101
|
Chavez-Galan L, Vesin D, Uysal H, Blaser G, Benkhoucha M, Ryffel B, Quesniaux VFJ, Garcia I. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy. Front Immunol 2017; 8:999. [PMID: 28890718 PMCID: PMC5574880 DOI: 10.3389/fimmu.2017.00999] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
Pleural tuberculosis (TB) is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC) has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF) in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2), but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.
Collapse
Affiliation(s)
- Leslie Chavez-Galan
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratory of Integrative Immunology, National Institute of Respiratory Diseases "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dominique Vesin
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Husnu Uysal
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Guillaume Blaser
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Valérie F J Quesniaux
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
102
|
Peng KT, Hsieh CC, Huang TY, Chen PC, Shih HN, Lee MS, Chang PJ. Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro. PLoS One 2017; 12:e0183271. [PMID: 28813499 PMCID: PMC5559065 DOI: 10.1371/journal.pone.0183271] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/01/2017] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common causes of biofilm infections in periprosthetic joint infections (PJIs). Accumulating evidence has shown that the immunosuppressive environment established by S. aureus biofilm infection in PJIs involves the presence of myeloid-derived suppressor cells (MDSCs) and M2-macrophages. Due to the diversity of MDSCs, little is known about whether S. aureus biofilm preferentially expands specific MDSC subsets or whether MDSCs can further differentiate into M2-macrophages during S. aureus biofilm infection. Here, we show that in agreement with the results from an established rat PJI model, S. aureus biofilm cocultured with freshly isolated bone marrow cells (BMCs) in vitro significantly increases the proportions of MDSCs, total macrophages and M2-macrophages. Interestingly, we find that treatment of the BMCs in vitro with S. aureus biofilm preferentially promotes the expansion of monocytic MDSCs but not granulocytic MDSCs. Biofilm treatment also substantially enhances the overall MDSC immunosuppressive activity in addition to the MDSC expansion in vitro. Importantly, we provide evidence that S. aureus biofilm is capable of further stimulating the conversion of monocytic MDSCs into M2-macrophages in vitro and in vivo. Collectively, our studies reveal a direct link between MDSCs and M2-macrophages occurring in S. aureus-associated PJIs.
Collapse
Affiliation(s)
- Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | - Tsung-Yu Huang
- Division of Infection Disease, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chun Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hsin-Nung Shih
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mel S. Lee
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
103
|
Halliday A, Whitworth H, Kottoor SH, Niazi U, Menzies S, Kunst H, Bremang S, Badhan A, Beverley P, Kon OM, Lalvani A. Stratification of Latent Mycobacterium tuberculosis Infection by Cellular Immune Profiling. J Infect Dis 2017; 215:1480-1487. [PMID: 28329119 PMCID: PMC5451604 DOI: 10.1093/infdis/jix107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background. Recently acquired and remotely acquired latent Mycobacterium tuberculosis infection (LTBI) are clinically indistinguishable, yet recent acquisition of infection is the greatest risk factor for progression to tuberculosis in immunocompetent individuals. We aimed to evaluate the ability of cellular immune signatures that differ between active tuberculosis and LTBI to distinguish recently from remotely acquired LTBI. Methods. Fifty-nine individuals were recruited: 20 had active tuberculosis, 19 had recently acquired LTBI, and 20 had remotely acquired LTBI. The proportion of mycobacteria-specific CD4+ T cells secreting tumor necrosis factor α (TNF-α) but not interferon γ or interleukin 2 which had a differentiated effector phenotype (TNF-α–only TEFF), and the level of CD27 expression on IFN-γ–producing CD4+ T cells, were detected by flow cytometry. Results. The TNF-α–only TEFF signature was significantly higher in the group with recently acquired LTBI, compared with the group with remotely acquired LTBI (P < .0001), and it discriminated between these groups with high sensitivity and specificity, with an area under the curve of 0.87. Two signatures incorporating CD27 expression did not distinguish between recently and remotely acquired LTBI. Interestingly, the TNF-α–only TEFF signature in participants with recently acquired LTBI was more similar to that in participants with tuberculosis than that in participants with remotely acquired LTBI, suggesting that recently acquired LTBI is immunologically more similar to tuberculosis than remotely acquired LTBI. Conclusions. These findings reveal marked biological heterogeneity underlying the clinically homogeneous phenotype of LTBI, providing a rationale for immunological risk stratification to improve targeting of LTBI treatment.
Collapse
Affiliation(s)
- Alice Halliday
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus
| | - Hilary Whitworth
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus
| | - Sherine Hermagild Kottoor
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus
| | - Umar Niazi
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus.,National Institute for Health Research, Health Protection Research Unit in Respiratory Infections, Imperial College London
| | - Sarah Menzies
- Wexham Park Hospital, Slough, United Kingdom,Heatherwood Hospital, Frimley Health NHS Foundation Trust, Berkshire, UK
| | | | - Samuel Bremang
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus
| | - Amarjit Badhan
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus.,National Institute for Health Research, Health Protection Research Unit in Respiratory Infections, Imperial College London
| | - Peter Beverley
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus
| | - Onn Min Kon
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus.,National Institute for Health Research, Health Protection Research Unit in Respiratory Infections, Imperial College London.,St Mary's Hospital, Imperial NHS Healthcare, London
| | - Ajit Lalvani
- Tuberculosis Research Centre, Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary's Campus.,National Institute for Health Research, Health Protection Research Unit in Respiratory Infections, Imperial College London
| |
Collapse
|
104
|
Mourik BC, Leenen PJM, de Knegt GJ, Huizinga R, van der Eerden BCJ, Wang J, Krois CR, Napoli JL, Bakker-Woudenberg IAJM, de Steenwinkel JEM. Immunotherapy Added to Antibiotic Treatment Reduces Relapse of Disease in a Mouse Model of Tuberculosis. Am J Respir Cell Mol Biol 2017; 56:233-241. [PMID: 27654457 DOI: 10.1165/rcmb.2016-0185oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immune-modulating drugs that target myeloid-derived suppressor cells or stimulate natural killer T cells have been shown to reduce mycobacterial loads in tuberculosis (TB). We aimed to determine if a combination of these drugs as adjunct immunotherapy to conventional antibiotic treatment could also increase therapeutic efficacy against TB. In our model of pulmonary TB in mice, we applied treatment with isoniazid, rifampicin, and pyrazinamide for 13 weeks alone or combined with immunotherapy consisting of all-trans retinoic acid, 1,25(OH)2-vitamin D3, and α-galactosylceramide. Outcome parameters were mycobacterial load during treatment (therapeutic activity) and 13 weeks after termination of treatment (therapeutic efficacy). Moreover, cellular changes were analyzed using flow cytometry and cytokine expression was assessed at the mRNA and protein levels. Addition of immunotherapy was associated with lower mycobacterial loads after 5 weeks of treatment and significantly reduced relapse of disease after a shortened 13-week treatment course compared with antibiotic treatment alone. This was accompanied by reduced accumulation of immature myeloid cells in the lungs at the end of treatment and increased TNF-α protein levels throughout the treatment period. We demonstrate, in a mouse model of pulmonary TB, that immunotherapy consisting of three clinically approved drugs can improve the therapeutic efficacy of standard antibiotic treatment.
Collapse
Affiliation(s)
- Bas C Mourik
- 1 Department of Medical Microbiology and Infectious Diseases
| | | | | | | | - Bram C J van der Eerden
- 3 Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; and
| | - Jinshan Wang
- 4 Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | - Charles R Krois
- 4 Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | - Joseph L Napoli
- 4 Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | | | | |
Collapse
|
105
|
Granulocytic Myeloid-Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level. J Acquir Immune Defic Syndr 2017; 74:575-582. [PMID: 28060224 DOI: 10.1097/qai.0000000000001283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been demonstrated that myeloid-derived suppressor cells (MDSC) are expanded in HIV-1-infected individuals and correlated with disease progression. The phase of HIV infection during which MDSC expansion occurs, and the mechanisms that regulate this expansion remain to be established. In this study, we evaluated the frequency of MDSC in patients during primary HIV infection (PHI) and factors involved in MDSC control. METHODS Patients with PHI and chronic HIV infection (CHI) were enrolled. PHI staging was performed according to Fiebig classification, and circulating MDSC frequency and function were evaluated by flow cytometry. Cytokine levels were evaluated by Luminex technology. RESULTS We found that granulocytic MDSC (Gr-MDSC) frequency was higher in patients with PHI compared with healthy donors, but lower than that in patients with CHI. Interestingly, Gr-MDSC expansion was observed in the early phases of HIV infection (Fiebig II/III), but it was not associated with HIV viral load and CD4 T-cell count. Interestingly, in PHI, Gr-MDSC frequency was inversely correlated with plasmatic level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), although a direct correlation was observed in CHI. Furthermore, lower level of Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) was observed in PHI compared with that in CHI. In vitro experiments demonstrated that, differently from CHI, recombinant TRAIL-induced apoptosis of Gr-MDSC from PHI, an effect that can be abrogated by GM-CSF. CONCLUSION We found that Gr-MDSC are expanded early during PHI and may be regulated by TRAIL and GM-CSF levels. These findings shed light on the fine mechanisms regulating the immune system during HIV infection and open new perspectives for immune-based strategies.
Collapse
|
106
|
Abstract
Infection with M. tuberculosis remains one of the most common infections in the world. The outcome of the infection depends on host ability to mount effective protection and balance inflammatory responses. Neutrophils are innate immune cells implicated in both processes. Accordingly, during M. tuberculosis infection, they play a dual role. Particularly, they contribute to the generation of effector T cells, participate in the formation of granuloma, and are directly involved in tissue necrosis, destruction, and infection dissemination. Neutrophils have a high bactericidal potential. However, data on their ability to eliminate M. tuberculosis are controversial, and the results of neutrophil depletion experiments are not uniform. Thus, the overall roles of neutrophils during M. tuberculosis infection and factors that determine these roles are not fully understood. This review analyzes data on neutrophil defensive and pathological functions during tuberculosis and considers hypotheses explaining the dualism of neutrophils during M. tuberculosis infection and tuberculosis disease.
Collapse
|
107
|
Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa. Infect Immun 2017; 85:IAI.00765-16. [PMID: 28348057 DOI: 10.1128/iai.00765-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species.
Collapse
|
108
|
Du Plessis N, Jacobs R, Gutschmidt A, Fang Z, van Helden PD, Lutz MB, Hesseling AC, Walzl G. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis. Eur J Immunol 2017; 47:107-118. [PMID: 27861788 PMCID: PMC5233566 DOI: 10.1002/eji.201646658] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Increased disease susceptibility during early life has been linked to immune immaturity, regulatory T-cell/TH2 immune biasing and hyporesponsiveness. The contribution of myeloid derived suppressor cells (MDSCs) remains uninvestigated. Here, we assessed peripheral MDSC in HIV-infected and -uninfected children with tuberculosis (TB) disease before, during and after TB treatment, along with matched household contacts (HHCs), HIV-exposed, -infected and -uninfected children without recent TB exposure. Serum analytes and enzymes associated with MDSC accumulation/activation/function were measured by colorimetric- and fluorescence arrays. Peripheral frequencies of cells phenotypically resembling MDSCs were significantly increased in HIV-exposed uninfected (HEU) and M.tb-infected children, but peaked in children with TB disease and remained high following treatment. MDSC in HIV-infected (HI) children were similar to unexposed uninfected controls; however, HAART-mediated MDSC restoration to control levels could not be disregarded. Increased MDSC frequencies in HHC coincided with enhanced indoleamine-pyrrole-2,3-dioxygenase (IDO), whereas increased MDSC in TB cases were linked to heightened IDO and arginase-1. Increased MDSC were paralleled by reduced plasma IP-10 and thrombospondin-2 levels in HEU and significantly increased plasma IL-6 in HI HHC. Current investigations into MDSC-targeted treatment strategies, together with functional analyses of MDSCs, could endorse these cells as novel innate immune regulatory mechanism of infant HIV/TB susceptibility.
Collapse
Affiliation(s)
- Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ruschca Jacobs
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zhuo Fang
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul D van Helden
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
109
|
Jayashankar L, Hafner R. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Front Immunol 2016; 7:577. [PMID: 28018344 PMCID: PMC5159487 DOI: 10.3389/fimmu.2016.00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms, studies to improve TB vaccine responses using interventions based on “immuno-oncology” are needed to guide possible repurposing. Understanding the regulation of immune cell functions appropriated by Mtb to promote the imbalance between protective and pathogenic immune responses may guide the development of innovative drug-based adjunct approaches to substantially enhance the clinical efficacy of TB vaccines.
Collapse
Affiliation(s)
- Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
110
|
Ndlovu H, Marakalala MJ. Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front Immunol 2016; 7:434. [PMID: 27822210 PMCID: PMC5075764 DOI: 10.3389/fimmu.2016.00434] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a leading global health problem that is aggravated by emergence of drug-resistant strains, which account for increasing number of treatment-refractory cases. Thus, eradication of this disease will strongly require better therapeutic strategies. Identification of host factors promoting disease progression may accelerate discovery of adjunct host-directed therapies (HDTs) that will boost current treatment protocols. HDTs focus on potentiating key components of host anti-mycobacterial effector mechanisms, and limiting inflammation and pathological damage in the lung. Granulomas represent a pathological hallmark of TB. They are comprised of impressive arrangement of immune cells that serve to contain the invading pathogen. However, granulomas can also undergo changes, developing caseums and cavities that facilitate bacterial spread and disease progression. Here, we review current concepts on the role of granulomas in pathogenesis and protective immunity against TB, drawing from recent clinical studies in humans and animal models. We also discuss therapeutic potential of inflammatory pathways that drive granuloma progression, with a focus on new and existing drugs that will likely improve TB treatment outcomes.
Collapse
Affiliation(s)
- Hlumani Ndlovu
- Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| | - Mohlopheni J Marakalala
- TB Immunopathogenesis Group, Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
111
|
Singh A, Lelis F, Braig S, Schäfer I, Hartl D, Rieber N. Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species. Front Microbiol 2016; 7:1624. [PMID: 27790210 PMCID: PMC5061774 DOI: 10.3389/fmicb.2016.01624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to suppress T-cell responses. Recently, we demonstrated that the human-pathogenic fungi Candida albicans and Aspergillus fumigatus induced a distinct subset of neutrophilic MDSCs. To dissect Candida-mediated MDSC induction in more depth, we studied the relative efficacy of different pathogenic non-albicans Candida species to induce and functionally modulate neutrophilic MDSCs, including C. glabrata, C. parapsilosis, C. dubliniensis, and C. krusei. Our data demonstrate that the extent of MDSC generation is largely dependent on the Candida species with MDSCs induced by C. krusei and C. glabrata showing a higher suppressive activity compared to MDSCs induced by C. albicans. In summary, these studies show that fungal MDSC induction is differentially regulated at the species level and differentially affects effector T-cell responses.
Collapse
Affiliation(s)
- Anurag Singh
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Felipe Lelis
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Stefanie Braig
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Iris Schäfer
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Dominik Hartl
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Nikolaus Rieber
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of TübingenTübingen, Germany; Department of Pediatrics, Kinderklinik München Schwabing, StKM GmbH und Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| |
Collapse
|
112
|
Fernandez IE, Greiffo FR, Frankenberger M, Bandres J, Heinzelmann K, Neurohr C, Hatz R, Hartl D, Behr J, Eickelberg O. Peripheral blood myeloid-derived suppressor cells reflect disease status in idiopathic pulmonary fibrosis. Eur Respir J 2016; 48:1171-1183. [DOI: 10.1183/13993003.01826-2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/15/2016] [Indexed: 11/05/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disease with irreversible lung function loss and poor survival. Myeloid-derived suppressor cells (MDSC) are associated with poor prognosis in cancer, facilitating immune evasion. The abundance and function of MDSC in IPF is currently unknown.Fluorescence-activated cell sorting was performed in 170 patients (IPF: n=69; non-IPF interstitial lung disease (ILD): n=56; chronic obstructive pulmonary disease (COPD): n=23; healthy controls: n=22) to quantify blood MDSC and lymphocyte subtypes. MDSC abundance was correlated with lung function, MDSC localisation was performed by immunofluorescence. Peripheral blood mononuclear cell (PBMC) mRNA levels were analysed by qRT-PCR.We detected increased MDSC in IPF and non-IPF ILD compared with controls (30.99±15.61% versus 18.96±8.17%, p≤0.01). Circulating MDSC inversely correlated with maximum vital capacity (r= −0.48, p≤0.0001) in IPF, but not in COPD or non-IPF ILD. MDSC suppressed autologous T-cells. The mRNA levels of co-stimulatory T-cell signals were significantly downregulated in IPF PBMC. Importantly, CD33+CD11b+ cells, suggestive of MDSC, were detected in fibrotic niches of IPF lungs.We identified increased MDSC in IPF and non-IPF ILD, suggesting that elevated MDSC may cause a blunted immune response. MDSC inversely correlate with lung function only in IPF, identifying them as potent biomarkers for disease progression. Controlling expansion and accumulation of MDSC, or blocking their T-cell suppression, represents a promising therapy in IPF.
Collapse
|
113
|
McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 2016; 74:ftw068. [PMID: 27402783 DOI: 10.1093/femspd/ftw068] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a central role in mycobacterial pathogenesis. Recent work has highlighted the importance of diverse macrophage types and phenotypes that depend on local environment and developmental origins. In this review, we highlight how distinct macrophage phenotypes may influence disease progression in tuberculosis. In addition, we draw on work investigating specialized macrophage populations important in cancer biology and atherosclerosis in order to suggest new areas of investigation relevant to mycobacterial pathogenesis. Understanding the mechanisms controlling the repertoire of macrophage phenotypes and behaviors during infection may provide opportunities for novel control of disease through modulation of macrophage form and function.
Collapse
Affiliation(s)
- Colleen M McClean
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
114
|
Kaufmann SHE. EFIS lecture. Immune response to tuberculosis: How to control the most successful pathogen on earth. Immunol Lett 2016; 175:50-7. [PMID: 27181094 DOI: 10.1016/j.imlet.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) remains a major health threat and general agreement exists that better control measures are needed. These include better diagnostics, drugs and vaccines. In particular, vaccines will be critical for better TB control. Based on knowledge about protective immunity against TB, a vaccine was created, VPM1002, which shows high protective efficacy and safety in experimental animal models. The vaccine has proven safe and immunogenic in human adults and neonates and is currently assessed in clinical trials in the context of HIV exposure. As a next step, a phase III efficacy trial in adults and a phase IIb efficacy trial in neonates are being planned. Biosignatures that differentially diagnose TB disease versus latent infection with high sensitivity and specificity have been designed. Most recently, a prognostic biosignature which predicts progression from latent infection to active TB has been identified. Biosignatures are not only of great value for improved diagnosis and prognosis of TB, they can also provide guidelines for better understanding of molecular mechanisms underlying disease. Accordingly, distinct biomarkers of diagnostic and prognostic value but of unknown biological function are being characterized functionally. In this way, deeper insights have been obtained on the role of type I interferon and of neutrophils in TB in experimental animal models of TB. In conclusion, clinical and basic research further supported by computational biology can complement each other in the pursuit of knowledge-based development of improved intervention measures for TB control.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany.
| |
Collapse
|
115
|
Goletti D, Petruccioli E, Joosten SA, Ottenhoff THM. Tuberculosis Biomarkers: From Diagnosis to Protection. Infect Dis Rep 2016; 8:6568. [PMID: 27403267 PMCID: PMC4927936 DOI: 10.4081/idr.2016.6568] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 12/25/2022] Open
Abstract
New approaches to control tuberculosis (TB) worldwide are needed. In particular, new tools for diagnosis and new biomarkers are required to evaluate both pathogen and host key elements of the response to infection. Non-sputum based diagnostic tests, biomarkers predictive of adequate responsiveness to treatment, and biomarkers of risk of developing active TB disease are major goals. Here, we review the current state of the field. Although reports on new candidate biomarkers are numerous, validation and independent confirmation are rare. Efforts are needed to reduce the gap between the exploratory up-stream identification of candidate biomarkers, and the validation of biomarkers against clear clinical endpoints in different populations. This will need a major commitment from both scientists and funding bodies.
Collapse
Affiliation(s)
- Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani , Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani , Rome, Italy
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Centre , The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre , The Netherlands
| |
Collapse
|
116
|
Cao LY, Chung JS, Teshima T, Feigenbaum L, Cruz PD, Jacobe HT, Chong BF, Ariizumi K. Myeloid-Derived Suppressor Cells in Psoriasis Are an Expanded Population Exhibiting Diverse T-Cell-Suppressor Mechanisms. J Invest Dermatol 2016; 136:1801-1810. [PMID: 27236103 DOI: 10.1016/j.jid.2016.02.816] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 02/17/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Psoriasis vulgaris is an inflammatory skin disease caused by hyperactivated T cells regulated by positive and negative mechanisms; although the former have been much studied, the latter have not. We studied the regulatory mechanism mediated by myeloid-derived suppressor cells (MDSCs) and showed that MDSCs expanded in melanoma patients express dendritic cell-associated heparan sulfate proteoglycan-dependent integrin ligand, a critical mediator of T-cell suppressor function. We examined expansion of DC-HIL(+) MDSCs in psoriasis and characterized their functional properties. Frequency of DC-HIL(+) monocytic MDSCs (CD14(+)HLA-DR(no/low)) in blood and skin was markedly increased in psoriatic patients versus healthy control subjects, but there was no statistically significant relationship with disease severity (based on Psoriasis Area and Severity Index score). Blood DC-HIL(+) MDSC levels in untreated patients were significantly higher than in treated patients. Compared with melanoma-derived MDSCs, psoriatic MDSCs exhibited significantly reduced suppressor function and were less dependent on DC-HIL, but they were capable of inhibiting proliferation and IFN-γ and IL-17 responses of autologous T cells. Psoriatic MDSCs were functionally diverse among patients in their ability to suppress allogeneic T cells and in the use of either IL-17/arginase I or IFN-γ/inducible nitric oxide synthase axis as suppressor mechanisms. Thus, DC-HIL(+) MDSCs are expanded in psoriasis patients, and their mechanistic heterogeneity and relative functional deficiency may contribute to the development of psoriasis.
Collapse
Affiliation(s)
- Lauren Y Cao
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takahiro Teshima
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lawrence Feigenbaum
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ponciano D Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heidi T Jacobe
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin F Chong
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
117
|
Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D. Myeloid-Derived Suppressor Cells in Bacterial Infections. Front Cell Infect Microbiol 2016; 6:37. [PMID: 27066459 PMCID: PMC4814452 DOI: 10.3389/fcimb.2016.00037] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/15/2016] [Indexed: 01/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics.
Collapse
Affiliation(s)
- Michael Ost
- Children's Hospital, University of Tübingen Tübingen, Germany
| | - Anurag Singh
- Children's Hospital, University of Tübingen Tübingen, Germany
| | - Andreas Peschel
- Infection Biology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| | - Roman Mehling
- Children's Hospital, University of Tübingen Tübingen, Germany
| | - Nikolaus Rieber
- Children's Hospital, University of TübingenTübingen, Germany; Department of Pediatrics, Kinderklinik München Schwabing, Klinikum Schwabing, StKM GmbH und Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| | - Dominik Hartl
- Children's Hospital, University of Tübingen Tübingen, Germany
| |
Collapse
|
118
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
119
|
Kolahian S, Öz HH, Zhou B, Griessinger CM, Rieber N, Hartl D. The emerging role of myeloid-derived suppressor cells in lung diseases. Eur Respir J 2016; 47:967-77. [PMID: 26846830 DOI: 10.1183/13993003.01572-2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterised by their potential to control T-cell responses and to dampen inflammation. While the role of MDSCs in cancer has been studied in depth, our understanding of their relevance for infectious and inflammatory disease conditions has just begun to evolve. Recent studies highlight an emerging and complex role for MDSCs in pulmonary diseases. In this review, we discuss the potential contribution of MDSCs as biomarkers and therapeutic targets in lung diseases, particularly lung cancer, tuberculosis, chronic obstructive pulmonary disease, asthma and cystic fibrosis.
Collapse
Affiliation(s)
- Saeed Kolahian
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany Dept of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hasan Halit Öz
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany
| | - Benyuan Zhou
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany
| | - Christoph M Griessinger
- Werner Siemens Imaging Center, Dept of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nikolaus Rieber
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany Dept of Pediatrics, Kinderklinik München Schwabing, Klinikum rechts der Isar, Technische Universität München, Munich Germany
| | - Dominik Hartl
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany
| |
Collapse
|
120
|
Grützner E, Stirner R, Arenz L, Athanasoulia AP, Schrödl K, Berking C, Bogner JR, Draenert R. Kinetics of human myeloid-derived suppressor cells after blood draw. J Transl Med 2016; 14:2. [PMID: 26733325 PMCID: PMC4702395 DOI: 10.1186/s12967-015-0755-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Background Human myeloid-derived suppressor cells (MDSC) have been described as a group of immature myeloid cells which exert immunosuppressive action by inhibiting function of T lymphocytes. While there is a huge scientific interest to study these cells in multiple human diseases, the methodological approach varies substantially between published studies. This is problematic as human MDSC seem to be a sensible cell type concerning not only cryopreservation but also time point after blood draw. To date data on delayed blood processing influencing cell numbers and phenotype is missing. We therefore evaluated the kinetics of granulocytic MDSC (gMDSC) and monocytic MDSC (mMDSC) frequencies after blood draw in order to determine the best time point for analysis of this recently defined cell type. Methods In this study, we isolated peripheral blood mononuclear cells (PBMC) of patients with HIV infection or solid tumors directly after blood draw. We then analyzed the frequencies of gMDSC and mMDSC 2, 4 and 6 h after blood draw and after an overnight rest by FACS analysis using the standard phenotypic markers. In addition, part of the cells was frozen directly after PBMC preparation and was measured after thawing. Results gMDSC levels showed no significant difference using fresh PBMC over time with a limitation for the overnight sample. However they were massively diminished after freezing (p = 0.0001 for all subjects). In contrast, frequencies of fresh mMDSC varied over time with no difference between time point 2 and 4 h but a significantly reduction after 6 h and overnight rest (p = 0.0005 and p = 0.005 respectively). Freezing of PBMC decreased the yield of mMDSC reaching statistical significance (p = 0.04). For both MDSC subgroups, FACS analysis became more difficult over time due to less sharp divisions between populations. Conclusions According to our data human MDSC need to be studied on fresh PBMC. gMDSC can be studied with delay, mMDSC however should be studied no later than 4 h after blood draw. These results are crucial as an increasing number of clinical trials aim at analyzing MDSC nowadays and the logistics of blood processing implies delayed sample processing in some cases. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0755-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Grützner
- Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Renate Stirner
- Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Lukas Arenz
- Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Anastasia P Athanasoulia
- Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Kathrin Schrödl
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| | - Carola Berking
- Klinik und Poliklinik für Dermatologie und Allergologie, Frauenlobstraße 9-11, 80337, Munich, Germany.
| | - Johannes R Bogner
- Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Rika Draenert
- Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Pettenkoferstr. 8a, 80336, Munich, Germany.
| |
Collapse
|
121
|
Dorhoi A, Kaufmann SHE. Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol 2015; 45:2191-202. [PMID: 26140356 DOI: 10.1002/eji.201545493] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB), a chronic bacterial infectious disease caused by Mycobacterium tuberculosis (Mtb), typically affects the lung and causes profound morbidity and mortality rates worldwide. Recent advances in cellular immunology emphasize the complexity of myeloid cell subsets controlling TB inflammation. The specialization of myeloid cell subsets for particular immune processes has tailored their roles in protection and pathology. Among myeloid cells, dendritic cells (DCs) are essential for the induction of adaptive immunity, macrophages predominantly harbor Mtb within TB granulomas and polymorphonuclear neutrophils (PMNs) orchestrate lung damage. However, within each myeloid cell population, diverse phenotypes with unique functions are currently recognized, differentially influencing TB pneumonia and granuloma functionality. More recently, myeloid-derived suppressor cells (MDSCs) have been identified at the site of Mtb infection. Along with PMNs, MDSCs accumulate within the inflamed lung, interact with granuloma-residing cells and contribute to exuberant inflammation. In this review, we discuss the contribution of different myeloid cell subsets to inflammation in TB by highlighting their interactions with Mtb and their role in lung pathology. Uncovering the manifold nature of myeloid cells in TB pathogenesis will inform the development of future immune therapies aimed at tipping the inflammation balance to the benefit of the host.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
122
|
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 2015; 38:153-66. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Collapse
|
123
|
Chen X, Lu Y, Zhang Z, Wang J, Yang H, Liu G. Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology. Immunology 2015; 145:455-67. [PMID: 25890999 DOI: 10.1111/imm.12473] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/11/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are evolutionarily conserved class III histone deacetylases that have been the focus of intense scrutiny and interest since the discovery of Sir2 as a yeast longevity factor. Early reports demonstrated an important role of Sirt1 in aging and metabolism, but its critical regulatory role in the immune system has only been unveiled in recent years. In this review we discuss the latest advances in understanding the regulatory role of Sirt1 in immune responses as well as how Sirt1 translates metabolic cues to immune signals, which would bring new insights into both pathogenesis and potential therapeutic strategies of a variety of immune-related diseases, such as cancer, microbial infection, autoimmune diseases and transplantation.
Collapse
Affiliation(s)
- Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Yun Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Zhengguo Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Guangwei Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| |
Collapse
|
124
|
El Daker S, Sacchi A, Tempestilli M, Carducci C, Goletti D, Vanini V, Colizzi V, Lauria FN, Martini F, Martino A. Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One 2015; 10:e0123772. [PMID: 25879532 PMCID: PMC4400140 DOI: 10.1371/journal.pone.0123772] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) is still the principal cause of death caused by a single infectious agent, and the balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. The aim of this work was to study the role of myeloid-derived suppressor cells (MDSCs) during active pulmonary tuberculosis at the site of infection. We observed an expansion of MDSCs in the lung and blood of patients with active TB, which are correlated with an enhanced amount of nitric oxide in the plasma. We also found that these cells have the remarkable ability to suppress T-cell response, suggesting an important role in the modulation of the immune response against TB. Interestingly, a trend in the diminution of MDSCs was found after an efficacious anti-TB therapy, suggesting that these cells may be used as a potential biomarker for monitoring anti-TB therapy efficacy.
Collapse
Affiliation(s)
- Sary El Daker
- Laboratory of Cellular Immunology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, Paris, France
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| | - Alessandra Sacchi
- Laboratory of Cellular Immunology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
| | - Massimo Tempestilli
- Clinical Biochemistry and Pharmacology Laboratory, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Nicola Lauria
- Respiratory Infectious Diseases Unit, "Lazzaro Spallanzani" National Institute for Infectious Diseases, Rome, Italy
| | - Federico Martini
- Laboratory of Cellular Immunology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
| | - Angelo Martino
- Laboratory of Cellular Immunology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, Rome, Italy
| |
Collapse
|
125
|
Clements DR, Sterea AM, Kim Y, Helson E, Dean CA, Nunokawa A, Coyle KM, Sharif T, Marcato P, Gujar SA, Lee PWK. Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. THE JOURNAL OF IMMUNOLOGY 2015; 194:4397-412. [PMID: 25825443 DOI: 10.4049/jimmunol.1402132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/04/2015] [Indexed: 12/31/2022]
Abstract
Tumor-associated immunosuppression aids cancer cells to escape immune-mediated attack and subsequent elimination. Recently, however, many oncolytic viruses, including reovirus, have been reported to overturn such immunosuppression and promote the development of a clinically desired antitumor immunity, which is known to promote favorable patient outcomes. Contrary to this existing paradigm, in this article we demonstrate that reovirus augments tumor-associated immunosuppression immediately following its therapeutic administration. Our data show that reovirus induces preferential differentiation of highly suppressive CD11b(+), Gr-1(+), Ly6C(high) myeloid cells from bone marrow hematopoietic progenitor cells. Furthermore, reovirus administration in tumor-bearing hosts drives time-dependent recruitment of CD11b(+), Gr-1(+), Ly6C(high) myeloid cells in the tumor milieu, which is further supported by virus-induced increased expression of numerous immune factors involved in myeloid-derived suppressor cell survival and trafficking. Most importantly, CD11b(+), Gr-1(+), Ly6C(high) myeloid cells specifically potentiate the suppression of T cell proliferation and are associated with the absence of IFN-γ response in the tumor microenvironment early during oncotherapy. Considering that the qualitative traits of a specific antitumor immunity are largely dictated by the immunological events that precede its development, our findings are of critical importance and must be considered while devising complementary interventions aimed at promoting the optimum efficacy of oncolytic virus-based anticancer immunotherapies.
Collapse
Affiliation(s)
- Derek R Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Erin Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Cheryl A Dean
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Anna Nunokawa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Krysta Mila Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Tanveer Sharif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and Strategy and Organizational Performance, Izaak Walton Killiam Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Patrick W K Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| |
Collapse
|
126
|
Rieber N, Hartl D. Eat and suppress: The two-faced role of myeloid-derived suppressor cells in tuberculosis. Am J Respir Crit Care Med 2014; 190:975-7. [PMID: 25360727 DOI: 10.1164/rccm.201410-1764ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nikolaus Rieber
- 1 Department of Pediatrics I University of Tübingen Tübingen, Germany
| | | |
Collapse
|
127
|
Tebartz C, Horst SA, Sparwasser T, Huehn J, Beineke A, Peters G, Medina E. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. THE JOURNAL OF IMMUNOLOGY 2014; 194:1100-11. [PMID: 25548227 DOI: 10.4049/jimmunol.1400196] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus can cause difficult-to-treat chronic infections. We recently reported that S. aureus chronic infection was associated with a profound inhibition of T cell responses. In this study, we investigated the mechanisms responsible for the suppression of T cell responses during chronic S. aureus infection. Using in vitro coculture systems, as well as in vivo adoptive transfer of CFSE-labeled OT-II cells, we demonstrated the presence of immunosuppressive mechanisms in splenocytes of S. aureus-infected mice that inhibited the response of OT-II cells to cognate antigenic stimulation. Immunosuppression was IL-10/TGF-β independent but required cell-cell proximity. Using DEREG and Foxp3(gfp) mice, we demonstrated that CD4(+)CD25(+)Foxp3(+) regulatory T cells contributed, but only to a minor degree, to bystander immunosuppression. Neither regulatory B cells nor tolerogenic dendritic cells contributed to immunosuppression. Instead, we found a significant expansion of granulocytic (CD11b(+)Ly6G(+)Ly6C(low)) and monocytic (CD11b(+)Ly6G(-)Ly6C(high)) myeloid-derived suppressor cells (MDSC) in chronically infected mice, which exerted a strong immunosuppressive effect on T cell responses. Splenocytes of S. aureus-infected mice lost most of their suppressive activity after the in vivo depletion of MDSC by treatment with gemcitabine. Furthermore, a robust negative correlation was observed between the degree of T cell inhibition and the number of MDSC. An increase in the numbers of MDSC in S. aureus-infected mice by adoptive transfer caused a significant exacerbation of infection. In summary, our results indicate that expansion of MDSC and, to a minor degree, of regulatory T cells in S. aureus-infected mice may create an immunosuppressive environment that sustains chronic infection.
Collapse
Affiliation(s)
- Christina Tebartz
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sarah Anita Horst
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, Twincore, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; and
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of 48149 Münster, Münster, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| |
Collapse
|
128
|
Walzl G, Haks MC, Joosten SA, Kleynhans L, Ronacher K, Ottenhoff THM. Clinical immunology and multiplex biomarkers of human tuberculosis. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a018515. [PMID: 25475107 DOI: 10.1101/cshperspect.a018515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The discovery of tuberculosis (TB) biomarkers is an important goal in current TB research, because the availability of such markers would have significant impact on TB prevention and treatment. Correlates of protection would greatly facilitate vaccine development and evaluation, whereas correlates of TB disease risk would facilitate early diagnosis and help installing early or preventive treatment. Currently, no such markers are available. This review describes several strategies that are currently being pursued to identify TB biomarkers and places these in a clinical context. The approaches discussed include both targeted and untargeted hypothesis-free strategies. Among the first are the measurements of specific biomarkers in antigen-stimulated peripheral blood, in serum or plasma, and detailed immune cell phenotyping. Among the latter are proteomic, genomic, and transcriptomic (mRNA, miRNA) approaches. Recent and promising developments are described.
Collapse
Affiliation(s)
- Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Léanie Kleynhans
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Katharina Ronacher
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
129
|
Urdahl KB. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin Immunol 2014; 26:578-87. [PMID: 25453230 PMCID: PMC4314386 DOI: 10.1016/j.smim.2014.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Despite the overwhelming success of immunization in reducing, and even eliminating, the global threats posed by a wide spectrum of infectious diseases, attempts to do the same for tuberculosis (TB) have failed to date. While most effective vaccines act by eliciting neutralizing antibodies, T cells are the primary mediators of adaptive immunity against TB. Unfortunately, the onset of the T cell response after aerosol infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes TB, is exceedingly slow, and systemically administered vaccines only modestly accelerate the recruitment of effector T cells to the lungs. This delay seems to be orchestrated by Mtb itself to prolong the period of unrestricted bacterial replication in the lung that characterizes the innate phase of the response. When T cells finally arrive at the site of infection, multiple layers of regulation have been established that limit the ability of T cells to control or eradicate Mtb. From this understanding, emerges a strategy for achieving immunity. Lung resident memory T cells may recognize Mtb-infected cells shortly after infection and confer protection before regulatory networks are allowed to develop. Early studies using vaccines that elicit lung resident T cells by targeting the lung mucosa have been promising, but many questions remain. Due to the fundamental nature of these questions, and the need to understand and manipulate the early events in the lung after aerosol infection, only coordinated approaches that utilize tractable animal models to inform human TB vaccine trials will move the field toward its goal.
Collapse
Affiliation(s)
- Kevin B Urdahl
- Seattle Biomedical Research Institute, Seattle, WA, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA; Department of Global Health, University of Washington School of Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
130
|
Knaul JK, Jörg S, Oberbeck-Mueller D, Heinemann E, Scheuermann L, Brinkmann V, Mollenkopf HJ, Yeremeev V, Kaufmann SHE, Dorhoi A. Lung-Residing Myeloid-derived Suppressors Display Dual Functionality in Murine Pulmonary Tuberculosis. Am J Respir Crit Care Med 2014; 190:1053-66. [DOI: 10.1164/rccm.201405-0828oc] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
131
|
The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection. Infect Immun 2014; 82:5154-65. [PMID: 25267836 DOI: 10.1128/iai.02304-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues.
Collapse
|
132
|
Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis 2014; 209 Suppl 3:S100-6. [PMID: 24966189 DOI: 10.1093/infdis/jiu147] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Globally, far more men than women have tuberculosis. Although the cause of this bias is uncertain, epidemiological factors have historically been considered the driving force. Here, we discuss evidence that biological differences between the sexes may also be important and can affect susceptibility to mycobacterial infection. We discuss the possible underlying mechanisms, with particular focus on how sex hormones modulate the immune responses necessary for resistance to tuberculosis. Studying these differences may provide valuable insight into the components that constitute an effective immune response to this deadly pathogen.
Collapse
Affiliation(s)
- Shepherd Nhamoyebonde
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
133
|
Gantt S, Gervassi A, Jaspan H, Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Front Immunol 2014; 5:387. [PMID: 25165466 PMCID: PMC4131407 DOI: 10.3389/fimmu.2014.00387] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 01/13/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.
Collapse
Affiliation(s)
- Soren Gantt
- Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | | | - Heather Jaspan
- Seattle BioMed , Seattle, WA , USA ; Division of Immunology, University of Cape Town , Cape Town , South Africa
| | - Helen Horton
- Seattle BioMed , Seattle, WA , USA ; Janssen ID&V Research and Development , Antwerp , Belgium
| |
Collapse
|
134
|
Reves R, Schluger NW. Update in tuberculosis and nontuberculous mycobacterial infections 2013. Am J Respir Crit Care Med 2014; 189:894-8. [PMID: 24735031 DOI: 10.1164/rccm.201402-0210up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Randall Reves
- 1 Department of Medicine, University of Colorado, Denver, Colorado
| | | |
Collapse
|
135
|
Boer MC, van Meijgaarden KE, Joosten SA, Ottenhoff THM. CD8+ regulatory T cells, and not CD4+ T cells, dominate suppressive phenotype and function after in vitro live Mycobacterium bovis-BCG activation of human cells. PLoS One 2014; 9:e94192. [PMID: 24714620 PMCID: PMC3979753 DOI: 10.1371/journal.pone.0094192] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/01/2014] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG), the only currently available vaccine against tuberculosis, has been reported to induce regulatory T cells in humans. The activity of regulatory T cells may not only dampen immunogenicity and protective efficacy of tuberculosis-vaccines, but also hamper diagnosis of infection of tuberculosis, when using immune (e.g. IFNγ-release) assays. Still, in settings of infectious diseases and vaccination, most studies have focused on CD4+ regulatory T cells, and not CD8+ regulatory T-cells. Here, we present a comparative analysis of the suppressive phenotype and function of CD4+ versus CD8+ T cells after in vitro live BCG activation of human cells. Moreover, as BCG is administered as a (partly) live vaccine, we also compared the ability of live versus heatkilled BCG in activating CD4+ and CD8+ regulatory T cell responses. BCG-activated CD8+ T cells consistently expressed higher levels of regulatory T cell markers, and after live BCG activation, density and (co-)expression of markers were significantly higher, compared to CD4+ T cells. Furthermore, selection on CD25-expression after live BCG activation enriched for CD8+ T cells, and selection on co-expression of markers further increased CD8+ enrichment. Ultimately, only T cells activated by live BCG were functionally suppressive and this suppressive activity resided predominantly in the CD8+ T cell compartment. These data highlight the important contribution of live BCG-activated CD8+ Treg cells to immune regulation and emphasize their possible negative impact on immunity and protection against tuberculosis, following BCG vaccination.
Collapse
Affiliation(s)
- Mardi C. Boer
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
136
|
Yang B, Wang X, Jiang J, Zhai F, Cheng X. Identification of CD244-expressing myeloid-derived suppressor cells in patients with active tuberculosis. Immunol Lett 2014; 158:66-72. [PMID: 24333340 DOI: 10.1016/j.imlet.2013.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
Development of active TB is accompanied by immune suppression and the underlining mechanisms have been explored extensively in recent years. MDSCs are a heterogeneous group of immature and progenitor myeloid cells with strong immunosuppressive ability for both natural and adaptive immunity. In our analysis of CD244 (2B4)-expressing cells in PBMCs from patients with active TB, a CD3(-)CD244(high) subpopulation was identified. A match of cell population in flow cytometry showed that nearly all CD3(-)CD244(high) cells were CD3(-)HLA-DR(-)CD11b(int)CD33(+) cells. The CD3(-)CD244(high) cell population has phenotypes of CD3(-)CD19(-)CD56(-)CD15(-)CD66b(-)CD33(+)CD11b(+)CD14(-)HLA-DR(neg/low), which was consistent with MDSCs in humans as previously reported. Patients with active TB had higher frequencies of CD3(-)CD244(high) cells as compared with healthy controls. The CD3(-)CD244(high) cell population had high levels of NOS2 expression and was negatively correlated with activation and effective molecule production of CD4(+) and CD8(+) T cells. In conclusion, CD3(-)CD244(high) cells had phenotypes of MDSCs and CD244 might be used as a marker for human CD3(-)HLA-DR(-)CD11b(int)CD33(+) MDSCs.
Collapse
Affiliation(s)
- Bingfen Yang
- Key Laboratory of Tuberculosis Prevention and Treatment of PLA, Division of Research, Institute of Tuberculosis, 309 Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Xinjing Wang
- Key Laboratory of Tuberculosis Prevention and Treatment of PLA, Division of Research, Institute of Tuberculosis, 309 Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment of PLA, Division of Research, Institute of Tuberculosis, 309 Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment of PLA, Division of Research, Institute of Tuberculosis, 309 Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment of PLA, Division of Research, Institute of Tuberculosis, 309 Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China.
| |
Collapse
|
137
|
Bueno V, Sant'Anna OA, Lord JM. Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9729. [PMID: 25399072 PMCID: PMC4233024 DOI: 10.1007/s11357-014-9729-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/04/2014] [Indexed: 05/02/2023]
Abstract
Infections, cancer and autoimmune diseases occur more frequently in the elderly, and although many factors contribute to this, the age-related remodelling of the immune system, termed immunosenescence, plays a major role. Over the last two decades, studies have evaluated the effect of ageing on both the adaptive and innate arms of the immune system and demonstrated compromised function in several cells including lymphocytes (naïve, effector and memory), regulatory T and B cells, monocytes, neutrophils and NK cells. In addition, a well-documented feature of ageing is the increase in systemic inflammatory status (inflammageing), with raised serum levels of IL6, TNFα and CRP as well as reduced IL10. Recently, myeloid-derived suppressor cells have been the focus of many reports as these cells show immunosuppressive properties and are present in higher frequency during infections, cancer and autoimmunity. Importantly, there have been publications showing increased numbers of myeloid-derived suppressor cells in aged mice and humans. In this review, we discuss the current literature on myeloid-derived suppressor cells, their possible role in altered immune function in the elderly, and whether it may be possible to manipulate these cells to alleviate age-related immune dysfunction.
Collapse
Affiliation(s)
- Valquiria Bueno
- Department of Microbiology Immunology and Parasitology, UNIFESP Federal University of São Paulo, São Paulo, Brazil,
| | | | | |
Collapse
|