101
|
Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells. J Virol 2014; 88:3705-18. [PMID: 24429360 DOI: 10.1128/jvi.03039-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Barrier dysfunction of airway epithelium may increase the risk for acquiring secondary infections or allergen sensitization. Both rhinovirus (RV) and polyinosinic-polycytidilic acid [poly(I·C)], a double-stranded RNA (dsRNA) mimetic, cause airway epithelial barrier dysfunction, which is reactive oxygen species (ROS) dependent, implying that dsRNA generated during RV replication is sufficient for disrupting barrier function. We also demonstrated that RV or poly(I·C)-stimulated NADPH oxidase 1 (NOX-1) partially accounts for RV-induced ROS generation. In this study, we identified a dsRNA receptor(s) contributing to RV-induced maximal ROS generation and thus barrier disruption. We demonstrate that genetic silencing of the newly discovered dsRNA receptor Nod-like receptor X-1 (NLRX-1), but not other previously described dsRNA receptors, abrogated RV-induced ROS generation and reduction of transepithelial resistance (R(T)) in polarized airway epithelial cells. In addition, both RV and poly(I·C) stimulated mitochondrial ROS, the generation of which was dependent on NLRX-1. Treatment with Mito-Tempo, an antioxidant targeted to mitochondria, abolished RV-induced mitochondrial ROS generation, reduction in R(T), and bacterial transmigration. Furthermore, RV infection increased NLRX-1 localization to the mitochondria. Additionally, NLRX-1 interacts with RV RNA and poly(I·C) in polarized airway epithelial cells. Finally, we show that NLRX-1 is also required for RV-stimulated NOX-1 expression. These findings suggest a novel mechanism by which RV stimulates generation of ROS, which is required for disruption of airway epithelial barrier function. IMPORTANCE Rhinovirus (RV), a virus responsible for a majority of common colds, disrupts the barrier function of the airway epithelium by increasing reactive oxygen species (ROS). Poly(I·C), a double-stranded RNA (dsRNA) mimetic, also causes ROS-dependent barrier disruption, implying that the dsRNA intermediate generated during RV replication is sufficient for this process. Here, we demonstrate that both RV RNA and poly(I·C) interact with NLRX-1 (a newly discovered dsRNA receptor) and stimulate mitochondrial ROS. We show for the first time that NLRX-1 is primarily expressed in the cytoplasm and at the apical surface rather than in the mitochondria and that NLRX-1 translocates to mitochondria following RV infection. Together, our results suggest a novel mechanism for RV-induced barrier disruption involving NLRX-1 and mitochondrial ROS. Although ROS is necessary for optimal viral clearance, if not neutralized efficiently, it may increase susceptibility to secondary infections and alter innate immune responses to subsequently inhaled pathogens, allergens, and other environmental factors.
Collapse
|
102
|
Gunawardana N, Finney L, Johnston SL, Mallia P. Experimental rhinovirus infection in COPD: implications for antiviral therapies. Antiviral Res 2013; 102:95-105. [PMID: 24370732 PMCID: PMC7172491 DOI: 10.1016/j.antiviral.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/28/2013] [Accepted: 12/14/2013] [Indexed: 02/05/2023]
Abstract
COPD exacerbations are a major cause of morbidity and mortality; new treatments are urgently needed. Respiratory viruses, particularly rhinoviruses, are a major cause of exacerbations. Experimental rhinovirus infection is a valid model of virus-induced COPD exacerbations. This model could be used to evaluate new antiviral treatments in COPD.
Chronic obstructive pulmonary disease (COPD) is a major public health problem and will be one of the leading global causes of mortality over the coming decades. Much of the morbidity, mortality and health care costs of COPD are attributable to acute exacerbations, the commonest causes of which are respiratory infections. Respiratory viruses are frequently detected in COPD exacerbations but direct proof of a causative relationship has been lacking. We have developed a model of COPD exacerbation using experimental rhinovirus infection in COPD patients and this has established a causative relationship between virus infection and exacerbations. In addition it has determined some of the molecular mechanisms linking virus infections to COPD exacerbations and identified potential new therapeutic targets. This new data should stimulate research into the role of antiviral agents as potential treatments for COPD exacerbations. Testing of antiviral agents has been hampered by the lack of a small animal model for rhinovirus infection and experimental rhinovirus infection in healthy volunteers has been used to test treatments for the common cold. Experimental rhinovirus infection in COPD subjects offers the prospect of a model that can be used to evaluate the effects of new treatments for virus-induced COPD exacerbations, and provide essential data that can be used in making decisions regarding large scale clinical trials.
Collapse
Affiliation(s)
- Natasha Gunawardana
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Lydia Finney
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
103
|
Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N. Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 2013; 19:2213-31. [PMID: 23706097 DOI: 10.1089/ars.2012.4904] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Chronic hypoxia induces pulmonary hypertension (PH) that is concomitant with pulmonary vascular remodeling. Reactive oxygen species (ROS) are thought to play a major role in this. Recent findings suggest that ROS production by NADPH oxidase 4 (Nox4) is important in this remodeling. We investigated whether ROS production by Nox is also important in an inflammatory model of monocrotaline (MCT)-induced PH. We examined ROS production, their possible sources, and their impact on the function of pulmonary arterial smooth muscle cells (PASMC) isolated from MCT-treated and healthy rats. RESULTS MCT-PASMC showed increased intracellular superoxide production, migration, and proliferation compared with healthy controls due to increased Nox1 expression. A comparison of PASMC from MCT- and nontreated rats revealed an up-regulation of Sod2, Nrf2, cyclin D1, and matrix metalloproteinase-9 (MMP-9) as well as an increased phosphorylation of cofilin and extracellular signal-regulated kinases (Erk). Expression of Sod2, Nrf2, and cyclin D1 and phosphorylation of cofilin and Erk were Nox1 dependent. INNOVATION The role of ROS in PH is not fully understood. Mitochondria and Nox have been suggested as sources of altered ROS generation in PH, yet it remains unclear whether increased or decreased ROS contributes to the development of PH. Our studies provide evidence that for different triggers of PH, different Nox isoforms regulate proliferation and migration of PASMC. CONCLUSION In contrast to hypoxia-induced PH, Nox1 but not Nox4 is responsible for pathophysiological proliferation and migration of PASMC in an inflammatory model of MCT-induced PH via increased superoxide production. Thus, different Nox isoforms may be targeted in different forms of PH.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellencecluster Cardio-Pulmonary System (ECCPS), German Lung Center (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen , Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Matsumoto K, Inoue H. Viral infections in asthma and COPD. Respir Investig 2013; 52:92-100. [PMID: 24636264 DOI: 10.1016/j.resinv.2013.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
Airway viral infections are associated with the pathogenesis of asthma and COPD. It has been argued that respiratory syncytial virus (RSV) infection in infancy is a probable causal factor in the development of pediatric asthma. RSV infections tend to induce Th2-biased immune responses in the host airways. RSV infection, atopy, and low pulmonary function in neonates may work synergistically toward the development of pediatric asthma. Human rhinovirus (HRV) is a representative virus associated with the exacerbation of asthma in both children and adults. Viral infections trigger innate immune responses including granulocytic inflammation and worsen the underlying inflammation due to asthma and COPD. The innate immune responses involve type-I and -III interferon (IFN) production, which plays an important role in anti-viral responses, and the airway epithelia of asthmatics reportedly exhibit defects in the virus-induced IFN responses, which renders these individuals more susceptible to viral infection. A similarly impaired IFN response is seen in COPD, and several investigators propose that latent adenoviral infection may be involved in COPD development. Persistent RSV infections were detected in a sub-population of patients with COPD and were associated with the accelerated decline of lung function. The virus-induced upregulation of co-inhibitory molecules in the airway epithelium partly accounts for the persistent infections. Experimental animal models for virus-asthma/COPD interactions have shed light on the underlying immune mechanisms and are expected to help develop novel approaches to treat respiratory diseases.
Collapse
Affiliation(s)
- Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
105
|
van den Berge M, Steiling K, Timens W, Hiemstra PS, Sterk PJ, Heijink IH, Liu G, Alekseyev YO, Lenburg ME, Spira A, Postma DS. Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity. Thorax 2013; 69:14-23. [PMID: 23925644 PMCID: PMC3888587 DOI: 10.1136/thoraxjnl-2012-202878] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background A core feature of chronic obstructive pulmonary disease (COPD) is the accelerated decline in forced expiratory volume in one second (FEV1). The recent Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) study suggested that particular phenotypes of COPD benefit from fluticasone±salmeterol by reducing the rate of FEV1 decline, yet the underlying mechanisms are unknown. Methods Whole-genome gene expression profiling using the Affymetrix Gene ST array (V.1.0) was performed on 221 bronchial biopsies available from 89 COPD patients at baseline and after 6 and 30 months of fluticasone±salmeterol and placebo treatment in GLUCOLD. Results Linear mixed effects modelling revealed that the expression of 138 genes decreased, whereas the expression of 140 genes significantly upregulated after both 6 and 30 months of treatment with fluticasone±salmeterol versus placebo. A more pronounced treatment-induced change in the expression of 50 and 55 of these 278 genes was associated with a lower rate of decline in FEV1 and Saint George Respiratory Questionnaire, respectively. Genes decreasing with treatment were involved in pathways related to cell cycle, oxidative phosphorylation, epithelial cell signalling, p53 signalling and T cell signalling. Genes increasing with treatment were involved in pathways related to focal adhesion, gap junction and extracellular matrix deposition. Finally, the fluticasone-induced gene expression changes were enriched among genes that change in the airway epithelium in smokers with versus without COPD in an independent data set. Conclusions The present study suggests that gene expression in biological pathways of COPD is dynamic with treatment and reflects disease activity. This study opens the gate to targeted and molecular phenotype-driven therapy of COPD.
Collapse
Affiliation(s)
- Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Susceptibility to viral infections in chronic obstructive pulmonary disease: role of epithelial cells. Curr Opin Pulm Med 2013; 19:125-32. [PMID: 23361194 DOI: 10.1097/mcp.0b013e32835cef10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The aim is to understand how airway epithelial cells with compromised innate defense mechanisms enhance susceptibility to respiratory virus infections in chronic obstructive pulmonary disease (COPD). RECENT FINDINGS Exacerbations associated with respiratory viruses are more severe and increase disease severity in COPD. Airway epithelial cells cultured from COPD patients show excessive innate immune response to viral infection and higher viral load compared with normal cells. SUMMARY Airway epithelial cells are the first line of defense in the lung and are equipped with several lines of innate defense mechanisms to fight against invading pathogens including viruses. Under normal conditions, mucociliary and barrier functions of airway epithelial cells prevent virus binding and entry into the cells. Virus-infected airway epithelial cells also express various cytokines, which recruit and activate innate and adaptive immune cells ultimately controlling the infection and tissue damage. In COPD however, compromised mucociliary and barrier functions may increase virus binding and allow virus entry into airway epithelial cells. Virus-infected COPD airway epithelial cells also show disproportionate cytokine expression leading to inappropriate recruitment and activation of innate and adaptive immune cells. COPD airway epithelial cells also show defective antiviral responses. Such defects in innate defense mechanisms may increase susceptibility to viral infections and disease severity in COPD.
Collapse
|
107
|
Bradley-Stewart A, Jolly L, Adamson W, Gunson R, Frew-Gillespie C, Templeton K, Aitken C, Carman W, Cameron S, McSharry C. Cytokine responses in patients with mild or severe influenza A(H1N1)pdm09. J Clin Virol 2013; 58:100-7. [PMID: 23790455 DOI: 10.1016/j.jcv.2013.05.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/08/2013] [Accepted: 05/06/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Influenza virus affects millions of people worldwide each year. More severe infection occurs in the elderly, very young and immunocompromised. In 2009, a new variant of swine origin (influenza A(H1N1)pdm09 virus) emerged that produced severe disease in young healthy adults. OBJECTIVES The aim of this study was to determine whether cytokine concentrations are associated with clinical outcome in patients infected influenza A(H1N1)pdm09 virus. STUDY DESIGN Plasma concentration of 32 cytokines and growth factors were measured using a multiplex bead immunoassay and conventional ELISA in four patient groups. Patients with severe and mild influenza A(H1N1)pdm09 virus infection, rhinovirus infection and healthy volunteers were investigated. In addition, serial samples of respiratory secretions from five patients with severe influenza A(H1N1)pdm09 virus infection were examined. RESULTS The majority of cytokines measured were elevated in patients with viral respiratory infections compared to the healthy controls. Concentrations of IL-6, IL-10, IL-15, IP-10, IL-2R, HGF, ST2 and MIG were significantly higher (p<0.05) and EGF significantly lower (p=0.0001) in patients with severe influenza A(H1N1)pdm09 virus infection compared to those with mild influenza A(H1N1)pdm09 virus and rhinovirus infection. CONCLUSIONS A number of cytokines were found to be substantially elevated in patients with severe influenza A(H1N1)pdm09 virus infection. This supports and extends other published work suggesting a role for proinflammatory cytokines in influenza-induced lung pathology. Interestingly, EGF was significantly lower in patients with severe infection suggesting it is actively suppressed. As EGF has a role in role in cell proliferation and tissue repair, it may protect the lung from host or virus mediated damage.
Collapse
Affiliation(s)
- A Bradley-Stewart
- West of Scotland Specialist Virology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ganesan S, Sajjan US. Repair and Remodeling of airway epithelium after injury in Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2013; 2. [PMID: 24187653 DOI: 10.1007/s13665-013-0052-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
COPD is thought to develop as a result of chronic exposure to cigarette smoke, occupational or other environmental hazards and it comprises both airways and parenchyma. Acute infections or chronic colonization of airways with bacteria may also contribute to development and/or progression of COPD lung disease. Airway epithelium is the primary target for the inhaled environmental factors and pathogens. The repetitive injury as a result of chronic exposure to environmental factors may result in persistent activation of pathways involved in airway epithelial repair, such as epithelial to mesenchymal transition, altered migration and proliferation of progenitor cells, and abnormal redifferentiation leading to airway remodeling. Development of model systems which mimics chronic airways disease as observed in COPD is required to understand the molecular mechanisms underlying the abnormal airway epithelial repair that are specific to COPD and to also develop novel therapies focused on airway epithelial repair.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | | |
Collapse
|
109
|
Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium. Tissue Barriers 2013; 1:e24997. [PMID: 24665407 PMCID: PMC3783221 DOI: 10.4161/tisb.24997] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| | - Adam T Comstock
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| | - Uma S Sajjan
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
110
|
Zhu L, Barret EC, Xu Y, Liu Z, Manoharan A, Chen Y. Regulation of Cigarette Smoke (CS)-Induced Autophagy by Nrf2. PLoS One 2013; 8:e55695. [PMID: 23585825 PMCID: PMC3621864 DOI: 10.1371/journal.pone.0055695] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
Cigarette smoke (CS) has been reported to induce autophagy in airway epithelial cells. The subsequent autophagic cell death has been proposed to play an important pathogenic role in chronic obstructive pulmonary disease (COPD); however, the underlying molecular mechanism is not entirely clear. Using CS extract (CSE) as a surrogate for CS, we found that it markedly increased the expressions of both LC3B-I and LC3B-II as well as autophagosomes in airway epithelial cells. This is in contrast to the common autophagy inducer (i.e., starvation) that increases LC3B-II but reduces LC3B-I. Further studies indicate that CSE regulated LC3B at transcriptional and post-translational levels. In addition, CSE, but not starvation, activated Nrf2-mediated adaptive response. Increase of cellular Nrf2 by either Nrf2 overexpression or the knockdown of Keap1 (an Nrf2 inhibitor) significantly repressed CSE-induced LC3B-I and II as well as autophagosomes. Supplement of NAC (a GSH precursor) or GSH recapitulated the effect of Nrf2, suggesting the increase of cellular GSH level is responsible for Nrf2 effect on LC3B and autophagosome. Interestingly, neither Nrf2 activation nor GSH supplement could restore the repressed activities of mTOR or its downstream effctor-S6K. Thus, the Nrf2-dependent autophagy-suppression was not due to the re-activation of mTOR-the master repressor of autophagy. To search for the downstream effector of Nrf2 on LC3B and autophagosome, we tested Nrf2-dependent genes (i.e., NQO1 and P62) that are also increased by CSE treatment. We found that P62, but not NQO1, could mimic the effect of Nrf2 activation by repressing LC3B expression. Thus, Nrf2->P62 appears to play an important role in the regulation of CSE-induced LC3B and autophagosome.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Erika C. Barret
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Yuxue Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
- School of Medicine, Xiamen University, Xiamen, China
| | - Zuguo Liu
- School of Medicine, Xiamen University, Xiamen, China
| | - Aditya Manoharan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Yin Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
111
|
Fink K, Martin L, Mukawera E, Chartier S, De Deken X, Brochiero E, Miot F, Grandvaux N. IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res 2013; 23:673-90. [PMID: 23545780 DOI: 10.1038/cr.2013.47] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction.
Collapse
Affiliation(s)
- Karin Fink
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Caramori G, Casolari P, Adcock I. Role of transcription factors in the pathogenesis of asthma and COPD. ACTA ACUST UNITED AC 2013; 20:21-40. [PMID: 23472830 DOI: 10.3109/15419061.2013.775257] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate CEMICEF; formerly named Centro di Ricerca su Asma e BPCO, Sezione di Malattie dell'Apparato Respiratorio, Università di Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
113
|
Baines KJ, Hsu ACY, Tooze M, Gunawardhana LP, Gibson PG, Wark PAB. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD. Respir Res 2013; 14:15. [PMID: 23384071 PMCID: PMC3570361 DOI: 10.1186/1465-9921-14-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/31/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. METHODS Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. RESULTS COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. CONCLUSIONS COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD.
Collapse
Affiliation(s)
- Katherine J Baines
- Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
COPD (chronic obstructive pulmonary disease) is a heterogeneous disease associated with significant morbidity and mortality. Current diagnostic criteria based on the presence of fixed airflow obstruction and symptoms do not integrate the complex pathological changes occurring within lung, do not define different airway inflammatory patterns, nor do they define different physiological changes or differences in structure as can be defined by imaging. Over recent years, there has been interest in describing this heterogeneity and using this information to subgroup patients into COPD phenotypes. Most approaches to phenotyping have considered disease at a single scale and have not integrated information from different scales (e.g. organ-whole person, tissue-organ, cell-tissue and gene-cell) of disease to provide multi-dimensional phenotypes. Integration of disease biology with clinical expression is critical to improve understanding of this disease. When combined with biostatistical modelling, this information may lead to identification of new drug targets, new end points for clinical trials and targeted treatment for subgroups of COPD patients. It is hoped this will ultimately improve COPD outcomes and represent a move towards personalised medicine. In the present review, we will consider these aspects of multi-dimensional phenotyping in more detail.
Collapse
|
115
|
Mathis C, Poussin C, Weisensee D, Gebel S, Hengstermann A, Sewer A, Belcastro V, Xiang Y, Ansari S, Wagner S, Hoeng J, Peitsch MC. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol 2013; 304:L489-503. [PMID: 23355383 DOI: 10.1152/ajplung.00181.2012] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Organotypic culture of human primary bronchial epithelial cells is a useful in vitro system to study normal biological processes and lung disease mechanisms, to develop new therapies, and to assess the biological perturbations induced by environmental pollutants. Herein, we investigate whether the perturbations induced by cigarette smoke (CS) and observed in the epithelium of smokers' airways are reproducible in this in vitro system (AIR-100 tissue), which has been shown to recapitulate most of the characteristics of the human bronchial epithelium. Human AIR-100 tissues were exposed to mainstream CS for 7, 14, 21, or 28 min at the air-liquid interface, and we investigated various biological endpoints [e.g., gene expression and microRNA profiles, matrix metalloproteinase 1 (MMP-1) release] at multiple postexposure time points (0.5, 2, 4, 24, 48 h). By performing a Gene Set Enrichment Analysis, we observed a significant enrichment of human smokers' bronchial epithelium gene signatures derived from different public transcriptomics datasets in CS-exposed AIR-100 tissue. Comparison of in vitro microRNA profiles with microRNA data from healthy smokers highlighted various highly translatable microRNAs associated with inflammation or with cell cycle processes that are known to be perturbed by CS in lung tissue. We also found a dose-dependent increase of MMP-1 release by AIR-100 tissue 48 h after CS exposure in agreement with the known effect of CS on this collagenase expression in smokers' tissues. In conclusion, a similar biological perturbation than the one observed in vivo in smokers' airway epithelium could be induced after a single CS exposure of a human organotypic bronchial epithelium-like tissue culture.
Collapse
Affiliation(s)
- Carole Mathis
- Philip Morris International Research and Development, Philip Morris Product SA, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Mackay AJ, Hurst JR. COPD exacerbations: causes, prevention, and treatment. Immunol Allergy Clin North Am 2012; 33:95-115. [PMID: 23337067 DOI: 10.1016/j.iac.2012.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms of chronic obstructive pulmonary disease exacerbation are complex. Respiratory viruses (in particular rhinovirus) and bacteria play a major role in the cause of these events. A distinct group of patients seems susceptible to frequent exacerbations, irrespective of disease severity, and this phenotype is stable over time. Many current therapeutic strategies help reduce exacerbation frequency. Further work is required to develop novel anti-inflammatory therapies for exacerbation prevention and treatment. This article focuses on the cause of chronic obstructive pulmonary disease exacerbations, and the current preventative and acute interventions available.
Collapse
Affiliation(s)
- Alex J Mackay
- Academic Unit of Respiratory Medicine, Royal Free Campus, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
117
|
Milara J, Armengot M, Bañuls P, Tenor H, Beume R, Artigues E, Cortijo J. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol 2012; 166:2243-62. [PMID: 22385203 DOI: 10.1111/j.1476-5381.2012.01929.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mucociliary malfunction occurs in chronic obstructive pulmonary disease (COPD) and compromised functions of ciliated bronchial epithelial cells may contribute to this. Cigarette smoke, a major risk factor for COPD, impairs ciliary beat frequency (CBF). cAMP augments CBF. This in vitro study addressed, in differentiated, primary human bronchial epithelial cells, whether roflumilast N-oxide, a PDE4 inhibitor, (i) augments CBF; (ii) prevents the reduction in CBF induced by cigarette smoke extract (CSE); and (iii) protects against the loss of the ciliated phenotype following long-term CSE exposure. EXPERIMENTAL APPROACH Air-liquid interface cultured human bronchial epithelial cells were incubated with roflumilast N-oxide and exposed to CSE. CBF was assessed by digital high speed video microscopy (DHSV). Ciliated cells were characterized by β-tubulin IV staining and analyses of Foxj1 and Dnai2 mRNA and protein (real-time quantitative PCR, Western blotting). KEY RESULTS Roflumilast N-oxide concentration-dependently triggered a rapid and persistent increase in CBF and reversed the decrease in CBF following CSE. Long-term incubation of bronchial epithelial cells with CSE resulted in a loss in ciliated cells associated with reduced expression of the ciliated cell markers Foxj1 and Dnai2. The PDE4 inhibitor prevented this loss in the ciliated cell phenotype and the compromised Foxj1 and Dnai2 expression. The enhanced release of IL-13 following CSE, a cytokine that diminishes the proportion of ciliated cells and in parallel, reduces Foxj1 and Dnai2, was reversed by roflumilast N-oxide. CONCLUSION AND IMPLICATIONS Roflumilast N-oxide protected differentiated human bronchial epithelial cells from reduced CBF and loss of ciliated cells following CSE.
Collapse
Affiliation(s)
- J Milara
- Research Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
118
|
Ganesan S, Unger BL, Comstock AT, Angel KA, Mancuso P, Martinez FJ, Sajjan US. Aberrantly activated EGFR contributes to enhanced IL-8 expression in COPD airways epithelial cells via regulation of nuclear FoxO3A. Thorax 2012; 68:131-41. [PMID: 23099361 DOI: 10.1136/thoraxjnl-2012-201719] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Decreased activity of forkhead transcription factor class O (FoxO)3A, a negative regulator of NF-κB-mediated chemokine expression, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Previously, we showed that quercetin reduces lung inflammation in a murine model of COPD. Here, we examined the mechanisms underlying decreased FoxO3A activation and its modulation by quercetin in COPD human airway epithelial cells and in a COPD mouse model. METHODS Primary COPD and normal human airway epithelial cells were treated with quercetin, LY294002 or erlotinib for 2 weeks. IL-8 was measured by ELISA. FoxO3A, Akt, and epidermal growth factor (EGF) receptor (EGFR) phosphorylation and nuclear FoxO3A levels were determined by Western blot analysis. Effects of quercetin on lung chemokine expression, nuclear FoxO3A levels and phosphorylation of EGFR and Akt were determined in COPD mouse model. RESULTS Compared with normal, COPD cells showed significantly increased IL-8, which negatively correlated with nuclear FoxO3A levels. COPD bronchial biopsies also showed reduced nuclear FoxO3A. Decreased FoxO3A in COPD cells was associated with increased phosphorylation of EGFR, Akt and FoxO3A and treatment with quercetin, LY294002 or erlotinib increased nuclear FoxO3A and decreased IL-8 and phosphorylation of Akt, EGFR and FoxO3A, Compared with control, elastase/LPS-exposed mice showed decreased nuclear FoxO3A, increased chemokines and phosphorylation of EGFR and Akt. Treatment with quercetin partially reversed these changes. CONCLUSIONS In COPD airways, aberrant EGFR activity increases PI 3-kinase/Akt-mediated phosphorylation of FoxO3A, thereby decreasing nuclear FoxO3A and increasing chemokine expression. Quercetin restores nuclear FoxO3A and reduces chemokine expression partly by modulating EGFR/PI 3-kinase/Akt activity.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-5688, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Unger BL, Faris AN, Ganesan S, Comstock AT, Hershenson MB, Sajjan US. Rhinovirus attenuates non-typeable Hemophilus influenzae-stimulated IL-8 responses via TLR2-dependent degradation of IRAK-1. PLoS Pathog 2012; 8:e1002969. [PMID: 23055935 PMCID: PMC3464227 DOI: 10.1371/journal.ppat.1002969] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/28/2012] [Indexed: 11/24/2022] Open
Abstract
Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B) or mouse alveolar macrophages (MH-S) were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation. In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders. Rhinovirus (RV) is responsible for the majority of common colds. RV infection is also associated with hospitalizations for lower respiratory tract illness, a significant proportion of which are accompanied by bacterial infections including acute otitis media, sinusitis and pneumonia. However, the mechanisms by which RV increases susceptibility to secondary bacterial infections are not understood. In this report, we demonstrate for the first time that RV infection promotes bacterial persistence of non-typeable Hemophilus influenzae (NTHi) in vivo, which was associated with reduced expression of neutrophil-attracting chemokines and neutrophil infiltration into the lungs. Further, RV infection attenuated NTHi or TLR2 or −5 agonist-stimulated chemokine responses in cultured bronchial epithelial cells and alveolar macrophages, suggesting that RV interferes with TLR-related innate immune responses. Next, we found that RV infection caused rapid degradation of IRAK-1, a key adaptor protein in the MyD88-dependent signaling. Inhibition of IRAK-1 degradation restored NTHi-stimulated chemokine responses in RV-infected bronchial epithelial cells. Finally, reductions in IRAK-1 were dependent on TLR2. Together, our results suggest that RV may increase the risk of acquiring secondary bacterial infection by attenuating TLR-dependent innate immune responses.
Collapse
Affiliation(s)
- Benjamin L. Unger
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea N. Faris
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adam T. Comstock
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Umadevi S. Sajjan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
120
|
Frickmann H, Jungblut S, Hirche TO, Groß U, Kuhns M, Zautner AE. The influence of virus infections on the course of COPD. Eur J Microbiol Immunol (Bp) 2012; 2:176-85. [PMID: 24688763 DOI: 10.1556/eujmi.2.2012.3.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/30/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is extensively influenced by viral infections. The mechanisms of how viral agents affect the pathogenesis and prognosis of COPD are numerous. In general, patients with infectious exacerbations are characterized by longer hospitalization periods and greater impairment of several lung function parameters than those with non-infectious exacerbations. Prodromal, clinical, and outcome parameters fail to distinguish virally from non-virally induced illnesses in cases of exacerbations. The importance of infections with respiratory and non-respiratory viral agents for pathogenesis and course of COPD is detailed. Human adenovirus, non-respiratory viruses including human immunodeficiency virus, human metapneumovirus, influenza virus, human rhinovirus, and respiratory syncytial virus are especially stressed.
Collapse
|
121
|
Beasley V, Joshi PV, Singanayagam A, Molyneaux PL, Johnston SL, Mallia P. Lung microbiology and exacerbations in COPD. Int J Chron Obstruct Pulmon Dis 2012; 7:555-69. [PMID: 22969296 PMCID: PMC3437812 DOI: 10.2147/copd.s28286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory condition in adults and is characterized by progressive airflow limitation that is not fully reversible. The main etiological agents linked with COPD are cigarette smoking and biomass exposure but respiratory infection is believed to play a major role in the pathogenesis of both stable COPD and in acute exacerbations. Acute exacerbations are associated with more rapid decline in lung function and impaired quality of life and are the major causes of morbidity and mortality in COPD. Preventing exacerbations is a major therapeutic goal but currently available treatments for exacerbations are not very effective. Historically, bacteria were considered the main infective cause of exacerbations but with the development of new diagnostic techniques, respiratory viruses are also frequently detected in COPD exacerbations. This article aims to provide a state-of-the art review of current knowledge regarding the role of infection in COPD, highlight the areas of ongoing debate and controversy, and outline emerging technologies and therapies that will influence future diagnostic and therapeutic pathways in COPD.
Collapse
|
122
|
Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest 2012; 122:2741-8. [PMID: 22850884 DOI: 10.1172/jci60325] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
123
|
Yerkovich ST, Hales BJ, Carroll ML, Burel JG, Towers MA, Smith DJ, Thomas WR, Upham JW. Reduced rhinovirus-specific antibodies are associated with acute exacerbations of chronic obstructive pulmonary disease requiring hospitalisation. BMC Pulm Med 2012. [PMID: 22849333 DOI: 10.1186/1471-2466-12-37%] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are often linked to respiratory infections. However, it is unknown if COPD patients who experience frequent exacerbations have impaired humoral immunity. The aim of this study was to determine if antibodies specific for common respiratory pathogens are associated with AECOPD. METHODS Plasma was obtained from COPD patients when clinically stable. AECOPD requiring hospitalisation were recorded. IgG1 antibodies to H. Influenzae outer membrane protein 6 (P6), pneumococcal surface protein C (PspC) and the VP1 viral capsid protein of rhinovirus were measured. RESULTS COPD patients who had an AECOPD (n = 32) had significantly lower anti-VP1 IgG1 antibody levels when stable compared to COPD patients who did not have an AECOPD (n = 28, p = 0.024). Furthermore, the number of hospitalisations was inversely proportional to anti-VP1 antibody levels (r = -0.331, p = 0.011). In contrast, antibodies specific for P6 and PspC were present at similar concentrations between groups. Plasma IL-21, a cytokine important for B-cell development and antibody synthesis, was also lower in COPD patients who had an AECOPD, than in stable COPD patients (p = 0.046). CONCLUSION Deficient humoral immunity specific for rhinoviruses is associated with AECOPD requiring hospitalisation, and may partly explain why some COPD patients have an increased exacerbation risk following respiratory viral infections.
Collapse
|
124
|
Yerkovich ST, Hales BJ, Carroll ML, Burel JG, Towers MA, Smith DJ, Thomas WR, Upham JW. Reduced rhinovirus-specific antibodies are associated with acute exacerbations of chronic obstructive pulmonary disease requiring hospitalisation. BMC Pulm Med 2012; 12:37. [PMID: 22849333 PMCID: PMC3499478 DOI: 10.1186/1471-2466-12-37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
Background Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are often linked to respiratory infections. However, it is unknown if COPD patients who experience frequent exacerbations have impaired humoral immunity. The aim of this study was to determine if antibodies specific for common respiratory pathogens are associated with AECOPD. Methods Plasma was obtained from COPD patients when clinically stable. AECOPD requiring hospitalisation were recorded. IgG1 antibodies to H. Influenzae outer membrane protein 6 (P6), pneumococcal surface protein C (PspC) and the VP1 viral capsid protein of rhinovirus were measured. Results COPD patients who had an AECOPD (n = 32) had significantly lower anti-VP1 IgG1 antibody levels when stable compared to COPD patients who did not have an AECOPD (n = 28, p = 0.024). Furthermore, the number of hospitalisations was inversely proportional to anti-VP1 antibody levels (r = −0.331, p = 0.011). In contrast, antibodies specific for P6 and PspC were present at similar concentrations between groups. Plasma IL-21, a cytokine important for B-cell development and antibody synthesis, was also lower in COPD patients who had an AECOPD, than in stable COPD patients (p = 0.046). Conclusion Deficient humoral immunity specific for rhinoviruses is associated with AECOPD requiring hospitalisation, and may partly explain why some COPD patients have an increased exacerbation risk following respiratory viral infections.
Collapse
|
125
|
Koarai A, Yanagisawa S, Sugiura H, Ichikawa T, Kikuchi T, Furukawa K, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. 25-Hydroxycholesterol enhances cytokine release and Toll-like receptor 3 response in airway epithelial cells. Respir Res 2012; 13:63. [PMID: 22849850 PMCID: PMC3460764 DOI: 10.1186/1465-9921-13-63] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/17/2012] [Indexed: 11/15/2022] Open
Abstract
Background 25-hydroxycholesterol (25-HC) is one of the oxysterols, which are oxidized derivatives of cholesterol, and has been reported to be involved in the pathogenesis of atherosclerosis and Alzheimer’s disease. In lung, the possible involvement of 25-HC in airway diseases has been revealed. In the present study, we examined whether 25-HC affects the release of cytokines and also modulates the responses of toll-like receptor 3 (TLR3) in airway epithelial cells. Methods The effect of 25-HC on the release of cytokines from primary human bronchial epithelial cells after stimulation with or without polyinosine-polycytidylic acid [poly(I:C)], a ligand for TLR3, and the signal transduction were examined. Results 25-HC significantly potentiated the release of interleukin-8 (IL-8) and IL-6 from the cells. This effect was more potent compared with that of other oxysterols, 22-HC and 27-HC. GW3965 and TO901317, synthetic agonists of liver X receptors that are receptors for oxysterols, did not augment the IL-8 release. 25-HC enhanced the nuclear factor-kappa B (NF-κB) DNA binding activity and translocation of phosphorylated c-Jun into the nucleus. The release of IL-8 was inhibited by the NF-κB inhibitor, caffeic acid phenethyl ester (CAPE), an inhibitor of nuclear factor kappa-B alpha (IκBα) inhibitor, BAY 11–7085, and an inhibitor of nuclear factor kappa-B kinase-2 (IKK-2) inhibitor, SC-514, but not by a c-Jun N-terminal kinase (JNK) inhibitory peptide, L-JNKi1. 25-HC significantly potentiated IL-8 release in poly(I:C)-treated cells and the augmentation was inhibited by CAPE, BAY 11–7085, and SC-514. Furthermore, 25-HC potentiated the translocation of interferon regulatory factor 3 into the nucleus and the release of interferon-beta (IFN-β) in poly(I:C)-treated cells. Conclusions These data demonstrated that 25-HC augments the release of IL-8 and IL-6 via NF-κB signalling pathway and enhances the release of IL-8 and IFN-β after stimulation of TLR3 in airway epithelial cells. 25-HC may be involved in the neutrophilic airway inflammation through the stimulant effect of IL-8 and IL-6 release and also potentiate the TLR3-mediated innate immunity in airway diseases.
Collapse
Affiliation(s)
- Akira Koarai
- Third Department of Internal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Proud D, Hudy MH, Wiehler S, Zaheer RS, Amin MA, Pelikan JB, Tacon CE, Tonsaker TO, Walker BL, Kooi C, Traves SL, Leigh R. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes. PLoS One 2012; 7:e40762. [PMID: 22808255 PMCID: PMC3395625 DOI: 10.1371/journal.pone.0040762] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/12/2012] [Indexed: 12/24/2022] Open
Abstract
Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.
Collapse
Affiliation(s)
- David Proud
- Airway Inflammation Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The mechanisms of COPD exacerbation are complex. Respiratory viruses (in particular rhinovirus) and bacteria play a major role in the causative etiology of COPD exacerbations. In some patients, noninfective environmental factors may also be important. Data recently published from a large observational study identified a phenotype of patients more susceptible to frequent exacerbations. Many current therapeutic strategies can reduce exacerbation frequency. Future studies may target the frequent exacerbator phenotype, or those patients colonized with potential bacterial pathogens, for such therapies as long-term antibiotics, thus preventing exacerbations by decreasing bacterial load or preventing new strain acquisition in the stable state. Respiratory viral infections are also an important therapeutic target for COPD. Further work is required to develop new anti-inflammatory agents for exacerbation prevention, and novel acute treatments to improve outcomes at exacerbation.
Collapse
Affiliation(s)
- Alex J Mackay
- Academic Unit of Respiratory Medicine, Royal Free Campus, UCL Medical School, London, UK.
| | | |
Collapse
|
128
|
Ruwanpura SM, McLeod L, Miller A, Jones J, Vlahos R, Ramm G, Longano A, Bardin PG, Bozinovski S, Anderson GP, Jenkins BJ. Deregulated Stat3 signaling dissociates pulmonary inflammation from emphysema in gp130 mutant mice. Am J Physiol Lung Cell Mol Physiol 2012; 302:L627-39. [DOI: 10.1152/ajplung.00285.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-6 is a potent immunomodulatory cytokine that is associated with emphysema, a major component of chronic obstructive pulmonary disease (COPD). IL-6 signaling via the gp130 coreceptor is coupled to multiple signaling pathways, especially the latent transcription factor signal transducer and activator of transcription (Stat)3. However, the pathological role of endogenous gp130-dependent Stat3 activation in emphysema is ill defined. To elucidate the role of the IL-6/gp130/Stat3 signaling axis in the cellular and molecular pathogenesis of emphysema, we employed a genetic complementation strategy using emphysematous gp130F/F mice displaying hyperactivation of endogenous Stat3 that were interbred with mice to impede Stat3 activity. Resected human lung tissue from patients with COPD and COPD-free individuals was also evaluated by immunohistochemistry. Genetic reduction of Stat3 hyperactivity in gp130F/F: Stat3 −/+ mice prevented lung inflammation and excessive protease activity; however, emphysema still developed. In support of these findings, Stat3 activation levels in human lung tissue correlated with the extent of pulmonary inflammation but not airflow obstruction in COPD. Furthermore, COPD lung tissue displayed increased levels of IL-6 and apoptotic alveolar cells, supporting our previous observation that increased endogenous IL-6 expression in the lungs of gp130F/F mice contributes to emphysema by promoting alveolar cell apoptosis. Collectively, our data suggest that IL-6 promotes emphysema via upregulation of Stat3-independent apoptosis, whereas IL-6 induction of lung inflammation occurs via Stat3. We propose that while discrete targeting of Stat3 may alleviate pulmonary inflammation, global targeting of IL-6 potentially represents a therapeutically advantageous approach to combat COPD phenotypes where emphysema predominates.
Collapse
Affiliation(s)
- Saleela M. Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Alistair Miller
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Jessica Jones
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Ross Vlahos
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash Micro Imaging, School of Biomedical Sciences, Monash University; and
| | | | - Philip G. Bardin
- Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Steven Bozinovski
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Gary P. Anderson
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| |
Collapse
|
129
|
Swindle EJ, Davies DE. Artificial airways for the study of respiratory disease. Expert Rev Respir Med 2012; 5:757-65. [PMID: 22082162 DOI: 10.1586/ers.11.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review will focus on human cell-based experimental models to study respiratory diseases, in particular models of the large airways relevant to asthma and chronic obstructive pulmonary disease. Such models have the advantage of incorporating cells that can be derived from disease-relevant tissue and so have retained important genetic and epigenetic features that contribute to the human disease. These models can be used for mechanistic studies, target identification and validation and toxicological testing. While many models have been developed to varying degrees of sophistication, the challenge remains to develop an integrated system that recapitulates the complex cell-cell and cell-matrix interactions that occur in vivo and to provide these with a 'circulation' to study the dynamics of immune and inflammatory cell influx and efflux.
Collapse
Affiliation(s)
- Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences and Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | | |
Collapse
|
130
|
Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10:27. [PMID: 22420941 PMCID: PMC3353868 DOI: 10.1186/1741-7015-10-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | |
Collapse
|
131
|
Severity of human rhinovirus infection in immunocompromised adults is similar to that of 2009 H1N1 influenza. J Clin Microbiol 2012; 50:1061-3. [PMID: 22205807 DOI: 10.1128/jcm.06579-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This retrospective chart review of patients at a tertiary referral center compares characteristics and clinical features of patients diagnosed with human rhinovirus (HRV) infection to those of patients with 2009 H1N1 influenza A (pH1N1) during the pandemic respiratory season of 2009 to 2010. Hospital admission rates, intensive care unit (ICU) admissions, and mortality were not statistically different between the HRV and pH1N1 groups; however, more patients in the HRV group were considered immunocompromised.
Collapse
|
132
|
Joo JH, Ryu JH, Kim CH, Kim HJ, Suh MS, Kim JO, Chung SY, Lee SN, Kim HM, Bae YS, Yoon JH. Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflammatory response in airway mucosa. Antioxid Redox Signal 2012; 16:57-70. [PMID: 21714724 DOI: 10.1089/ars.2011.3898] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Airway mucosa is constantly exposed to various airborne microbes, and epithelial host defense requires a robust innate immunity. Recently, it has been suggested that NADPH oxidase (NOX) isozymes serve functional roles in toll-like receptor (TLR)-mediated innate immune responses. However, the molecular mechanism between TLR and NOX-mediated reactive oxygen species (ROS) production in human airway mucosa has been poorly understood. RESULTS Here, we show that flagellin-induced ROS generation is dependent on dual oxidase 2 (DUOX2) activation, which is regulated by [Ca(2+)](i) mobilization in primary normal human nasal epithelial (NHNE) cells. Interestingly, we observed that silencing of DUOX2 expression in NHNE cells and nasal epithelium of Duox2 knockout mice failed to trigger mucin and MIP-2? production upon challenging flagellin. INNOVATION Our observation in this study reveals that flagellin-induced hydrogen peroxide (H(2)O(2)) generation is critical for TLR5-dependent innate immune responses, including IL-8 production and MUC5AC expression in the nasal epithelium. Furthermore, DUOX2-mediated H(2)O(2) generation activated by the flagellin-TLR5 axis might serve as a novel therapeutic target for infectious inflammation diseases in the airway tract. CONCLUSION Taken together, we propose that DUOX2 plays pivotal roles in TLR5-dependent inflammatory response of nasal airway epithelium.
Collapse
Affiliation(s)
- Jung-Hee Joo
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Zhang X, Zheng H, Zhang H, Ma W, Wang F, Liu C, He S. Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine 2011; 56:717-25. [DOI: 10.1016/j.cyto.2011.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 02/04/2023]
|
134
|
Abstract
The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.
Collapse
Affiliation(s)
- David Proud
- Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| | | |
Collapse
|
135
|
Walker N, Badri L, Wettlaufer S, Flint A, Sajjan U, Krebsbach PH, Keshamouni VG, Peters-Golden M, Lama VN. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2461-9. [PMID: 21641374 DOI: 10.1016/j.ajpath.2011.01.058] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/20/2011] [Accepted: 01/28/2011] [Indexed: 01/08/2023]
Abstract
Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs.
Collapse
Affiliation(s)
- Natalie Walker
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Yawn BP, Thomashow B. Management of patients during and after exacerbations of chronic obstructive pulmonary disease: the role of primary care physicians. Int J Gen Med 2011; 4:665-76. [PMID: 21941453 PMCID: PMC3177593 DOI: 10.2147/ijgm.s22878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Current treatments have failed to stem the continuing rise in health care resource use and fatalities associated with exacerbations of chronic obstructive pulmonary disease (COPD). Reduction of severity and prevention of new exacerbations are therefore important in disease management, especially for patients with frequent exacerbations. Acute exacerbation treatment includes short-acting bronchodilators, systemic corticosteroids, and antibiotics if bacterial infections are present. Oxygen and/or ventilatory support may be necessary for life-threatening conditions. Rising health care costs have provided added impetus to find novel therapeutic approaches in the primary care setting to prevent and rapidly treat exacerbations before hospitalization is required. Proactive interventions may include risk reduction measures (eg, smoking cessation and vaccinations) to reduce triggers and supplemental pulmonary rehabilitation to prevent or delay exacerbation recurrence. Long-term treatment strategies should include individualized management, addressing coexisting nonpulmonary conditions, and the use of maintenance pharmacotherapies, eg, long-acting bronchodilators as monotherapy or in combination with inhaled corticosteroids to reduce exacerbations. Self-management plans that help patients recognize their symptoms and promptly access treatments have the potential to prevent exacerbations from reaching the stage that requires hospitalization.
Collapse
Affiliation(s)
- Barbara P Yawn
- Department of Research, Olmsted Medical Center, Rochester, MN, USA
| | | |
Collapse
|
137
|
Holtzman M, Patel D, Kim HJ, You Y, Zhang Y. Hypersusceptibility to respiratory viruses as a shared mechanism for asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Am J Respir Cell Mol Biol 2011; 44:739-42. [PMID: 21653905 DOI: 10.1165/rcmb.2011-0120ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
138
|
Heijink IH, Brandenburg SM, Noordhoek JA, Slebos DJ, Postma DS, van Oosterhout AJ. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD. Respir Res 2011; 12:110. [PMID: 21861887 PMCID: PMC3182910 DOI: 10.1186/1465-9921-12-110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/23/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM)17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis. METHODS We studied the effects of cigarette smoke extract (CSE) and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs) from COPD patients, healthy smokers and non-smokers. RESULTS We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP)-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding) was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups. CONCLUSIONS Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.
Collapse
Affiliation(s)
- Irene H Heijink
- Laboratory of Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Pulmonology, Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Simone M Brandenburg
- Laboratory of Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Jacobien A Noordhoek
- Laboratory of Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonology, Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Dirkje S Postma
- Department of Pulmonology, Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Antoon J van Oosterhout
- Laboratory of Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
139
|
Pseudomonas aeruginosa suppresses interferon response to rhinovirus infection in cystic fibrosis but not in normal bronchial epithelial cells. Infect Immun 2011; 79:4131-45. [PMID: 21825067 DOI: 10.1128/iai.05120-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite increased morbidity associated with secondary respiratory viral infections in cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infection, the underlying mechanisms are not well understood. Here, we investigated the effect of P. aeruginosa infection on the innate immune responses of bronchial epithelial cells to rhinovirus (RV) infection. CF cells sequentially infected with mucoid P. aeruginosa (MPA) and RV showed lower levels of interferons (IFNs) and higher viral loads than those of RV-infected cells. Unlike results for CF cells, normal bronchial epithelial cells coinfected with MPA/RV showed higher IFN expression than RV-infected cells. In both CF and normal cells, the RV-stimulated IFN response requires phosphorylation of Akt and interferon response factor 3 (IRF3). Preinfection with MPA inhibited RV-stimulated Akt phosphorylation and decreased IRF3 phosphorylation in CF cells but not in normal cells. Compared to normal, unstimulated CF cells or normal cells treated with CFTR inhibitor showed increased reactive oxygen species (ROS) production. Treatment of CF cells with antioxidants prior to MPA infection partially reversed the suppressive effect of MPA on the RV-stimulated IFN response. Together, these results suggest that MPA preinfection inhibits viral clearance by suppressing the antiviral response particularly in CF cells but not in normal cells. Further, increased oxidative stress in CF cells appears to modulate the innate immune responses to coinfection.
Collapse
|
140
|
Affiliation(s)
- Meilan K Han
- Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, MI 48109-5360, USA.
| |
Collapse
|
141
|
Holtzman MJ, Patel DA, Zhang Y, Patel AC. Host epithelial-viral interactions as cause and cure for asthma. Curr Opin Immunol 2011; 23:487-94. [PMID: 21703838 DOI: 10.1016/j.coi.2011.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 01/22/2023]
Abstract
Research on the pathogenesis of asthma has concentrated on initial stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. Recent evidence indicates that the innate immune cell response to respiratory viruses also contributes to the development of inflammatory airway disease. We further develop this concept by raising the issue that the interaction between host airway epithelial cells and respiratory viruses is another aspect of innate immunity that is also a critical determinant of asthma. We also introduce a rationale for how antiviral performance at the epithelial cell level might be improved to prevent acute infectious illness and chronic inflammatory disease caused by respiratory viruses.
Collapse
Affiliation(s)
- Michael J Holtzman
- Drug Discovery Program, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | |
Collapse
|
142
|
Calvén J, Yudina Y, Hallgren O, Westergren-Thorsson G, Davies DE, Brandelius A, Uller L. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J Innate Immun 2011; 4:86-99. [PMID: 21691053 DOI: 10.1159/000329131] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rhinovirus (RV)-induced chronic obstructive pulmonary disease (COPD) exacerbations exhibit TH(2)-like inflammation. We hypothesized that RV-infected bronchial epithelial cells (BEC) overproduce TH(2)-switching hub cytokine, thymic stromal lymphopoietin (TSLP) in COPD. METHODS Primary BEC from healthy (HBEC) and from COPD donors (COPD-BEC) were grown in 12-well plates, infected with RV16 (0.5-5 MOI) or stimulated with agonists for either toll-like receptor (TLR) 3 (dsRNA, 0.1-10 μg/ml) or RIG-I-like helicases (dsRNA-LyoVec, 0.1-10 μg/ml). Cytokine mRNA and protein were determined (RTqPCR; ELISA). RESULTS dsRNA dose-dependently evoked cytokine gene overproduction of TSLP, CXCL8 and TNF-α in COPD-BEC compared to HBEC. This was confirmed using RV16 infection. IFN-β induction did not differ between COPD-BEC and HBEC. Endosomal TLR3 inhibition by chloroquine dose-dependently inhibited dsRNA-induced TSLP generation and reduced generation of CXCL8, TNF-α, and IFN-β. Stimulation of cytosolic viral sensors (RIG-I-like helicases) with dsRNA-LyoVec increased production of CXCL8, TNF-α, and IFN-β, but not TSLP. CONCLUSIONS Endosomal TLR3-stimulation, by dsRNA or RV16, induces overproduction of TSLP in COPD-BEC. dsRNA- and RV-induced overproduction of TNF-α and CXCL8 involves endosomal TLR3 and cytosolic RIG-I-like helicases and so does the generation of IFN-β in COPD-BEC. RV16 and dsRNA-induced epithelial TSLP may contribute to pathogenic effects at exacerbations and development of COPD.
Collapse
Affiliation(s)
- Jenny Calvén
- Unit of Respiratory Immunopharmacology, Lund University Sweden, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
143
|
Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22:121-30. [PMID: 21802343 PMCID: PMC3203691 DOI: 10.1016/j.cytogfr.2011.06.001] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C-X-C motif chemokine 10 (CXCL10) also known as interferon γ-induced protein 10 kDa (IP-10) or small-inducible cytokine B10 is a cytokine belonging to the CXC chemokine family. CXCL10 binds CXCR3 receptor to induce chemotaxis, apoptosis, cell growth and angiostasis. Alterations in CXCL10 expression levels have been associated with inflammatory diseases including infectious diseases, immune dysfunction and tumor development. CXCL10 is also recognized as a biomarker that predicts severity of various diseases. A review of the emerging role of CXCL10 in pathogenesis of infectious diseases revealed diverse roles of CXCL10 in disease initiation and progression. The potential utilization of CXCL10 as a therapeutic target for infectious diseases is discussed.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shanchun Guo
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jacqueline M. Hibbert
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vidhan Jain
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Neeru Singh
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Nana O. Wilson
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jonathan K. Stiles
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
144
|
Wang Q, Miller DJ, Bowman ER, Nagarkar DR, Schneider D, Zhao Y, Linn MJ, Goldsmith AM, Bentley JK, Sajjan US, Hershenson MB. MDA5 and TLR3 initiate pro-inflammatory signaling pathways leading to rhinovirus-induced airways inflammation and hyperresponsiveness. PLoS Pathog 2011; 7:e1002070. [PMID: 21637773 PMCID: PMC3102730 DOI: 10.1371/journal.ppat.1002070] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/29/2011] [Indexed: 12/24/2022] Open
Abstract
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness. Rhinovirus (RV) is the most frequent cause of acute respiratory tract infection in humans. RV has emerged as the most frequent pathogen associated with exacerbations of asthma. However, the mechanisms by which RV causes asthma flare-ups are not precisely known. We studied the requirements of two receptors which bind viral double-stranded RNA, melanoma differentiation-associated gene (MDA)-5 and Toll-like receptor (TLR)-3, for RV-induced airway responses using specific knockout mice. We found that MDA5 and TLR3 deficiencies had modest effects on viral titer. However, MDA5 and TLR3 knockout mice showed significantly reduced airway inflammation and responsiveness in response to RV infection. Mice with allergic airways disease also showed reduced airway responses. These results suggest that, in the context of RV infection, TLR3 and MDA5 initiate pro-inflammatory signaling pathways which lead to airways inflammation and hyperresponsiveness.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David J. Miller
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Emily R. Bowman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Deepti R. Nagarkar
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Dina Schneider
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ying Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Marisa J. Linn
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adam M. Goldsmith
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - J. Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Umadevi S. Sajjan
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Marc B. Hershenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
145
|
Rhinovirus-induced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH oxidase 1. J Virol 2011; 85:6795-808. [PMID: 21507984 DOI: 10.1128/jvi.02074-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that rhinovirus (RV), which is responsible for the majority of common colds, disrupts airway epithelial barrier function, as evidenced by reduced transepithelial resistance (R(T)), dissociation of zona occludins 1 (ZO-1) from the tight junction complex, and bacterial transmigration across polarized cells. We also showed that RV replication is required for barrier function disruption. However, the underlying biochemical mechanisms are not known. In the present study, we found that a double-stranded RNA (dsRNA) mimetic, poly(I:C), induced tight junction breakdown and facilitated bacterial transmigration across polarized airway epithelial cells, similar to the case with RV. We also found that RV and poly(I:C) each stimulated Rac1 activation, reactive oxygen species (ROS) generation, and Rac1-dependent NADPH oxidase 1 (NOX1) activity. Inhibitors of Rac1 (NSC23766), NOX (diphenylene iodonium), and NOX1 (small interfering RNA [siRNA]) each blocked the disruptive effects of RV and poly(I:C) on R(T), as well as the dissociation of ZO-1 and occludin from the tight junction complex. Finally, we found that Toll-like receptor 3 (TLR3) is not required for either poly(I:C)- or RV-induced reductions in R(T). Based on these results, we concluded that Rac1-dependent NOX1 activity is required for RV- or poly(I:C)-induced ROS generation, which in turn disrupts the barrier function of polarized airway epithelia. Furthermore, these data suggest that dsRNA generated during RV replication is sufficient to disrupt barrier function.
Collapse
|
146
|
van der Vliet A. Nox enzymes in allergic airway inflammation. Biochim Biophys Acta Gen Subj 2011; 1810:1035-44. [PMID: 21397663 DOI: 10.1016/j.bbagen.2011.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/30/2022]
Abstract
Chronic airway diseases such as asthma are linked to oxidative environmental factors and are associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in the treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, with a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, involving many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology, Vermont Lung Cancer, College of Medicine, Universitu of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
147
|
Mallia P, Message SD, Gielen V, Contoli M, Gray K, Kebadze T, Aniscenko J, Laza-Stanca V, Edwards MR, Slater L, Papi A, Stanciu LA, Kon OM, Johnson M, Johnston SL. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med 2011; 183:734-42. [PMID: 20889904 PMCID: PMC3081284 DOI: 10.1164/rccm.201006-0833oc] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/27/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations. OBJECTIVES To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations. METHODS We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes. MEASUREMENTS AND MAIN RESULTS Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and viral load in nasal lavage, sputum, and bronchoalveolar lavage were measured at baseline and after infection with rhinovirus 16. After rhinovirus infection subjects with COPD developed lower respiratory symptoms, airflow obstruction, and systemic and airway inflammation that were greater and more prolonged compared with the control group. Neutrophil markers in sputum related to clinical outcomes and virus load correlated with inflammatory markers. Virus load was higher and IFN production by bronchoalveolar lavage cells was impaired in the subjects with COPD. CONCLUSIONS We have developed a new model of COPD exacerbation that strongly supports a causal relationship between rhinovirus infection and COPD exacerbations. Impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPD exacerbations.
Collapse
Affiliation(s)
- Patrick Mallia
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Simon D. Message
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Vera Gielen
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Marco Contoli
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Katrina Gray
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Tatiana Kebadze
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Julia Aniscenko
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Vasile Laza-Stanca
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Michael R. Edwards
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Louise Slater
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Alberto Papi
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Luminita A. Stanciu
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Onn M. Kon
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Malcolm Johnson
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| | - Sebastian L. Johnston
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College and Imperial College Healthcare National Health Service Trust, London, United Kingdom; Research Center on Asthma and Chronic Obstructive Pulmonary Disease, University of Ferrara, Ferrara, Italy; and GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom
| |
Collapse
|
148
|
Leigh R, Proud D. Modulation of epithelial biology by rhinovirus infection: role in inflammatory airway diseases. Future Virol 2011. [DOI: 10.2217/fvl.11.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human airway epithelial cell is the primary site of human rhinovirus (HRV) infection in both the upper and lower airways, but HRV infection does not cause overt epithelial cytotoxicity at either location. Therefore, it is thought that HRV infections induce symptoms of the common cold or exacerbate lower airway diseases, such as asthma and chronic obstructive pulmonary disease, by altering epithelial cell biology. This premise has led to intense investigation of the interactions of HRV with epithelial cells. This article reviews current knowledge regarding how HRV induces epithelial induction of proinflammatory cytokines and chemokines. In addition, the contributions of epithelial cells to host antiviral responses will be reviewed along with evidence that HRV-infected epithelial cells may contribute to the airway remodeling that is a characteristic feature of asthma.
Collapse
Affiliation(s)
- Richard Leigh
- Airway Inflammation Research Group, University of Calgary, HRIC 4AC60, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
149
|
Abstract
The airway epithelium represents the first point of contact for inhaled foreign organisms. The protective arsenal of the airway epithelium is provided in the form of physical barriers and a vast array of receptors and antimicrobial compounds that constitute the innate immune system. Many of the known innate immune receptors, including the Toll-like receptors and nucleotide oligomerization domain-like receptors, are expressed by the airway epithelium, which leads to the production of proinflammatory cytokines and chemokines that affect microorganisms directly and recruit immune cells, such as neutrophils and T cells, to the site of infection. The airway epithelium also produces a number of resident antimicrobial proteins, such as lysozyme, lactoferrin, and mucins, as well as a swathe of cationic proteins. Dysregulation of the airway epithelial innate immune system is associated with a number of medical conditions that can result in compromised immunity and chronic inflammation of the lung. This review focuses on the innate immune capabilities of the airway epithelium and its role in protecting the lung from infection as well as the outcomes when its function is compromised.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|