H, Ferns GA, Latiff LA, Taghipour A, Mokhber N, Abdul-Aziz AF. Anxiety, depression, coronary artery disease and diabetes mellitus; an association study in ghaem hospital, iran. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e14589. [PMID: 25593715 PMCID: PMC4270671 DOI: 10.5812/ircmj.14589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/05/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is an increasing trend in the prevalence of coronary artery disease (CAD) in Iran. OBJECTIVES The present study aimed to investigate the relationship of anxiety, depression, diabetes and coronary artery disease among patients undergoing angiography in Ghaem Hospital, Mashhad, Iran. PATIENTS AND METHODS This case-control study was conducted between September 2011 and August 2012 among 200 patients undergoing coronary angiography for symptoms of coronary disease at Ghaem Hospital, Mashhad, Iran. The control group consisted of 697 healthy adults recruited from the individuals who attended the clinic for routine medical checkups or pre-employment examinations. The Beck anxiety and depression inventory scores and fasting blood glucose results were assessed in all the subjects. Data were analyzed using SPSS version 16. P < 0.05 was regarded as statistically significant. RESULTS The mean age of patients was 57.52 ± 9.33 years old and for the control group it was 55.35 ± 8.45 years; there was no significant difference between the subjects (P = 0.647) regarding age. There was also no significant difference in gender distribution between the patients and control groups (P = 0.205). There was however a significant difference in anxiety and depression scores between the patients and healthy controls (P < 0.001). There was a significant positive correlation between anxiety score and depression score in both groups when data were analyzed by Pearson test. (P < 0.001, r = 0.604 and r = 0.521). Moreover, there was a significant positive linear correlation between the depression/anxiety scores and fasting blood glucose concentrations in the patients group (r = 0.3, P < 0.001) and a weak negative correlation in the healthy controls (r = -0.096, P < 0.05). CONCLUSIONS Depression and anxiety are potentially important factors among patients with angiographically-defined CAD. There appear to be significant associations between glucose tolerance and anxiety and depression in these patients.
Collapse
Affiliation(s)
- Mohammad Tajfard
- Department of Community Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, Kuala Lumpur, Malaysia
- Health Sciences Research Center, Department of Health and Management, School of Health, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Majid Ghayour Mobarhan
- Cardiovascular Research Center, Avicenna (Bu-Ali) Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Hamid Reza Rahimi
- Student Research Committee, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mohsen Mouhebati
- Department of Cardiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Habibollah Esmaeily
- Health Sciences Research Center, Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School,University of Sussex, Brighton, UK
| | - Latiffah A Latiff
- Department of Community Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, Kuala Lumpur, Malaysia
| | - Ali Taghipour
- Health Sciences Research Center, Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Naghmeh Mokhber
- Psychiatry and Behavioral Sciences Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Ahmad Fazli Abdul-Aziz
- Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
136
|
Sakamoto S, Tsuruda T, Hatakeyama K, Imamura T, Asada Y, Kitamura K. Impact of age-dependent adventitia inflammation on structural alteration of abdominal aorta in hyperlipidemic mice. PLoS One 2014; 9:e105739. [PMID: 25153991 PMCID: PMC4143271 DOI: 10.1371/journal.pone.0105739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/28/2014] [Indexed: 11/23/2022] Open
Abstract
Background The adventitia is suggested to contribute to vascular remodeling; however, the site-selective inflammatory responses in association with the development of atherosclerosis remain to be elucidated. Methods and Results Wild-type or apolipoprotein E knockout male C57BL/6J background mice were fed standard chow for 16, 32, and 52 weeks, and the morphology of the aortic arch, descending aorta, and abdominal aorta was compared. Atheromatous plaque formation progressed with age, particularly in the aortic arch and abdominal aorta but not in the descending aorta. In addition, we found that the numbers of macrophages, T-lymphocytes, and microvessels, assessed by anti-F4/80, CD3, and CD31 antibodies, were higher in the adventitia of the abdominal aorta at 52 weeks. These numbers were positively correlated with plaque formation, but negatively correlated with elastin content, resulting in the enlargement of the total vessel area. In aortic tissues, interleukin-6 levels increased in the atheromatous plaque with age, whereas the level of regulated on activation, normal T cell expressed and secreted (RANTES) increased with age, and compared with other sites, it was particularly distributed in inflammatory cells in the adventitia of the abdominal aorta. Conclusion This study suggests that adventitial inflammation contributes to the age-dependent structural alterations, and that the activation/inactivation of cytokines/chemokines is involved in the process.
Collapse
Affiliation(s)
- Sumiharu Sakamoto
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuroh Imamura
- Department of Internal Medicine, Koga General Hospital, Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
137
|
Gladine C, Zmojdzian M, Joumard-Cubizolles L, Verny MA, Comte B, Mazur A. The omega-3 fatty acid docosahexaenoic acid favorably modulates the inflammatory pathways and macrophage polarization within aorta of LDLR(-/-) mice. GENES AND NUTRITION 2014; 9:424. [PMID: 25134659 DOI: 10.1007/s12263-014-0424-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
Abstract
The omega-3 fatty acid docosahexaenoic acid (DHA) has potent anti-atherogenic properties but its mechanisms of action at the vascular level remain poorly explored. Knowing the broad range of molecular targets of omega-3 fatty acids, microarray analysis was used to open-mindedly evaluate the effects of DHA on aorta gene expression in LDLR(-/-) mice and better understand its local anti-atherogenic action. Mice were fed an atherogenic diet and received daily oral gavages with oils rich in oleic acid or DHA. Bioinformatics analysis of microarray data first identified inflammation and innate immunity as processes the most affected by DHA supplementation within aorta. More precisely, several down-regulated genes were associated with the inflammatory functions of macrophages (e.g., CCL5 and CCR7), cell movement (e.g., ICAM-2, SELP, and PECAM-1), and the major histocompatibility complex (e.g., HLA-DQA1 and HLA-DRB1). Interestingly, several genes were identified as specific biomarkers of macrophage polarization, and their changes suggested a preferential orientation toward a M2 reparative phenotype. This observation was supported by the upstream regulator analysis highlighting the involvement of three main regulators of macrophage polarization, namely PPARγ (z-score = 2.367, p = 1.50 × 10(-13)), INFγ (z-score = -2.797, p = 2.81 × 10(-14)), and NFκB (z-score = 2.360, p = 6.32 × 10(-9)). Moreover, immunohistological analysis of aortic root revealed an increased abundance of Arg1 (+111 %, p = 0.01), a specific biomarker of M2 macrophage. The present study showed for the first time that DHA supplementation during atherogenesis is associated with protective modulation of inflammation and innate immunity pathways within aorta putatively through the orientation of plaque macrophages toward a M2 reparative phenotype.
Collapse
Affiliation(s)
- Cécile Gladine
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont-Ferrand, France,
| | | | | | | | | | | |
Collapse
|
138
|
Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα. Mol Metab 2014; 3:731-41. [PMID: 25353001 PMCID: PMC4209359 DOI: 10.1016/j.molmet.2014.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023] Open
Abstract
Objective We have previously shown the existence of a muscle–pancreas intercommunication axis in which CX3CL1 (fractalkine), a CX3C chemokine produced by skeletal muscle cells, could be implicated. It has recently been shown that the fractalkine system modulates murine β-cell function. However, the impact of CX3CL1 on human islet cells especially regarding a protective role against cytokine-induced apoptosis remains to be investigated. Methods Gene expression was determined using RNA sequencing in human islets, sorted β- and non-β-cells. Glucose-stimulated insulin secretion (GSIS) and glucagon secretion from human islets was measured following 24 h exposure to 1–50 ng/ml CX3CL1. GSIS and specific protein phosphorylation were measured in rat sorted β-cells exposed to CX3CL1 for 48 h alone or in the presence of TNFα (20 ng/ml). Rat and human β-cell apoptosis (TUNEL) and rat β-cell proliferation (BrdU incorporation) were assessed after 24 h treatment with increasing concentrations of CX3CL1. Results Both CX3CL1 and its receptor CX3CR1 are expressed in human islets. However, CX3CL1 is more expressed in non-β-cells than in β-cells while its receptor is more expressed in β-cells. CX3CL1 decreased human (but not rat) β-cell apoptosis. CX3CL1 inhibited human islet glucagon secretion stimulated by low glucose but did not impact human islet and rat sorted β-cell GSIS. However, CX3CL1 completely prevented the adverse effect of TNFα on GSIS and on molecular mechanisms involved in insulin granule trafficking by restoring the phosphorylation (Akt, AS160, paxillin) and expression (IRS2, ICAM-1, Sorcin, PCSK1) of key proteins involved in these processes. Conclusions We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.
Collapse
|
139
|
Tajfard M, Latiff LA, Rahimi HR, Mouhebati M, Esmaeily H, Taghipour A, Mahdipour E, Davari H, Saghiri Z, Hanachi P, Ghayour Mobarhan M, Ferns GA, Azizian M. Serum inflammatory cytokines and depression in coronary artery disease. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e17111. [PMID: 25237578 PMCID: PMC4166097 DOI: 10.5812/ircmj.17111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe depression may be accompanied by immune dysregulation and is also associated with increased risk of coronary artery disease (CAD). OBJECTIVES We investigated serum levels of 10 cytokines and their relationship with depression in patients with cardiovascular diseases as well as healthy subjects in northeast of Iran. PATIENTS AND METHODS The study was carried out on 462 subjects (120 healthy subjects and 342 candidates undergoing angiography). The healthy subjects were referred for routine annual checkups or pre-employment examinations; they did not have clinically evident CAD. A questionnaire was used to obtain demographic data and the Beck depression inventory (BDI) was applied to assess depression. The Evidence Investigator(®) platform was used for cytokines assays for IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, MCP-1 and IFN-γ, using sandwich chemiluminescent method. The statistical analysis was performed using SPSS version 11.5. RESULTS The mean age was 53.3 ± 11.5, 54.8 ± 11.3, and 59.5 ± 11.3 in healthy, angiography (-), and angiography (+) subjects, respectively (P < 0.05). There were significant differences in serum levels of IL-4, IL-6, IL-10, and MCP-1 cytokines, comparing subjects with CAD and healthy persons (P < 0.05). When all subjects were divided to with and without depression regardless of their cardiovascular status, there was a significant difference in serum levels of IL-8 and IL-6 between the groups (P < 0.05). When the subgroup with features of CAD was selected and divided to those with and without depression, there was also a significant difference in serum levels of IL-8 and TNF-α (P < 0.05). CONCLUSIONS The positive interaction between depression and CAD was probably mediated by inflammatory mechanisms.
Collapse
Affiliation(s)
- Mohammad Tajfard
- Department of Community Health, University Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Health and Management, School of Health, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Health Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Latiffah A Latiff
- Department of Community Health, University Putra Malaysia, Kuala Lumpur, Malaysia
| | - Hamid Reza Rahimi
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mohsen Mouhebati
- Department of Cardiology, Ghaem Educational Hospital, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Habibollah Esmaeily
- Health Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Ali Taghipour
- Health Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Elahe Mahdipour
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Hafezeh Davari
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Zahra Saghiri
- Department of Biology-Biochemistry, Payame Noor University of Mashhad, Mashhad, IR Iran
| | - Parichehr Hanachi
- Department of Biology, Biochemistry Unit, Alzahra University, Tehran, IR Iran
| | - Majid Ghayour Mobarhan
- Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Maryam Azizian
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|
140
|
BMP-2 and -4 produced by vascular smooth muscle cells from atherosclerotic lesions induce monocyte chemotaxis through direct BMPRII activation. Atherosclerosis 2014; 235:45-55. [DOI: 10.1016/j.atherosclerosis.2014.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/11/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022]
|
141
|
Maiwald S, Sivapalaratnam S, Motazacker MM, van Capelleveen JC, Bot I, de Jager SC, van Eck M, Jolley J, Kuiper J, Stephens J, Albers CA, Vosmeer CR, Kruize H, Geerke DP, van der Wal AC, van der Loos CM, Kastelein JJP, Trip MD, Ouwehand WH, Dallinga-Thie GM, Hovingh GK. Mutation in KERA identified by linkage analysis and targeted resequencing in a pedigree with premature atherosclerosis. PLoS One 2014; 9:e98289. [PMID: 24879339 PMCID: PMC4039470 DOI: 10.1371/journal.pone.0098289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/30/2014] [Indexed: 01/29/2023] Open
Abstract
AIMS Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. METHODS AND RESULTS Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe-/- mice (r2 = 0.69; p<0.0001). CONCLUSION A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Stephanie Maiwald
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Mahdi M. Motazacker
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Saskia C. de Jager
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Miranda van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jennifer Jolley
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jonathon Stephens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Cornelius A. Albers
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - C. Ruben Vosmeer
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | - Heleen Kruize
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | - Daan P. Geerke
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | | | | | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Mieke D. Trip
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Geesje M. Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
142
|
Palmefors H, DuttaRoy S, Rundqvist B, Börjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis--a systematic review. Atherosclerosis 2014; 235:150-61. [PMID: 24835434 DOI: 10.1016/j.atherosclerosis.2014.04.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This systematic review aimed to summarize published papers on the effect of physical activity (PA)/exercise on key atherosclerotic factors in patients with risk factors for or established cardiovascular disease (CVD). METHODS Studies involving PA and cytokines, chemokines, adhesion molecules, CRP and angiogenic factors were searched for in Medline and Cochrane library. Original human studies of more than 2 weeks of PA intervention were included. Study quality was assessed according to the GRADE system of evidence. RESULTS Twenty-eight papers fulfilled the inclusion criteria. PA decreases the cytokines, tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interferon-y IFN-y (high, moderate and low evidence, respectively). The effect of PA on chemokines; stromal derived factor-1 (SDF-1), interleukin-8 (IL-8) (insufficient evidence) and monocyte chemoattractant protein-1 (MCP-1) (low evidence) was inconclusive. Aerobic exercise decreased the adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) (moderate and high evidence, respectively), while effects of PA on E- and P-selectin were inconclusive. PA decreases C-reactive protein (CRP) (high evidence). The angiogenic actors, endothelial progenitor cells (EPCs) are increased (high evidence) and VEGF is decreased (moderate evidence) by PA. The effect of PA on these factors seems to depend on the type and duration of exercise intervention and patient factors, such as presence of ischemia. CONCLUSION As presented in this review, there is a high level of evidence that physical activity positively affects key players in atherosclerosis development. These effects could partly explain the scientifically proven anti-atherogenic effects of PA, and do have important clinical implications.
Collapse
Affiliation(s)
- Henning Palmefors
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Smita DuttaRoy
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Bengt Rundqvist
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Mats Börjesson
- Swedish School of Sports and Health Sciences and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
143
|
Liu W, Liu Y, Jiang H, Ding X, Zhu R, Li B, Zhao Y. Plasma levels of interleukin 18, interleukin 10, and matrix metalloproteinase-9 and -137G/C polymorphism of interleukin 18 are associated with incidence of in-stent restenosis after percutaneous coronary intervention. Inflammation 2014; 36:1129-35. [PMID: 23636637 DOI: 10.1007/s10753-013-9647-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to investigate the relationship between the levels of IL-18, IL-10, and MMP-9 and -137G/C polymorphism of interleukin 18 with the risk of in-stent restenosis (ISR). The study population consisted of 68 patients with ISR, 173 in non-ISR group, treated with drug-eluting stent and evaluated by coronary angiography post-procedure and at follow-up, and also 109 without angiographic evidence of coronary artery disease (CAD) which formed a reference control group (non-CAD group). The sequential plasma IL-18, IL-10, and MMP-9 levels were assessed at admission, 24 h, and 2 weeks after percutaneous coronary intervention. The -137G/C polymorphism of IL-18 was genotyped by the ligase detection reaction-polymerase chain reaction. Plasma IL-18 and MMP-9 increased significantly from admission, peaking after 24 h and fall after 2 weeks. Compared with the non-ISR group, the ISR group had higher levels of IL-18 and MMP-9, but IL-10 level was the opposite. The -137GG genotype of IL-18 was significantly higher than of the CG and CC genotypes. A significant higher frequency of -137G allele or GG genotype of IL-18 was observed in patients with ISR group compared with the non-ISR group. There is correlation between the changes of IL-18, IL-10, MMP-9, and ISR. IL-18 promoter -137G/C polymorphism influences IL-18 levels and the susceptibility to ISR, suggesting that IL-18-mediated pathways are causally involved in the process of ISR.
Collapse
Affiliation(s)
- Wenwei Liu
- Department of Cardiology, Hospital Affiliated to Hubei University of Arts and Science, Jingzhou street 39, Xiangyang, 441021, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
144
|
Harris DP, Bandyopadhyay S, Maxwell TJ, Willard B, DiCorleto PE. Tumor necrosis factor (TNF)-α induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-κB p65 methylation. J Biol Chem 2014; 289:15328-39. [PMID: 24753255 DOI: 10.1074/jbc.m114.547349] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The chemokine CXCL10/IP-10 facilitates recruitment of Th1-type leukocytes to inflammatory sites. In this study, we show that the arginine methyltransferase PRMT5 is critical for CXCL10 transcription in TNF-α-activated human endothelial cells (EC). We found that depletion of PRMT5 results in significantly reduced levels of CXCL10 mRNA, demonstrating a positive role for PRMT5 in CXCL10 induction. Chromatin immunoprecipitation experiments revealed the presence of the symmetrical dimethylarginine modification catalyzed by PRMT5 associated with the CXCL10 promoter in response to TNF-α. However, symmetrical dimethylarginine-modified proteins were not detected at the promoter in the absence of PRMT5, indicating that PRMT5 is essential for methylation to occur. Furthermore, NF-κB p65, a critical driver of TNF-α-mediated CXCL10 induction, was determined to be methylated at arginine residues. Crucially, RNAi-mediated PRMT5 depletion abrogated p65 methylation and CXCL10 promoter binding. Mass spectrometric analysis in EC identified five dimethylated arginine residues in p65, four of which are uncharacterized in the literature. Expression of Arg-to-Lys point mutants of p65 demonstrated that both Arg-30 and Arg-35 must be dimethylated to achieve full CXCL10 expression. In conclusion, we have identified previously uncharacterized p65 post-translational modifications critical for CXCL10 induction.
Collapse
Affiliation(s)
- Daniel P Harris
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195 and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Smarajit Bandyopadhyay
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195 and
| | - Tyler J Maxwell
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195 and
| | - Belinda Willard
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195 and
| | - Paul E DiCorleto
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195 and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
145
|
Zernecke A. Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead. SCIENTIFICA 2014; 2014:952625. [PMID: 24818041 PMCID: PMC4003768 DOI: 10.1155/2014/952625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
146
|
Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK, Gropler RJ, Hawker CJ, Liu Y. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med 2014; 55:629-34. [PMID: 24591489 PMCID: PMC4255944 DOI: 10.2967/jnumed.113.132001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Inflammation plays important roles at all stages of atherosclerosis. Chemokine systems have major effects on the initiation and progression of atherosclerosis by controlling the trafficking of inflammatory cells in vivo through interaction with their receptors. Chemokine receptor 5 (CCR5) has been reported to be an active participant in the late stage of atherosclerosis and has the potential as a prognostic biomarker for plaque stability. However, its diagnostic potential has not yet been explored. The purpose of this study was to develop a targeted nanoparticle for sensitive and specific PET/CT imaging of the CCR5 receptor in an apolipoprotein E knock-out (ApoE(-/-)) mouse vascular injury model. METHODS The D-Ala1-peptide T-amide (DAPTA) peptide was selected as a targeting ligand for the CCR5 receptor. Through controlled conjugation and polymerization, a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle was prepared and labeled with (64)Cu for CCR5 imaging in the ApoE(-/-) wire-injury model. Immunohistochemistry, histology, and real-time reverse transcription polymerase chain reaction (RT-PCR) were performed to assess the disease progression and upregulation of CCR5 receptor. RESULTS The (64)Cu-DOTA-DAPTA tracer showed specific PET imaging of CCR5 in the ApoE(-/-) mice. The targeted (64)Cu-DOTA-DAPTA-comb nanoparticles showed extended blood signal and optimized biodistribution. The tracer uptake analysis showed significantly higher accumulations at the injury lesions than those acquired from the sham-operated sites. The competitive PET receptor blocking studies confirmed the CCR5 receptor-specific uptake. The assessment of (64)Cu-DOTA-DAPTA-comb in C57BL/6 mice and (64)Cu-DOTA-comb in ApoE(-/-) mice verified low nonspecific nanoparticle uptake. Histology, immunohistochemistry, and RT-PCR analyses verified the upregulation of CCR5 in the progressive atherosclerosis model. CONCLUSION This work provides a nanoplatform for sensitive and specific detection of CCR5's physiologic functions in an animal atherosclerosis model.
Collapse
Affiliation(s)
| | - Eric D. Pressly
- Department of Materials, Chemistry and Biochemistry, University of California Santa Barbara, California
| | - Lisa Detering
- Department of Radiology, Washington University, St. Louis, Missouri
| | - Cynthia Wang
- Department of Materials, Chemistry and Biochemistry, University of California Santa Barbara, California
| | - Richard Pierce
- Department of Medicine, Washington University, St. Louis, Missouri
| | | | | | - Craig J. Hawker
- Department of Materials, Chemistry and Biochemistry, University of California Santa Barbara, California
| | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, Missouri
| |
Collapse
|
147
|
Halvorsen B, Smedbakken LM, Michelsen AE, Skjelland M, Bjerkeli V, Sagen EL, Taskén K, Bendz B, Gullestad L, Holm S, Biessen EA, Aukrust P. Activated platelets promote increased monocyte expression of CXCR5 through prostaglandin E2-related mechanisms and enhance the anti-inflammatory effects of CXCL13. Atherosclerosis 2014; 234:352-9. [PMID: 24732574 DOI: 10.1016/j.atherosclerosis.2014.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND We have previously shown that the homeostatic chemokine CXCL13 is up-regulated in monocytes in atherosclerosis, mediating anti-apoptotic and anti-inflammatory effects. OBJECTIVE To investigate the regulation of CXCL13s receptor, CXCR5. METHODS/PATIENTS In vitro studies in THP-1 and primary monocytes and studies of CXCR5 expression in thrombus material obtained at the site of plaque rupture during myocardial infarction (MI). RESULTS Our major findings were: (i) toll-like receptor agonists and particularly β-adrenergic receptor activation and releasate from thrombin-activated platelets increased CXCR5 mRNA levels in monocytes. (ii) The platelet-mediated induction of CXCR5 involved prostaglandin E2/cAMP/protein kinase A-dependent as well as RANTES-dependent pathways with NFκB activation as a potential common down-stream mediator. (iii) Releasate from thrombin-activated platelets augmented the anti-inflammatory effects of CXCL13 in monocytes at least partly by enhancing the effects of CXCL13 on CXCR5 expression. (iv) We found strong immunostaining of CXCR5 in thrombus material obtained at the site of plaque rupture in patients with ST elevation MI (STEMI) and in unstable carotid lesions, co-localized with platelets. CONCLUSION Our findings suggest that platelet-mediated signaling through CXCR5 may be active in vivo during plaque destabilization, potentially representing a counteracting mechanism to inflammation.
Collapse
Affiliation(s)
- Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Linda M Smedbakken
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway; Centre for Molecular Medicine Norway, Nordic EMBL Partnership and Biotechnology Centre, Oslo University Hospital and University of Oslo, Oslo, Norway; Biotechnology Centre, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Bjørn Bendz
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Erik A Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, Netherlands
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
148
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
149
|
Fernández-Velasco M, González-Ramos S, Boscá L. Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochem J 2014; 458:187-193. [PMID: 24524191 DOI: 10.1042/bj20131501] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Emerging evidence points to the involvement of specialized cells of the immune system as key drivers in the pathophysiology of cardiovascular diseases. Monocytes are an essential cell component of the innate immune system that rapidly mobilize from the bone marrow to wounded tissues where they differentiate into macrophages or dendritic cells and trigger an immune response. In the healthy heart a limited, but near-constant, number of resident macrophages have been detected; however, this number significantly increases during cardiac damage. Shortly after initial cardiac injury, e.g. myocardial infarction, a large number of macrophages harbouring a pro-inflammatory profile (M1) are rapidly recruited to the cardiac tissue, where they contribute to cardiac remodelling. After this initial period, resolution takes place in the wound, and the infiltrated macrophages display a predominant deactivation/pro-resolution profile (M2), promoting cardiac repair by mediating pro-fibrotic responses. In the present review we focus on the role of the immune cells, particularly in the monocyte/macrophage population, in the progression of the major cardiac pathologies myocardial infarction and atherosclerosis.
Collapse
Affiliation(s)
- María Fernández-Velasco
- *Instituto de Investigación Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Silvia González-Ramos
- †Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Lisardo Boscá
- †Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
150
|
Shantsila E, Tapp LD, Wrigley BJ, Pamukcu B, Apostolakis S, Montoro-García S, Lip GYH. Monocyte subsets in coronary artery disease and their associations with markers of inflammation and fibrinolysis. Atherosclerosis 2014; 234:4-10. [PMID: 24583499 DOI: 10.1016/j.atherosclerosis.2014.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/18/2014] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
AIMS The multiple roles of monocytes in atherogenesis, including inflammation, angiogenesis and repair are attributed to the existence of different monocyte sub-populations. Scarce data are available on changes in phenotype and functional status of human monocyte subsets in patients with coronary artery disease (CAD), especially when monocytes are evaluated as three distinct subsets. METHODS AND RESULTS Surface expression of receptors implicated in inflammation, repair and activation status (intracellular IKKβ) of monocyte subsets was assessed by flow cytometry in 53 patients with CAD and compared to 50 age- and sex-matched healthy controls. Monocyte subsets were defined as CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2), and CD14+CD16++CCR2- (Mon3). Plasma levels of inflammatory cytokines (FACSArray) and fibrinolytic factors (ELISA) were measured in CAD. CAD was associated with reduced expression of CD14 on Mon1 (p = 0.02) and Mon3 (p = 0.036), higher expression of IL6 receptor on Mon1 (p = 0.025) and Mon2 (p = 0.015), CXCR4 on Mon1 (p = 0.035) and Mon3 (p = 0.003), and CD34 on all subsets (all p < 0.007). Monocyte CD163 expression correlated negatively with interleukin (IL)-6 levels (p < 0.01 for all subsets). Expression of vascular endothelial growth factor receptor-1 correlated positively with plasminogen activator inhibitor (PAI)-1 antigen levels (r = 0.47, p = 0.006). In vitro, monocyte subsets derived from CAD patients showed significantly altered responses to endotoxin stimulation compared to monocytes from healthy controls. CONCLUSIONS There is a complex interplay between phenotype and activity of monocytes and plasma cytokines and fibrinolytic factors. These findings support the presence of unique roles for the three human monocyte subsets in atherogenesis and CAD pathogenesis.
Collapse
Affiliation(s)
- Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom.
| | - Luke D Tapp
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom
| | - Benjamin J Wrigley
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom
| | - Burak Pamukcu
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom
| | - Stavros Apostolakis
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom
| | - Silvia Montoro-García
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom
| |
Collapse
|