101
|
Dong Y, Drissi H, Chen M, Chen D, Zuscik MJ, Schwarz EM, O’Keefe RJ. Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem 2005; 95:1057-68. [PMID: 15962307 PMCID: PMC2649667 DOI: 10.1002/jcb.20466] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt proteins are expressed during limb morphogenesis, yet their role and mechanism of action remains unclear during long bone growth. Wnt expression, effects and modulation of signaling events by BMP and transforming growth factor-beta (TGF-beta) were evaluated in chick embryonic chondrocytes. Chondrocyte cell cultures underwent spontaneous maturation with increased expression of colX and this was associated with an increase in the expression of multiple Wnts, including Wnt 4, 5a, 8c, and 9a. Both parathyroid hormone related peptide (PTHrP) and TGF-beta inhibited colX, but had disparate effects on Wnt expression. While TGF-beta strongly inhibited all Wnts, PTHrP did not inhibit either Wnt8c or Wnt9a and had lesser effects on the expression of the other Wnts. BMP-2 induced colX expression, and also markedly increased Wnt8c expression. Overexpression of beta-catenin and/or T cell factor (TCF)-4 also induced the type X collagen promoter. Overexpression of Wnt8c induced maturation, as did overexpression of beta-catenin. The Wnt8c/beta-catenin maturational effects were enhanced by BMP-2 and inhibited by TGF-beta. TGF-beta also inhibited activation of the Topflash reporter by beta-catenin, suggesting a direct inhibitory effect since the Topflash reporter contains only beta-catenin binding sequences. In turn beta-catenin inhibited activation of the p3TP-Luc reporter by TGF-beta, although the effect was partial. Thus, Wnt/beta-catenin signaling is a critical regulator of the rate of chondrocyte differentiation. Moreover, this pathway is modulated by members of the TGF-beta family and demonstrates the highly integrated nature of signals controlling endochondral ossification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Regis J. O’Keefe
- Correspondence to: Regis J. O’Keefe, MD, PhD, Department of Orthopaedics, University of Rochester, Medical Center Rochester, NY 14642. E-mail: Regis_O’
| |
Collapse
|
102
|
Anjos L, Rotllant J, Guerreiro PM, Hang X, Canario AVM, Balment R, Power DM. Production and characterisation of gilthead sea bream (Sparus auratus) recombinant parathyroid hormone related protein. Gen Comp Endocrinol 2005; 143:57-65. [PMID: 15993105 DOI: 10.1016/j.ygcen.2005.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 02/22/2005] [Accepted: 02/27/2005] [Indexed: 10/25/2022]
Abstract
The production and purification of gilthead sea bream recombinant parathyroid hormone related protein [sbPTHrP(1-125)] using an Escherichia coli system and one step purification process with continuous elution gel electrophoresis is reported. The cDNA encoding sbPTHrP(1-125) was cloned into a prokaryotic expression vector pET-11a. The recombinant plasmid was used to transfect E. coli BL21(DE3) pLysS and sbPTHrP(1-125) synthesis was induced by addition of 1mM isopropyl-beta-d-thiogalactopyranoside. The rapid one step isolation method gave pure sbPTHrP(1-125) as judged by SDS-PAGE and yielded up to 40mg/L of culture medium (3.3mg protein/g of bacteria). The bioactivity of recombinant sbPTHrP(1-125) assessed using an in vitro scale bioassay was found to be equipotent to PTHrP(1-34) in stimulating cAMP accumulation. Assessment of the immunological reactivity of the isolated protein by Western blot revealed it cross-reacts with antisera specific for the N-terminal and C-terminal region of PTHrP. In a radioimmunoassay specific for piscine N-terminal (1-34aa) PTHrP, the recombinant sbPTHrP(1-125) was equipotent with PTHrP(1-34) in displacing labelled (125)I-PTHrP(1-36) PTHrP from the antisera. The availability of recombinant sbPTHrP will allow the development of region specific assays and studies aimed at defining post-secretory processing of this protein and its biological activity in fish.
Collapse
Affiliation(s)
- L Anjos
- Comparative and Molecular Endocrinology Group, CCMAR, CIMAR-Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
103
|
Lietman SA, Ding C, Cooke DW, Levine MA. Reduction in Gsalpha induces osteogenic differentiation in human mesenchymal stem cells. Clin Orthop Relat Res 2005:231-8. [PMID: 15864058 DOI: 10.1097/01.blo.0000153279.90512.38] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We hypothesized that a decrease in Gsalpha expression occurs with osteogenic differentiation and that when Gsalpha expression was decreased by antisense oligonucleotides or direct inhibition of protein kinase A there was a concomitant increase in Runx2/Cbfa1. We also investigated the mechanism involved in the change in Runx2/Cbfa1 levels and whether the expression of other genes known to be involved in bone formation was altered. There was a decrease in Gsalpha expression with osteogenic differentiation and antisense oligonucleotides, and protein kinase A inhibition led to increased expression and DNA binding of the osteoblast-specific Runx2/Cbfa1. Additionally, with decreased Gsalpha expression or protein kinase A inhibition, Runx2/Cbfa1 protein was serine phosphorylated and ubiquitinated less. Microarray analysis, after the addition of antisense Gsalpha, showed a more than 10-fold increase in collagen Type I Alpha 2 mRNA (a target of Runx2/Cbfa1). These data show that reduced expression of Gsalpha can induce an osteoblast-like phenotype. The results also indicate a potential pathophysiologic role in patients with heterozygous inactivating mutations in GNAS1, the gene for the alpha chain (Gsalpha) of the heterotrimeric G protein, present in three disorders with ectopic intramembranous bone: Albright's hereditary osteodystrophy, progressive osseous heteroplasia, and osteoma cutis.
Collapse
Affiliation(s)
- Steven A Lietman
- Department of Orthopaedic Surgery, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
104
|
Sakamoto A, Chen M, Nakamura T, Xie T, Karsenty G, Weinstein LS. Deficiency of the G-protein alpha-subunit G(s)alpha in osteoblasts leads to differential effects on trabecular and cortical bone. J Biol Chem 2005; 280:21369-75. [PMID: 15797856 DOI: 10.1074/jbc.m500346200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G-protein alpha-subunit G(s)alpha is required for the intracellular cAMP responses to hormones and other agonists. G(s)alpha is known to mediate the cAMP response to parathyroid hormone and other hormones and cytokines in bone and cartilage. To analyze the in vivo role of G(s)alpha signaling in osteoblasts, we developed mice with osteoblast/osteocyte-specific G(s)alpha deficiency (BGsKO) by mating G(s)alpha-floxed mice with collagen Ialpha1 promoter-Cre recombinase transgenic mice. Early skeletal development was normal in BGsKO mice, because formation of the initial cartilage template and bone collar was unaffected. The chondrocytic zones of the growth plates also appeared normal in BGsKO mice. BGsKO mice had a defect in the formation of the primary spongiosa with reduced immature osteoid (new bone formation) and overall length, which led to reduced trabecular bone volume. In contrast, cortical bone was thickened with narrowing of the bone marrow cavity. This was probably due to decreased cortical bone resorption, because osteoclasts were markedly reduced on the endosteal surface of cortical bone. In addition, the expression of alkaline phosphatase, an early osteoblastic differentiation marker, was normal, whereas the expression of the late osteoblast differentiation markers osteopontin and osteocalcin was reduced, suggesting that the number of mature osteoblasts in bone is reduced. Expression of the osteoclast-stimulating factor receptor activator of NF-kappaB ligand was also reduced. Overall, our findings have similarities to parathyroid hormone null mice and confirm that the differential effects of parathyroid hormone on trabecular and cortical bone are primarily mediated via G(s)alpha in osteoblasts. Osteoblast-specific G(s)alpha deficiency leads to reduced bone turnover.
Collapse
Affiliation(s)
- Akio Sakamoto
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
105
|
Harrington EK, Lunsford LE, Svoboda KKH. Chondrocyte terminal differentiation, apoptosis, and type X collagen expression are downregulated by parathyroid hormone. ACTA ACUST UNITED AC 2005; 281:1286-95. [PMID: 15515174 DOI: 10.1002/ar.a.20129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone (PTH) regulates calcium and phosphate homeostasis through the endocrine system. Parathyroid hormone-related peptide (PTHrP) is a heterogeneous polypeptide with sequence homology to PTH in its first 13 amino acid residues. Both bind and activate a common receptor, the type 1 PTH/PTHrP receptor (PTH1R). Activation of this G-protein-coupled receptor by PTHrP has been shown to regulate chondrogenesis in a manner that attenuates chondrocyte hypertrophy. Here, we report the dose-response (10(-7) to 10(-15) M) effects of PTH on chondrogenesis using an avian sternal organ culture model. PTH increased cartilaginous tissue length and downregulated the deposition of type X collagen and its mRNA expression. In addition, PTH increased chondrocyte cell diameter in prehypertrophic and proliferative regions while decreasing chondrocyte apoptosis in the hypertrophic zone. In conclusion, these experiments demonstrate that PTH regulates cartilage growth, chondrocytic apoptosis, deposition of type X collagen protein, and expression of type X collagen mRNA. Type X collagen mRNA expression was downregulated by PTH in this organ culture model, but cell size, another marker for terminal differentiation, increased.
Collapse
Affiliation(s)
- Erik Kern Harrington
- Department of Biomedical Sciences, Texas A&M University System, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | |
Collapse
|
106
|
Chiang MK, Liao YC, Kuwabara Y, Lo SH. Inactivation of tensin3 in mice results in growth retardation and postnatal lethality. Dev Biol 2005; 279:368-77. [PMID: 15733665 DOI: 10.1016/j.ydbio.2004.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/15/2004] [Accepted: 12/21/2004] [Indexed: 01/22/2023]
Abstract
Tensin family is a group of focal adhesion proteins that interact with integrins, actin, and phosphotyrosine-containing proteins. To explore the in vivo functions of a new member of the family, tensin3, we have generated mutant mice with a disrupted tensin3 gene. Inactivation of tensin3 resulted in growth retardation and postnatal lethality in one third of the homozygous mutants. Histological analysis of those mutants showed incomplete development of the small intestine, lung, and bone. Villus formation in the small intestine was affected and cells migrated slower in the runt mutants. Their lungs also displayed enlarged air space suggesting defects in alveogenesis. In addition, the resting zone was thicker and fewer proliferating cells were present in the growth plates of tensin3(-/-) tibiae. These observations indicate that tensin3 is essential for normal development and functions of the small intestine, lung, and bone. These phenotypes of the runt tensin3(-/-) mice are similar to some clinical features of Silver-Russell syndrome (SRS) which is a genetically inherited defect. About 10% of SRS cases have been linked to abnormality in chromosome 7p11.2-13, where human tensin3 gene is located, suggesting a potential link between tensin3 and SRS.
Collapse
Affiliation(s)
- Ming-Ko Chiang
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California-Davis, 4635 Second Avenue, Room 2000, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
107
|
Calvi LM, Shin HI, Knight MC, Weber JM, Young MF, Giovannetti A, Schipani E. Constitutively active PTH/PTHrP receptor in odontoblasts alters odontoblast and ameloblast function and maturation. Mech Dev 2005; 121:397-408. [PMID: 15110049 DOI: 10.1016/j.mod.2004.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/28/2004] [Accepted: 02/02/2004] [Indexed: 11/15/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTH-rP) is an important autocrine/paracrine attenuator of programmed cell differentiation whose expression is restricted to the epithelial layer in tooth development. The PTH/PTHrP receptor (PPR) mRNA in contrast is detected in the dental papilla, suggesting that PTHrP and the PPR may modulate epithelial-mesenchymal interactions. To explore the possible interactions, we studied the previously described transgenic mice in which a constitutively active PPR is targeted to osteoblastic cells. These transgenic mice have a vivid postnatal bone and tooth phenotype, with normal tooth eruption but abnormal, widened crowns. Transgene mRNA expression was first detected at birth in the dental papilla and, at 1 week postnatally, in odontoblasts. There was no transgene expression in ameloblasts or in other epithelial structures. Prenatally, transgenic molars and incisors revealed no remarkable change. By the age of 1 week, the dental papilla was widened, with disorganization of the odontoblastic layer and decreased dentin matrix. In addition, the number of cusps was abnormally increased, the ameloblastic layer disorganized, and enamel matrix decreased. Odontoblastic and, surprisingly, ameloblastic cytodifferentiation was impaired, as shown by in situ hybridization and electron microscopy. Interestingly, ameloblastic expression of Sonic Hedgehog, a major determinant of ameloblastic cytodifferentiation, was dramatically altered in the transgenic molars. These data suggest that odontoblastic activation of the PPR may play an important role in terminal odontoblastic and, indirectly, ameloblastic cytodifferentiation, and describe a useful model to study how this novel action of the PPR may modulate mesenchymal/epithelial interactions at later stages of tooth morphogenesis and development.
Collapse
Affiliation(s)
- L M Calvi
- Endocrine Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Pogoda P, Priemel M, Schilling AF, Gebauer M, Catalá-Lehnen P, Barvencik F, Beil FT, Münch C, Rupprecht M, Müldner C, Rueger JM, Schinke T, Amling M. Mouse models in skeletal physiology and osteoporosis: experiences and data on 14,839 cases from the Hamburg Mouse Archives. J Bone Miner Metab 2005; 23 Suppl:97-102. [PMID: 15984423 DOI: 10.1007/bf03026332] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Our understanding of the developmental biology of the skeleton, like that of virtually every other subject in biology, has been transformed by recent advances in human and mouse genetics, but we still know very little, in molecular and genetic terms, about skeletal physiology. Thus, among the many questions that are largely unexplained are the following: why is osteoporosis mainly a women's disease? How is bone mass maintained nearly constant between the end of puberty and the arrest of gonadal functions? Molecular genetics has emerged as a powerful tool to study previously unexplored aspects of the physiology of the skeleton. Among mammals, mice are the most promising animals for this experimental work. The input that transgenic animals can offer to our field depends on our means of phenotypic characterization of the mouse skeleton. In fact, full appreciation of the skeletal characteristics of a given mouse model requires the application of standardized protocols for noninvasive imaging, histology, histomorphometry, biomechanics, and individually adapted in vitro and in vivo analysis. Over the past years we have established a mouse archive that consists of 14,839 cases from more than 120 different mouse models that we have phenotypically characterized in Hamburg. Today, this is one of the biggest databases on the mouse skeleton. This review focuses on one aspect of skeletal physiology, namely skeletal aging, and demonstrates that mouse models can be a valuable tool to gain insights in certain facets of skeletal physiology that have been unexplored previously.
Collapse
Affiliation(s)
- Pia Pogoda
- Experimental Trauma Surgery and Skeletal Biology, Department of Trauma, Hand, and Reconstructive Surgery, Hamburg University School of Medicine, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Sanchez CP, He YZ, Leiferman E, Wilsman NJ. Bone elongation in rats with renal failure and mild or advanced secondary hyperparathyroidism. Kidney Int 2004; 65:1740-8. [PMID: 15086913 DOI: 10.1111/j.1523-1755.2004.00577.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Impairment of growth in children with chronic renal failure may be due, in part to the insensitivity to the actions of growth hormone by insulin-like growth factor-I (IGF-I) because of accumulations of IGF binding proteins. There are a few studies describing the changes that occur in the growth plate in renal failure. None of these studies has simultaneously compared the modifications in the expression of selected markers of endochondral bone formation in renal failure with mild or advanced secondary hyperparathyroidism. METHODS Forty-six rats that underwent 5/6 nephrectomy (Nx) were fed either standard rodent diet (Nx-control) or high phosphorus diet to induce advanced secondary hyperparathyroidism (Nx-phosphorus) for 4 weeks. Sections of the tibia were obtained for growth plate histomorphometry, immunohistochemistry studies, and in situ hybridization experiments for selected markers of endochondral bone formation. RESULTS Weight gain, gain in length, and tibial length were less in Nx animals. Serum parathyroid hormone (PTH) and phosphorus levels were higher and serum calcium levels were lower in the Nx-phosphorus group. The width of the growth plate was much shorter in the Nx-phosphorus group due to a decrease in both proliferative and hypertrophic zones. IGF-I protein and IGF binding protein-3 staining were diminished in both Nx groups without changes in the IGF-I receptor expression; the decline in IGF-I protein expression was much lower in the Nx-phosphorus group. PTH/PTH receptor protein (PTHrP) receptor mRNA transcripts decline and tartrate-resistant acid phosphastase (TRAP) staining increased only in the Nx-phosphorus group. CONCLUSION The growth impairment in renal failure may be worsened by the severity of secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Cheryl P Sanchez
- Department of Pediatrics, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
110
|
Kitahara Y, Suda N, Terashima T, Baba O, Mekaapiruk K, Hammond VE, Takano Y, Ohyama K. Accelerated bone formation and increased osteoblast number contribute to the abnormal tooth germ development in parathyroid hormone-related protein knockout mice. Bone 2004; 35:1100-6. [PMID: 15542035 DOI: 10.1016/j.bone.2004.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 06/04/2004] [Accepted: 06/08/2004] [Indexed: 11/20/2022]
Abstract
Our previous study showed that tooth germs at late embryonic stage [later than embryonic day 17.5 (E17.5)] and neonatal homozygous parathyroid hormone-related protein (PTHrP)-knockout mice are compressed or penetrated by the surrounding alveolar bone tissue. In vivo and in vitro studies have shown that the development of the tooth germ proper is not disturbed, but insufficient alveolar bone resorption, due to the decreased number and hypofunction of osteoclasts, is the main cause of this abnormality. In addition to the insufficient alveolar bone resorption, progressive bone formation toward tooth germs was observed in homozygous mice, suggesting that accelerated bone formation also contributes to this abnormality. To further investigate this, homozygous mice at E14.0 and E15.5, when alveolar bone is forming, were used for histochemical and bone histomorphometric analyses. In contrast to the late embryonic stage, the alveolar bone did not yet compress developing tooth germs in homozygous mice on E14.0, but a larger amount of bone tissue was seen compared to wild-type littermates. Histomorphometric analysis of bone at E14.0 revealed that the osteoblast numbers and surfaces in the mandibles and in the bone collar of femora of homozygous mice were significantly higher than those of wild-type mice. However, unlike our previous study showing the osteoclast surface on E18.5 in homozygous mice to be significantly lower than that of wild-type mice, this study at E14.0 showed no significant difference between the two genotypes. To evaluate the amount of calcification around tooth germs, 3D images of mandibles were reconstructed from the calcein-labeled sections of the wild-type and mutant mice. Labeling was performed at E14.0, and the mice were sacrificed 1 h after the calcein injection to minimize the effect of bone resorption. Comparison of the 3D images revealed that the labeled surface was larger around developing tooth germs in homozygous mouse than in wild-type mouse. On day E15.5, osteoblasts approached the enamel organ of homozygous mice but this was not observed in wild-type mice. In this study, we report a systemic increase in osteoblast number and accelerated bone formation in homozygous PTHrP-knockout mice, both of which contribute to the abnormal tooth development.
Collapse
Affiliation(s)
- Y Kitahara
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Price J, Allen S. Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond B Biol Sci 2004; 359:809-22. [PMID: 15293809 PMCID: PMC1693364 DOI: 10.1098/rstb.2004.1471] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deer antlers are the only mammalian appendages capable of repeated rounds of regeneration; every year they are shed and regrow from a blastema into large branched structures of cartilage and bone that are used for fighting and display. Longitudinal growth is by a process of modified endochondral ossification and in some species this can exceed 2 cm per day, representing the fastest rate of organ growth in the animal kingdom. However, despite their value as a unique model of mammalian regeneration the underlying mechanisms remain poorly understood. We review what is currently known about the local and systemic regulation of antler regeneration and some of the many unsolved questions of antler physiology are discussed. Molecules that we have identified as having potentially important local roles in antlers include parathyroid hormone-related peptide and retinoic acid (RA). Both are present in the blastema and in the rapidly growing antler where they regulate the differentiation of chondrocytes, osteoblasts and osteoclasts in vitro. Recent studies have shown that blockade of RA signalling can alter cellular differentiation in the blastema in vivo. The trigger that regulates the expression of these local signals is likely to be changing levels of sex steroids because the process of antler regeneration is linked to the reproductive cycle. The natural assumption has been that the most important hormone is testosterone, however, at a cellular level oestrogen may be a more significant regulator. Our data suggest that exogenous oestrogen acts as a 'brake', inhibiting the proliferation of progenitor cells in the antler tip while stimulating their differentiation, thus inhibiting continued growth. Deciphering the mechanism(s) by which sex steroids regulate cell-cycle progression and cellular differentiation in antlers may help to address why regeneration is limited in other mammalian tissues.
Collapse
Affiliation(s)
- J Price
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK.
| | | |
Collapse
|
112
|
Torday JS, Rehan VK. Deconvoluting lung evolution using functional/comparative genomics. Am J Respir Cell Mol Biol 2004; 31:8-12. [PMID: 15208097 DOI: 10.1165/rcmb.2004-0019tr] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parathyroid Hormone-related Protein (PTHrP) is a highly evolutionarily conserved, stretch-regulated gene that is necessary for the embryonic transition from branching morphogenesis to alveolization of the lung. It is expressed throughout vertebrate phylogeny, beginning with its expression in the fish swim bladder as an adaptation to gravity; microgravity downregulates the expression of PTHrP by alveolar type II cells, and by bones from rats exposed to 0 x g, suggesting that PTHrP signaling has been exploited for adaptation to 1 x g. PTHrP/PTHrP receptor signaling is upregulated by stretching alveolar type II cells and intersitial lung fibroblasts, whereas overdistension downregulates PTHrP and PTHrP receptor mRNA, further suggesting an evolutionary adaptation. Both surfactant homeostasis and alveolar capillary perfusion are under PTHrP control, indicating that alveolization and ventilation/perfusion matching may have evolved under the influence of PTHrP signaling. Phylogenetic analysis of lung evolution reflects the concomitant increases in alveolar surface area and surfactant production by "amplifying" the PTHrP pathway signal. This mechanism is discussed as a function of increased evolutionary respiratory demand to keep up with the increased metabolic demand for oxygen, and the role of the PTHrP signaling mechanism in leveraging this process.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Research and Education Institute, Torrance, CA, 90502.
| | | |
Collapse
|
113
|
Tobias JH, Cooper C. PTH/PTHrP activity and the programming of skeletal development in utero. J Bone Miner Res 2004; 19:177-82. [PMID: 14969386 DOI: 10.1359/jbmr.0301235] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 11/17/2003] [Indexed: 11/18/2022]
Abstract
There is increasing evidence that nutritional deficiency in utero adversely affects bone development and the risk of developing osteoporosis in later life. Although the mechanisms involved are unknown, circumstantial evidence points to an important role of PTH/PTHrP activity. It is recognized that PTH and PTHrP are critically involved in regulating fetal calcium homeostasis, actions that are mediated at least in part by PPR. As well as playing a central role in the maintenance of calcium homeostasis in the fetus, studies in transgenic mice show that PTH, PTHrP, and PPR exert similar effects on skeletal development in utero, acting to increase the size of the trabecular envelope and decrease that of the cortical envelopes. Taken together, these observations raise the possibility that stimulation of PTH/PTHrP activity in the fetus in response to calcium deficiency acts to increase the size of the trabecular envelope but to reduce that of the cortical envelope. Although any increase in trabecular bone at birth is likely to be relatively transient, a decrease in size of the cortical envelope may have a persistent effect on the trajectory of bone growth in subsequent childhood. Consistent with this proposal, preliminary findings from birth cohort studies suggest that maternal calcium intake and cord blood calcium levels are positively related to bone mass of the offspring as assessed later in childhood. Further studies are justified to determine whether alterations in fetal PTH/ PTHrP activity caused by calcium stress lead to a reduction in size of the cortical envelope at birth that persists into childhood and later adult life and to identify modifiable maternal factors that are responsible for these changes.
Collapse
Affiliation(s)
- Jonathan H Tobias
- Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, United Kingdom.
| | | |
Collapse
|
114
|
Affiliation(s)
- Laurie K McCauley
- University of Michigan Department of Periodontics/Prevention/Teriatrics, School of Dentistry, Ann Arbor 48109, USA
| | | |
Collapse
|
115
|
Abstract
It is remarkable that phytoplankton and zooplankton have been producing vitamin D for more than 500 million years. The role of vitamin D in lower non-vertebrate life forms is not well understood. However, it is critically important that most vertebrates obtain an adequate source of vitamin D, either from exposure to sunlight or from their diet, in order to develop and maintain a healthy mineralized skeleton. Vitamin D deficiency is an unrecognized epidemic in most adults who are not exposed to adequate sunlight. This can precipitate and exacerbate osteoporosis and cause the painful bone disease osteomalacia. Once vitamin D is absorbed from the diet or made in the skin by the action of sunlight, it is metabolized in the liver to 25-hydroxyvitamin D [25(OH)D] and then in the kidney to 1,25-dihydroxyvitamin D [1,25(OH)2D]. 1,25(OH)2D interacts with its nuclear receptor (VDR) in the intestine and bone in order to maintain calcium homeostasis. The VDR is also present in a wide variety of other tissues. 1,25(OH)2D interacts with these receptors to have a multitude of important physiological effects. In addition, it is now recognized that many tissues, including colon, breast and prostate, have the enzymatic machinery to produce 1,25(OH)2D. The insights into the new biological functions of 1,25(OH)2D in regulating cell growth, modulating the immune system and modulating the renin-angiotensin system provides an explanation for why diminished sun exposure at higher latitudes is associated with increased risk of dying of many common cancers, developing type 1 diabetes and multiple sclerosis, and having a higher incidence of hypertension. Another calciotropic hormone that is also produced in the skin, parathyroid hormone-related peptide, is also a potent inhibitor of squamous cell proliferation. The use of agonists and antagonists for PTHrP has important clinical applications for the prevention and treatment of skin diseases and disorders of hair growth.
Collapse
Affiliation(s)
- Michael F Holick
- Vitamin D Laboratory, Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
116
|
Czyzyk TA, Morgan DJ, Peng B, Zhang J, Karantzas A, Arai M, Pintar JE. Targeted mutagenesis of processing enzymes and regulators: Implications for development and physiology. J Neurosci Res 2003; 74:446-55. [PMID: 14598321 DOI: 10.1002/jnr.10792] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Traci A Czyzyk
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Wu SY, Zhang BH, Pan CS, Jiang HF, Pang YZ, Tang CS, Qi YF. Endothelin-1 is a potent regulator in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells. Peptides 2003; 24:1149-56. [PMID: 14612185 DOI: 10.1016/j.peptides.2003.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We observed changes of endothelin content and endothelin mRNA in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells to explore the role of endothelin in vascular calcification. Calcification model in vivo was induced by administration of Vitamin D(3) plus nicotine. Calcification of vascular smooth muscle cells (VSMCs) was induced by beta-glycerophosphate. Endothelin content was measured by using radioimmunoassay. Endothelin mRNA amount was determined by using competitive quantitative RT-PCR. The results showed that calcium content, 45Ca(2+) uptake and alkaline phosphatase (ALP) activity were increased in calcified VSMCs, compared with controls, but were decreased, compared with calcified VSMCs plus BQ123 group. The endothelin content in the medium and endothelin mRNA in VSMCs were elevated by 35 and 120% (P<0.05), respectively, compared with those normal VSMCs. Calcium content, 45Ca(2+) accumulation and ALP activity in calcified arteries increased by 5.0-, 1.4-, and 1.4-fold. The endothelin levels in plasma and aorta as well as the amount of endothelin mRNA in calcified aorta were increased by 102, 103, and 22%, respectively, compared with control group. However, calcium content, 45Ca(2+) uptake and ALP activity in VDN plus bosentan group was 33, 36.7, and 40.4% lower than those in VDN group. These results indicated an upregulated endothelin gene expression as well as an increased production of endothelin in calcified aorta and VSMCs with BQ123 and bosentan significantly reducing vascular calcification. This suggested that endothelin might be involved in pathogenesis of vascular calcification.
Collapse
Affiliation(s)
- Sheng Ying Wu
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Huang Z, Li J, Jiang Z, Qi Y, Tang C, Du J. Effects of adrenomedullin, C-type natriuretic peptide, and parathyroid hormone-related peptide on calcification in cultured rat vascular smooth muscle cells. J Cardiovasc Pharmacol 2003; 42:89-97. [PMID: 12827032 DOI: 10.1097/00005344-200307000-00014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To clarify the regulating mechanism of vascular calcification, the investigators observed the effects of three vasoactive peptides, adrenomedullin (ADM), C-type natriuretic peptide (CNP), and parathyroid hormone-related peptide (PTHrP) on calcification in rat vascular smooth muscle cells (VSMCs). Beta-glycerophosphate stimulated growth and calcification in VSMCs. Adrenomedullin and CNP lowered beta-glycerophosphate-induced increase in VSMC growth. All three vasoactive peptides attenuated the increases of 45Ca accumulation, calcium content, and alkaline phosphatase activity in calcified VSMCs. As for comparing the inhibitory effects, the strongest was PTHrP. Both ADM and PTHrP increased cyclic adenosine monophosphate (cAMP) content in calcified VSMCs, but CNP upregulated cyclic guanosine monophosphate (cGMP) content. The PKA inhibitor PKAI completely reversed the inhibition of ADM on cell growth and all inhibitory effects of PTHrP on the parameters of calcification. The PKG inhibitor H8, however, strongly antagonized all the inhibitory effects of CNP on calcification. These data suggested that beta-glycerophosphate-induced calcification in VSMCs was inhibited by ADM, CNP, and PTHrP. Adrenomedullin and PTHrP inhibited VSMC calcification partially through the cAMP/PKA pathway, whereas CNP inhibited VSMC calcification through the cGMP/PKG pathway. This study could be of help in understanding the pathogenesis of vascular calcification, and providing new target for clinical treatment of cardiovascular diseases associated with vascular calcification.
Collapse
Affiliation(s)
- Zhiyu Huang
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
119
|
Zhang X, Aubin JE, Inman RD. Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol 2003; 15:387-93. [PMID: 12819465 DOI: 10.1097/00002281-200307000-00004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the most distinctive features of the spondyloarthropathies is the tendency for new bone formation at sites of chronic inflammation. This is important diagnostically because radiographic evidence of ankylosis is often stated as one of the classification criteria, and it is important clinically because loss of spinal mobility over time is a major contributor to disability in this disease. The mechanisms underlying this tendency for ankylosis have not yet been defined. This review updates current concepts of the molecular and cellular basis of normal and abnormal bone formation. A better understanding of this process may open new avenues of therapeutic intervention in these chronic diseases.
Collapse
Affiliation(s)
- Xiang Zhang
- Arthritis Center of Excellence, Division of Rheumatology, Toronto Western Hospital, University Health Network and Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
120
|
Zhou H, Iida-Klein A, Lu SS, Ducayen-Knowles M, Levine LR, Dempster DW, Lindsay R. Anabolic action of parathyroid hormone on cortical and cancellous bone differs between axial and appendicular skeletal sites in mice. Bone 2003; 32:513-20. [PMID: 12753867 DOI: 10.1016/s8756-3282(03)00057-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mouse is being increasingly used to study the anabolic action of parathyroid hormone (PTH) on the skeleton. The efficacy of intermittent PTH treatment on bone varies widely among tested strains of mice with differences in peak bone mass and structure. We have therefore examined the responses of skeletal sites with high or low cancellous bone mass to PTH treatment in a single strain with genetically low bone mass. Mature C57BL/6 mice were ovariectomized (ovx) or sham operated and, after 4 weeks, treated with PTH(1-34) (40 microg/kg/day, 5 days/week sc) or vehicle for 3 or 7 weeks. Two doses of fluorescent labels were given to the animals 9 and 3 days before euthanasia. Histomorphometry was performed on sections of the proximal tibia, tibial diaphysis, and vertebral body. The results indicate that 4 to 11 weeks of ovx induced a approximately 44% loss of cancellous bone in the proximal tibia and a approximately 25% loss of cancellous bone in the vertebra with impaired trabecular architecture and high bone turnover. In the intact animals, PTH increased cancellous bone volume to a greater extent in the vertebral body than in the proximal tibia, a site with lower cancellous bone volume at the outset. In the ovx mice, PTH increased cancellous bone volume to a greater extent in the vertebral body, a site displaying moderate cancellous bone loss, than in the proximal tibia, a site with severe cancellous bone loss. Conversely, the treatment added a little cortical bone to the tibia, a highly loaded site, but did not significantly increase cortical width of the vertebral body, a less loaded site. We conclude that, for intermittent PTH treatment to be maximally effective, there must be an adequate number of trabeculae present at the beginning of treatment, regardless of estrogen status. Our results also support an interaction between PTH anabolic action and mechanical loading.
Collapse
Affiliation(s)
- H Zhou
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY 10993-1195, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Whitfield JF, Morley P, Willick GE. Bone growth stimulators. New tools for treating bone loss and mending fractures. VITAMINS AND HORMONES 2003; 65:1-80. [PMID: 12481542 DOI: 10.1016/s0083-6729(02)65059-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements. This is osteoporosis, which all too often requires prolonged and expensive care, the physical and mental stress of which may even kill the patient. Osteoporosis in postmenopausal women is caused by the loss of estrogen. The slower development of osteoporosis in aging men is also due at least in part to a loss of the estrogen made in ever smaller amounts in bone cells from the declining level of circulating testosterone and is needed for bone maintenance as it is in women. The loss of estrogen increases the generation, longevity, and activity of bone-resorbing osteoclasts. The destructive osteoclast surge can be blocked by estrogens and selective estrogen receptor modulators (SERMs) as well as antiosteoclast agents such as bisphosphonates and calcitonin. But these agents stimulate only a limited amount of bone growth as the unaffected osteoblasts fill in the holes that were dug by the now suppressed osteoclasts. They do not stimulate osteoblasts to make bone--they are antiresorptives not bone anabolic agents. (However, certain estrogen analogs and bisphosphates may stimulate bone growth to some extent by lengthening osteoblast working lives.) To grow new bone and restore bone strength lost in space and on Earth we must know what controls bone growth and destruction. Here we discuss the newest bone controllers and how they might operate. These include leptin from adipocytes and osteoblasts and the statins that are widely used to reduce blood cholesterol and cardiovascular damage. But the main focus of this article is necessarily the currently most promising of the anabolic agents, the potent parathyroid hormone (PTH) and certain of its 31- to 38-aminoacid fragments, which are either in or about to be in clinical trial or in the case of Lilly's Forteo [hPTH-(1-34)] tentatively approved by the Food and Drug Administration for treating osteoporosis and mending fractures.
Collapse
Affiliation(s)
- James F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
122
|
Francini G, Scardino A, Kosmatopoulos K, Lemonnier FA, Campoccia G, Sabatino M, Pozzessere D, Petrioli R, Lozzi L, Neri P, Fanetti G, Cusi MG, Correale P. High-affinity HLA-A(*)02.01 peptides from parathyroid hormone-related protein generate in vitro and in vivo antitumor CTL response without autoimmune side effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4840-9. [PMID: 12391194 DOI: 10.4049/jimmunol.169.9.4840] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Parathyroid hormone-related protein (PTH-rP), a protein produced by prostate carcinoma and other epithelial cancers, is a key agent in the development of bone metastases. We investigated whether the protein follows the self-tolerance paradigm or can be used as a target Ag for anticancer immunotherapy by investigating the immunogenicity of two HLA-A(*)02.01-binding PTH-rP-derived peptides (PTR-2 and -4) with different affinity qualities. PTH-rP peptide-specific CTL lines were generated from the PBMC of two HLA-A(*)02.01(+) healthy individuals, stimulated in vitro with PTH-rP peptide-loaded autologous dendritic cells and IL-2. The peptide-specific CTLs were able to kill PTH-rP(+)HLA-A(*)02.01(+) breast and prostate carcinoma cell lines. The two peptides were also able to elicit a strong antitumor PTH-rP-specific CTL response in HLA-A(*)02.01 (HHD) transgenic mice. The vaccinated mice did not show any sign of side effects due to cell-mediated autoimmunity or toxicity. In this study we describe two immunogenic and toxic-free PTH-rP peptides as valid candidates for the design of peptide-based vaccination strategies against prostate cancer and bone metastases from the most common epithelial malignancies.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Binding, Competitive/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA-A Antigens/genetics
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Lymphocyte Activation
- Male
- Mice
- Mice, Transgenic
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Oligopeptides/administration & dosage
- Oligopeptides/genetics
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Parathyroid Hormone-Related Protein
- Peptide Hormones/administration & dosage
- Peptide Hormones/genetics
- Peptide Hormones/immunology
- Peptide Hormones/metabolism
- Protein Binding/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Francini
- Division of Medical Oncology, Institut National de la Santé et de la Recherche Médicale Unité d'Immunité Cellulaire Antivirale, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Demiralp B, Chen HL, Koh AJ, Keller ET, McCauley LK. Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology 2002; 143:4038-47. [PMID: 12239115 DOI: 10.1210/en.2002-220221] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH has anabolic and catabolic actions in bone that are not clearly understood. The protooncogene c-fos and other activating protein 1 family members are critical transcriptional mediators in bone, and c-fos is up-regulated by PTH. The purpose of this study was to examine the mechanisms of PTH and the role of c-fos in PTH-mediated anabolic actions in bone. Mice with ablation of c-fos (-/-) and their wild-type (+/+) and heterozygous (+/-) littermates were administered PTH for 17 d. The +/+ mice had increased femoral bone mineral density (BMD), whereas -/- mice had reduced BMD after PTH treatment. PTH increased the ash weight of +/+ and +/-, but not -/-, femurs and decreased the calcium content of -/-, but not +/+ or +/-, femurs. Histomorphometric analysis showed that PTH increased trabecular bone volume in c-fos +/+, +/- vertebrae, but, in contrast, decreased trabecular bone in -/- vertebrae. Serum calcium levels in +/+ mice were greater than those in -/- mice, and PTH increased calcium in -/- mice. Histologically, PTH resulted in an exacerbation of the already widened growth plate and zone of hypertrophic chondrocytes but not the proliferating zone in -/- mice. PTH also increased calvarial thickness in +/+ mice, but not -/- mice. The c-fos -/- mice had lower bone sialoprotein and osteocalcin (OCN), but unaltered PTH-1 receptor mRNA expression in calvaria, suggesting an alteration in extracellular matrix. Acute PTH injection (8 h) resulted in a decrease in osteocalcin mRNA expression in wild-type, but unaltered expression in -/-, calvaria. These data indicate that c-fos plays a critical role in the anabolic actions of PTH during endochondral bone growth.
Collapse
Affiliation(s)
- Burak Demiralp
- Department of Periodontics/Prevention/Geriatrics, Medical School, University of Michigan Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
124
|
Cormier S, Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Bonaventure J, Silve C. Parathyroid hormone receptor type 1/Indian hedgehog expression is preserved in the growth plate of human fetuses affected with fibroblast growth factor receptor type 3 activating mutations. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1325-35. [PMID: 12368206 PMCID: PMC1867304 DOI: 10.1016/s0002-9440(10)64409-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes.
Collapse
Affiliation(s)
- Sarah Cormier
- Institut National de la Santé et de la Recherche Médicale U426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | |
Collapse
|
125
|
Bakre MM, Zhu Y, Yin H, Burton DW, Terkeltaub R, Deftos LJ, Varner JA. Parathyroid hormone-related peptide is a naturally occurring, protein kinase A-dependent angiogenesis inhibitor. Nat Med 2002; 8:995-1003. [PMID: 12185361 DOI: 10.1038/nm753] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis is a highly regulated process that results from the sequential actions of naturally occurring stimulators and inhibitors. Here, we show that parathyroid hormone-related peptide, a peptide hormone derived from normal and tumor cells that regulates bone metabolism and vascular tone, is a naturally occurring angiogenesis inhibitor. Parathyroid hormone-related peptide or a ten-amino-acid peptide from its N terminus inhibits endothelial cell migration in vitro and angiogenesis in vivo by activating endothelial cell protein kinase A. Activation of protein kinase A inhibits cell migration and angiogenesis by inhibiting the small GTPase Rac. In contrast, inhibition of protein kinase A reverses the anti-migratory and anti-angiogenic properties of parathyroid hormone-related peptide. These studies show that parathyroid hormone-related peptide is a naturally occurring angiogenesis inhibitor that functions by activation of protein kinase A.
Collapse
Affiliation(s)
- Manjiri M Bakre
- University of California, San Diego Comprehensive Cancer Center, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Smock SL, Vogt GA, Castleberry TA, Lu B, Owen TA. Molecular cloning and functional characterization of the canine parathyroid hormone/parathyroid hormone related peptide receptor (PTH1). Mol Biol Rep 2002; 28:235-43. [PMID: 12153143 DOI: 10.1023/a:1015716726452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parathyroid hormone (PTH) is a major mediator of calcium and phosphate metabolism through its interactions with receptors in kidney and bone. PTH binds with high affinity to PTH1 and PTH2, members of the superfamily of G protein-coupled receptors. In order to clone the canine PTH1 receptor, a canine kidney cDNA library was screened using the human PTH1 receptor cDNA and two clones were further characterized. The longest clone was 2177 bp and contained a single open reading frame of 1785 bp, potentially encoding a protein of 595 amino acids with a predicted molecular weight of 66.4 kD. This open reading frame exhibits >91% identity to the human PTH1 receptor cDNA and >95% identity when the putative canine and human protein sequences are compared. Competition binding following transfection of the canine PTH1 receptor into CHO cells demonstrated specific displacement of 125I-human PTH1-34 by canine PTH1-34, human PTH1-34, and canine/human parathyroid hormone related peptide (PTHrP) 1-34. Treatment of canine PTH1 receptor transfected cells, but not mock transfected cells, with these ligands also resulted in increased levels of intracellular cAMP. In contrast, the non-related aldosterone secretion inhibiting factor 1-35 neither bound nor activated the canine PTH1 receptor. Northern blot analysis revealed high levels of PTH1 receptor mRNA in the kidney, with much lower, but detectable, levels in aorta. heart, lung, prostate, testis, and skeletal muscle. Together, these data indicate that we have cloned the canine PTH1 receptor and that it is very similar, both in sequence and in functional characteristics, to the other known PTH1 receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- CHO Cells
- Cloning, Molecular
- Cricetinae
- Cyclic AMP/metabolism
- Dogs
- Gene Expression Profiling
- Humans
- Ligands
- Molecular Sequence Data
- Organ Specificity
- Polymerase Chain Reaction
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Parathyroid Hormone, Type 1
- Receptors, Parathyroid Hormone/chemistry
- Receptors, Parathyroid Hormone/genetics
- Receptors, Parathyroid Hormone/metabolism
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- S L Smock
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research and Development, Groton Laboratories Pfizer Inc, CT 06340-8003, USA.
| | | | | | | | | |
Collapse
|
127
|
Zhao Q, Brauer PR, Xiao L, McGuire MH, Yee JA. Expression of parathyroid hormone-related peptide (PthrP) and its receptor (PTH1R) during the histogenesis of cartilage and bone in the chicken mandibular process. J Anat 2002; 201:137-51. [PMID: 12220122 PMCID: PMC1570903 DOI: 10.1046/j.1469-7580.2002.00078.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to examine the expression and actions of parathyroid hormone-related protein (PTHrP) when skeletal histogenesis occurs in the chicken mandible. Prior to the appearance of skeletal tissues, PTHrP and PTH1R were co-expressed by cells in the ectoderm, skeletal muscle, peripheral nerve and mesenchyme. Hyaline cartilage was first observed at HH stage 27 when many but not all chondroblasts expressed PTHrP and PTH1R. By stage 34, PTHrP and PTH1R were not detected in chondrocytes but were expressed in the perichondrium. Alkaline phosphatase (AP)-positive preosteoblasts and woven bone appeared at stages 31 and 34, respectively. Preosteoblasts, osteoblasts and osteocytes co-expressed PTHrP and PTH1R. Treatment with chicken PTHrP (1-36) increased cAMP in mesenchyme from stage 26 embryos. Continuous exposure to chicken PTHrP (1-36) for 14 days increased cartilage nodule number and decreased AP while intermittent exposure did not affect cartilage nodule number and increased AP in cultures of stage 26 mesenchymal cells. Adding a neutralizing anti-PTHrP antibody to the cultures reduced cartilage nodule number and did not affect AP. These findings show that PTHrP and PTH1R are co-expressed by extraskeletal and skeletal cells before and during skeletal tissue histogenesis, and that PTHrP may influence skeletal tissue histogenesis by affecting the differentiation of mandibular mesenchymal cells into chondroblasts and osteoblasts.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Biomedical Sciences, Creighton University, School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
128
|
Marie PJ. The molecular genetics of bone formation: implications for therapeutic interventions in bone disorders. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:175-87. [PMID: 12083966 DOI: 10.2165/00129785-200101030-00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Skeletal biology is a complex process involving the developmental commitment and differentiation of chondrocytes and osteoblasts which produce and mineralize cartilage and bone matrix during growth and postnatal life. Several genes are involved in controlling osteogenesis by acting on target cells in a very complex manner. Manipulation of genes in mice and studies of genetic mutations affecting the skeleton in humans have enabled the assessment of the role of transcription factors, bone matrix proteins and regulatory factors involved in the control of chondrocyte and osteoblast differentiation, and have considerably improved our understanding of the bone formation process. Clinical studies and gene polymorphism analyses suggest that the variable expression of particular genes may be linked to clinical osteoporosis. A major challenge in the future will be to develop molecularly targeted approaches to stimulating bone formation and increasing bone mass. The use of mouse strain models and transgenic animals with variable bone density may be useful to identify genetic determinants of bone mass which may serve as a basis for drug discovery and development. On the other hand, the availability of gene microarrays and other emerging genomic techniques are promising tools to identify genes that are distinctly expressed in health and disease. These technologies may also serve to test the mechanisms of action of drugs aimed at increasing bone formation. Genetic studies of the molecular signaling pathways involved in normal and pathological osteogenesis may also help to identify genes that could be targeted for therapeutic intervention. Candidate approaches include selective gene transfection in target cells and the use of drugs acting on gene promoters to selectively enhance gene expression in osteoblasts. The development of these strategies is expected not only to bring new insight into the molecular mechanisms that govern bone formation in normal and pathological situations but, in the long term, may also result in the identification of novel molecular targets for therapeutic interventions for bone formation disorders.
Collapse
Affiliation(s)
- P J Marie
- Laboratory on Osteoblast Biology and Pathology, INSERM U349, Affiliated CNRS, Hôpital Lariboisière, Paris, France.
| |
Collapse
|
129
|
Fujita T, Meguro T, Fukuyama R, Nakamuta H, Koida M. New signaling pathway for parathyroid hormone and cyclic AMP action on extracellular-regulated kinase and cell proliferation in bone cells. Checkpoint of modulation by cyclic AMP. J Biol Chem 2002; 277:22191-200. [PMID: 11956184 DOI: 10.1074/jbc.m110364200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
cAMP signaling, activated by extracellular stimuli such as parathyroid hormone, has cell type-specific effects important for cellular proliferation and differentiation in bone cells. Recent evidence of a second enzyme target for cAMP suggests divergent effects on extracellular-regulated kinase (ERK) activity depending on Epac/Rap1/B-Raf signaling. We investigated the molecular mechanism of the dual functionality of cAMP on cell proliferation in clonal bone cell types. MC3T3-E1 and ATDC5, but not MG63, express a 95-kDa isoform of B-Raf. cAMP stimulated Ras-independent and Rap1-dependent ERK phosphorylation and cell proliferation in B-Raf-expressing cells, but inhibited growth in B-Raf-lacking cells. The mitogenic action of cAMP was blocked by the ERK pathway inhibitor PD98059. In B-Raf-transduced MG63 cells, cAMP stimulated ERK activation and cell proliferation. Thus, B-Raf is the dominant molecular switch that permits differential cAMP-dependent regulation of ERK with important implications for cell proliferation in bone cells. These findings might explain the dual functionality of parathyroid hormone on osteoblastic cell proliferation.
Collapse
Affiliation(s)
- Takashi Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan 573-0101. t-fujita@pharm,setsunan
| | | | | | | | | |
Collapse
|
130
|
Kobayashi T, Chung UI, Schipani E, Starbuck M, Karsenty G, Katagiri T, Goad DL, Lanske B, Kronenberg HM. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development 2002; 129:2977-86. [PMID: 12050144 DOI: 10.1242/dev.129.12.2977] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Chen HL, Demiralp B, Schneider A, Koh AJ, Silve C, Wang CY, McCauley LK. Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 2002; 277:19374-81. [PMID: 11897779 DOI: 10.1074/jbc.m108913200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bone formation, multipotential mesenchymal cells proliferate and differentiate into osteoblasts, and subsequently many die because of apoptosis. Evidence suggests that the receptor for parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), the PTH-1 receptor (PTH-1R), plays an important role in this process. Multipotential mesenchymal cells (C3H10T1/2) transfected with normal or mutant PTH-1Rs and MC3T3-E1 osteoblastic cells were used to explore the roles of PTH, PTHrP, and the PTH-1R in cell viability relative to osteoblastic differentiation. Overexpression of wild-type PTH-1R increased cell numbers and promoted osteocalcin gene expression versus inactivated mutant receptors. Furthermore, the effects of PTH and PTHrP on apoptosis were dramatically dependent on cell status. In preconfluent C3H10T1/2 and MC3T3-E1 cells, PTH and PTHrP protected against dexamethasone-induced reduction in cell viability, which was dependent on cAMP activation. Conversely, PTH and PTHrP resulted in reduced cell viability in postconfluent cells, which was also dependent on cAMP activation. Further, the proapoptotic-like effects were associated with an inhibition of Akt phosphorylation. These data suggest that parathyroid hormones accelerate turnover of osteoblasts by promoting cell viability early and promoting cell departure from the differentiation program later in their developmental scheme. Both of these actions occur at least in part via the protein kinase A pathway.
Collapse
Affiliation(s)
- Hen-Li Chen
- Department of Periodontics, Prevention, and Geriatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002. [DOI: 10.1172/jci0214817] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
133
|
Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002; 109:1173-82. [PMID: 11994406 PMCID: PMC150965 DOI: 10.1172/jci14817] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Parathyroid hormone (PTH) is a potent pharmacologic inducer of new bone formation, but no physiologic anabolic effect of PTH on adult bone has been described. We investigated the role of PTH in fetal skeletal development by comparing newborn mice lacking either PTH, PTH-related peptide (PTHrP), or both peptides. PTH-deficient mice were dysmorphic but viable, whereas mice lacking PTHrP died at birth with dyschondroplasia. PTH-deficient mice uniquely demonstrated diminished cartilage matrix mineralization, decreased neovascularization with reduced expression of angiopoietin-1, and reduced metaphyseal osteoblasts and trabecular bone. Compound mutants displayed the combined cartilaginous and osseous defects of both single mutants. These results indicate that coordinated action of both PTH and PTHrP are required to achieve normal fetal skeletal morphogenesis, and they demonstrate an essential function for PTH at the cartilage-bone interface. The effect of PTH on fetal osteoblasts may be relevant to its postnatal anabolic effects on trabecular bone.
Collapse
Affiliation(s)
- Dengshun Miao
- Calcium Research Laboratory, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
134
|
Varghese R, Gagliardi AD, Bialek PE, Yee SP, Wagner GF, Dimattia GE. Overexpression of human stanniocalcin affects growth and reproduction in transgenic mice. Endocrinology 2002; 143:868-76. [PMID: 11861508 DOI: 10.1210/endo.143.3.8671] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In mammals stanniocalcin (STC) is widely expressed, and in the kidney and gut it regulates serum calcium levels by promoting phosphate reabsorption. To shed further light on its functional significance in mammals we have created several lines of mice that express a human STC (hSTC) transgene. Three lines expressed the hSTC transgene, but only two lines exhibited high expression and contained circulating hSTC, and in these animals there was a reduction in postnatal growth (30-50%) that persisted after weaning. Moreover, even wild-type pups exhibited a growth retardation phenotype when nursed by a transgenic foster mother, and this implies that hSTC overexpression deleteriously affects maternal behavior and/or lactation. The reproductive potential of female transgenic mice was also compromised, as evidenced by significantly smaller litter sizes, but transgenic male fertility was unchanged even though the transgene was most highly expressed in testes. Interestingly, transgene-derived serum hSTC increased significantly after puberty and was severalfold higher in females than in males, suggesting a gender-specific mechanism for maintaining elevated circulating levels of STC. Blood analysis revealed that both transgenic lines had elevated phosphate and decreased alkaline phosphatase levels, indicative of altered kidney and bone metabolism. These studies provide the first evidence that STC is involved in growth and reproduction and reaffirm its role in mineral homeostasis.
Collapse
Affiliation(s)
- Robin Varghese
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | |
Collapse
|
135
|
Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 2002; 111:61-73. [PMID: 11804779 DOI: 10.1016/s0925-4773(01)00601-3] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF)-mediated angiogenesis is an important part of bone formation. To clarify the role of VEGF isoforms in endochondral bone formation, we examined long bone development in mice expressing exclusively the VEGF120 isoform (VEGF120/120 mice). Neonatal VEGF120/120 long bones showed a completely disturbed vascular pattern, concomitant with a 35% decrease in trabecular bone volume, reduced bone growth and a 34% enlargement of the hypertrophic chondrocyte zone of the growth plate. Surprisingly, embryonic hindlimbs at a stage preceding capillary invasion exhibited a delay in bone collar formation and hypertrophic cartilage calcification. Expression levels of marker genes of osteoblast and hypertrophic chondrocyte differentiation were significantly decreased in VEGF120/120 bones. Furthermore, inhibition of all VEGF isoforms in cultures of embryonic cartilaginous metatarsals, through the administration of a soluble receptor chimeric protein (mFlt-1/Fc), retarded the onset and progression of ossification, suggesting that osteoblast and/or hypertrophic chondrocyte development were impaired. The initial invasion by osteoclasts and endothelial cells into VEGF120/120 bones was retarded, associated with decreased expression of matrix metalloproteinase-9. Our findings indicate that expression of VEGF164 and/or VEGF188 is important for normal endochondral bone development, not only to mediate bone vascularization but also to allow normal differentiation of hypertrophic chondrocytes, osteoblasts, endothelial cells and osteoclasts.
Collapse
Affiliation(s)
- Christa Maes
- Laboratory of Experimental Medicine and Endocrinology, KU Leuven, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Tawfeek HAW, Qian F, Abou-Samra AB. Phosphorylation of the receptor for PTH and PTHrP is required for internalization and regulates receptor signaling. Mol Endocrinol 2002; 16:1-13. [PMID: 11773434 DOI: 10.1210/mend.16.1.0760] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that agonist-dependent phosphorylation of the PTH/PTHrP receptor occurs on its carboxyl-terminal tail. Using site-directed mutagenesis, phosphopeptide mapping, and direct sequencing of cyanogen bromide-cleaved fragments of phosphoreceptors, we report here that PTH-dependent phosphorylation occurs on the serine residues at positions 491, 492, 493, 495, 501, and 504, and that the serine residue at position 489 is required for phosphorylation. When these seven sites were mutated to alanine residues, the mutant receptor was no longer phosphorylated after PTH stimulation. The phosphorylation-deficient receptor, stably expressed in LLCPK-1 cells, was impaired in PTH-dependent internalization and showed an increased sensitivity to PTH stimulation; the EC(50) for PTH-stimulated cAMP accumulation was decreased by 7-fold. Furthermore, PTH stimulation of the phosphorylation-deficient PTH/PTHrP receptor caused a sustained elevation in intracellular cAMP levels. These data indicate that agonist-dependent phosphorylation of the PTH/PTHrP receptor plays an important role in receptor function.
Collapse
Affiliation(s)
- Hesham A W Tawfeek
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
137
|
French MM, Gomes RR, Timpl R, Höök M, Czymmek K, Farach-Carson MC, Carson DD. Chondrogenic activity of the heparan sulfate proteoglycan perlecan maps to the N-terminal domain I. J Bone Miner Res 2002; 17:48-55. [PMID: 11771669 PMCID: PMC1774590 DOI: 10.1359/jbmr.2002.17.1.48] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C3H10T1/2 cells differentiate along a chondrogenic pathway when plated onto the extracellular matrix (ECM) protein perlecan (Pln). To identify the region(s) within the large Pln molecule that provides a differentiation signal, recombinant Pln-sequence-based polypeptides representing distinct structural domains were assayed for their ability to promote chondrogenesis in C3H10T1/2 cells. Five distinct domains, along with structural variations, were tested. The N-terminal domain I was tested in two forms (IA and IB) that contain only heparan sulfate (HS) chains or both HS and chondroitin sulfate (CS) chains, respectively. A mutant form of domain I lacking attachment sites for both HS and CS (Pln I(mut)) was tested also. Other constructs consecutively designated Pln domains II, III(A-C), IV(A,B), and V(A,B) were used to complete the structure-function analysis. Cells plated onto Pln IA or Pln IB but no other domain rapidly assembled into cellular aggregates of 40-120 microm on average. Aggregate formation was dependent on the presence of glycosaminoglycan (GAG) chains, because Pln I-based polypeptides lacking GAG chains either by enzymatic removal or mutation of HS/CS attachment sites were inactive. Aggregates formed on GAG-bearing Pln IA stained with Alcian Blue and were recognized by antibodies to collagen type II and aggrecan but were not recognized by an antibody to collagen type X, a marker of chondrocyte hypertrophy. Collectively, these studies indicate that the GAG-bearing domain I of Pln provides a sufficient signal to trigger C3H10T1/2 cells to enter a chondrogenic differentiation pathway. Thus, this matrix proteoglycan (PG) found at sites of cartilage formation in vivo is likely to enhance early stage differentiation induced by soluble chondrogenic factors.
Collapse
Affiliation(s)
- Margaret M French
- Graduate School of Biomedical Sciences, University of Texas, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Correale P, Cusi MG, Sabatino M, Micheli L, Pozzessere D, Nencini C, Valensin PE, Petrioli R, Giorgi G, Zurbriggen R, Gluck R, Francini G. Tumour-associated antigen (TAA)-specific cytotoxic T cell (CTL) response in vitro and in a mouse model, induced by TAA-plasmids delivered by influenza virosomes. Eur J Cancer 2001; 37:2097-103. [PMID: 11597390 DOI: 10.1016/s0959-8049(01)00241-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated influenza virosomes as a TAA-gene delivery system for use in TAA-directed anti-cancer vaccine therapy. An engineered plasmid (GC90) expressing the parathyroid hormone-related peptide (PTH-rP), a protein secreted by prostate and lung carcinoma cells, was included in influenza virosomes (GC90V). The ability of GC90V to elicit a PTH-rP-specific cytotoxic T cell (CTL) response was demonstrated in BALB/c mice immunised with intranasal (i.n.) GC90V+/-adjuvant subcutaneous (s.c.) interleukin-2 (IL-2). A PTH-rP-specific CTL response with antitumour activity was also demonstrated in human peripheral blood mononuclear cells (PBMC) stimulated in vitro with GC90V infected autologous dendritic cells (DC). These results provide a rationale for investigating GC90V in clinical trials of anticancer vaccine therapy.
Collapse
Affiliation(s)
- P Correale
- Medical Oncology Division, Medicine School, Siena University, 53100, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K, Helwig JJ. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134:1113-36. [PMID: 11704631 PMCID: PMC1573066 DOI: 10.1038/sj.bjp.0704378] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 09/10/2001] [Indexed: 11/09/2022] Open
Abstract
The cloning of the so-called 'parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Collapse
Affiliation(s)
- Thomas L Clemens
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Sarah Cormier
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Anne Eichinger
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Karlhans Endlich
- Institut für Anatomie und Zellbiologie 1, Universität Heidelberg, Heidelberg, Germany
| | - Nathalie Fiaschi-Taesch
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Evelyne Fischer
- Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France
| | - Peter A Friedman
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | | | - Thierry Massfelder
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Jérôme Rossert
- INSERM U489 and Departments of Nephrology and Pathology, Paris VI University, France
| | | | - Caroline Silve
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Andrew F Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Karen Takane
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Jean-Jacques Helwig
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| |
Collapse
|
141
|
Kovacs CS, Chafe LL, Fudge NJ, Friel JK, Manley NR. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 2001; 142:4983-93. [PMID: 11606467 DOI: 10.1210/endo.142.11.8509] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH and PTHrP both act in the regulation of fetal mineral metabolism. PTHrP regulates placental calcium transfer, fetal blood calcium, and differentiation of the cartilaginous growth plate into endochondral bone. PTH has been shown to influence fetal blood calcium, but its role in skeletal formation remains undefined. We compared skeletal morphology, mineralization characteristics, and gene expression in growth plates of fetal mice that lack parathyroids and PTH (Hoxa3 null) with the effects of loss of PTHrP (Pthrp null), loss of PTH/PTHrP receptor (Pthr1 null), and loss of both PTH and PTHrP (Hoxa3 null x Pthrp null). Loss of PTH alone does not affect morphology or gene expression in the skeletal growth plates, but skeletal mineralization and blood calcium are significantly reduced. In double-mutant fetuses (Hoxa3 null/Pthrp null), combined loss of PTH and PTHrP caused fetal growth restriction, limb shortening, greater reduction of fetal blood calcium, and reduced mineralization. These findings suggest that 1) PTH may play a more dominant role than PTHrP in regulating fetal blood calcium; 2) blood calcium and PTH levels are rate-limiting determinants of skeletal mineral accretion; and 3) lack of both PTH and PTHrP will cause fetal growth restriction.
Collapse
Affiliation(s)
- C S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6.
| | | | | | | | | |
Collapse
|
142
|
Converting a differentiation cascade into longitudinal growth: stereology and analysis of transgenic animals as tools for understanding growth plate function. ACTA ACUST UNITED AC 2001. [DOI: 10.1097/00001433-200110000-00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
143
|
Garner SC, Pi M, Tu Q, Quarles LD. Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 2001; 142:3996-4005. [PMID: 11517179 DOI: 10.1210/endo.142.9.8364] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothesis that local changes in extracellular calcium may serve a physiological role in regulating osteoblast, osteoclast, and cartilage function through the extracellular cation-sensing receptor, CasR, is gaining widespread support, but lacks definite proof. To examine the effects of CasR deficiency on the skeleton, we performed a detailed analysis of the skeleton in CasR knockout mice (CasR(-/-)) and wild-type littermates (CasR(+/+)). CasR ablation in the parathyroid glands of CasR(-/-) mice resulted in hyperparathyroidism, hypercalcemia, and hypophosphatemia. Except for dwarfism, the expected skeletal manifestations of PTH excess, namely chondrodysplasia and increased mineralized bone formation and resorption, were not the main skeletal features in CasR(-/-) mice. Rather, rickets was the predominant skeletal abnormality in these animals, as evidenced by a widened zone of hypertrophic chondrocytes, impaired growth plate calcification and disorderly deposition of mineral, excessive osteoid accumulation, and prolonged mineralization lag time in metaphyseal bone. CasR transcripts were identified in cartilage and bone marrow of CasR(+/+) mice, but not in mineralized bone containing mature osteoblasts and osteocytes. These findings indicate that a calcium-sensing receptor is present in the skeleton, and its absence results in defective mineralization of cartilage and bone by mechanisms that remain to be elucidated.
Collapse
Affiliation(s)
- S C Garner
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
144
|
Abstract
The approach of gene-targeted animal models is likely the most important experimental tool contributing to recent advances in skeletal biology. Modifying the expression of a gene in vivo, and the analysis of the consequences of the mutation, are central to the understanding of gene function during development and physiology, and therefore to our understanding of the gene's role in disease states. Researchers had been limited to animal models primarily involving pharmaceutical manipulations and spontaneous mutations. With the advent of gene targeting, however, animal models that impact our understanding of metabolic bone disease have evolved dramatically. Interestingly, some genes that were expected to yield dramatic phenotypes in bone, such as estrogen receptor-alpha or osteopontin, proved to have subtle phenotypes, whereas other genes, such as interleukin-5 or osteoprotegerin, were initially identified as having a role in bone metabolism via the analysis of their phenotype after gene ablation or overexpression. Particularly important has been the advance in knowledge of osteoblast and osteoclast independent and dependent roles via the selective targeting of genes and the consequent disruption of bone formation, bone resorption, or both. Our understanding of interactions of the skeletal system with other systems, ie, the vascular system and homeostatic controls of adipogenesis, has evolved via animal models such as the matrix gla protein, knock-out, and the targeted overexpression of Delta FosB. Challenging transgenic models such as the osteopontin-deficient mice with mediators of bone remodeling like parathyroid hormone and mechanical stimuli and extending phenotype characterization to mechanistic in vitro studies of primary bone cells is providing additional insight into the mechanisms involved in pathologic states and their potentials for therapeutic strategies. This review segregates characterization of transgenic models based on the category of gene altered, eg, reproductive hormones, calcitropic hormones, growth factors and cytokines, signaling molecules, extracellular matrix molecules and "other" genes. Models are also segregated based on phenotypes that are primarily osteoclastic, osteoblastic or mixed. As the technical ability to alter gene expression negatively or positively and in a tissue-specific and temporal manner continues to evolve, there are endless possibilities for generating genetically altered animal models with which to gain insight into metabolic bone diseases.
Collapse
Affiliation(s)
- L K McCauley
- Department of Periodontics/Prevention/Geriatrics, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| |
Collapse
|
145
|
Sahni M, Raz R, Coffin JD, Levy D, Basilico C. STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 2001; 128:2119-29. [PMID: 11493533 DOI: 10.1242/dev.128.11.2119] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unregulated FGF receptor signaling results in bone malformations that affect both endochondral and intramembranous ossification, and is the basis for several genetic forms of human dwarfism. FGF signaling inhibits chondrocyte proliferation and we have previously shown that the transcription factor STAT1 mediates the growth inhibitory effect of FGF in vitro. We provide genetic evidence that STAT1 is a modulator of the negative regulation of bone growth by FGF in vivo. We crossed Stat1−/− mice with a transgenic mouse line overexpressing human FGF2 (TgFGF). TgFGF mice exhibit phenotypes characterized by chondrodysplasia and macrocephaly, which affect endochondral and intramembranous ossification. We found that the chondrodysplasic phenotype of these mice results both from reduced proliferation and increased apoptosis of growth plate chondrocytes. Loss of STAT1 function in TgFGF mice led to a significant correction of the chondrodysplasic phenotype, but did not affect the skull malformations. The reduced proliferation of TgFGF growth plate chondrocytes, as well as their excessive apoptosis, were restored to near-normal levels in the absence of STAT1 function. Unregulated FGF signaling in TgFGF mice also induced apoptosis in calvarial osteoblasts that was not, however, corrected by the absence of STAT1. Detailed analysis of Stat1−/− growth plates uncovered a transient phenotype, characterized by an expansion of the proliferative zone and by acceleration of longitudinal bone growth, that attenuated as the animals grew older. These results document an essential role for STAT1 in FGF-mediated regulation of cell growth that is specific to the epiphyseal growth plate.
Collapse
Affiliation(s)
- M Sahni
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
146
|
Medill NJ, Praul CA, Ford BC, Leach RM. Parathyroid hormone-related peptide expression in the epiphyseal growth plate of the juvenile chicken: evidence for the origin of the parathyroid hormone-related peptide found in the epiphyseal growth plate. J Cell Biochem 2001; 80:504-11. [PMID: 11169734 DOI: 10.1002/1097-4644(20010315)80:4<504::aid-jcb1004>3.0.co;2-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) has been shown to be essential for normal endochondral bone formation. Along with Indian hedgehog (Ihh), it forms a paracrine regulatory loop that governs the pace of chondrocyte differentiation. However, the source of PTHrP for this regulatory loop is not clear. While one hypothesis has suggested the periarticular perichondrium as the source of PTHrP for growth plate regulation, other data utilizing immunohistochemistry and in situ hybridization would indicate that growth plate chondrocytes themselves are the source of this peptide. The data described in this report supports the view that postnatal growth plate chondrocytes have the ability to synthesize this important regulatory peptide. Immunohistochemistry of tissue sections showed that PTHrP protein was evident throughout the chick epiphysis. PTHrP was seen in chondrocytes in the periarticular perichondrium, the perichondrium adjacent to the growth plate, the prehypertrophic zone of the growth plate, and the hypertrophic zone of the growth plate. However, cells in the proliferative zone, as well as some chondrocytes in the deeper layers of articular cartilage were predominantly negative for PTHrP. PTHrP was detected by Western blotting as a band of 16,400 Da in extracts from hypertrophic chondrocytes, but not from proliferative cells. RT-PCR detected PTHrP mRNA in both proliferative and hypertrophic growth plate chondrocytes, as well as in articular chondrocytes. PTH/PTHrP receptor mRNA was detected by Northern blotting in growth plate, but not articular chondrocytes. Thus, we conclude that most of the PTHrP present in the epiphyseal growth plate of the juvenile chick originates in the growth plate itself. Furthermore, the presence of large amounts of PTHrP protein in the hypertrophic zone supports the concept that PTHrP has other functions in addition to regulating chondrocyte differentiation.
Collapse
Affiliation(s)
- N J Medill
- Department of Poultry Science, 213 William L. Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
147
|
Minagawa M, Watanabe T, Kohno Y, Mochizuki H, Hendy GN, Goltzman D, White JH, Yasuda T. Analysis of the P3 promoter of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene in pseudohypoparathyroidism type 1b. J Clin Endocrinol Metab 2001; 86:1394-7. [PMID: 11238537 DOI: 10.1210/jcem.86.3.7364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypocalcemia and hyperphosphatemia caused by PTH resistance are the only discernible abnormalities in pseudohypoparathyroidism type 1b (PHP-1b). Because of the selective resistance toward PTH, inactivating mutations in its receptor, the PTH/PTH-related peptide receptor (PTHR1), were thought to be responsible for PHP-1b. However, gene abnormalities responsible for PHP-1b have not been identified in the coding region and well conserved promoters (P1 and P2) of the PTHR1 gene. The purpose of the present study was to analyze the structure of the P3 promoter, the main promoter of the human PTHR1 gene in kidney, in patients with PHP-1b. Southern analysis of genomic DNA from lymphoblastoid cell lines of eight nonfamilial patients with PHP-1b revealed neither gross rearrangements nor methylation abnormalities in the P3 promoter region of the PTHR1 gene. Sequencing revealed no abnormalities in the P3 promoter region, although one patient was homozygous for an (AAAG)n polymorphic variant. In conclusion, despite the selective resistance toward PTH in the kidney, which mainly uses the PTHR1 P3 promoter, PHP-1b in eight cases is not associated with structural abnormalities in this promoter. This study also indicates that inactivation of the P3 promoter is not achieved by methylation as tested in patients' genomic DNA from lymphoblastoid cell lines. The influence of alterations in the polymorphic A-rich repeat sequence on promoter activity warrants further study.
Collapse
Affiliation(s)
- M Minagawa
- Department of Pediatrics, Chiba University School of Medicine, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Alvarez J, Balbín M, Fernández M, López JM. Collagen metabolism is markedly altered in the hypertrophic cartilage of growth plates from rats with growth impairment secondary to chronic renal failure. J Bone Miner Res 2001; 16:511-24. [PMID: 11277269 DOI: 10.1359/jbmr.2001.16.3.511] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Skeletal growth depends on growth plate cartilage activity, in which matrix synthesis by chondrocytes is one of the major processes contributing to the final length of a bone. On this basis, the present work was undertaken to ascertain if growth impairment secondary to chronic renal insufficiency is associated with disturbances of the extracellular matrix (ECM) of the growth plate. By combining stereological and in situ hybridization techniques, we examined the expression patterns of types II and X collagens and collagenase-3 in tibial growth plates of rats made uremic by subtotal nephrectomy (NX) in comparison with those of sham-operated rats fed ad libitum (SAL) and sham-operated rats pair-fed with NX (SPF). NX rats were severely uremic, as shown by markedly elevated serum concentrations of urea nitrogen, and growth retarded, as shown by significantly decreased longitudinal bone growth rates. NX rats showed disturbances in the normal pattern of chondrocyte differentiation and in the rates and degree of substitution of hypertrophic cartilage with bone, which resulted in accumulation of cartilage at the hypertrophic zone. These changes were associated with an overall decrease in the expression of types II and X collagens, which was especially marked in the abnormally extended zone of the hypertrophic cartilage. Unlike collagen, the expression of collagenase-3 was not disturbed severely. Electron microscopic analysis proved that changes in gene expression were coupled to alterations in the mineralization as well as in the collagen fibril architecture at the hypertrophic cartilage. Because the composition and structure of the ECM have a critical role in regulating the behavior of the growth plate chondrocytes, results obtained are consistent with the hypothesis that alteration of collagen metabolism in these cells could be a key process underlying growth retardation in uremia.
Collapse
Affiliation(s)
- J Alvarez
- Departamento de Morfología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | | | | | | |
Collapse
|
149
|
Kozlowski K, Posen S. Malignant hypophosphathaemic bone disease. Eur J Radiol 2001; 37:134-8. [PMID: 11223481 DOI: 10.1016/s0720-048x(00)00247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A case of crippling osteoporosis with muscular weakness, hypophosphatemia, hyperparathyroidism, defective skeletal calcification and cartilage destruction is reported. The patient, a male was observed from the age of 2 1/2 until his death at the age of 33 years. This bone/cartilage disease failed to respond to phosphate supplementation, parathyroidectomy and calcitriol. We believe this may represent a hitherto undescribed entity.
Collapse
Affiliation(s)
- K Kozlowski
- Department of Radiology, Royal Alexandra Hospital for Children, Sydney, Australia
| | | |
Collapse
|
150
|
Affiliation(s)
- G J Strewler
- Veterans Affairs Boston Healthcare System, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA.
| |
Collapse
|