101
|
Abstract
Over the last two decades, evidence for the involvement of quinolinic acid (QUIN) in neuroinflammatory diseases has been exponentially increasing. Within the brain, QUIN is produced and released by infiltrating macrophages and activated microglia, the very cells that are prominent during neuroinflammation. QUIN acts as an agonist of the N-methyl-D-aspartate receptor and as such is considered to be a brain endogenous excitotoxin. Since the discovery of the excitotoxic activity of QUIN in the early 1980s, several other cytotoxic mechanisms have been identified. We know today that QUIN acts as a neurotoxin, gliotoxin, proinflammatory mediator, pro-oxidant molecule and can alter the integrity and cohesion of the blood-brain barrier. This paper aims to review some of the most recent findings about the effects of QUIN and its mode of action.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
102
|
Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Grant R. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J 2011; 278:4425-34. [PMID: 22032336 DOI: 10.1111/j.1742-4658.2011.08366.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The kynurenine pathway of tryptophan catabolism plays an important role in several biological systems affected by aging. We quantified tryptophan and its metabolites kynurenine (KYN), kynurenine acid (KYNA), picolinic acid (PIC) and quinolinic acid (QUIN), and activity of the kynurenine pathway enzymes indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO) and quinolinic acid phosphoribosyltransferase (QPRTase), in the brain, liver and kidney of young, middle-aged and old female Wistar rats. Tryptophan levels and TDO activity decreased in all tissues with age. In contrast, brain IDO activity increased with age, while liver and kidney IDO activity decreased with age. The levels of KYN, KYNA, QUIN and PIC in brain all increased with age, while the levels of KYN in the liver and kidney showed a tendency to decrease. The levels of KYNA in the liver did not change, but the levels of KYNA in the kidney increased. The levels of PIC and QUIN increased significantly in the liver but showed a tendency to decrease in the kidney. QPRTase activity in both brain and liver decreased with age but was elevated in the kidney in middle-aged (12-month-old) rats. These age-associated changes in tryptophan metabolism have the potential to impact upon major biological processes, including lymphocyte function, pyridine (NAD(P)(H)) synthesis and N-methyl-d-aspartate (NMDA)-mediated synaptic transmission, and may therefore contribute to several degenerative changes of the elderly.
Collapse
Affiliation(s)
- Nady Braidy
- University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
103
|
Andrade VS, Rojas DB, Oliveira L, Nunes ML, de Castro FL, Garcia C, Gemelli T, de Andrade RB, Wannmacher CMD. Creatine and pyruvate prevent behavioral and oxidative stress alterations caused by hypertryptophanemia in rats. Mol Cell Biochem 2011; 362:225-32. [PMID: 22081291 DOI: 10.1007/s11010-011-1147-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/03/2011] [Indexed: 11/24/2022]
Abstract
It is known that the accumulation of tryptophan and its metabolites is related to brain damage associated with both hypertryptophanemia and neurodegenerative diseases. In this study, we investigated the effect of tryptophan administration on various parameters of behavior in the open-field task and oxidative stress, and the effects of creatine and pyruvate, on the effect of tryptophan. Forty, 60-day-old male Wistar rats, were randomly divided into four groups: saline, tryptophan, pyruvate + creatine, tryptophan + pyruvate + creatine. Animals received three subcutaneous injections of tryptophan (2 μmol/g body weight each one at 3 h of intervals) and/or pyruvate (200 μg/g body weight 1 h before tryptophan), and/or creatine (400 μg/g body weight twice a day for 5 days before tryptophan twice a day for 5 days before training); controls received saline solution (NaCl 0.85%) at the same volumes (30 μl/g body weight) than the other substances. Results showed that tryptophan increased the activity of the animals, suggesting a reduction in the ability of habituation to the environment. Tryptophan induced increase of TBA-RS and total sulfhydryls. The effects of tryptophan in the open field, and in oxidative stress were fully prevented by the combination of creatine plus pyruvate. In case these findings also occur in humans affected by hypertryptophanemia or other neurodegenerative disease in which tryptophan accumulates, it is feasible that oxidative stress may be involved in the mechanisms leading to the brain injury, suggesting that creatine and pyruvate supplementation could benefit patients affected by these disorders.
Collapse
|
104
|
Oboh G, Akinyemi AJ, Ademiluyi AO, Bello FO. Inhibitory effect of some tropical green leafy vegetables on key enzymes linked to Alzheimer's disease and some pro-oxidant induced lipid peroxidation in rats' brain. Journal of Food Science and Technology 2011; 51:884-91. [PMID: 24803694 DOI: 10.1007/s13197-011-0572-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/22/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
This study sought to investigate the inhibitory effect of some commonly consumed Nigerian green leafy vegetables (raw and blanched) on acetylcholinesterase and butyrylcholinesterase (key enzyme linked to Alzheimer's disease) activities and some pro-oxidants (FeSO4, Sodium nitroprusside and Quinolinic acid) induced lipid peroxidation in rat brain in vitro. Three commonly consumed green leafy vegetables in Nigeria [Amarantus cruentus (Arowojeja), Struchium sparganophora (Ewuro-odo) and Telfairia occidentalis (Ugwu] were blanched in hot water for 10 min, and the extracts of the raw and blanched vegetables were prepared and used for subsequent analysis. The result revealed that all the vegetables inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity as well as the pro-oxidants induced lipid peroxidation in rat brain in a dose dependent manner; however, Amarantus cruentus extract (EC50 = 97.9 μg/ml) had the highest inhibitory effect on acetylcholinesterase activity while Telfairia occidentalis extract (EC50 = 52.7 μg/ml) had the highest inhibitory effect on butyrylcholinesterase activity. However, blanching of the vegetables caused a significant (P < 0.05) decrease in the inhibitory effect of the vegetables on AChE activities while it enhanced the inhibition of the pro-oxidants induced lipid peroxidation in rat brain in vitro. Therefore, some of the possible mechanism by which green leafy vegetables exert their neuroprotective activities could be through the inhibition of acetylcholinesterase and butyrylcholinesterase activities and prevention of lipid peroxidation in the brain. However, blanching of the vegetables could reduce their ability to inhibit acetylcholinesterase and butyrylcholinesterase activity.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria, P.M.B., 704, Akure, 340001 Nigeria
| | - Ayodele Jacobson Akinyemi
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria, P.M.B., 704, Akure, 340001 Nigeria
| | - Adedayo Oluwaseun Ademiluyi
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria, P.M.B., 704, Akure, 340001 Nigeria
| | - Fatai Olumide Bello
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria, P.M.B., 704, Akure, 340001 Nigeria
| |
Collapse
|
105
|
Zhang Y, Shen J, He X, Zhang K, Wu S, Xiao B, Zhou X, Phillips RS, Gao P, Jeunemaitre X, Zhu D. A rare variant at the KYNU gene is associated with kynureninase activity and essential hypertension in the Han Chinese population. ACTA ACUST UNITED AC 2011; 4:687-94. [PMID: 22012986 DOI: 10.1161/circgenetics.110.959064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Genetic studies in mouse and human suggest that kynureninase activity may influence blood pressure and renal function. The gene coding kynureninase (KYNU) is also located on chromosome band 2q14-q23, where a linkage peak for essential hypertension was previously detected in the Chinese Han population. METHODS AND RESULTS After having found no association with common polymorphisms, this study aimed to assess the role of 1 rare variant of KYNU, Arg188Gln, and kynureninase activity in relation to hypertension. Thirty-three of 1124 Chinese patients with hypertension were heterozygous for Arg188Gln, whereas only 14 of 1084 normotensive controls were heterozygous for Arg188Gln (188G1n allele frequency, 0.015 versus 0.006; P=0.0075). A genotype-discordant sibling-pair study was performed in another 924 individuals from 213 families, indicating that 188G1n carriers had higher systolic blood pressure (168.29 ± 24.67 versus 139.00 ± 12.82 mm Hg, P<0.001) and diastolic blood pressure (105.50 ± 14.08 versus 90.75 ± 11.07 mm Hg, P=0.001) than did Arg188 homozygous siblings. The Arg188Gln variant was found to be rarer in 2 other ethnic groups (3 heterozygous among 880 hypertensive French whites and 0 of 90 black Africans with hypertension). The kynureninase activity in plasma was correlated with blood pressure in subjects from hypertensive families (P<0.05). The Kinetic Michaelis constants of 188Gln carriers was lower than that of Arg188 homozygous subjects (0.05 ± 0.02 versus 0.10 ± 0.02 mmol/L, P=0.005). Arg188Gln mutation in vitro also showed less catalytic efficiency than the wild-type KYNU enzyme (maximal reaction velocity/Kinetic Michaelis constant ratio, 0.050 ± 0.012 versus 0.11 ± 0.016 mL/min per mg; P=0.029). CONCLUSIONS The results show that the rare KYNU variant Arg188Gln affects kynureninase activity and are consistent with the hypothesis that this mutation can predispose to essential hypertension.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology and Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
107
|
Fu R, Gupta R, Geng J, Dornevil K, Wang S, Zhang Y, Hendrich MP, Liu A. Enzyme reactivation by hydrogen peroxide in heme-based tryptophan dioxygenase. J Biol Chem 2011; 286:26541-54. [PMID: 21632548 PMCID: PMC3143619 DOI: 10.1074/jbc.m111.253237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/29/2011] [Indexed: 11/06/2022] Open
Abstract
An intriguing mystery about tryptophan 2,3-dioxygenase is its hydrogen peroxide-triggered enzyme reactivation from the resting ferric oxidation state to the catalytically active ferrous form. In this study, we found that such an odd Fe(III) reduction by an oxidant depends on the presence of L-Trp, which ultimately serves as the reductant for the enzyme. In the peroxide reaction with tryptophan 2,3-dioxygenase, a previously unknown catalase-like activity was detected. A ferryl species (δ = 0.055 mm/s and ΔE(Q) = 1.755 mm/s) and a protein-based free radical (g = 2.0028 and 1.72 millitesla linewidth) were characterized by Mössbauer and EPR spectroscopy, respectively. This is the first compound ES-type of ferryl intermediate from a heme-based dioxygenase characterized by EPR and Mössbauer spectroscopy. Density functional theory calculations revealed the contribution of secondary ligand sphere to the spectroscopic properties of the ferryl species. In the presence of L-Trp, the reactivation was demonstrated by enzyme assays and by various spectroscopic techniques. A Trp-Trp dimer and a monooxygenated L-Trp were both observed as the enzyme reactivation by-products by mass spectrometry. Together, these results lead to the unraveling of an over 60-year old mystery of peroxide reactivation mechanism. These results may shed light on how a metalloenzyme maintains its catalytic activity in an oxidizing environment.
Collapse
Affiliation(s)
- Rong Fu
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Rupal Gupta
- the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Jiafeng Geng
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Kednerlin Dornevil
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Siming Wang
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Yong Zhang
- the Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030
| | - Michael P. Hendrich
- the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Aimin Liu
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
108
|
Zinger A, Barcia C, Herrero MT, Guillemin GJ. The involvement of neuroinflammation and kynurenine pathway in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:716859. [PMID: 21687761 PMCID: PMC3109408 DOI: 10.4061/2011/716859] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological modulation of the KP will represent a new therapeutic strategy for PD.
Collapse
Affiliation(s)
- Anna Zinger
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Carlos Barcia
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Trinidad Herrero
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
109
|
Braidy N, Guillemin GJ, Grant R. Effects of Kynurenine Pathway Inhibition on NAD Metabolism and Cell Viability in Human Primary Astrocytes and Neurons. Int J Tryptophan Res 2011; 4:29-37. [PMID: 22084601 PMCID: PMC3195218 DOI: 10.4137/ijtr.s7052] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The kynurenine pathway (KP) is the principle route of L-Tryptophan (TRP) metabolism, producing several neurotoxic and neuroprotective metabolic precursors before complete oxidation to the essential pyridine nucleotide nicotinamide adenine dinucleotide (NAD+). KP inhibition may prove therapeutic in central nervous system (CNS) inflammation by reducing the production of excitotoxins such as quinolinic acid (QUIN). However, KP metabolism may also be cytoprotective through the de novo synthesis of intracellular NAD+. We tested the hypothesis that the KP is directly involved in the maintenance of intracellular NAD+ levels and SIRT1 function in primary astrocytes and neurons through regulation of NAD+ synthesis. Competitive inhibition of indoleamine 2,3 dioxygenase (IDO), and quinolinic acid phosphoribosyltransferase (QPRT) activities with 1-methyl-L-Tryptophan (1-MT), and phthalic acid (PA) respectively, resulted in a dose-dependent decrease in intracellular NAD+ levels and sirtuin deacetylase-1 (SIRT1) activity, and correlated directly with reduced cell viability. These results support the hypothesis that the primary role of KP activation during neuroinflammation is to maintain NAD+ levels through de novo synthesis from TRP. Inhibition of KP metabolism under these conditions can compromise cell viability, NAD-dependent SIRT1 activity and CNS function, unless alternative precursors for NAD+ synthesis are made available.
Collapse
Affiliation(s)
- Nady Braidy
- University of New South Wales, Faculty of Medicine, Sydney, Australia
| | | | | |
Collapse
|
110
|
Current strategies in the discovery of small-molecule biomarkers for Alzheimer’s disease. Bioanalysis 2011; 3:1121-42. [DOI: 10.4155/bio.11.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the number of patients suffering from Alzheimer’s disease rapidly increasing, there is a major requirement for an accurate biomarker capable of diagnosing the disease early. Much of the research is focused on protein and genetic approaches; however, small molecules may provide viable marker molecules. Examples that support this approach include known abnormalities in lipid metabolism, glucose utilization and oxidative stress, which have been demonstrated in patients suffering from the disease. Therefore, by-products of this irregular metabolism may provide accurate biomarkers. In this review we present the current approaches previously published in the literature used to investigate potential small-molecule and metabolite markers, and report their findings. A wide range of techniques are discussed, including separation approaches (LC, GC and CE), magnetic resonance technologies (NMR and magnetic resonance spectroscopy), and immunoassays.
Collapse
|
111
|
Salemi J, Obregon DF, Cobb A, Reed S, Sadic E, Jin J, Fernandez F, Tan J, Giunta B. Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD). Mol Neurodegener 2011; 6:3. [PMID: 21223591 PMCID: PMC3030526 DOI: 10.1186/1750-1326-6-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Microglial dysfunction is associated with the pathogenesis and progression of a number of neurodegenerative disorders including HIV associated dementia (HAD). HIV promotion of an M1 antigen presenting cell (APC) - like microglial phenotype, through the promotion of CD40 activity, may impair endogenous mechanisms important for amyloid- beta (Aβ) protein clearance. Further, a chronic pro-inflammatory cycle is established in this manner. CD45 is a protein tyrosine phosphatase receptor which negatively regulates CD40L-CD40-induced microglial M1 activation; an effect leading to the promotion of an M2 phenotype better suited to phagocytose and clear Aβ. Moreover, this CD45 mediated activation state appears to dampen harmful cytokine production. As such, this property of microglial CD45 as a regulatory "off switch" for a CD40-promoted M1, APC-type microglia activation phenotype may represent a critical therapeutic target for the prevention and treatment of neurodegeneration, as well as microglial dysfunction, found in patients with HAD.
Collapse
Affiliation(s)
- Jon Salemi
- Department of Psychiatry and Neurosciences, Neuroimmunology Laboratory, University of South Florida, College of Medicine, Tampa, FL 33613, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Oxenkrug GF. Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm (Vienna) 2011; 118:75-85. [PMID: 20811799 PMCID: PMC3026891 DOI: 10.1007/s00702-010-0475-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
This review of literature and our data suggests that up-regulated production of interferon-gamma (IFNG) in periphery and brain triggers a merger of tryptophan (TRY)-kynurenine (KYN) and guanine-tetrahydrobiopterin (BH4) metabolic pathways into inflammation cascade involved in aging and aging-associated medical and psychiatric disorders (AAMPD) (metabolic syndrome, depression, vascular cognitive impairment). IFNG-inducible KYN/pteridines inflammation cascade is characterized by up-regulation of nitric oxide synthase (NOS) activity (induced by KYN) and decreased formation of NOS cofactor, BH4, that results in uncoupling of NOS that shifting arginine from NO to superoxide anion production. Superoxide anion and free radicals among KYN derivatives trigger phospholipase A2-arachidonic acid cascade associated with AAMPD. IFNG-induced up-regulation of indoleamine 2,3-dioxygenase (IDO), rate-limiting enzyme of TRY-KYN pathway, decreases TRY conversion into serotonin (substrate of antidepressant effect) and increases production of KYN associated with diabetes [xanthurenic acid (XA)], anxiety (KYN), psychoses and cognitive impairment (kynurenic acid). IFNG-inducible KYN/pteridines inflammation cascade is impacted by IFNG (+874) T/A genotypes, encoding cytokine production. In addition to literature data on KYN/TRY ratio (IDO activity index), we observe neopterin levels (index of activity of rate-limiting enzyme of guanine-BH4 pathway) to be higher in carriers of high (T) than of low (A) producers alleles; and to correlate with AAMPD markers (e.g., insulin resistance, body mass index, mortality risk), and with IFN-alpha-induced depression in hepatitis C patients. IFNG-inducible cascade is influenced by environmental factors (e.g., vitamin B6 deficiency increases XA formation) and by pharmacological agents; and might offer new approaches for anti-aging and anti-AAMPD interventions.
Collapse
Affiliation(s)
- Gregory F Oxenkrug
- Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University/Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
113
|
Davies NW, Guillemin G, Brew BJ. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder. Int J Tryptophan Res 2010; 3:121-40. [PMID: 22084594 PMCID: PMC3195234 DOI: 10.4137/ijtr.s4321] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer's disease, HIV-associated neurocognitive disorder, Huntington's disease, motor neurone disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Nicholas W.S. Davies
- Department of Neurology, and
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| | - Gilles Guillemin
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| | - Bruce J. Brew
- Department of Neurology, and
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| |
Collapse
|
114
|
Mailankot M, Howell S, Nagaraj RH. Kynurenine inhibits fibroblast growth factor 2-mediated expression of crystallins and MIP26 in lens epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:609-20. [PMID: 20478381 DOI: 10.1016/j.bbadis.2010.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cultured mouse lens epithelial cells (mLEC). In this study, we demonstrate that exogenous KYN reduces FGF2-mediated expression of alpha-, beta-, and gamma-crystallin and MIP26 in mLEC. We show that endogenously produced KYN in mLEC of IDO transgenic animals causes similar defects in FGF2-induced protein expression and that a competitive inhibitor of IDO prevents such defects. Our data also show that KYN inhibits FGF2-induced Akt and ERK1/2 phosphorylation in mLEC, which are required for crystallin and MIP26 expression in the lens. KYN does not inhibit FGF2 binding to cells but inhibit phosphorylation of FGFR1in mLEC. Together our data suggest that KYN might inhibit FGF2-mediated fiber cell differentiation by preventing expression of crystallins and MIP26. Our studies provide a novel mechanism by which KYN can exert deleterious effects in cells.
Collapse
Affiliation(s)
- Maneesh Mailankot
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
115
|
Gupta R, Fu R, Liu A, Hendrich MP. EPR and Mössbauer spectroscopy show inequivalent hemes in tryptophan dioxygenase. J Am Chem Soc 2010; 132:1098-109. [PMID: 20047315 DOI: 10.1021/ja908851e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO) is an essential enzyme in the pathway of NAD biosynthesis and important for all living organisms. TDO catalyzes oxidative cleavage of the indole ring of L-tryptophan (L-Trp), converting it to N-formylkynurenine (NFK). The crystal structure of TDO shows a dimer of dimer quaternary structure of the homotetrameric protein. The four catalytic sites of the protein, one per subunit, contain a heme that catalyzes the activation and insertion of dioxygen into L-Trp. Because of the alpha(4) structure and because only one type of heme center has been identified in previous spectroscopic studies, the four hemes sites have been presumed to be equivalent. The present work demonstrates that the heme sites of TDO are not equivalent. Quantitative interpretation of EPR and Mössbauer spectroscopic data indicates the presence of two dominant inequivalent heme species in reduced and oxidized states of the enzyme, which is consistent with a dimer of dimer protein quaternary structure that now extends to the electronic properties of the hemes. The electronic properties of the hemes in the reduced state of TDO change significantly upon L-Trp addition, which is attributed to a change in the protonation state of the proximal histidine to the hemes. The binding of O(2) surrogates NO or CO shows two inequivalent heme sites. The heme-NO complexes are 5- and 6-coordinate without L-Trp, and both 6-coordinate with L-Trp. NO can be selectively photodissociated from only one of the heme-NO sites and only in the presence of L-Trp. Cryoreduction of TDO produces a novel diamagnetic heme species, tentatively assigned as a reduced heme-OH complex. This work presents a new description of the heme interactions with the protein, and with the proximal His, which must be considered during the general interpretation of physical data as it relates to kinetics, mechanism, and function of TDO.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
116
|
Pierozan P, Zamoner A, Soska AK, Silvestrin RB, Loureiro SO, Heimfarth L, Mello e Souza T, Wajner M, Pessoa-Pureur R. Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 2010; 224:188-96. [PMID: 20303347 DOI: 10.1016/j.expneurol.2010.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 01/06/2023]
Abstract
In the present study we investigated the effect of in vivo intrastriatal injection of quinolinic acid (QA) on cytoskeletal proteins in astrocytes and neurons of young rats at early stage (30 min) after infusion. QA (150 nmoles/0.5 microL) significantly increased the in vitro phosphorylation of the low molecular weight neurofilament subunit (NFL) and the glial fibrillary acidic protein (GFAP) of neurons and astrocytes, respectively. This effect was mediated by cAMP-dependent protein kinase A (PKA), protein kinase C (PKC) and Ca(2+)/calmodulin-dependent protein kinase II (PKCaMII). In contrast, mitogen activated protein kinases were not activated by QA infusion. Furthermore, the specific N-methyl-D-aspartate (NMDA) antagonist MK-801 (0.25 mg/kg i.p), the antioxidant L-NAME (60 mg\kg\day), and diphenyldisselenide (PheSe)(2) (0.625 mg\kg\day) injected prior to QA infusion totally prevented QA-induced cytoskeletal hyperphosphorylation. We also observed that QA-induced hyperphosphorylation was targeted at the Ser55 phosphorylating site on NFL head domain, described as a regulatory site for NF assembly in vivo. This effect was fully prevented by MK801, by the PKA inhibitor H89 and by (PheSe)(2), whereas staurosporine (PKC inhibitor) only partially prevented Ser55 phosphorylation. The PKCaMII inhibitor (KN93) and the antioxidant L-NAME failed to prevent the hyperphosphorylation of Ser55 by QA infusion. Therefore, we presume that QA-elicited hyperphosphorylation of the neural cytoskeleton, and specially of NFLSer55, achieved by intrastriatal QA injection could represent an early step in the pathophysiological cascade of deleterious events exerted by QA in rat striatum. Our observations also indicate that NMDA-mediated Ca(2+) events and oxidative stress may be related to the altered protein cytoskeleton hyperphosphorylation observed with important implications for brain function.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Duleu S, Mangas A, Sevin F, Veyret B, Bessede A, Geffard M. Circulating Antibodies to IDO/THO Pathway Metabolites in Alzheimer's Disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20721333 PMCID: PMC2915656 DOI: 10.4061/2010/501541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/22/2009] [Accepted: 01/20/2010] [Indexed: 01/18/2023] Open
Abstract
In Alzheimer's disease, indoleamine 2,3-dioxygenase and tryptophan hydroxylase are known to induce an overproduction of neurotoxic compounds, such as quinolinic acid and 3-hydroxykynurenine from the former, and 5-hydroxytryptophol and 5-methoxytryptophol from the latter. Other compounds, such as kynurenic acid, serotonin, and melatonin are produced via the same pathways. An improved ELISA method identified circulating antibodies directed against these compounds, linked to proteins, as previously described for other chronic diseases. This describes how only the A isotype of circulating immunoglobulins recognized a pattern of conjugated tryptophan metabolites in the sera of Alzheimer patients. These data indirectly confirmed the involvement of tryptophan derivatives in the pathogenic processes of Alzheimer's disease. Further studies are required to evaluate the relevance of these antibody patterns in monitoring this disease.
Collapse
Affiliation(s)
- S Duleu
- IDRPHT, 33400 Talence, France
| | | | | | | | | | | |
Collapse
|
118
|
Jang S, Jeong HS, Park JS, Kim YS, Jin CY, Seol MB, Kim BC, Lee MC. Neuroprotective effects of (-)-epigallocatechin-3-gallate against quinolinic acid-induced excitotoxicity via PI3K pathway and NO inhibition. Brain Res 2010; 1313:25-33. [PMID: 20025854 DOI: 10.1016/j.brainres.2009.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/26/2009] [Accepted: 12/07/2009] [Indexed: 12/17/2022]
Abstract
Excessive stimulation of the NMDA receptor induces neuronal cell death and is implicated in the development of several neurodegenerative diseases. While EGCG suppresses apoptosis induced by NMDA receptor-mediated excitotoxicity, the mechanisms underlying this process have yet to be completely determined. This study was designed to investigate whether (-)-epigallocatechin-3-gallate (EGCG) plays a neuroprotective role by inhibiting nitric oxide (NO) production and activating cellular signaling mechanisms including MAP kinase, PI3K, and GSK-3beta and acting on the antiapoptotic and the proapoptotic genes in N18D3 neural cells. The cells were pretreated with EGCG for 2 h and then exposed to quinolinic acid (QUIN), a NMDA receptor agonist, 30 mM for 24 h. MTT assay and DAPI staining were used to identify cell viability and apoptosis, respectively, and demonstrated that EGCG significantly increased cell viability and protected the cells from apoptotic death. In addition, EGCG had a capacity to reduce QUIN-induced excitotoxic cell death not only by blocking increase of intracellular calcium levels but also by inhibiting NO production. Gene expression analysis revealed that EGCG prevented the QUIN-induced expression of the proapoptotic gene, caspase-9, and increased that of the antiapoptotic genes, Bcl-XL, Bcl-2, and Bcl-w. Further examination about potential cell signaling candidate involved in this neuroprotective effect showed that immunoreacitivity of PI3K was significantly increased in the cells treated with EGCG. These results suggest that the neuroprotective mechanism of EGCG against QUIN-induced excitotoxic cell death includes regulation of PI3K and modulation of cell survival and death genes through decreasing of intracellular calcium levels and controlling of NO production.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Bonda DJ, Mailankot M, Stone JG, Garrett MR, Staniszewska M, Castellani RJ, Siedlak SL, Zhu X, Lee HG, Perry G, Nagaraj RH, Smith MA. Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer's disease. Redox Rep 2010; 15:161-8. [PMID: 20663292 PMCID: PMC2956440 DOI: 10.1179/174329210x12650506623645] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tryptophan metabolism, through the kynurenine pathway, produces neurotoxic intermediates that are implicated in the pathogenesis of Alzheimer's disease. In particular, oxidative stress via 3-hydroxykynurenine (3-HK) and its cleaved product 3-hydroxyanthranilic acid (3-HAA) significantly damages neuronal tissue and may potentially contribute to a cycle of neurodegeneration through consequent amyloid-beta accumulation, glial activation, and up-regulation of the kynurenine pathway. To determine the role of the kynurenine pathway in eliciting and continuing oxidative stress within Alzheimer's diseased brains, we used immunocytochemical methods to show elevated levels of 3-HK modifications and the upstream, rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO-1) in Alzheimer's diseased brains when compared to controls. Importantly, the association of IDO-1 with senile plaques was confirmed and, for the first time, IDO-1 was shown to be specifically localized in conjunction with neurofibrillary tangles. As senile plaques and neurofibrillary tangles are the pathological hallmarks of Alzheimer's disease, our study provides further evidence that the kynurenine pathway is involved with the destructive neurodegenerative pathway of Alzheimer's disease.
Collapse
Affiliation(s)
- David J. Bonda
- Department of PathologyCase Western Reserve University, Cleveland, Ohio, USA
| | - Maneesh Mailankot
- Department of Ophthalmology and Visual SciencesCase Western Reserve University, Cleveland, Ohio, USA
| | - Jeremy G. Stone
- Department of PathologyCase Western Reserve University, Cleveland, Ohio, USA
| | - Matthew R. Garrett
- Departments of PathologyCase Western Reserve University, Cleveland, Ohio, USA, Otolaryngology-Head and Neck Surgery, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Magdalena Staniszewska
- Department of Ophthalmology and Visual SciencesCase Western Reserve University, Cleveland, Ohio, USA, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sandra L. Siedlak
- Department of PathologyCase Western Reserve University, Cleveland, Ohio, USA
| | - Xiongwei Zhu
- Department of PathologyCase Western Reserve University, Cleveland, Ohio, USA
| | - Hyoung-gon Lee
- Department of PathologyCase Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Department of PathologyCase Western Reserve University, Cleveland, Ohio, USA, UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ram H. Nagaraj
- Department of Ophthalmology and Visual SciencesCase Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Smith
- Department of PathologyCase Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA;,
| |
Collapse
|
120
|
Ting KK, Brew BJ, Guillemin GJ. Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer's disease. J Neuroinflammation 2009; 6:36. [PMID: 20003262 PMCID: PMC2797503 DOI: 10.1186/1742-2094-6-36] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 12/10/2009] [Indexed: 02/06/2023] Open
Abstract
The excitotoxin quinolinic acid (QUIN) is synthesized through the kynurenine pathway (KP) by activated monocyte lineage cells. QUIN is likely to play a role in the pathogenesis of several major neuroinflammatory diseases including Alzheimer's disease (AD). The presence of reactive astrocytes, astrogliosis, increased oxidative stress and inflammatory cytokines are important pathological hallmarks of AD. We assessed the stimulatory effects of QUIN at low physiological to high excitotoxic concentrations in comparison with the cytokines commonly associated with AD including IFN-γ and TNF-α on primary human astrocytes. We found that QUIN induces IL-1β expression, a key mediator in AD pathogenesis, in human astrocytes. We also explored the effect of QUIN on astrocyte morphology and functions. At low concentrations, QUIN treatment induced concomitantly a marked increase in glial fibrillary acid protein levels and reduction in vimentin levels compared to controls; features consistent with astrogliosis. At pathophysiological concentrations QUIN induced a switch between structural protein expressions in a dose dependent manner, increasing VIM and concomitantly decreasing GFAP expression. Glutamine synthetase (GS) activity was used as a functional metabolic test for astrocytes. We found a significant dose-dependent reduction in GS activity following QUIN treatment. All together, this study showed that QUIN is an important factor for astroglial activation, dysregulation and cell death with potential relevance to AD and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ka Ka Ting
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia.
| | | | | |
Collapse
|
121
|
Manéglier B, Malleret B, Guillemin GJ, Spreux-Varoquaux O, Devillier P, Rogez-Kreuz C, Porcheray F, Thérond P, Dormont D, Clayette P. Modulation of indoleamine-2,3-dioxygenase expression and activity by HIV-1 in human macrophages. Fundam Clin Pharmacol 2009; 23:573-81. [DOI: 10.1111/j.1472-8206.2009.00703.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
122
|
Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One 2009; 4:e6344. [PMID: 19623258 PMCID: PMC2709912 DOI: 10.1371/journal.pone.0006344] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/17/2009] [Indexed: 01/26/2023] Open
Abstract
Some of the tryptophan catabolites produced through the kynurenine pathway (KP), and more particularly the excitotoxin quinolinic acid (QA), are likely to play a role in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the KP is over activated in AD brain and that QA accumulates in amyloid plaques and within dystrophic neurons. We hypothesized that QA in pathophysiological concentrations affects tau phosphorylation. Using immunohistochemistry, we found that QA is co-localized with hyperphosphorylated tau (HPT) within cortical neurons in AD brain. We then investigated in vitro the effects of QA at various pathophysiological concentrations on tau phosphorylation in primary cultures of human neurons. Using western blot, we found that QA treatment increased the phosphorylation of tau at serine 199/202, threonine 231 and serine 396/404 in a dose dependent manner. Increased accumulation of phosphorylated tau was also confirmed by immunocytochemistry. This increase in tau phosphorylation was paralleled by a substantial decrease in the total protein phosphatase activity. A substantial decrease in PP2A expression and modest decrease in PP1 expression were observed in neuronal cultures treated with QA. These data clearly demonstrate that QA can induce tau phosphorylation at residues present in the PHF in the AD brain. To induce tau phosphorylation, QA appears to act through NMDA receptor activation similar to other agonists, glutamate and NMDA. The QA effect was abrogated by the NMDA receptor antagonist memantine. Using PCR arrays, we found that QA significantly induces 10 genes in human neurons all known to be associated with AD pathology. Of these 10 genes, 6 belong to pathways involved in tau phosphorylation and 4 of them in neuroprotection. Altogether these results indicate a likely role of QA in the AD pathology through promotion of tau phosphorylation. Understanding the mechanism of the neurotoxic effects of QA is essential in developing novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Family Sciences, College for Women, Kuwait University, Shuwaikh, Kuwait
- Department of Pharmacology, University of New South Wales, School of Medical Science, Sydney, New South Wales, Australia
| | - Kaka Ting
- St Vincent's Hospital, Centre for Applied Medical Research, Department of Neuroimmunology, Darlinghurst, New South Wales, Australia
| | - Karen M. Cullen
- Disciplines of Anatomy and Histology, School of Medical Science, The University of Sydney, New South Wales, Australia
| | - Nady Braidy
- Department of Pharmacology, University of New South Wales, School of Medical Science, Sydney, New South Wales, Australia
| | - Bruce J. Brew
- St Vincent's Hospital, Centre for Applied Medical Research, Department of Neuroimmunology, Darlinghurst, New South Wales, Australia
- Department of Neurology, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Gilles J. Guillemin
- St Vincent's Hospital, Centre for Applied Medical Research, Department of Neuroimmunology, Darlinghurst, New South Wales, Australia
- Department of Pharmacology, University of New South Wales, School of Medical Science, Sydney, New South Wales, Australia
| |
Collapse
|
123
|
Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm (Vienna) 2009; 116:1403-9. [PMID: 19618107 DOI: 10.1007/s00702-009-0263-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Parkinson's, Alzheimer's and Huntington's diseases are chronic neurodegenerative disorders of a progressive nature which lead to a considerable deterioration of the quality of life. Their pathomechanisms display some common features, including an imbalance of the tryptophan metabolism. Alterations in the concentrations of neuroactive kynurenines can be accompanied by devastating excitotoxic injuries and metabolic disturbances. From therapeutic considerations, possibilities that come into account include increasing the neuroprotective effect of kynurenic acid, or decreasing the levels of neurotoxic 3-hydroxy-L-kynurenine and quinolinic acid. The experimental data indicate that neuroprotection can be achieved by both alternatives, suggesting opportunities for further drug development in this field.
Collapse
|
124
|
Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for Quinolinic Acid Cytotoxicity in Human Astrocytes and Neurons. Neurotox Res 2009; 16:77-86. [DOI: 10.1007/s12640-009-9051-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 12/28/2022]
|
125
|
Costantino G. New promises for manipulation of kynurenine pathway in cancer and neurological diseases. Expert Opin Ther Targets 2009; 13:247-58. [PMID: 19236242 DOI: 10.1517/14728220802665734] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The kynurenine pathway (KP), the primary route of tryptophan degradation in mammalian cells, consists of a cascade of enzymatic reactions eventually leading to NAD(+) formation. Many metabolites along the route have biological activities, especially in the nervous and immune systems. OBJECTIVE/METHODS This review focuses on three therapeutic areas, tumor immunoediting, schizophrenia, and Huntington's disease, apparently disconnected but linked by preliminary proof-of-concept of KP involvement. The potential embedded in drug discovery programs aimed at the identification of selective inhibitors with optimized pharmacodynamic and pharmacokinetic properties for human studies is discussed. RESULTS/CONCLUSIONS Recent advances have shifted the attention on the kynurenine pathway from a scientific curiosity to a clinically relevant collection of targets. A relatively large number of ligands able to interfere with individual enzymes of the pathway have been made available, but none have so far proceeded into advanced clinical studies.
Collapse
Affiliation(s)
- Gabriele Costantino
- Università degli Studi di Parma, Dipartimento Farmaceutico, Via GP Usberti 27/A-Campus Universitario, 43100 Parma, Italy.
| |
Collapse
|
126
|
Braidy N, Grant R, Brew BJ, Adams S, Jayasena T, Guillemin GJ. Effects of Kynurenine Pathway Metabolites on Intracellular NAD Synthesis and Cell Death in Human Primary Astrocytes and Neurons. Int J Tryptophan Res 2009; 2:61-9. [PMID: 22084582 PMCID: PMC3195228 DOI: 10.4137/ijtr.s2318] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The kynurenine pathway (KP) is a major route of L-tryptophan catabolism resulting in the production of the essential pyridine nucleotide nicotinamide adenine dinucleotide, (NAD+). Up-regulation of the KP during inflammation leads to the release of a number of biologically active metabolites into the brain. We hypothesised that while some of the extracellular KP metabolites may be beneficial for intracellular NAD+ synthesis and cell survival at physiological concentrations, they may contribute to neuronal and astroglial dysfunction and cell death at pathophysiological concentrations. In this study, we found that treatment of human primary neurons and astrocytes with 3-hydroxyanthranilic acid (3-HAA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC) at concentrations below 100 nM significantly increased intracellular NAD+ levels compared to non-treated cells. However, a dose dependent decrease in intracellular NAD+ levels and increased extracellular LDH activity was observed in human astrocytes and neurons treated with 3-HAA, 3-HK, QUIN and PIC at concentrations >100 nM and kynurenine (KYN), at concentrations above 1 μM. Intracellular NAD+ levels were unchanged in the presence of the neuroprotectant, kynurenic acid (KYNA), and a dose dependent increase in intracellular NAD+ levels was observed for TRP up to 1 mM. While anthranilic acid (AA) increased intracellular NAD+ levels at concentration below 10 μM in astrocytes. NAD+ depletion and cell death was observed in AA treated neurons at concentrations above 500 nM. Therefore, the differing responses of astrocytes and neurons to an increase in KP metabolites should be considered when assessing KP toxicity during neuroinflammation.
Collapse
Affiliation(s)
- Nady Braidy
- University of New South Wales, Faculty of Medicine, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
127
|
Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L. The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 2009; 283:21-7. [PMID: 19268309 DOI: 10.1016/j.jns.2009.02.326] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The metabolism of tryptophan mostly proceeds through the kynurenine pathway. The biochemical reaction includes both an agonist (quinolinic acid) at the N-methyl-d-aspartate receptor and an antagonist (kynurenic acid). Besides the N-methyl-d-aspartate antagonism, an important feature of kynurenic acid is the blockade of the alpha7-nicotinic acetylcholine receptor and its influence on the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a potent neurotoxin with an additional and marked free radical-producing property. In consequence of these various receptor activities, the possible roles of these substances in various neurological disorders have been proposed. Moreover, the possibility of influencing the kynurenine pathway to reduce quinolinic acid and increase the level of kynurenic acid in the brain offers a new target for drug action designed to change the balance, decreasing excitotoxins and enhancing neuroprotectants. This review surveys both the early and the current research in this field, focusing on the possible therapeutic effects of kynurenines.
Collapse
Affiliation(s)
- Eniko Vamos
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|
128
|
Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res 2009; 2:1-19. [PMID: 22084578 PMCID: PMC3195227 DOI: 10.4137/ijtr.s2097] [Citation(s) in RCA: 450] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tryptophan is an essential amino acid that can be metabolised through different pathways, a major route being the kynurenine pathway. The first enzyme of the pathway, indoleamine-2,3-dioxygenase, is strongly stimulated by inflammatory molecules, particularly interferon gamma. Thus, the kynurenine pathway is often systematically up-regulated when the immune response is activated. The biological significance is that 1) the depletion of tryptophan and generation of kynurenines play a key modulatory role in the immune response; and 2) some of the kynurenines, such as quinolinic acid, 3-hydroxykynurenine and kynurenic acid, are neuroactive. The kynurenine pathway has been demonstrated to be involved in many diseases and disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, AIDS dementia complex, malaria, cancer, depression and schizophrenia, where imbalances in tryptophan and kynurenines have been found. This review compiles most of these studies and provides an overview of how the kynurenine pathway might be contributing to disease development, and the concentrations of tryptophan and kynurenines in the serum, cerebrospinal fluid and brain tissues in control and patient subjects.
Collapse
Affiliation(s)
- Yiquan Chen
- School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Gilles J. Guillemin
- School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst 2010, Australia
| |
Collapse
|
129
|
Promotion of cellular NAD(+) anabolism: therapeutic potential for oxidative stress in ageing and Alzheimer's disease. Neurotox Res 2008; 13:173-84. [PMID: 18522897 DOI: 10.1007/bf03033501] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidative imbalance is a prominent feature in Alzheimer's disease and ageing. Increased levels of reactive oxygen species (ROS) can result in disordered cellular metabolism due to lipid peroxdation, protein-cross linking, DNA damage and the depletion of nicotinamide adenine dinucleotide (NAD(+)). NAD(+) is a ubiquitous pyridine nucleotide that plays an essential role in important biological reactions., from ATP production and secondary messenger signaling, to transcriptional regulation and DNA repair. Chronic oxidative stress may be associated with NAD(+) depletion and a subsequent decrease in metabolic regulation and cell viability. Hence, therapies targeted toward maintaining intracellular NAD(+) pools may prove efficacious in the protection of age-dependent cellular damage, in general, and neurodegeneration in chronic central nervous system inflammatory diseases such as Alzheimer's disease, in particular.
Collapse
|
130
|
Figueiredo C, Pais TF, Gomes JR, Chatterjee S. Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 2008; 107:73-85. [PMID: 18643872 DOI: 10.1111/j.1471-4159.2008.05577.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glial cells and neurons are in constant reciprocal signalling both under physiological and neuropathological conditions. Microglial activation is often associated with neuronal death during inflammation of the CNS, although microglial cells are also known to exert a neuroprotective role. In this work, we investigated the interplay between cerebellar granule neurons (CGN) and microglia in the perspective of CGN survival to an excitotoxic stimulus, quinolinic acid (QA), a catabolite of the tryptophan degradation pathway. We observed that CGN succumb to QA challenge via extracellular signal regulated kinase 1 and 2 (ERK) activation. Our data with transgenic mice expressing the natural inhibitor of calpains, calpastatin, indicate that together with cathepsins they mediate QA-induced toxicity acting downstream of the mitogen-activated protein kinase kinase-ERK pathway. Microglial cells are not only resistant to QA but can rescue neurons from QA-mediated toxicity when they are mixed in culture with neurons or by using mixed culture-conditioned medium (MCCM). This effect is mediated via fibroblast growth factor-2 (FGF-2) present in MCCM. FGF-2 is transcriptionally up-regulated in neurons and secreted in the MCCM as a result of neuron-microglia crosstalk. The neuroprotection is associated with the retention of cathepsins in the lysosomes and with transactivation of inducible heat-shock protein 70 downstream of FGF-2. Furthermore, FGF-2 upon release by neurons activates c-jun N-terminal kinase 1 and 2 pathway which also contributes to neuronal survival. We suggest that FGF-2 plays a pivotal role in neuroprotection against QA as an outcome of neuron-microglia interaction.
Collapse
Affiliation(s)
- Catarina Figueiredo
- Centro Biologia Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | |
Collapse
|
131
|
Taguchi A, Hara A, Saito K, Hoshi M, Niwa M, Seishima M, Mori H. Localization and spatiotemporal expression of IDO following transient forebrain ischemia in gerbils. Brain Res 2008; 1217:78-85. [DOI: 10.1016/j.brainres.2008.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 02/15/2008] [Accepted: 02/16/2008] [Indexed: 11/26/2022]
|
132
|
di Luccio E, Wilson DK. Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae. Biochemistry 2008; 47:4039-50. [PMID: 18321072 DOI: 10.1021/bi7020475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinolinic acid phosphoribosyl transferase (QAPRTase, EC 2.4.2.19) is a 32 kDa enzyme encoded by the BNA6 gene in yeast and catalyzes the formation of nicotinate mononucleotide from quinolinate and 5-phosphoribosyl-1-pyrophosphate (PRPP). QAPRTase plays a key role in the tryptophan degradation pathway via kynurenine, leading to the de novo biosynthesis of NAD (+) and clearing the neurotoxin quinolinate. To improve our understanding of the specificity of the eukaryotic enzyme and the course of events associated with catalysis, we have determined the crystal structures of the apo and singly bound forms with the substrates quinolinate and PRPP. This reveals that the enzyme folds in a manner similar to that of various prokaryotic forms which are approximately 30% identical in sequence. In addition, the structure of the Michaelis complex is approximated by PRPP and the quinolinate analogue phthalate bound to the active site. These results allow insight into the kinetic mechanism of QAPRTase and provide an understanding of structural diversity in the active site of the Saccharomyces cerevisiae enzyme when compared to prokaryotic homologues.
Collapse
Affiliation(s)
- Eric di Luccio
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
133
|
Abstract
L-kynurenine is an intermediate in the pathway of the metabolism of L-tryptophan to nicotinic acid. L-kynurenine is formed in the mammalian brain (40%) and is taken up from the periphery (60%), indicating that it can be transported across the BBB. It was discovered some 30 years ago that compounds in the kynurenine family have neuroactive properties. L-kynurenine, the central agent of this pathway, can be converted into two other important compounds: the neuroprotective kynurenic acid and the neurotoxic quinolinic acid. Kynurenines have been shown to be involved in many diverse physiological and pathological processes. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. This review summarizes the main steps of the kynurenine pathway under normal conditions, discusses the metabolic disturbances and changes in this pathway in certain neurodegenerative disorders, and finally introduces the therapeutic possibilities with kynurenines.
Collapse
Affiliation(s)
- Hermina Robotka
- University of Szeged, Department of Physiology, Anatomy & Neuroscience, POB 533, and,Department of Neurology, POB 427, H-6701 Szeged, Hungary
| | - József Toldi
- University of Szeged, Department of Physiology, Anatomy & Neuroscience, POB 533, H-6701 Szeged, Hungary
| | - László Vécsei
- University of Szeged, Department of Neurology, POB 427, H-6701 Szeged, Hungary
| |
Collapse
|
134
|
Yadav MC, Burudi EME, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS. IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 2007; 55:1385-96. [PMID: 17661345 PMCID: PMC2486430 DOI: 10.1002/glia.20544] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, has been implicated in the pathogenesis of various neurological disorders. IDO expression is induced by IFN-gamma and leads to neurotoxicity by generating quinolinic acid. Additionally, it inhibits the immune response through both tryptophan depletion and generating other tryptophan catabolites. IL-4 and IL-13 have been shown to control IDO expression by antagonizing the effects of IFN-gamma in different cell types. Here, we investigated the effects of these cytokines on IDO expression in microglia. Interestingly, we observed that both IL-4 and IL-13 greatly enhanced IFN-gamma-induced IDO expression. However, tryptophanyl-tRNA synthetase (WRS), which is coinduced with IDO by IFN-gamma, is downregulated by IL-4 and IL-13. The effect of IL-4 and IL-13 was independent of STAT-6. Modulation of IDO but not WRS was eliminated by inhibition of protein phosphatase 2A (PP2A) activity. The phosphatidylinositol 3-kinase (PI3K) pathway further differentiated the regulation of these two enzymes, as inhibiting the PI3K pathway eliminated IFN-gamma induction of IDO, whereas such inhibition greatly enhanced WRS expression. These findings show discordance between modulations of expression of two distinct enzymes utilizing tryptophan as a common substrate, and raise the possibility of their involvement in regulating immune responses in various neurological disorders.
Collapse
Affiliation(s)
- Manisha C Yadav
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Ting KK, Brew BJ, Guillemin GJ. Effect of quinolinic acid on gene expression in human astrocytes: Implications for Alzheimer's disease. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
136
|
Guillemin GJ, Brew BJ. Chronic HIV infection leads to an Alzheimer's disease like illness. Involvement of the kynurenine pathway. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
137
|
Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 2007; 257:221-39. [PMID: 17462670 DOI: 10.1016/j.jns.2007.01.033] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mitochondria have several important functions in the cell. A mitochondrial dysfunction causes an abatement in ATP production, oxidative damage and the induction of apoptosis, all of which are involved in the pathogenesis of numerous disorders. This review focuses on mitochondrial dysfunctions and discusses their consequences and potential roles in the pathomechanism of neurodegenerative disorders. Other pathogenetic factors are also briefly surveyed. The second part of the review deals with the kynurenine metabolic pathway, its alterations and their potential association with cellular energy impairment in certain neurodegenerative diseases. During energy production, most of the O(2) consumed by the mitochondria is reduced fully to water, but 1-2% of the O(2) is reduced incompletely to give the superoxide anion (O(2)(-)). If the function of one or more respiratory chain complexes is impaired for any reason, the enhanced production of free radicals further worsens the mitochondrial function by causing oxidative damage to macromolecules, and by opening the mitochondrial permeability transition pores thereby inducing apoptosis. These high-conductance pores offer a pathway which can open in response to certain stimuli, leading to the induction of the cells' own suicide program. This program plays an essential role in regulating growth and development, in the differentiation of immune cells, and in the elimination of abnormal cells from the organism. Both failure and exaggeration of apoptosis in a human body can lead to disease. The increasing amount of superoxide anions can react with nitric oxide to yield the highly toxic peroxynitrite anion, which can destroy cellular macromolecules. The roles of oxidative, nitrative and nitrosative damage are discussed. Senescence is accompanied by a higher degree of reactive oxygen species production, and by diminished functions of the endoplasmic reticulum and the proteasome system, which are responsible for maintenance of the normal protein homeostasis of the cell. In the event of a dysfunction of the endoplasmic reticulum, unfolded proteins aggregate in it, forming potentially toxic deposits which tend to be resistant to degradation. Cells possess adaptive mechanisms with which to avoid the accumulation of incorrectly folded proteins. These involve molecular chaperones that fold proteins correctly, and the ubiquitin proteasome system which degrades misfolded, unwanted proteins. Both the endoplasmic reticulum and the ubiquitin proteasome system fulfill cellular protein quality control functions. The kynurenine system: Tryptophan is metabolized via several pathways, the main one being the kynurenine pathway. A central compound of the pathway is kynurenine (KYN), which can be metabolized in two separate ways: one branch furnishing kynurenic acid, and the other 3-hydroxykynurenine and quinolinic acid, the precursors of NAD. An important feature of kynurenic acid is the fact that it is one of the few known endogenous excitatory amino acid receptor blockers with a broad spectrum of antagonistic properties in supraphysiological concentrations. One of its recently confirmed sites of action is the alpha7-nicotinic acetylcholine receptor and interestingly, a more recently identified one is a higher affinity positive modulatory binding site at the AMPA receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a specific agonist at the N-methyl-d-aspartate receptors, and a potent neurotoxin with an additional and marked free radical-producing property. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. These changes may disturb normal brain function and can add to the pathomechanisms of the diseases. In certain disorders, there is a quinolinic acid overproduction, while in others the alterations in brain kynurenic acid levels are more pronounced. A more precise knowledge of these alterations yields a basis for getting better therapeutic possibilities. The last part of the review discusses metabolic disturbances and changes in the kynurenine metabolic pathway in Parkinson's, Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, University of Szeged, POB 427, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
138
|
Schuck PF, Tonin A, da Costa Ferreira G, Viegas CM, Latini A, Duval Wannmacher CM, de Souza Wyse AT, Dutra-Filho CS, Wajner M. Kynurenines impair energy metabolism in rat cerebral cortex. Cell Mol Neurobiol 2007; 27:147-60. [PMID: 17151944 PMCID: PMC11517205 DOI: 10.1007/s10571-006-9124-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/27/2006] [Indexed: 12/22/2022]
Abstract
Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of L-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington's disease, Parkinson's disease and Alzheimer's disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of L-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I-IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except L-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I-III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Anelise Tonin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Gustavo da Costa Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Alexandra Latini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Angela Terezinha de Souza Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carlos Severo Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- Universidade Luterana do Brasil, Canoas, RS Brazil
| |
Collapse
|
139
|
Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Latini A, Wajner M. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 2007; 50:83-94. [PMID: 16959377 DOI: 10.1016/j.neuint.2006.04.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/25/2022]
Abstract
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 2006; 25:2566-75. [PMID: 15758166 PMCID: PMC6725188 DOI: 10.1523/jneurosci.4998-04.2005] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although abundant reactive microglia are found associated with beta-amyloid (Abeta) plaques in Alzheimer's disease (AD) brains, their contribution to cell loss remains speculative. A variety of studies have documented the ability of Abeta fibrils to directly stimulate microglia in vitro to assume a neurotoxic phenotype characterized by secretion of a plethora of proinflammatory molecules. Collectively, these data suggest that activated microglia play a direct role in contributing to neuron death in AD rather than simply a role in clearance after plaque deposition. Although it is clear the Abeta-stimulated microglia acutely secrete toxic oxidizing species, the identity of longer-lived neurotoxic agents remains less defined. We used Abeta-stimulated conditioned media from primary mouse microglia to identify more stable neurotoxic secretions. The NMDA receptor antagonists memantine and 2-amino-5-phosphopetanoic acid as well as soluble tumor necrosis factor alpha (TNFalpha) receptor protect neurons from microglial-conditioned media-dependent death, implicating the excitatory neurotransmitter glutamate and the proinflammatory cytokine TNFalpha as effectors of microglial-stimulated death. Neuron death occurs in an oxidative damage-dependent manner, requiring activity of inducible nitric oxide synthase. Toxicity results from coincident stimulation of the TNFalpha and NMDA receptors, because stimulations of either alone are insufficient to initiate cell death. These findings suggest the hypothesis that AD brains provide the appropriate microglial-mediated inflammatory environment for TNFalpha and glutamate to synergistically stimulate toxic activation of their respective signaling pathways in neurons as a contributing mechanism of cell death.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
141
|
Németh H, Toldi J, Vécsei L. Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:285-304. [PMID: 17017544 DOI: 10.1007/978-3-211-45295-0_45] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The kynurenine pathway is the main pathway of tryptophan metabolism. L-kynurenine is a central compound of this pathway since it can change to the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds' balance can be observable in many disorders. It can be occur in neurodegenerative disorders, such as Parkinson's disease, Huntington's and Alzheimer's disease, in stroke, in epilepsy, in multiple sclerosis, in amyotrophic lateral sclerosis, and in mental failures, such as schizophrenia and depression. The increase of QUIN concentration or decrease of KYNA concentration could enhance the symptoms of several diseases. According to numerous studies, lowered KYNA level was found in patients with Parkinson's disease. It can be also noticeable that KYNA-treatment prevents against the QUIN-induced lesion of rat striatum in animal experiments. Administrating of KYNA can be appear a promising therapeutic approach, but its use is limited because of its poorly transport across the blood-brain barrier. The solution may be the development of KYNA analogues (e.g. glucoseamine-kynurenic acid) which can pass across this barrier and disengaging in the brain, then KYNA can exert its neuroprotective effects binding at the excitatory glutamate receptors, in particular the NMDA receptors. Furthermore, it seems hopeful to use kynurenine derivatives (e.g. 4-chloro-kynurenine) or enzyme inhibitors (e.g. Ro-61-8048) to ensure an increased kynurenic acid concentration in the central nervous system.
Collapse
Affiliation(s)
- H Németh
- Department of Neurology, University of Szeged, Hungary
| | | | | |
Collapse
|
142
|
Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE. Gene expression changes by amyloid β peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 2005; 79:596-610. [PMID: 16365156 DOI: 10.1189/jlb.0705377] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A central feature of the inflammatory pathology in Alzheimer's disease is activated microglia clustered around aggregated amyloid beta (Abeta) peptide-containing plaques. In vitro-cultured microglia can be activated to an inflammatory state by aggregated Abeta with the induction of a range of different neurotoxic factors and provide a model system for studying microglia Abeta interactions. Gene expression responses of human postmortem brain-derived microglia to aggregated Abeta were measured using whole genome microarrays to address the hypothesis that Abeta interactions with human microglia primarily induce proinflammatory genes and not activation of genes involved in Abeta phagocytosis and removal. The results demonstrated that Abeta activation of microglia induced a large alteration in gene transcription including activation of many proinflammatory cytokines and chemokines, most notably, interleukin (IL)-1beta, IL-8, and matrix metalloproteinases (MMP), including MMP1, MMP3, MMP9, MMP10, and MMP12. All of these genes could amplify ongoing inflammation, resulting in further neuronal loss. Changes in expression of receptors associated with Abeta phagocytosis did not match the changes in proinflammatory gene expression. Time-course gene expression profiling, along with real-time polymerase chain reaction validation of expression changes, demonstrated an acute phase of gene induction for many proinflammatory genes but also chronic activation for many other potentially toxic products. These chronically activated genes included indoleamine 2,3-dioxygenase and kynureninase, which are involved in formation of the neurotoxin quinolinic acid, and S100A8, a potential proinflammatory chemokine. These studies show that activation of microglia by Abeta induces multiple genes that could be involved in inflammatory responses contributing to neurodegenerative processes.
Collapse
Affiliation(s)
- Douglas G Walker
- Laboratory of Neuroinflammation, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | | | | | | | |
Collapse
|
143
|
Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus. Neuropathol Appl Neurobiol 2005; 31:395-404. [PMID: 16008823 DOI: 10.1111/j.1365-2990.2005.00655.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present immunohistochemical study provides evidence that the kynurenine pathway is up-regulated in Alzheimer's disease (AD) brain, leading to increases in the excitotoxin quinolinic acid (QUIN). We show that the regulatory enzyme of the pathway leading to QUIN synthesis, indoleamine 2,3 dioxygenase (IDO) is abundant in AD compared with controls. In AD hippocampus, both IDO- and QUIN-immunoreactivity (-IR) was detected in cortical microglia, astrocytes and neurones, with microglial and astrocytic expression of IDO and QUIN highest in the perimeter of senile plaques. QUIN-IR was present in granular deposits within the neuronal soma of AD cortex and was also seen uniformly labelling neurofibrillary tangles. Our data imply that QUIN may be involved in the complex and multifactorial cascade leading to neuro-degeneration in AD. These results may open a new therapeutic door for AD patients.
Collapse
Affiliation(s)
- G J Guillemin
- Centre for Immunology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | | | | | | | | |
Collapse
|
144
|
Nilsson LK, Linderholm KR, Erhardt S. Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons. J Neural Transm (Vienna) 2005; 113:557-71. [PMID: 16082514 DOI: 10.1007/s00702-005-0343-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/28/2005] [Indexed: 11/30/2022]
Abstract
Acute elevation of the endogenous NMDA-receptor antagonist kynurenic acid (KYNA) is associated with an increased neuronal activity of rat ventral tegmental area (VTA) dopamine (DA) neurons and disruption in prepulse inhibition (PPI). In the present study, the effects of subchronic exposure to kynurenine and probenecid (20 mg/kg/day and 10 mg/kg/day, respectively for 14 days), aiming at increasing brain KYNA turnover, on rat VTA dopaminergic firing and on PPI were investigated. This treatment increased neuronal firing of VTA DA neurons, changed the response of these neurons to systemically administered nicotine (3-400 microg/kg, i.v.) and tended to disrupt PPI. Present results show that the effect on firing of VTA DA neurons by acutely elevated levels of brain KYNA also persists following subchronic exposure. In addition, no adaptive changes seem to occur with regard to the electrophysiological effects of KYNA on VTA DA neurons following subchronic treatment with kynurenine and probenecid.
Collapse
Affiliation(s)
- L K Nilsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
145
|
Walker DG, Lue LF. Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer's disease and other neurodegenerative diseases. J Neurosci Res 2005; 81:412-25. [PMID: 15957156 DOI: 10.1002/jnr.20484] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammation-mediated mechanisms for human neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) have evolved from being on the fringe of medical hypotheses to mainstream thinking. Pioneering immunopathology studies with human brain tissues identified microglia associated with neuropathologic hallmarks of these diseases. As activated macrophages were known to produce many potential toxic products, this gave rise to the hypothesis that activated microglia (brain resident macrophages) could be contributing to the degeneration of key target neurons in these diseases, as well as potential vascular dysfunction. Studies with microglia derived from different sources, including human brains, have confirmed that activated microglia can mediate neuronal cell death. Based on these theories, a number of human clinical trials with antiinflammatory agents have been carried out on AD patients. Results to date have indicated a lack of effectiveness at slowing disease progression and have begun to cast doubt on the significance of inflammation in AD. It has been shown recently that activating microglia through immunization of amyloid plaque-developing mice with amyloid beta peptide (Abeta) has promise as a therapeutic strategy and despite some setbacks, has potential as a treatment for AD patients. This article will consider experimental data with microglia to determine whether the additional targets need to be investigated. The use of human microglia cultures, in particular those derived from elderly diseased human brains, offers an experimental system that can closely model the cell type activated in human neurodegenerative diseases. Experimental data produced by our laboratory and others is reviewed to determine the contribution of this unique experimental model to understanding disease mechanisms and possibly discovering new therapeutic targets.
Collapse
Affiliation(s)
- D G Walker
- Laboratory of Neuroinflammation, Sun Health Research Institute, Sun City, Arizona 85351, USA.
| | | |
Collapse
|
146
|
Abstract
AIM To explore the underlying mechanism of tau hyperphosphorylation in an Alzheimeros-affected brain and the possible arresting strategies. METHODS MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide), crystal violet assay, phase-contrast, dead end colorimetric apoptosis detection system (TUNEL) and electron microscopy were used to detect cell viability, morphology and apoptosis. Western blot, 32P-labeling and the detection of malondialdehyde level and superoxide dismutase activity were used respectively for the phosphorylation level of tau, the activity of glycogen synthase kinase (GSK-3), and oxidative stress measurement. RESULTS Exposure of the cells to wortmannin resulted in an obvious lipid peroxidation, reduction of cell viability, cell process retraction, and plasma vacuolation, but with no obvious cell apoptosis. We also found that preincubation of the cells with melatonin or vitamin E attenuated differentially wortmannin-induced oxidative stress as well as GSK-3 overactivation and tau hyperphosphorylation. CONCLUSION Wortmannin is an effective tool for reproducing Alzheimer-like tau hyperphosphorylation cell model and melatonin/vitamin E can effectively protect the cells from wortmannin-induced impairments.
Collapse
Affiliation(s)
- Yan-qiu Deng
- Department of Pathophysiology, Institute of Neuroscience, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
147
|
Abstract
Human immunodeficiency virus (HIV) infection is often complicated by the development of acquired immunodeficiency syndrome (AIDS) dementia complex (ADC). Quinolinic acid (QUIN) is an end product of tryptophan, metabolized through the kynurenine pathway (KP) that can act as an endogenous brain excitotoxin when produced and released by activated macrophages/microglia, the very cells that are prominent in the pathogenesis of ADC. This review examines QUIN's involvement in the features of ADC and its role in pathogenesis. We then synthesize these findings into a hypothetical model for the role played by QUIN in ADC, and discuss the implications of this model for ADC and other inflammatory brain diseases.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | | | | |
Collapse
|
148
|
Berger RP, Heyes MP, Wisniewski SR, Adelson PD, Thomas N, Kochanek PM. Assessment of the Macrophage Marker Quinolinic Acid in Cerebrospinal Fluid after Pediatric Traumatic Brain Injury: Insight into the Timing and Severity of Injury in Child Abuse. J Neurotrauma 2004; 21:1123-30. [PMID: 15453983 DOI: 10.1089/neu.2004.21.1123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study measured quinolinic acid (QUIN), a macrophage-microglia derived neurotoxin, in the cerebrospinal fluid (CSF) of children after non-inflicted and inflicted traumatic brain injury (nTBI, iTBI), and correlated QUIN concentrations with age, mechanism of injury (nTBi vs. iTBI), Glasgow Coma Scale (GCS) score and 6-month Glasgow Outcome Score. One hundred fifty-two CSF samples were collected from 51 children with severe TBI (GCS < or = 8). CSF was collected at the time an intraventricular catheter was placed and daily thereafter. QUIN concentration was measured by gas chromatography-mass spectroscopy. Patients ranged in age from 2 months to 16 years. Eleven children (22%) had iTBI. Initial and peak CSF QUIN concentrations were higher in patients with iTBI versus nTBI after adjusting for time after injury and GCS. Despite the lack of a history of trauma in 82% of children with iTBI, 100% had a peak QUIN concentration of >100 nM. There was a significant increase in the CSF concentrations of QUIN following severe nTBI and iTBI in children. Higher initial and peak QUIN concentrations after iTBI may be due to severity of injury, young age, and/or delay in seeking medical care, which allows for increased secondary injury.
Collapse
Affiliation(s)
- Rachel Pardes Berger
- Department of Pediatrics, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
149
|
Matthijs S, Baysse C, Koedam N, Tehrani KA, Verheyden L, Budzikiewicz H, Schäfer M, Hoorelbeke B, Meyer JM, De Greve H, Cornelis P. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 2004; 52:371-84. [PMID: 15066027 DOI: 10.1111/j.1365-2958.2004.03999.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To cope with iron deficiency fluorescent pseudomonads produce pyoverdines which are complex peptidic siderophores that very efficiently scavenge iron. In addition to pyoverdine some species also produce other siderophores. Recently, it was shown that Pseudomonas fluorescens ATCC 17400 produces the siderophore quinolobactin, an 8-hydroxy-4-methoxy-2-quinoline carboxylic acid (Mossialos, D., Meyer, J.M., Budzikiewicz, H., Wolff, U., Koedam, N., Baysse, C., Anjaiah, V., and Cornelis, P. (2000) Appl Environ Microbiol 66: 487-492). The entire quinolobactin biosynthetic, transport and uptake gene cluster, consisting out of two operons comprising 12 open reading frames, was cloned and sequenced. Based on the genes present and physiological complementation assays a biosynthetic pathway for quinolobactin is proposed. Surprisingly, this pathway turned out to combine genes derived from the eukaryotic tryptophan-xanthurenic acid branch of the kynurenine pathway and from the pathway for the biosynthesis of pyridine-2,6-bis(thiocarboxylic acid) from P. stutzeri, PDTC. These results clearly show the involvement of the tryptophan-kynurenine-xanthurenic acid pathway in the synthesis of an authentic quinoline siderophore.
Collapse
Affiliation(s)
- Sandra Matthijs
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Guillemin GJ, Smythe GA, Veas LA, Takikawa O, Brew BJ. A beta 1-42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport 2004; 14:2311-5. [PMID: 14663182 DOI: 10.1097/00001756-200312190-00005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We hypothesized that the tryptophan catabolites produced through the kynurenine pathway (KP), and more particularly the excitotoxin quinolinic acid (QUIN), may play an important role in the pathogenesis of Alzheimer's disease (AD). In this study, we demonstrated that aggregated amyloid peptide A beta 1-42 induced indoleamine 2,3-dioxygenase (IDO) expression and resulted in a significant increase in production of QUIN by human primary macrophages and microglia. In contrast, A beta 1-40 and prion peptide (PrP) 106-126 did not induce any significant increase in QUIN production. These data imply that local QUIN production may be one of the factors involved in the pathogenesis of neuronal damage in AD.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia.
| | | | | | | | | |
Collapse
|