101
|
Park JM, Lee WH, Seo H, Oh JY, Lee DY, Kim SJ, Hahm KB. Fecal microbiota changes with fermented kimchi intake regulated either formation or advancement of colon adenoma. J Clin Biochem Nutr 2021. [PMID: 33879965 DOI: 10.3164/jcbn.20.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gut bacteria might contribute in early stage of colorectal cancer through the development and advancement of colon adenoma, by which exploring either beneficial bacteria, which are decreased in formation or advancement of colon adenoma and harmful bacteria, which are increased in advancement of colon adenoma may result in implementation of dietary interventions or probiotic therapies to functional means for prevention. Korean fermented kimchi is one of representative probiotic food providing beneficiary microbiota and exerting significant inhibitory outcomes in both APC/Min+ polyposis model and colitis-associated cancer. Based on these backgrounds, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers with normal colon, simple adenoma, and advanced colon adenoma with 10 weeks of fermented kimchi intake. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into Operational Taxonomic Units using VSEARCH and the Chao Indices, an estimator of richness of taxa per individual, were estimated to measure the diversity of each sample. Though significant difference in α or β diversity was not seen between three groups, kimchi intake significantly led to significant diversity of fecal microbiome. After genus analysis, Acinobacteria, Cyanobacteria, Clostridium sensu, Turicibacter, Gastronaeophillales, H. pittma were proven to be increased in patients with advanced colon adenoma, whereas Enterococcua Roseburia, Coryobacteriaceau, Bifidobacterium spp., and Akkermansia were proven to be significantly decreased in feces from patients with advanced colon adenoma after kimchi intake. Conclusively, fermented kimchi plentiful of beneficiary microbiota can afford significant inhibition of either formation or advancement of colon adenoma.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University School of Oriental Medicine, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | | | | | - Ji Young Oh
- CJ Food Research Center, Gwanggyo-ro, Yeongtong-gu, Suwon 16495, Korea
| | - Dong Yoon Lee
- CJ Food Research Center, Gwanggyo-ro, Yeongtong-gu, Suwon 16495, Korea
| | - Seong Jin Kim
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea.,Medpacto Research Institute, Medpacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea
| |
Collapse
|
102
|
Singh H, Clarke T, Brinkac L, Greco C, Nelson KE. Forensic Microbiome Database: A Tool for Forensic Geolocation Meta-Analysis Using Publicly Available 16S rRNA Microbiome Sequencing. Front Microbiol 2021; 12:644861. [PMID: 33833745 PMCID: PMC8022992 DOI: 10.3389/fmicb.2021.644861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The human microbiome has been proposed as a tool to investigate different forensic questions, including for the identification of multiple personal information. However, the fragmented state of the publicly available data has retarded the development of analysis techniques and, therefore, the implementation of microbiomes as a forensic tool. To address this, we introduce the forensic microbiome database (FMD), which is a collection of 16S rRNA data and associated metadata generated from publicly available data. The raw data was further normalized and processed using a pipeline to create a standardized data set for downstream analysis. We present a website allowing for the exploration of geolocation signals in the FMD. The website allows users to investigate the taxonomic differences between microbiomes harvested from different locations and to predict the geolocation of their data based on the FMD sequences. All the results are presented in dynamic graphics to allow for a rapid and intuitive investigation of the taxonomic distributions underpinning the geolocation signals and prediction between locations. Apart from the forensic aspect, the database also allows exploration and comparison of microbiome samples from different geolocation and between different body sites. The goal of the FMD is to provide the scientific and non-scientific communities with data and tools to explore the possibilities of microbiomes to answer forensic questions and serve as a model for any future such databases.
Collapse
Affiliation(s)
| | - Thomas Clarke
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | |
Collapse
|
103
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
104
|
Quinn CM, Porwal M, Meagher NS, Hettiaratchi A, Power C, Jonnaggadala J, McCullough S, Macmillan S, Tang K, Liauw W, Goldstein D, Zeps N, Crowe PJ. Moving with the Times: The Health Science Alliance (HSA) Biobank, Pathway to Sustainability. Biomark Insights 2021; 16:11772719211005745. [PMID: 35173407 PMCID: PMC8842439 DOI: 10.1177/11772719211005745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Human biobanks are recognised as vital components of translational research infrastructure. With the growth in personalised and precision medicine, and the associated expansion of biomarkers and novel therapeutics under development, it is critical that researchers can access a strong collection of patient biospecimens, annotated with clinical data. Biobanks globally are undertaking transformation of their operating models in response to changing research needs; transition from a ‘classic’ model representing a largely retrospective collection of pre-defined specimens to a more targeted, prospective collection model, although there remains a research need for both models to co-exist. Here we introduce the Health Science Alliance (HSA) Biobank, established in 2012 as a classic biobank, now transitioning to a hybrid operational model. Some of the past and current challenges encountered are discussed including clinical annotation, specimen utilisation and biobank sustainability, along with the measures the HSA Biobank is taking to address these challenges. We describe new directions being explored, going beyond traditional specimen collection into areas involving bioimages, microbiota and live cell culture. The HSA Biobank is working in collaboration with clinicians, pathologists and researchers, piloting a sustainable, robust platform with the potential to integrate future needs.
Collapse
Affiliation(s)
- Carmel M Quinn
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Mamta Porwal
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Nicola S Meagher
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Women’s and Children’s Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Anusha Hettiaratchi
- UNSW Biorepository, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Jitendra Jonnaggadala
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Population Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | | | - Stephanie Macmillan
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Katrina Tang
- NSW Health Pathology, South-East Sydney Local Health District, NSW, Australia
| | - Winston Liauw
- Cancer Care Clinic, St George Hospital, NSW, Australia
| | - David Goldstein
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nikolajs Zeps
- Epworth Healthcare, VIC, Australia
- Eastern Clinical School, Monash University, Clayton, VIC, Australia
| | - Philip J Crowe
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Department of Surgery, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
105
|
Koh GY, Kane AV, Wu X, Crott JW. Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice. Carcinogenesis 2021; 41:909-917. [PMID: 32115637 DOI: 10.1093/carcin/bgaa018] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Imbalance of the gut microbial community promotes inflammation and colorectal cancer (CRC). Previously, we demonstrated that freeze-dried Parabacteroides distasonis (Pd) suppressed obesity-driven colorectal tumorigenesis in mice. Here, we investigated if Pd could suppress the development of colon tumors in mice independent of obesity. Six-week-old male A/J mice were assigned to receive: (i) chow diet (CTR); (ii) chow with 0.04% wt/wt freeze-dried Pd (Pd-Early) or (iii) chow diet before switching to 0.04% Pd diet (Pd-Late). Mice remained on diet for 25 weeks with the switch for Pd-Late mice occurring after 19 weeks. All mice received 6 weekly injections of the colon carcinogen azoxymethane (AOM; 10 mg/kg I.P.) starting after 1 week on diet. Colon tumors were observed in 77, 55 and 40% in CTR, Pd-Early and Pd-Late mice, respectively (X2 = 0.047). Colonic expression of toll-like receptor 4, IL-4 and TNF-α was 40% (P < 0.01), 58% (P = 0.05) and 55% (P < 0.001) lower, respectively, in Pd-Early compared with CTR mice. Pd-Late mice displayed a 217% (P = 0.05) and 185% (P < 0.001) increase in colonic IL-10 and TGF-β expression, respectively, compared with CTR mice and similar increases in protein abundances were detected (47-145%; P < 0.05). Pd-Early and Pd-Late mice both demonstrated increased colonic expression of the tight junction proteins Zonula occludens-1 (P < 0.001) and occludin (P < 0.001) at the transcript (2-3-fold; P < 0.01) and protein level (30-50%; P < 0.05) relative to CTR. Our results support a protective role for Pd in colonic tumorigenesis and maintenance of intestinal epithelial barrier in AOM-treated mice.
Collapse
Affiliation(s)
- Gar Yee Koh
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Anne V Kane
- Phoenix Laboratory, Tufts University Medical Center, Boston, MA, USA
| | - Xian Wu
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jimmy W Crott
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
106
|
Babakhanov AT, Dzhumabekov AT, Zhao AV, Kuandykov YK, Tanabayeva SB, Fakhradiyev IR, Nazarenko Y, Saliev TM. Impact of Appendectomy on Gut Microbiota. Surg Infect (Larchmt) 2021; 22:651-661. [PMID: 33523761 DOI: 10.1089/sur.2020.422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Considered vestigial from the classic point of view, the vermiform appendix has long been the subject of intensive studies. The recent understanding of appendix function in the context of unique architecture and bacterial complexity and density allows considering it as a safehouse for intestinal biodiversity. Methods: This review analyzes and assesses the current state of scientific knowledge regarding the role of the vermiform appendix in normal gut microbiota maintenance as a crucial factor of host homeostasis. It also highlights the difference in microbial composition between the large bowel and the appendix, as well as the association between the surgical excision, appendectomy, and dysbiosis-induced diseases. In addition, the review discusses the results of epidemiologic studies on appendectomy as a risk factor for the initiation of gastrointestinal carcinogenesis. It also highlights the association between appendectomy and a series of chronic inflammatory and neurologic disorders, including inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | - Alexey V Zhao
- Institute of Surgery named after A.V. Vishnevsky, Moscow, Russia
| | - Yerlan K Kuandykov
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent Medical Institute Postgraduate Studies Faculty, Shymkent, Kazakhstan
| | | | | | - Yana Nazarenko
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Timur M Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
107
|
Lyu W, Jia H, Deng C, Yamada S, Kato H. Zeolite-containing mixture alleviates microbial dysbiosis in dextran sodium sulfate-induced colitis in mice. Food Sci Nutr 2021; 9:772-780. [PMID: 33598162 PMCID: PMC7866626 DOI: 10.1002/fsn3.2042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial immunomodulatory disorder. In relative nosogenesis, gut microbiota has been the focus of research on IBD. In our previous study, we demonstrated the ameliorating effect of zeolite-containing mixture (Hydryeast®, HY) on dextran sodium sulfate (DSS)-induced colitis, through transcriptomics and proteomics. In the present study, we performed further investigation from the perspective of metagenomics using the gut microbiota. C57BL6 mice were provided an AIN-93G basal diet or a 0.8% HY-containing diet, and sterilized tap water for 11 days. Thereafter, colitis was induced by providing 1.5% (w/v) DSS-containing water for 9 days. DNA was extracted from the cecal contents and pooled into libraries in a single Illumina MiSeq run. The resulting sequences were analyzed using Quantitative Insights Into Microbial Ecology (QIIME) software. According to the alterations in the relative abundance of certain bacteria, and the related gene and protein expressions, HY supplementation could improve the gut microbiota composition, ameliorate the degree of inflammation, inhibit the colonic mucosal microbial growth, and, to some extent, promote energy metabolism in the colon compared with the DSS treatment. Thus, we believe that HY may be a candidate to prevent and treat IBD.
Collapse
Affiliation(s)
- Weida Lyu
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Huijuan Jia
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | | | - Hisanori Kato
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
108
|
Ratajczak AE, Szymczak-Tomczak A, Zawada A, Rychter AM, Dobrowolska A, Krela-Kaźmierczak I. Does Drinking Coffee and Tea Affect Bone Metabolism in Patients with Inflammatory Bowel Diseases? Nutrients 2021; 13:nu13010216. [PMID: 33451170 PMCID: PMC7828660 DOI: 10.3390/nu13010216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Patients suffering from Crohn’s disease and ulcerative colitis are at higher risk of osteoporosis due to lower bone mineral density. Risk factors of osteoporosis are divided into unmodifiable, namely, age, gender, genetic factors, as well as modifiable, including diet, level of physical activity, and the use of stimulants. Coffee and tea contain numerous compounds affecting bone metabolism. Certain substances such as antioxidants may protect bones; other substances may increase bone resorption. Nevertheless, the influence of coffee and tea on the development and course of inflammatory bowel diseases is contradictory.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | | | - Iwona Krela-Kaźmierczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| |
Collapse
|
109
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
110
|
Kang X, Zhang R, Kwong TN, Lui RN, Wu WK, Sung JJ, Yu J, Wong SH. Serrated neoplasia in the colorectum: gut microbiota and molecular pathways. Gut Microbes 2021; 13:1-12. [PMID: 33382354 PMCID: PMC7781617 DOI: 10.1080/19490976.2020.1863135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with different gene expression patterns. There are two major colorectal carcinogenesis pathways: conventional adenoma-carcinoma pathway and alternative serrated neoplasia pathway. Apart from the conventional pathway that is typically initiated by characteristic APC mutation and chromosomal instability, the serrated neoplasia pathway is mainly characterized by mutations of BRAF or KRAS, microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). Despite the malignant potential of serrated lesions, they can be easily overlooked during endoscopy screening and even in pathological assessment due to its anatomical location, morphology, and histological features. It has been shown that environmental factors especially the gut microbial composition play a key role in CRC pathogenesis. Thus, the preferential localization of serrated lesions in specific intestine areas suggest that niche-specific microbiota composition might intertwined with host genetic perturbations during the development of serrated lesions. Although serrated lesions and conventional adenomas are biologically different, most studies have focused on conventional adenomas, while the pathophysiology and role of microorganisms in the development of serrated lesions remain elusive. In this review, we discuss on the role of gut microbiota in the serrated neoplasia pathway of colorectal carcinogenesis and its specific clinical and molecular features, and summarize the potential mechanisms involved.
Collapse
Affiliation(s)
- Xing Kang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ru Zhang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Gastroenterology, Department of Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Thomas Ny Kwong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rashid Ns Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Kk Wu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Joseph Jy Sung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
111
|
Huang QY, Yao F, Zhou CR, Huang XY, Wang Q, Long H, Wu QM. Role of gut microbiome in regulating the effectiveness of metformin in reducing colorectal cancer in type 2 diabetes. World J Clin Cases 2020; 8:6213-6228. [PMID: 33392303 PMCID: PMC7760447 DOI: 10.12998/wjcc.v8.i24.6213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence of colorectal cancer (CRC) and type 2 diabetes mellitus (T2DM) is increasing globally. It is rarely noticed that the incidence of CRC is higher in patients with T2DM. What needs to be mentioned is that metformin, a commonly used clinical drug for T2DM, attracts scholars’ attention because of its benefits in lowering the risk of developing CRC. Hence, we try to find the common grounds of initiation of T2DM and CRC and the reason why metformin reduces the risk of CRC in patients with T2DM. We noticed consistent changes of gut microbiota, such as elevated Bacteroides, Prevotella and Bifidobacterium and depressed Firmicutes and Lactobacillus. Furthermore, many studies in recent years have proved that the efficacy of metformin, such as improving blood glucose, depends on the gut microbiota. Coincidentally, the progression of CRC is inseparable from the contributions of gut microbiota. Therefore, we first proposed the concept of the metformin-gut microbiota–CRC (in T2DM) axis to explain the effect of metformin in reducing CRC in patients with T2DM. In this review, we elaborated the new concept and its potential clinical application value.
Collapse
Affiliation(s)
- Qi-You Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Fei Yao
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Chuan-Ren Zhou
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Xiao-Ying Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Hui Long
- Department of Gastroenterology, Tianyou Affiliated Hospital, Wuhan University of Science and Technology, Wuhan 430064, Hubei Province, China
| | - Qing-Ming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| |
Collapse
|
112
|
Park JM, Lee WH, Seo H, Oh JY, Lee DY, Kim SJ, Hahm KB. Fecal microbiota changes with fermented kimchi intake regulated either formation or advancement of colon adenoma. J Clin Biochem Nutr 2020; 68:139-148. [PMID: 33879965 DOI: 10.3164/jcbn.20-121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Gut bacteria might contribute in early stage of colorectal cancer through the development and advancement of colon adenoma, by which exploring either beneficial bacteria, which are decreased in formation or advancement of colon adenoma and harmful bacteria, which are increased in advancement of colon adenoma may result in implementation of dietary interventions or probiotic therapies to functional means for prevention. Korean fermented kimchi is one of representative probiotic food providing beneficiary microbiota and exerting significant inhibitory outcomes in both APC/Min+ polyposis model and colitis-associated cancer. Based on these backgrounds, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers with normal colon, simple adenoma, and advanced colon adenoma with 10 weeks of fermented kimchi intake. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into Operational Taxonomic Units using VSEARCH and the Chao Indices, an estimator of richness of taxa per individual, were estimated to measure the diversity of each sample. Though significant difference in α or β diversity was not seen between three groups, kimchi intake significantly led to significant diversity of fecal microbiome. After genus analysis, Acinobacteria, Cyanobacteria, Clostridium sensu, Turicibacter, Gastronaeophillales, H. pittma were proven to be increased in patients with advanced colon adenoma, whereas Enterococcua Roseburia, Coryobacteriaceau, Bifidobacterium spp., and Akkermansia were proven to be significantly decreased in feces from patients with advanced colon adenoma after kimchi intake. Conclusively, fermented kimchi plentiful of beneficiary microbiota can afford significant inhibition of either formation or advancement of colon adenoma.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University School of Oriental Medicine, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | | | | | - Ji Young Oh
- CJ Food Research Center, Gwanggyo-ro, Yeongtong-gu, Suwon 16495, Korea
| | - Dong Yoon Lee
- CJ Food Research Center, Gwanggyo-ro, Yeongtong-gu, Suwon 16495, Korea
| | - Seong Jin Kim
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea.,Medpacto Research Institute, Medpacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea
| |
Collapse
|
113
|
Trivieri N, Pracella R, Cariglia MG, Panebianco C, Parrella P, Visioli A, Giani F, Soriano AA, Barile C, Canistro G, Latiano TP, Dimitri L, Bazzocchi F, Cassano D, Vescovi AL, Pazienza V, Binda E. BRAF V600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:285. [PMID: 33317591 PMCID: PMC7737386 DOI: 10.1186/s13046-020-01801-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) harboring BRAFV600E mutation exhibits low response to conventional therapy and poorest prognosis. Due to the emerging correlation between gut microbiota and CRC carcinogenesis, we investigated in serrated BRAFV600E cases the existence of a peculiar fecal microbial fingerprint and specific bacterial markers, which might represent a tool for the development of more effective clinical strategies. METHODS By injecting human CRC stem-like cells isolated from BRAFV600E patients in immunocompromised mice, we described a new xenogeneic model of this subtype of CRC. By performing bacterial 16S rRNA sequencing, the fecal microbiota profile was then investigated either in CRC-carrying mice or in a cohort of human CRC subjects. The microbial communities' functional profile was also predicted. Data were compared with Mann-Whitney U, Welch's t-test for unequal variances and Kruskal-Wallis test with Benjamini-Hochberg false discovery rate (FDR) correction, extracted as potential BRAF class biomarkers and selected as model features. The obtained mean test prediction scores were subjected to Receiver Operating characteristic (ROC) analysis. To discriminate the BRAF status, a Random Forest classifier (RF) was employed. RESULTS A specific microbial signature distinctive for BRAF status emerged, being the BRAF-mutated cases closer to healthy controls than BRAF wild-type counterpart. In agreement, a considerable score of correlation was also pointed out between bacteria abundance from BRAF-mutated cases and the level of markers distinctive of BRAFV600E pathway, including those involved in inflammation, innate immune response and epithelial-mesenchymal transition. We provide evidence that two candidate bacterial markers, Prevotella enoeca and Ruthenibacterium lactatiformans, more abundant in BRAFV600E and BRAF wild-type subjects respectively, emerged as single factors with the best performance in distinguishing BRAF status (AUROC = 0.72 and 0.74, respectively, 95% confidence interval). Furthermore, the combination of the 10 differentially represented microorganisms between the two groups improved performance in discriminating serrated CRC driven by BRAF mutation from BRAF wild-type CRC cases (AUROC = 0.85, 95% confidence interval, 0.69-1.01). CONCLUSION Overall, our results suggest that BRAFV600E mutation itself drives a distinctive gut microbiota signature and provide predictive CRC-associated bacterial biomarkers able to discriminate BRAF status in CRC patients and, thus, useful to devise non-invasive patient-selective diagnostic strategies and patient-tailored optimized therapies.
Collapse
Affiliation(s)
- Nadia Trivieri
- Cancer Stem Cells Unit, ISBReMIT, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, ISBReMIT, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, ISBReMIT, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Concetta Panebianco
- Gastroenterology Unit, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Paola Parrella
- Oncology Laboratory, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | | | - Amata Amy Soriano
- Cancer Stem Cells Unit, ISBReMIT, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, ISBReMIT, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Giuseppe Canistro
- Abdominal Surgery Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Tiziana Pia Latiano
- Division of Medical Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Lucia Dimitri
- Anatomical Pathology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Francesca Bazzocchi
- Abdominal Surgery Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Dario Cassano
- Abdominal Surgery Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Angelo L Vescovi
- StemGen SpA, Milan, Italy.,Science Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Elena Binda
- Cancer Stem Cells Unit, ISBReMIT, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy. .,Cancer Stem Cells Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
114
|
Rezasoltani S, Ghanbari R, Looha MA, Mojarad EN, Yadegar A, Stewart D, Aghdaei HA, Zali MR. Expression of Main Toll-Like Receptors in Patients with Different Types of Colorectal Polyps and Their Relationship with Gut Microbiota. Int J Mol Sci 2020; 21:8968. [PMID: 33255933 PMCID: PMC7729598 DOI: 10.3390/ijms21238968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of Toll-like receptor (TLRs) signaling can result in colon cancer development. The aim of this study was to investigate the expression of important TLRs in different histological types of colorectal polyps and evaluate their relationship with intestinal microbiota. The expression levels of TLR2, 3, 4, and 5 were analyzed in intestinal biopsy specimens of 21 hyperplastic polyp (HP), 16 sessile serrated adenoma (SSA), 29 tubular adenoma (TA), 21 villous/tubulovillous (VP/TVP) cases, and 31 normal controls. In addition, selected gut bacteria including Streptococcus bovis, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Fusobacterium nucleatum, Porphyromonas spp., Lactobacillus spp., Roseburia spp., and Bifidobacterium spp. were quantified in fecal samples using absolute qRT PCR, and, finally, the association between TLRs and these gut microbiota- was evaluated by Spearman's correlation coefficient. Higher expression of TLR2 and TLR4 in VP/TVP and TA, and lower expression levels of TLR3 and TLR5 in all type of polyps were observed. The differences in TLR expression patterns was not only dependent on the histology, location, size, and dysplasia grade of polyps but also related to the intestinal microbiota patterns. TLR2 and TLR4 expression was directly associated with the F. nucleatum, E. faecalis, S. bovis, Porphyromonas, and inversely to Bifidobacterium, Lactobacillus, and Roseburia quantity. Furthermore, TLR3 and TLR5 expression was directly associated with Bifidobacterium, Roseburia, and Lactobacillus quantity. Our results suggest a possible critical role of TLRs during colorectal polyp progression. An abnormal regulation of TLRs in relation to gut microbial quantity may contribute to carcinogenesis.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (S.R.); (M.A.L.)
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (S.R.); (M.A.L.)
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (E.N.M.); (M.R.Z.)
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Delisha Stewart
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (S.R.); (M.A.L.)
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran; (E.N.M.); (M.R.Z.)
| |
Collapse
|
115
|
Jin Y, Geng R, Liu Y, Liu L, Jin X, Zhao F, Feng J, Wei Y. Prediction of Postoperative Ileus in Patients With Colorectal Cancer by Preoperative Gut Microbiota. Front Oncol 2020; 10:526009. [PMID: 33324541 PMCID: PMC7724052 DOI: 10.3389/fonc.2020.526009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ileus and postoperative ileus (POI) are common complications of colorectal cancer (CRC). However, little is known about the gut microbiota associated with ileus. Method Differences in gut microbiota were evaluated by 16S rRNA gene sequencing. We characterized the gut microbiota in 85 CRC patients (cohort 1) and detected differences, and an independent cohort composed of 38 CRC patients (cohort 2) was used to evaluate the results. Results The gut microbiota of CRC patients with and without ileus exhibited large differences in alpha- and beta-diversities and bacterial taxa. The Firmicutes-to-Bacteroidetes ratio and microbial dysbiosis index (MDI) showed greater dysbiosis among ileus patients than among those without ileus. According to the location of CRC, the difference in gut microbiota between patients with and without ileus was more obvious in those with distal CRC than in those with proximal CRC. Finally, Faecalibacterium was significantly reduced in the postoperative perioperative period in patients with ileus. Thus, we used Faecalibacterium as a biomarker for predicting perioperative or POI: the AUC value was 0.74 for perioperative ileus and 0.67 for POI that appeared at 6 months after hospital discharge. The predictive power was evaluated in Cohort 2, with an AUC value of 0.79. Conclusion These findings regarding difference of gut microbiota in postoperative CRC patients may provide a theoretical basis for the use of microbiota as biomarkers for the prediction of POI.
Collapse
Affiliation(s)
- Ye Jin
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Geng
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yang Liu
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lujia Liu
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
116
|
Peruhova M, Peshevska-Sekulovska M, Krastev B, Panayotova G, Georgieva V, Konakchieva R, Nikolaev G, Velikova TV. What could microRNA expression tell us more about colorectal serrated pathway carcinogenesis? World J Gastroenterol 2020; 26:6556-6571. [PMID: 33268946 PMCID: PMC7673963 DOI: 10.3748/wjg.v26.i42.6556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the vision of a unique carcinogenesis model for colorectal carcinoma (CRC) has completely changed. In addition to the adenoma to carcinoma transition, colorectal carcinogenesis can also occur via the serrated pathway. Small non-coding RNA, known as microRNAs (miRNAs), were also shown to be involved in progression towards malignancy. Furthermore, increased expression of certain miRNAs in premalignant sessile serrated lesions (SSLs) was found, emphasizing their role in the serrated pathway progression towards colon cancer. Since miRNAs function as post-transcriptional gene regulators, they have enormous potential to be used as useful biomarkers for CRC and screening in patients with SSLs particularly. In this review, we have summarized the most relevant information about the specific role of miRNAs and their relevant signaling pathways among different serrated lesions and polyps as well as in serrated adenocarcinoma. Additional focus is put on the correlation between gut immunity and miRNA expression in the serrated pathway, which remains unstudied.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Boris Krastev
- Department of Clinical Oncology, MHAT Hospital for Women Health Nadezhda, Sofia 1330, Bulgaria
| | - Gabriela Panayotova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Viktoriya Georgieva
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | | | - Georgi Nikolaev
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tsvetelina Veselinova Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
117
|
Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G, Yu DD, Yu XM, Zhao MS, Ye B. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:56-65. [PMID: 33277208 DOI: 10.1016/j.joim.2020.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE High-fat diet is one of the main risk factors that disrupt the balance of gut microbiota, which eventually will induce colorectal cancer (CRC). Evodiamine (EVO) is a wildly used multifunctional traditional Chinese medicine extract. In this study, we investigated the role of gut microbiota in high-fat diet-propelled CRC and the potential of EVO for CRC chemoprevention. METHODS Gut microbiota, serum d-lactic acid and endotoxin from 38 patients with colon cancer and 18 healthy subjects were detected by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). In addition, body mass index, phospho-signal transducer and activator of transcription 3 (p-STAT3) expression in cancer tissues and paracancerous tissues were detected by immunohistochemistry. A mouse intestinal inflammatory tumor model was established by azomethane/sodium dextran sulfate, followed by treatment with EVO and 5-aminosalicylic acid (ASA). Gut microbiota and inflammatory factors were detected by quantitative polymerase chain reaction, while serum d-lactic acid and endotoxin were detected by ELISA. Furthermore, cell proliferation, cell apoptosis, and interleukin (IL)-6/STAT3/P65 pathway were evaluated by 5-ethynyl-2'-deoxyuridine, terminal-deoxynucleotidyl transferase-mediated nick-end labeling, and Western blot assays. RESULTS In patients with colon cancer, the numbers of Enterococcus faecalis and Escherichia coli were increased, while those of Bifidobacterium, Campylobacter and Lactobacillus were decreased. Serum endotoxin and d-lactic acid levels and p-STAT3 levels were significantly increased. In the mouse model, both EVO and ASA inhibited tumor formation, decreased the proliferation of tumor cells, and induced apoptosis of tumor cells. Compared with the control group, the numbers of E. faecalis and E. coli were decreased, while Bifidobacterium, Campylobacter and Lactobacillus numbers were increased. In the EVO group, serum endotoxin and d-lactic acid levels and inflammatory factors were significantly decreased. Further, the IL6/STAT3/P65 signaling pathway was inhibited in the EVO group. CONCLUSION EVO may inhibit the occurrence of colon cancer by regulating gut microbiota and inhibiting intestinal inflammation. The potential mechanism involves inhibition of the IL6/STAT3/P65 signaling pathway, revealing its potential therapeutic significance in clinical applications.
Collapse
Affiliation(s)
- Li-Qing Zhu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China; Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Jia Zhang
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou 325023, Zhejiang Province, China
| | - Guo-Lin Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Dan-Dan Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Xiao-Min Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Mi-Sheng Zhao
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou 325023, Zhejiang Province, China.
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China; Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
118
|
Vacante M, Ciuni R, Basile F, Biondi A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020; 8:E489. [PMID: 33182693 PMCID: PMC7697438 DOI: 10.3390/biomedicines8110489] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
There is wide evidence that CRC could be prevented by regular physical activity, keeping a healthy body weight, and following a healthy and balanced diet. Many sporadic CRCs develop via the traditional adenoma-carcinoma pathway, starting as premalignant lesions represented by conventional, tubular or tubulovillous adenomas. The gut bacteria play a crucial role in regulating the host metabolism and also contribute to preserve intestinal barrier function and an effective immune response against pathogen colonization. The microbiota composition is different among people, and is conditioned by many environmental factors, such as diet, chemical exposure, and the use of antibiotic or other medication. The gut microbiota could be directly involved in the development of colorectal adenomas and the subsequent progression to CRC. Specific gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, and enterotoxigenic Bacteroides fragilis, could be involved in colorectal carcinogenesis. Potential mechanisms of CRC progression may include DNA damage, promotion of chronic inflammation, and release of bioactive carcinogenic metabolites. The aim of this review was to summarize the current knowledge on the role of the gut microbiota in the development of CRC, and discuss major mechanisms of microbiota-related progression of the adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
119
|
Oh NS, Lee JY, Kim YT, Kim SH, Lee JH. Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer. Gut Microbes 2020; 12:1785803. [PMID: 32663105 PMCID: PMC7524312 DOI: 10.1080/19490976.2020.1785803] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, a synbiotic combination of probiotic Lactobacillus gasseri 505 (LG) and a new prebiotic, Cudrania tricuspidata leaf extract (CT) in fermented milk, designated FCT, showed an in vitro immunomodulatory effect and antioxidant activity. Although synbiotic combination might have cancer-protective effects, these activities have not been fully validated in vivo. Ten-week treatment of LG, CT, or FCT to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated colorectal cancer (CAC) mouse model reduced both the incidence of colonic tumors and damage to the colonic mucosa effectively, suggesting a cancer-protective effect. To understand these, biomarkers associated with inflammation, colon barrier, apoptosis, and cancer cell proliferation were monitored in AOM/DSS group versus LG/CT/FCT groups. A synbiotic combination (FCT) down-regulated pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) and inflammation-associated enzymes (iNOS and COX-2), and up-regulated anti-inflammatory cytokines (IL-4 and IL-10). In addition, colon barrier experiment revealed that biomarkers of mucus layer (MUC-2 and TFF3) and tight junction (occludin and ZO-1) were up-regulated. Subsequent apoptosis experiment showed that pro-apoptotic factors (p53, p21, and Bax) were up-regulated and anti-apoptotic factors (Bcl-2 and Bcl-xL) were down-regulated. Furthermore, comparative metagenome analysis of gut microbiota revealed that Staphylococcus decreased but Lactobacillus, Bifidobacterium, and Akkermansia increased, supporting their protective effects, accompanied by increased short-chain fatty acids (SCFAs). Taken together, the FCT administration showed cancer-protective effects by reducing the risk of colitis-associated colon cancer via regulation of inflammation, carcinogenesis, and compositional change of gut microbiota. Consequently, the synbiotic combination (FCT) could be a novel potential health-protective natural agent against CAC.
Collapse
Affiliation(s)
- Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Ji Young Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sae Hun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea,Sae Hun Kim 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea,CONTACT Ju-Hoon Lee 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
120
|
Chen L, Li Z, Zeng T, Zhang YH, Liu D, Li H, Huang T, Cai YD. Identifying Robust Microbiota Signatures and Interpretable Rules to Distinguish Cancer Subtypes. Front Mol Biosci 2020; 7:604794. [PMID: 33330634 PMCID: PMC7672214 DOI: 10.3389/fmolb.2020.604794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer can be generally defined as a cluster of systematic diseases triggered by abnormal cell proliferation and growth. With the development of biological sciences and biotechnologies, the etiology of cancer is partially revealed, including some of the most substantial pathogenic factors [either endogenous (genetics) or exogenous (environmental)]. However, some remaining factors that contribute to the tumorigenesis but have not been analyzed and discussed in detail remain. For instance, some typical correlations between microorganisms and tumorigenesis have been reported already, but previous studies are just sporadic studies on single microorganism–cancer subtype pairs and do not explain and validate the specific contribution of microbiome on tumorigenesis. On the basis of the systematic microbiome analyses of blood and cancer-associated tissues in cancer patients/controls in public domain, we performed interpretable analyses. We identified several core regulatory microorganisms that contribute to the classification of multiple tumor subtypes and established quantitative predictive models for interpretable prediction by using multiple machine learning methods. We also compared the optimal features (microorganisms) and rules identified from microbiome profiles processed using the Kraken and the SHOGUN. Collectively, our study identified new microbiome signatures and their interpretable classification rules for cancer discrimination and carried out reliable methodological comparison for robust cancer microbiome analyses, thereby promoting the development of tumor etiology at the microbiome level.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Zhangjiang Laboratory, Institute of Brain-Intelligence Technology, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dejing Liu
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
121
|
Ling Y, Gong T, Zhang J, Gu Q, Gao X, Weng X, Liu J, Sun J. Gut Microbiome Signatures Are Biomarkers for Cognitive Impairment in Patients With Ischemic Stroke. Front Aging Neurosci 2020; 12:511562. [PMID: 33192448 PMCID: PMC7645221 DOI: 10.3389/fnagi.2020.511562] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common neuropsychiatric complication of stroke. Mounting evidence has demonstrated a connection between gut microbiota (GM) and neuropsychiatric disease. Our previous study revealed the changes in the GM in a mouse model of vascular dementia. However, the characteristic GM of PSCI remains unclear. This study aimed to characterize the GM of PSCI and explored the potential of GM as PSCI biomarkers. A total of 93 patients with ischemic stroke were enrolled in this study. The patients were divided into two groups according to their MoCA scores 3 months after stroke onset. Clinical data and biological variables were recorded. GM composition was analyzed using 16S ribosomal RNA sequencing, and the characteristic GM was identified by linear discriminant analysis Effect Size (Lefse). Our results showed that Proteobacteria was highly increased in the PSCI group compared with the post-stroke non-cognitive impairment (PSNCI) group, the similar alterations were also observed at the class, order, family, and genus levels of Proteobacteria. After age adjustments, the abundance of Firmicutes, and its members, including Clostridia, Clostridiales, Lachnospiraceae, and Lachnospiraceae_other, were significantly decreased in the age-matched PSCI group compared with the PSNCI group. Besides, the GM was closely associated with MoCA scores and the risk factors for PSCI, including higher baseline National Institute of Health Stroke Scale score, higher homocysteine (Hcy) level, higher prevalence of stroke recurrence, leukoaraiosis, and brain atrophy. The KEGG results showed the enriched module for folding, sorting and degradation (chaperones and folding catalysts) and the decreased modules related to metabolisms of cofactors and vitamins, amino acid, and lipid in PSCI patients. A significant correlation was observed between PSCI and the abundance of Enterobacteriaceae after adjustments (P = 0.035). Moreover, the receiver operating characteristic (ROC) models based on the characteristic GM and Enterobacteriaceae could distinguish PSCI patients from PSNCI patients [area under the curve (AUC) = 0.840, 0.629, respectively]. Our findings demonstrated that the characteristic GM, especially Enterobacteriaceae, might have the ability to predict PSCI in post-stroke patients, which are expected to be used as clinical biomarkers of PSCI.
Collapse
Affiliation(s)
- Yi Ling
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Junmei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qilu Gu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiongpeng Weng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
122
|
Wang P, Ding S, Sun L, Feng Y, Guo K, Zhu Y, Huang D, Ruan S. Characteristics and differences of gut microbiota in patients with different Traditional Chinese Medicine Syndromes of Colorectal Cancer and normal population. J Cancer 2020; 11:7357-7367. [PMID: 33193900 PMCID: PMC7646174 DOI: 10.7150/jca.50318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is considered to be closely associated with alteration of intestinal microorganisms. The purpose of present study was to investigate the distribution of gut microbiota in the distinction of microbiota dysbiosis between two disease syndromes called Zheng-Qi-Kui-Xu(ZQKX) and Xie-Du-Yong-Sheng (XDYS). First, From February 2019 to June 2019, CRC patients presenting to the oncology department of Zhejiang Province Hospital of TCM who met the established inclusion and exclusion criteria were enrolled in this prospective study. After fresh stool specimens of healthy volunteers and CRC patients with ZQKX or XDYS syndorme were collected, 16S rRNA gene amplification and sequencing could be used to identify the diversity and abundance of gut microbiota among groups. The results demonstrated that the composition of the microbiota in general control group was superior to those in experimental groups. At the phylum level, a significantly increased abundance of Bacteroides was observed in healthy volunteers. At the class level, Erysipelothrix decreased while Lactobacillaceae showed increased abundance in the ZQKX group compared to healthy controls. At the family level, Prevotella Shan and Collins decreased while Streptococcus significantly increased in patients with XDYS syndrome compared to healthy subjects. Five differential taxa were identified between ZQKX and XDYS syndromes. We suggest that the gut microbiota contributes to the distinction between the two TCM syndromes of CRC, which can be used as a biological basis of TCM syndrome differentiation treatment in CRC.
Collapse
Affiliation(s)
- Peipei Wang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Shuning Ding
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Z.J. China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Ying Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Dawei Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Z.J. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Z.J. China
| |
Collapse
|
123
|
Pop OL, Vodnar DC, Diaconeasa Z, Istrati M, Bințințan A, Bințințan VV, Suharoschi R, Gabbianelli R. An Overview of Gut Microbiota and Colon Diseases with a Focus on Adenomatous Colon Polyps. Int J Mol Sci 2020; 21:7359. [PMID: 33028024 PMCID: PMC7582333 DOI: 10.3390/ijms21197359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
It is known and accepted that the gut microbiota composition of an organism has an impact on its health. Many studies deal with this topic, the majority discussing gastrointestinal health. Adenomatous colon polyps have a high prevalence as colon cancer precursors, but in many cases, they are hard to diagnose in their early stages. Gut microbiota composition correlated with the presence of adenomatous colon polyps may be a noninvasive and efficient tool for diagnosis with a high impact on human wellbeing and favorable health care costs. This review is meant to analyze the gut microbiota correlated with the presence of adenomatous colon polyps as the first step for early diagnosis, prophylaxis, and treatment.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (Z.D.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (Z.D.)
| | - Zorita Diaconeasa
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (Z.D.)
| | - Magdalena Istrati
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400158 Cluj-Napoca, Romania;
| | - Adriana Bințințan
- 1st Medical Clinic, Department of Gastroenterology, Emergency County Hospital, 400006 Cluj Napoca, Romania;
| | - Vasile Virgil Bințințan
- 1st Surgical Clinic, Department of Surgery, University of Medicine and Pharmacy Cluj Napoca, 400006 Cluj Napoca, Romania;
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (Z.D.)
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
124
|
Chen H, Zhang F, Zhang J, Zhang X, Guo Y, Yao Q. A Holistic View of Berberine Inhibiting Intestinal Carcinogenesis in Conventional Mice Based on Microbiome-Metabolomics Analysis. Front Immunol 2020; 11:588079. [PMID: 33072135 PMCID: PMC7541814 DOI: 10.3389/fimmu.2020.588079] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Berberine (BBR) has been reported that it has effects on inhibiting colorectal cancer (CRC). However, the mechanism of BBR on CRC also remains largely unknown. Herein, we investigated the therapeutic effects of BBR on CRC from the perspective of gut microbiota and metabolic alterations, which can provide a holistic view to understand the effects of BBR on CRC. First, azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse was used as CRC animal model, then the degree of colorectal carcinogenesis in AOM/DSS mice with or without BBR administration was measured. The composition and abundance of gut microbiota was investigated by using 16S rRNA. Meanwhile, feces samples were analyzed with 1H NMR spectroscopy to investigate the metabolic alterations. As a result, BBR significantly reduced intestinal tumor development with lower macroscopic polyps and ki-67 expression of intestinal tissue, and better colonic morphology in mice. Moreover, BBR altered the composition of gut microbiota in AOM/DSS mice obviously, which were characterized by a decrease of Actinobacteria and Verrucomicrobia significantly at the phylum level. At the genus level, it was able to suppress pathogenic species, such as f_Erysipelotrichaceae, Alistipes, and elevate some short-chain fatty acids (SCFA)-producing bacteria, including Alloprevotella, Flavonifractor, and Oscillibacter. Metabolic data further revealed that BBR induced metabolic changes in feces focus on regulating glycometabolism, SCFA metabolism and amino acid metabolism, which also provides evidence for alteration of the microbiota because these feces metabolites are the products of interactions between the host and the microbial community. This study showed that BBR induced alterations in microbiota and metabolic in AOM/DSS mice, which might providing new insight into the inhibition effects of BBR on CRC.
Collapse
Affiliation(s)
- Haitao Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jin Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjie Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
125
|
A link between appendectomy and gastrointestinal cancers: a large-scale population-based cohort study in Korea. Sci Rep 2020; 10:15670. [PMID: 32973258 PMCID: PMC7518248 DOI: 10.1038/s41598-020-72770-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
An association between appendectomy and subsequent gastrointestinal (GI) cancer development has been postulated, although the evidence is limited and inconsistent. To provide clarification, we investigated the link between appendectomy and GI cancers in a large nationwide appendectomy cohort. This cohort was derived from the claims database of the National Health Insurance Service in South Korea and comprised 158,101 patients who had undergone appendectomy between 2007 and 2014. A comparison cohort of 474,303 subjects without appendectomy was selected after 1:3 matching by age and sex. The incidence of GI cancers after appendectomy was observed, and risk factors for GI cancers were determined by using a multivariable-adjusted proportional hazards model. Appendectomy did not significantly increase the incidence of GI cancers in the overall population (1.529 and 1557 per 1000 person-years in the non-appendectomy and appendectomy cohorts, respectively). However, appendectomy significantly increased the incidence of GI cancers in subgroups consisting of elderly (≥ 60 years) patients (adjusted HR, 1.102; 95% confidence interval, 1.011-1.201; p = 0.028) or women (adjusted HR, 1.180; 95% confidence interval, 1.066-1.306; p = 0.001).
Collapse
|
126
|
Sánchez-Alcoholado L, Ordóñez R, Otero A, Plaza-Andrade I, Laborda-Illanes A, Medina JA, Ramos-Molina B, Gómez-Millán J, Queipo-Ortuño MI. Gut Microbiota-Mediated Inflammation and Gut Permeability in Patients with Obesity and Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21186782. [PMID: 32947866 PMCID: PMC7555154 DOI: 10.3390/ijms21186782] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is considered an important factor that increases the risk of colorectal cancer (CRC). So far, the association of gut microbiota with both obesity and cancer has been described independently. Nevertheless, a specific obesity-related microbial profile linked to CRC development has not been identified. The aim of this study was to determine the gut microbiota composition in fecal samples from CRC patients with (OB-CRC) and without obesity (L-CRC) compared to the microbiota profile present in non-obese healthy controls (L-HC), in order to unravel the possible relationship between gut microbiota and microbial-derived metabolite trimethylamine N-oxide (TMAO), the inflammatory status, and the intestinal permeability in the context of obesity-associated CRC. The presence of obesity does not induce significant changes in the diversity and richness of intestinal bacteria of CRC patients. Nevertheless, OB-CRC patients display a specific gut microbiota profile characterized by a reduction in butyrate-producing bacteria and an overabundance of opportunistic pathogens, which in turn could be responsible, at least in part, for the higher levels of proinflammatory cytokine IL-1β, the deleterious bacterial metabolite TMAO, and gut permeability found in these patients. These results suggest a possible role of obesity-related gut microbiota in the development of CRC, which could give new clues for the design of new diagnostic tools for CRC prevention.
Collapse
Affiliation(s)
- Lidia Sánchez-Alcoholado
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (I.P.-A.); (A.L.-I.)
- Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Rafael Ordóñez
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (R.O.); (A.O.); (J.A.M.)
| | - Ana Otero
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (R.O.); (A.O.); (J.A.M.)
| | - Isaac Plaza-Andrade
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (I.P.-A.); (A.L.-I.)
| | - Aurora Laborda-Illanes
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (I.P.-A.); (A.L.-I.)
- Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - José Antonio Medina
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (R.O.); (A.O.); (J.A.M.)
| | - Bruno Ramos-Molina
- Grupo de Cirugía Digestiva, Endocrina y Transplante de Órganos Abdominales, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain;
| | - Jaime Gómez-Millán
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (R.O.); (A.O.); (J.A.M.)
- Correspondence: (J.G.-M.); (M.I.Q.-O.)
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (I.P.-A.); (A.L.-I.)
- Correspondence: (J.G.-M.); (M.I.Q.-O.)
| |
Collapse
|
127
|
Park SS, Kim B, Kim MJ, Roh SJ, Park SC, Kim BC, Han KS, Hong CW, Sohn DK, Oh JH. The effect of curative resection on fecal microbiota in patients with colorectal cancer: a prospective pilot study. Ann Surg Treat Res 2020; 99:44-51. [PMID: 32676481 PMCID: PMC7332315 DOI: 10.4174/astr.2020.99.1.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose Although many studies have evaluated the association between intestinal microorganisms and the risk of colorectal cancer (CRC), only a few studies have investigated the changes in microorganisms following curative treatment for CRC. The current study analyzed changes in intestinal microbiota following curative surgery in CRC patients. Methods Stool samples were collected before and 6 months after surgery, from 11 patients with clinical stage III CRC, who underwent curative surgery between May 2017 and June 2017. Next, 16S rRNA gene sequencing was performed. Operational taxonomic units (OTUs) and alpha diversity were evaluated using the Shannon index. The bacterial compositions of the stools were analyzed according to taxonomic rank at genus and phylum levels. Results OTUs and alpha diversity were significantly decreased following surgery (P < 0.001 and P = 0.019, respectively). The compositions of several bacterial taxa changed after surgery. At genus level, proportions of pathogens such as Campylobacter, Fusobacterium, Haemophilus, Porphyromonas, and Prevotella, decreased after surgery (adjusted P < 0.05). At phylum level, the proportion of Fusobacteria decreased after surgery (adjusted P < 0.001). Conclusion Significant changes in intestinal microbial communities were noted following curative resection of CRC patients. Especially, decreases in pathogenic bacterial populations, such as Fusobacterium and Prevotella, which are known to be associated with CRC development, were detected even though OTUs and alpha diversity were decreased following curative resection. To determine and validate the clinical significance of these findings, large scale, prospective studies that include cancer prognoses are required.
Collapse
Affiliation(s)
- Sung Sil Park
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Bun Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Min Jung Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Seung Jae Roh
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sung Chan Park
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Byung Chang Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Kyung Su Han
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Chang Won Hong
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
128
|
Liu CZ, Chen W, Wang MX, Wang Y, Chen LQ, Zhao F, Shi Y, Liu HJ, Dou XB, Liu C, Chen H. Dendrobium officinale Kimura et Migo and American ginseng mixture: A Chinese herbal formulation for gut microbiota modulation. Chin J Nat Med 2020; 18:446-459. [PMID: 32503736 DOI: 10.1016/s1875-5364(20)30052-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a famous traditional Chinese medicine (TCM). A mixture of D. officinale and American ginseng has been shown to enhance cell-mediated immunity, humoral immunity, and monocyte/macrophage functions in mice. Here, the effects of a D. officinale and American ginseng mixture on the structure of gut microbial community in dogs were examined using high-throughput 16S rRNA gene amplicon sequencing. The data revealed that while the mixture did not change the diversity of gut microbial community significantly, differences among individuals were significantly reduced. Furthermore, the mixture-responsive operational taxonomic units (OTUs) exhibited a phase-dependent expression pattern. Fifty-five OTUs were found to exhibit a mixture-induced expression pattern, among which one third were short-chain fatty acid (SCFA)-producing genera and the others were probiotic genera included Lactobacillus spp., Sutterella, Alistipes, Anaerovorax, Bilophila, Coprococcus, Gordonibacter, Oscillibacter, among others. By contrast, 36% of the OTUs exhibiting a mixture-repressed expression pattern were disease-associated microorganisms, and six genera, namely Actinomyces, Escherichia/Shigella, Fusobacterium, Slackia, Streptococcus and Solobacterium, were associated with cancer. In addition, five genera were closely associated with diabetes, namely Collinsella, Rothia, Howardella, Slackia and Intestinibacter. Our results indicate that this D. officinale and American ginseng mixture may be used as a prebiotic agent to enhance SCFA-producing genera and prevent gut dysbiosis.
Collapse
Affiliation(s)
- Cheng-Zhi Liu
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Wei Chen
- Hangzhou Huqing yu tang Traditional Chinese Medicine Mordernize Institute, Hangzhou 311100, China
| | - Mei-Xia Wang
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Ying Wang
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Li-Qing Chen
- Hangzhou Huqing yu tang Traditional Chinese Medicine Mordernize Institute, Hangzhou 311100, China
| | - Feng Zhao
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ya Shi
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Hui-Jun Liu
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Xiao-Bing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chao Liu
- Department of Orthopaedics, Sir Sun Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Huan Chen
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China.
| |
Collapse
|
129
|
The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers (Basel) 2020; 12:cancers12061406. [PMID: 32486066 PMCID: PMC7352899 DOI: 10.3390/cancers12061406] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the leading cause of cancer-related deaths. Recently, several studies have demonstrated that gut microbiota can alter CRC susceptibility and progression by modulating mechanisms such as inflammation and DNA damage, and by producing metabolites involved in tumor progression or suppression. Dysbiosis of gut microbiota has been observed in patients with CRC, with a decrease in commensal bacterial species (butyrate-producing bacteria) and an enrichment of detrimental bacterial populations (pro-inflammatory opportunistic pathogens). CRC is characterized by altered production of bacterial metabolites directly involved in cancer metabolism including short-chain fatty acids and polyamines. Emerging evidence suggests that diet has an important impact on the risk of CRC development. The intake of high-fiber diets and the supplementation of diet with polyunsaturated fatty acids, polyphenols and probiotics, which are known to regulate gut microbiota, could be not only a potential mechanism for the reduction of CRC risk in a primary prevention setting, but may also be important to enhance the response to cancer therapy when used as adjuvant to conventional treatment for CRC. Therefore, a personalized modulation of the pattern of gut microbiome by diet may be a promising approach to prevent the development and progression of CRC and to improve the efficacy of antitumoral therapy.
Collapse
|
130
|
Zhang F, He F, Li L, Guo L, Zhang B, Yu S, Zhao W. Bioavailability Based on the Gut Microbiota: a New Perspective. Microbiol Mol Biol Rev 2020; 84:e00072-19. [PMID: 32350027 PMCID: PMC7194497 DOI: 10.1128/mmbr.00072-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The substantial discrepancy between the strong effects of functional foods and various drugs, especially traditional Chinese medicines (TCMs), and the poor bioavailability of these substances remains a perplexing problem. Understanding the gut microbiota, which acts as an effective bioreactor in the human intestinal tract, provides an opportunity for the redefinition of bioavailability. Here, we discuss four different pathways associated with the role of the gut microbiota in the transformation of parent compounds to beneficial or detrimental small molecules, which can enter the body's circulatory system and be available to target cells, tissues, and organs. We further describe and propose effective strategies for improving bioavailability and alleviating side effects with the help of the gut microbiota. This review also broadens our perspectives for the discovery of new medicinal components.
Collapse
Affiliation(s)
- Feng Zhang
- Wuxi Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Fang He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Bin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
131
|
Colov EP, Degett TH, Raskov H, Gögenur I. The impact of the gut microbiota on prognosis after surgery for colorectal cancer - a systematic review and meta-analysis. APMIS 2020; 128:162-176. [PMID: 32017196 DOI: 10.1111/apm.13032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to conduct a systematic review of the association between gut microbiota and prognosis after colorectal cancer surgery. The review was conducted according to the PRISMA guidelines. A systematic literature search was conducted in PubMed, Embase, and Scopus. Studies examining the association between gut microbiota and survival after colorectal cancer surgery were identified. Secondary outcomes were association with cancer stage and immune infiltration of tumor. A total of 27 studies were included in the review. Fusobacterium nucleatum was the most frequently examined bacterium, and the meta-analysis showed that high level of F. nucleatum was significantly associated with decreased overall survival, hazard ratio of 1.63 (95% confidence interval 1.23-2.16) for unadjusted data, and hazard ratio of 1.47 (95% confidence interval 1.08-1.98) for adjusted data. Association between higher tumor stage and F. nucleatum was reported in ten studies, and two studies found an association with unfavorable tumor infiltration of immune cells. Three out of five studies examining Bacteroides fragilis found an association with decreased survival, advanced tumor stage, or unfavorable immune infiltration of tumor. High levels of F. nucleatum and possibly B. fragilis were associated with worse prognosis after surgery for colorectal cancer.
Collapse
Affiliation(s)
- Emilie Palmgren Colov
- Department of Surgery, Slagelse Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Surgical Science, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thea Helene Degett
- Center for Surgical Science, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark.,Danish Cancer Society, Copenhagen, Denmark
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Surgery, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark.,EPeOnc-consortium, Copenhagen, Denmark
| |
Collapse
|
132
|
Zhao H, Jiang X, Chu W. Shifts in the gut microbiota of mice in response to dexamethasone administration. Int Microbiol 2020; 23:565-573. [PMID: 32356148 DOI: 10.1007/s10123-020-00129-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 01/06/2023]
Abstract
Glucocorticoids (GCs) are an important anti-inflammatory drug, used widely, regardless of its side effects. GCs can affect intestinal flora directly or indirectly, though few studies have focused on the changes of gut microbiota composition. In this study, ICR mice were randomly divided into three groups, gavage administration with saline, and different doses of dexamethasone (DEX): 0.1 mg/kg and 1 mg/kg. Five days later, the microbial diversity of the colon contents was analyzed. A significant loss in weight was observed in the DEX1.0 group as compared with the control group (P = 0.011). The gut microbiota richness (ACE, P = 0.01; Chao, P = 0.013) and diversity (Shannon, P = 0.035; Simpson, P = 0.032) were decreased in DEX group. The proportions of genus Butyricicoccus, Oscillibacter, Anaerotruncus, Ruminiclostridium, Ruminococcaceae, and Lachnospiraceae were the most abundant and predominant followed by Lactobacillus, Pseudomonas, and Enterorhabdus. Dex administration led to changes in the liver/body ratio and spleen/body ratio. The results obtained from our study indicate that DEX can decrease the level of WBC and change the structure of the gut microbiota composition; moreover, the results of this study provide new insight into alleviating the clinical side effects of GC therapy.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueyuan Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
133
|
Watson KM, Gaulke CA, Tsikitis VL. Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Ann Gastroenterol 2020; 33:223-236. [PMID: 32382225 PMCID: PMC7196612 DOI: 10.20524/aog.2020.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related death internationally, with mounting evidence pointing to the role of the microbiome in adenoma and cancer development. This article aims to provide clinicians with a foundation for understanding the field of research into the microbiome. We also illustrate the various ways in which the microbiota have been linked to colorectal cancer, with a specific focus on microbiota with identified virulence factors, and also on the ways that byproducts of microbiota metabolism may result in oncogenesis. We also review strategies for manipulating the microbiome for therapeutic effects.
Collapse
Affiliation(s)
- Katherine M. Watson
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| | | | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| |
Collapse
|
134
|
Yu X, Wang Z, Wang L, Meng X, Zhou C, Xin Y, Sun W, Dong Q. Gastric hyperplastic polyps inversely associated with current Helicobacter pylori infection. Exp Ther Med 2020; 19:3143-3149. [PMID: 32256802 PMCID: PMC7086145 DOI: 10.3892/etm.2020.8567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
The incidence of gastric hyperplastic polyps (HPs) has been on the rise in recent years. The contribution of Helicobacter pylori infection to this trend has remained to be elucidated. The present study aimed to explore the association between HPs and H. pylori in China, an area with a high infection rate of H. pylori. In order to study trends of HPs and H. pylori infection over the past decades, cases encountered from 2009 to 2018 were assessed and a total of 109,150 consecutive patients who underwent esophagogastroduodenoscopy at Qingdao Municipal Hospital (Qingdao, China) were enrolled. The incidence of HPs and the prevalence of H. pylori were determined and their correlation was explored. Gastric HPs were detected in 1,497 patients (1.6%) who received gastric biopsies. The incidence of HPs exhibited a rising trend, with a ~4-fold increase in the annual detection rate from 2009 to 2018. The prevalence of H. pylori infection was inversely associated with the prevalence of HPs (adjusted odds ratio, 0.66). The prevalence of H. pylori in the examined cohort decreased with time (r=-0.76, P=0.011). The decreasing trend of H. pylori infection was negatively correlated with the rising trend of HPs (r=-0.64, P=0.048), further indicating an inverse association between them. The difference in the prevalence of HPs between H. pylori-negative and -positive patients increased with age (r=0.80, P=0.018). The age-associated increase was slower in H. pylori-infected patients. The decline in H. pylori infection with time appeared to not be associated with the birth cohort effect, suggesting the decline was not caused by exposure to environmental factors during an early period of life. The present results indicated that the incidence of gastric HPs increased with the decline in H. pylori infection, demonstrating an inverse association between the occurrence of HPs and the infection.
Collapse
Affiliation(s)
- XinJuan Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - ZhengQiang Wang
- Clinical Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - LiLi Wang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - XinYing Meng
- Department of Health Care, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - ChangHong Zhou
- Department of Health Care, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - YongNing Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - WeiLi Sun
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - QuanJiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
135
|
Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients 2020; 12:E625. [PMID: 32120799 PMCID: PMC7146370 DOI: 10.3390/nu12030625] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed type of cancer worldwide. Dietary features play an important role in its development, and the involvement of human microbial communities in this pathology has also recently been recognized. Individuals with CRC display alterations in gut bacterial composition and a notably higher abundance of putative oral bacteria in colonic tumors. Many experimental studies and preclinical evidence propose that dietary polyphenols have a relevant role in CRC development and progression, mainly attributed to their immunomodulatory activities. Furthermore, polyphenols can modulate oral and gut microbiota, and in turn, intestinal microbes catabolize polyphenols to release metabolites that are often more active and better absorbed than the original phenolic compounds. The current study aimed to review and summarize current knowledge on the role of microbiota and the interactions between dietary polyphenols and microbiota in relation to CRC development. We have highlighted the mechanisms by which dietary polyphenols and/or their microbial metabolites exert their action on the pathogenesis and prevention of CRC as modulators of the composition and/or activity of oral and intestinal microbiota, including novel screening biomarkers and possible nutritional therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (C.C.); (M.S.); (I.P.); (B.B.)
| |
Collapse
|
136
|
Strain CR, Collins KC, Naughton V, McSorley EM, Stanton C, Smyth TJ, Soler-Vila A, Rea MC, Ross PR, Cherry P, Allsopp PJ. Effects of a polysaccharide-rich extract derived from Irish-sourced Laminaria digitata on the composition and metabolic activity of the human gut microbiota using an in vitro colonic model. Eur J Nutr 2020; 59:309-325. [PMID: 30805695 PMCID: PMC7000515 DOI: 10.1007/s00394-019-01909-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Brown seaweeds are known to be a rich source of fiber with the presence of several non-digestible polysaccharides including laminarin, fucoidan and alginate. These individual polysaccharides have previously been shown to favorably alter the gut microbiota composition and activity albeit the effect of the collective brown seaweed fiber component on the microbiota remains to be determined. METHODS This study investigated the effect of a crude polysaccharide-rich extract obtained from Laminaria digitata (CE) and a depolymerized CE extract (DE) on the gut microbiota composition and metabolism using an in vitro fecal batch culture model though metagenomic compositional analysis using 16S rRNA FLX amplicon pyrosequencing and short-chain fatty acid (SCFA) analysis using GC-FID. RESULTS Selective culture analysis showed no significant changes in cultured lactobacilli or bifidobacteria between the CE or DE and the cellulose-negative control at any time point measured (0, 5, 10, 24, 36, 48 h). Following metagenomic analysis, the CE and DE significantly altered the relative abundance of several families including Lachnospiraceae and genera including Streptococcus, Ruminococcus and Parabacteroides of human fecal bacterial populations in comparison to cellulose after 24 h. The concentrations of acetic acid, propionic acid, butyric acid and total SCFA were significantly higher for both the CE and DE compared to cellulose after 10, 24, 36 and 48 h fermentation (p < 0.05). Furthermore, the acetate:propionate ratio was significantly reduced (p < 0.05) for both CD and DE following 24, 36 and 48 h fermentation. CONCLUSION The microbiota-associated metabolic and compositional changes noted provide initial indication of putative beneficial health benefits of L. digitata in vitro; however, research is needed to clarify if L. digitata-derived fiber can favorably alter the gut microbiota and confer health benefits in vivo.
Collapse
Affiliation(s)
- Conall R Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | - Violetta Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
| | | | - Thomas J Smyth
- Department of Life Science, Institute of Technology Sligo, Sligo, Ireland
| | - Anna Soler-Vila
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul R Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Paul Cherry
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
137
|
Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020; 12:12. [PMID: 31992345 PMCID: PMC6988342 DOI: 10.1186/s13073-020-0710-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome interactions in the colon of cystic fibrosis patients. METHODS We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa and host gene expression. RESULTS We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2 and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria, such as Ruminococcaceae and Veillonella. CONCLUSIONS In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients, our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - David E Niccum
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
138
|
Yang YCSH, Chang HW, Lin IH, Chien LN, Wu MJ, Liu YR, Chu PG, Xie G, Dong F, Jia W, Chang VHS, Yen Y. Long-term Proton Pump Inhibitor Administration Caused Physiological and Microbiota Changes in Rats. Sci Rep 2020; 10:866. [PMID: 31964941 PMCID: PMC6972906 DOI: 10.1038/s41598-020-57612-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Proton pump inhibitors (PPIs) are used for the long-term treatment of gastroesophageal disorders and the non-prescription medicines for acid reflux. However, there is growing concerns about PPI misuse, overuse and abuse. This study aimed to develop an animal model to examine the effects of long-term use of PPI in vivo. Twenty one Wistar rats were given omeprazole orally or intravenously for 30 days, and caerulein as a positive control. After euthanization, the serum and stool were collected to perform MS-based quantitative analysis of metabolites. We carried out 16S-based profiling of fecal microbiota, assessed the expression of bile acid metabolism regulators and examined the immunopathological characteristics of bile ducts. After long-term PPI exposure, the fecal microbial profile was altered and showed similarity to those observed in high-fat diet studies. The concentrations of several metabolites were also changed in various specimens. Surprisingly, morphological changes were observed in the bile duct, including ductal epithelial proliferation, micropapillary growth of biliary epithelium, focal bile duct stricture formation and bile duct obstruction. These are characteristics of precancerous lesions of bile duct. FXR and RXRα expressions were significantly reduced, which were similar to that observed in cholangiocarcinoma in TCGA and Oncomine databases. We established a novel animal model to examine the effects of long-term use of omeprazole. The gut microbes and metabolic change are consequences of long-term PPI exposure. And the results showed the environment in vivo tends to a high-fat diet. More importantly, we observed biliary epithelial hyperplasia, which is an indicator of a high-fat diet.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Hsuen-Wen Chang
- Laboratory Animal Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - I-Hsuan Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Min-Ju Wu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Peiguo G Chu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, Hawaii, 96815, USA
| | - Fangcong Dong
- University of Hawaii Cancer Center, Honolulu, Hawaii, 96815, USA
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii, 96815, USA
| | - Vincent H S Chang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- The PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei, Taiwan.
| |
Collapse
|
139
|
Pekkala S, Keskitalo A, Kettunen E, Lensu S, Nykänen N, Kuopio T, Ritvos O, Hentilä J, Nissinen TA, Hulmi JJ. Blocking Activin Receptor Ligands Is Not Sufficient to Rescue Cancer-Associated Gut Microbiota-A Role for Gut Microbial Flagellin in Colorectal Cancer and Cachexia? Cancers (Basel) 2019; 11:cancers11111799. [PMID: 31731747 PMCID: PMC6896205 DOI: 10.3390/cancers11111799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.
Collapse
Affiliation(s)
- Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
- Correspondence: ; Tel.: +358-45-358-2898
| | - Anniina Keskitalo
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
- Department of Clinical Microbiology, Turku University Hospital, 20500 Turku, Finland
| | - Emilia Kettunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Noora Nykänen
- Department of Pathology, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland; (N.N.); (T.K.)
| | - Teijo Kuopio
- Department of Pathology, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland; (N.N.); (T.K.)
- Department of Biological and Environmental Science, University of Jyväskylä, 40620 Jyväskylä, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland;
| | - Jaakko Hentilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Tuuli A. Nissinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| |
Collapse
|
140
|
Tarashi S, Siadat SD, Ahmadi Badi S, Zali M, Biassoni R, Ponzoni M, Moshiri A. Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? Microorganisms 2019; 7:E561. [PMID: 31766208 PMCID: PMC6920974 DOI: 10.3390/microorganisms7110561] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide health concern which requires efficient therapeutic strategies. The mechanisms underlying CRC remain an essential subject of investigations in the cancer biology field. The evaluation of human microbiota can be critical in this regard, since the disruption of the normal community of gut bacteria is an important issue in the development of CRC. However, several studies have already evaluated the different aspects of the association between microbiota and CRC. The current study aimed at reviewing and summarizing most of the studies on the modifications of gut bacteria detected in stool and tissue samples of CRC cases. In addition, the importance of metabolites derived from gut bacteria, their relationship with the microbiota, and epigenetic modifications have been evaluated.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
| | - Roberto Biassoni
- Laboratory of Molecular Medicine, IRCCS Instituto Giannina Gaslini, 16147 Genova, Italy;
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| |
Collapse
|
141
|
Alhinai EA, Walton GE, Commane DM. The Role of the Gut Microbiota in Colorectal Cancer Causation. Int J Mol Sci 2019; 20:ijms20215295. [PMID: 31653078 PMCID: PMC6862640 DOI: 10.3390/ijms20215295] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Here, we reviewed emerging evidence on the role of the microbial community in colorectal carcinogenesis. A healthy gut microbiota promotes intestinal homeostasis and can exert anti-cancer effects; however, this microbiota also produces a variety of metabolites that are genotoxic and which can negatively influence epithelial cell behaviour. Disturbances in the normal microbial balance, known as dysbiosis, are frequently observed in colorectal cancer (CRC) patients. Microbial species linked to CRC include certain strains of Bacteroides fragilis, Escherichia coli, Streptococcus gallolyticus, Enterococcus faecalis and Fusobacterium nucleatum, amongst others. Whether these microbes are merely passive dwellers exploiting the tumour environment, or rather, active protagonists in the carcinogenic process is the subject of much research. The incidence of chemically-induced tumours in mice models varies, depending upon the presence or absence of these microorganisms, thus strongly suggesting influences on disease causation. Putative mechanistic explanations differentially link these strains to DNA damage, inflammation, aberrant cell behaviour and immune suppression. In the future, modulating the composition and metabolic activity of this microbial community may have a role in prevention and therapy.
Collapse
Affiliation(s)
- Eiman A Alhinai
- Dietetics Department, Al Nahdha Hospital, Ministry of Health, Muscat, PO Box 937, Ruwi, Muscat PC 112, Oman.
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UA, UK.
| | - Daniel M Commane
- Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
142
|
Tagliamonte MS, Waugh SG, Prosperi M, Mai V. An Integrated Approach for Efficient Multi-Omics Joint Analysis. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2019:619-625. [PMID: 31588431 DOI: 10.1145/3307339.3343476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The challenges associated with multi-omics analysis, e.g. DNA-seq, RNA-seq, metabolomics, methylomics and microbiomics domains, include: (1) increased high-dimensionality, as all -omics domains include ten thousands to hundreds of thousands of variables each; (2) increased complexity in analyzing domain-domain interactions, quadratic for pairwise correlation, and exponential for higher-order interactions; (3) variable heterogeneity, with highly skewed distributions in different units and scales for methylation and microbiome. Here, we developed an efficient strategy for joint-domain analysis, applying it to an analysis of correlations between colon epithelium methylomics and fecal microbiomics data with colorectal cancer risk as estimated by colorectal polyp prevalence. First, we applied domain-specific standard pipelines for quality assessment, cleaning, batch-effect removal, et cetera. Second, we performed variable homogenization for both the methylation and microbiome data sets, using domain-specific normalization and dimension reduction, obtaining scale-free variables that could be compared across the two domains. Finally, we implemented a joint-domain network analysis to identify relevant microbial-methylation island patterns. The network analysis considered all possible species-island pairs, thus being quadratic in its complexity. However, we were able to pre-select the unpaired variables by performing a preliminary association analysis on the outcome polyp prevalence. All results from association and interaction analyses were adjusted for multiple comparisons. Although the limited sample size did not provide good power (80% to detect medium to large effect sizes with 5% alpha error), a number of potentially significant association (dozens in the uncorrected analysis, reducing to just a few in the corrected one) were identified As a last step, we linked the network patterns identified by our approach to the KEGG functional ontology, showing that the method can generate new mechanistic hypotheses for the biological causes of polyp development.
Collapse
Affiliation(s)
| | - Sheldon G Waugh
- Army Public Health Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Mattia Prosperi
- Department of Epidemiology University of Florida Gainesville, FL, USA
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, Emerging Pathogens Institute, University of Florida
| |
Collapse
|
143
|
Neohesperidin prevents colorectal tumorigenesis by altering the gut microbiota. Pharmacol Res 2019; 148:104460. [DOI: 10.1016/j.phrs.2019.104460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
|
144
|
Yu SY, Xie YH, Qiu YW, Chen YX, Fang JY. Moderate alteration to gut microbiota brought by colorectal adenoma resection. J Gastroenterol Hepatol 2019; 34:1758-1765. [PMID: 31115072 DOI: 10.1111/jgh.14735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/31/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022]
Abstract
UNLABELLED BACKGROUND AND AIM: Microbial dysbiosis is involved in the development of colorectal cancer and its most common precancerous lesion, colorectal adenoma. Endoscopic resection is one of the procedures for primary prevention of colorectal cancer, yet little is known about how the endoscopic therapy influences gut microbiota. METHODS We conducted a prospective study of 20 patients who underwent endoscopic resection of colorectal adenoma and analyzed the fecal microbiota before and 3 months after adenoma resection. MiSeq sequencing of 16S rRNA genes was performed to determine the alterations in microbial diversity and structure. To discriminate the microbiota of the two groups, random forest and receiver operating characteristic analysis were applied, and a genus-based microbiota signature was obtained. RESULTS Despite few alterations in overall microbial structure after adenoma resection, the abundance of Parabacteroides revealed a significant increase postoperatively (3.8% vs 1.5%, 0.1160), and the microbiota signature of Parabacteroides, Streptococcus, and Ruminococcus showed an optimal discriminating performance of postoperative status with the area under the curve 0.788, P < 0.001. CONCLUSION Fecal microbial alterations indicate the moderate influence of adenoma resection on gut microbiota and lay the groundwork for microbial prediction of adenoma recurrence. Larger sample studies are further required to validate the findings.
Collapse
Affiliation(s)
- Si-Yi Yu
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Yi-Wen Qiu
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| |
Collapse
|
145
|
Abstract
Increasing evidence indicates that gut microbiota may influence colorectal cancer risk. Diet, particularly fibre intake, may modify gut microbiota composition, which may affect cancer risk. We investigated the relationship between dietary fibre intake and gut microbiota in adults. Using 16S rRNA gene sequencing, we assessed gut microbiota in faecal samples from 151 adults in two independent study populations: National Cancer Institute (NCI), n 75, and New York University (NYU), n 76. We calculated energy-adjusted fibre intake based on FFQ. For each study population with adjustment for age, sex, race, BMI and smoking, we evaluated the relationship between fibre intake and gut microbiota community composition and taxon abundance. Total fibre intake was significantly associated with overall microbial community composition in NYU (P=0·008) but not in NCI (P=0·81). In a meta-analysis of both study populations, higher fibre intake tended to be associated with genera of class Clostridia, including higher abundance of SMB53 (fold change (FC)=1·04, P=0·04), Lachnospira (FC=1·03, P=0·05) and Faecalibacterium (FC=1·03, P=0·06), and lower abundance of Actinomyces (FC=0·95, P=0·002), Odoribacter (FC=0·95, P=0·03) and Oscillospira (FC=0·96, P=0·06). A species-level meta-analysis showed that higher fibre intake was marginally associated with greater abundance of Faecalibacterium prausnitzii (FC=1·03, P=0·07) and lower abundance of Eubacterium dolichum (FC=0·96, P=0·04) and Bacteroides uniformis (FC=0·97, P=0·05). Thus, dietary fibre intake may impact gut microbiota composition, particularly class Clostridia, and may favour putatively beneficial bacteria such as F. prausnitzii. These findings warrant further understanding of diet-microbiota relationships for future development of colorectal cancer prevention strategies.
Collapse
|
146
|
Sougiannis AT, VanderVeen BN, Enos RT, Velazquez KT, Bader JE, Carson M, Chatzistamou I, Walla M, Pena MM, Kubinak JL, Nagarkatti M, Carson JA, Murphy EA. Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota. Brain Behav Immun 2019; 80:44-55. [PMID: 30807838 PMCID: PMC6660349 DOI: 10.1016/j.bbi.2019.02.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that gut microbiota may influence the response to chemotherapy. We sought to characterize the effects of 5 fluorouracil (5FU) chemotherapy on colon inflammation and functional measures in colorectal cancer (CRC) and to further determine whether gut microbiota can influence this response. 50 C57BL/6 were randomized into four groups; Control + Vehicle (n = 10), Control + 5FU (n = 10), AOM/DSS + Vehicle (n = 15), and AOM/DSS + 5FU (n = 15). CRC was induced chemically by a single 10 mg/kg injection of azoxymethane (AOM) followed by two cycles (2% and 1%) of dextran sodium sulfate (DSS). Mice were then treated with 3 cycles of vehicle or 5FU (cycle 1: 40 mg/kg, cycle 2 + 3: 20 mg/kg). Functional tests (grip strength and run-to-fatigue) were performed prior to 5FU treatment (baseline) and at the completion of the second cycle of 5FU. Following the third 5FU cycle, mice were euthanized and the colon was evaluated for expression of inflammatory genes using RT-qPCR and stool samples were profiled using 16S rRNA sequencing. A second experiment used fecal microbiota transplantation from 5FU treated mice to control mice (n = 10-15/group) to determine whether 5FU associated changes in the microbiota could influence functional measures and colon inflammation. 5FU reduced grip strength (p < 0.05) and caused a trending decrease in run-to-fatigue performance in cancer mice (p = 0.06). Select intestinal inflammatory genes were significantly elevated with 5FU treatment and this was further exacerbated with cancer (p < 0.05). Microbiota analysis revealed increased dissimilarity and alterations in bacterial taxonomy in 5FU and AOM/DSS-treated mice (p < 0.05). Fecal transplant from 5FU treated mice reduced functional performance (p < 0.05) and altered select colon inflammatory markers (p < 0.05). This study provides evidence of an effect of 5FU on inflammatory responses and functional measures in a mouse model of CRC and suggests that gut microbes may play a role in some, but not all, 5FU related perturbations.
Collapse
Affiliation(s)
- A T Sougiannis
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - B N VanderVeen
- Department of Exercise Science, School of Public Health, University of South Carolina, SC 29201, USA
| | - R T Enos
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - K T Velazquez
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - J E Bader
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - M Carson
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - I Chatzistamou
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - M Walla
- Department of Chemistry, University of South Carolina, SC 29201, USA
| | - M M Pena
- Department of Biology, University of South Carolina, SC 29201, USA
| | - J L Kubinak
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - M Nagarkatti
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA
| | - J A Carson
- College of Health Professions, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - E A Murphy
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, SC 29209, USA.
| |
Collapse
|
147
|
Rezasoltani S, Khatibi S, Pezeshkiyan Z, Nazemalhosseini-Mojarad E, Sharafkhah M, Sadeghi A, Asadzadeh Aghdaei H, Zali MR. Investigating the TLR9 mRNA Expression Level in Different Histological Types of Colorectal Polyps. Asian Pac J Cancer Prev 2019; 20:2299-2302. [PMID: 31450898 PMCID: PMC6852833 DOI: 10.31557/apjcp.2019.20.8.2299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 01/14/2023] Open
Abstract
Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system which plays a pivotal role in inflammatory response. Recently, changing expression levels of TLR9 has been observed in a wide range of cancer cells; however, there is little information about colorectal polyps. Herein, we assessed the mRNA expression of TLR9 in different colorectal polyp types compared to normal group in order to investigate its expression level during CRC initiation. Fifty-four biopsy samples from colorectal polyp patients and from 20 healthy subjects were collected. The mucosal mRNA expression level of TLR9 gene was identified by real time PCR. Fold change of gene expression was evaluated by 2-ΔΔct method. There was a significant relationship between the lower expression of TLR9 gene in the polyp cases compared to normal individuals (P value = 0.0005), Also, decreased TLR9 mRNA expression was obtained in adenomas in contrast to hyperplastic and normal groups (P value = 0.0008). Based on the current results, we hypothesized that aberrant surface expression of TLR9 on tumor cells may promote the growth and invasion of colorectal polyps. Further, TLR9 modulation may have an important impact on the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Khatibi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkiyan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
148
|
Enterotype-based Analysis of Gut Microbiota along the Conventional Adenoma-Carcinoma Colorectal Cancer Pathway. Sci Rep 2019; 9:10923. [PMID: 31358825 PMCID: PMC6662695 DOI: 10.1038/s41598-019-45588-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
The dysbiosis of human gut microbiota is strongly associated with the development of colorectal cancer (CRC). The dysbiotic features of the transition from advanced polyp to early-stage CRC are largely unknown. We performed a 16S rRNA gene sequencing and enterotype-based gut microbiota analysis study. In addition to Bacteroides- and Prevotella-dominated enterotypes, we identified an Escherichia-dominated enterotype. We found that the dysbiotic features of CRC were dissimilar in overall samples and especially Escherichia-dominated enterotype. Besides a higher abundance of Fusobacterium, Enterococcus, and Aeromonas in all CRC faecal microbiota, we found that the most notable characteristic of CRC faecal microbiota was a decreased abundance of potential beneficial butyrate-producing bacteria. Notably, Oscillospira was depleted in the transition from advanced adenoma to stage 0 CRC, whereas Haemophilus was depleted in the transition from stage 0 to early-stage CRC. We further identified 7 different CAGs by analysing bacterial clusters. The abundance of microbiota in cluster 3 significantly increased in the CRC group, whereas that of cluster 5 decreased. The abundance of both cluster 5 and cluster 7 decreased in the Escherichia-dominated enterotype of the CRC group. We present the first enterotype-based faecal microbiota analysis. The gut microbiota of colorectal neoplasms can be influenced by its enterotype.
Collapse
|
149
|
The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11071017. [PMID: 31330830 PMCID: PMC6678087 DOI: 10.3390/cancers11071017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the “serrated pathway”, has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.
Collapse
|
150
|
Interplay of Liver Disease and Gut Microbiota in the Development of Colorectal Neoplasia. ACTA ACUST UNITED AC 2019; 17:378-393. [DOI: 10.1007/s11938-019-00241-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|