101
|
Fossat N, Ip CK, Jones VJ, Studdert JB, Khoo PL, Lewis SL, Power M, Tourle K, Loebel DAF, Kwan KM, Behringer RR, Tam PPL. Context-specific function of the LIM homeobox 1 transcription factor in head formation of the mouse embryo. Development 2015; 142:2069-79. [DOI: 10.1242/dev.120907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 01/18/2023]
Abstract
ABSTRACT
Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vanessa J. Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Joshua B. Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Samara L. Lewis
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Melinda Power
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Karin Tourle
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - David A. F. Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kin Ming Kwan
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Richard R. Behringer
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
102
|
Cha JM, Bae H, Sadr N, Manoucheri S, Edalat F, Kim K, Kim SB, Kwon IK, Hwang YS, Khademhosseini A. Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromol Res 2015. [DOI: 10.1007/s13233-015-3034-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
103
|
Stepicheva N, Nigam PA, Siddam AD, Peng CF, Song JL. microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development. Dev Biol 2015; 402:127-41. [PMID: 25614238 DOI: 10.1016/j.ydbio.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 12/19/2022]
Abstract
Development of complex multicellular organisms requires careful regulation at both transcriptional and post-transcriptional levels. Post-transcriptional gene regulation is in part mediated by a class of non-coding RNAs of 21-25 nucleotides in length known as microRNAs (miRNAs). β-catenin, regulated by the canonical Wnt signaling pathway, has a highly evolutionarily conserved function in patterning early metazoan embryos, in forming the Anterior-Posterior axis, and in establishing the endomesoderm. Using reporter constructs and site-directed mutagenesis, we identified at least three miRNA binding sites within the 3' untranslated region (3'UTR) of the sea urchin β-catenin. Further, blocking these three miRNA binding sites within the β-catenin 3'UTR to prevent regulation of endogenous β-catenin by miRNAs resulted in a minor increase in β-catenin protein accumulation that is sufficient to induce aberrant gut morphology and circumesophageal musculature. These phenotypes are likely the result of increased transcript levels of Wnt responsive endomesodermal regulatory genes. This study demonstrates the importance of miRNA regulation of β-catenin in early development.
Collapse
Affiliation(s)
- Nadezda Stepicheva
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA
| | - Priya A Nigam
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA
| | - Chieh Fu Peng
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
104
|
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, Martinez Arias A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2015; 141:4231-42. [PMID: 25371360 PMCID: PMC4302915 DOI: 10.1242/dev.113001] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’.
Collapse
Affiliation(s)
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
105
|
Abstract
Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.
Collapse
Affiliation(s)
- Kyle M. Loh
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Bing Lim
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Lay Teng Ang
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
106
|
Abstract
Analysis of the mechanisms underlying cell fates requires the molecular quantification of cellular features. Classical techniques use population average readouts at single time points. However, these approaches mask cellular heterogeneity and dynamics and are limited for studying rare and heterogeneous cell populations like stem cells. Techniques for single-cell analyses, ideally allowing non-invasive quantification of molecular dynamics and cellular behaviour over time, are required for studying stem cells. Here, we review the development and application of these techniques to stem cell research.
Collapse
|
107
|
Hamada H, Tam PP. Mechanisms of left-right asymmetry and patterning: driver, mediator and responder. F1000PRIME REPORTS 2014; 6:110. [PMID: 25580264 PMCID: PMC4275019 DOI: 10.12703/p6-110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The establishment of a left-right (LR) organizer in the form of the ventral node is an absolute prerequisite for patterning the tissues on contralateral sides of the body of the mouse embryo. The experimental findings to date are consistent with a mechanistic paradigm that the laterality information, which is generated in the ventral node, elicits asymmetric molecular activity and cellular behaviour in the perinodal tissues. This information is then relayed to the cells in the lateral plate mesoderm (LPM) when the left-specific signal is processed and translated into LR body asymmetry. Here, we reflect on our current knowledge and speculate on the following: (a) what are the requisite anatomical and functional attributes of an LR organizer, (b) what asymmetric information is emanated from this organizer, and (c) how this information is transferred across the paraxial tissue compartment and elicits a molecular response specifically in the LPM.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Bioscience, Osaka UniversityJapan
| | - Patrick P.L. Tam
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, University of SydneyNew South WalesAustralia
| |
Collapse
|
108
|
Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, Walch A, Grant SGN, Lickert H. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. eLife 2014; 3:e03842. [PMID: 25296022 PMCID: PMC4221739 DOI: 10.7554/elife.03842] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/29/2022] Open
Abstract
Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division.
Collapse
Affiliation(s)
- Moritz Gegg
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Anika Böttcher
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Ingo Burtscher
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Stefan Hasenoeder
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Claude Van Campenhout
- Genetique du Developpement, L'Institut de biologie et de médecine moléculaires, Université libre de Bruxelles, Gosselies, Belgium
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Center Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich, Munich, Germany
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, Univeristy of Edinburgh, Cambridge, United Kingdom
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
- For correspondence:
| |
Collapse
|
109
|
Hales KH, Speckman SC, Kurrey NK, Hales DB. Uncovering molecular events associated with the chemosuppressive effects of flaxseed: a microarray analysis of the laying hen model of ovarian cancer. BMC Genomics 2014; 15:709. [PMID: 25150550 PMCID: PMC4158050 DOI: 10.1186/1471-2164-15-709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/05/2014] [Indexed: 01/04/2023] Open
Abstract
Background The laying hen model of spontaneous epithelial ovarian cancer (EOC) is unique in that it is the only model that enables observations of early events in disease progression and is therefore also uniquely suited for chemoprevention trials. Previous studies on the effect of dietary flaxseed in laying hens have revealed the potential for both amelioration and prevention of ovarian cancer. The objective of this study was to assess the effect of flaxseed on genes and pathways that are dysregulated in tumors. We have used a bioinformatics approach to identify these genes, followed by qPCR validation, immunohistochemical localization, and in situ hybridization to visualize expression in normal ovaries and tumors from animals fed a control diet or a diet containing 10% flaxseed. Results Bioinformatic analysis of ovarian tumors in hens led to the identification of a group of highly up-regulated genes that are involved in the embryonic process of branching morphogenesis. Expression of these genes coincides with expression of E-cadherin in the tumor epithelium. Levels of expression of these genes in tumors from flax-fed animals are reduced 40-60%. E-cadherin and miR200 are both up-regulated in tumors from control-fed hens, whereas their expression is decreased 60-75% in tumors from flax-fed hens. This does not appear to be due to an increase in ZEB1 as mRNA levels are increased five-fold in tumors, with no significant difference between control-fed and flax-fed hens. Conclusions We suggest that nutritional intervention with flaxseed targets the pathways regulating branching morphogenesis and thereby alters the progression of ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-709) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen H Hales
- Department of Obstetrics and Gynecology, Southern Illinois University at Carbondale, School of Medicine, Life Science III, (M/C 6512), 1135 Dr,, Carbondale, Lincoln, IL 62901, USA.
| | | | | | | |
Collapse
|
110
|
Wang J, Zhu CP, Hu PF, Qian H, Ning BF, Zhang Q, Chen F, Liu J, Shi B, Zhang X, Xie WF. FOXA2 suppresses the metastasis of hepatocellular carcinoma partially through matrix metalloproteinase-9 inhibition. Carcinogenesis 2014; 35:2576-83. [DOI: 10.1093/carcin/bgu180] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
111
|
Watanabe T, Biggins JS, Tannan NB, Srinivas S. Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development 2014; 141:2279-88. [PMID: 24866117 PMCID: PMC4034423 DOI: 10.1242/dev.103267] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The formation of trophectoderm (TE) and pluripotent inner cell mass (ICM) is one of the earliest events during mammalian embryogenesis. It is believed that the orientation of division of polarised blastomeres in the 8- and 16-cell stage embryo determines the fate of daughter cells, based on how asymmetrically distributed lineage determinants are segregated. To investigate the relationship between angle of division and subsequent fate in unperturbed embryos, we constructed cellular resolution digital representations of the development of mouse embryos from the morula to early blastocyst stage, based on 4D confocal image volumes. We find that at the 16-cell stage, very few inside cells are initially produced as a result of cell division, but that the number increases due to cell movement. Contrary to expectations, outside cells at the 16-cell stage represent a heterogeneous population, with some fated to contributing exclusively to the TE and others capable of contributing to both the TE and ICM. Our data support the view that factors other than the angle of division, such as the position of a blastomere, play a major role in the specification of TE and ICM.
Collapse
Affiliation(s)
- Tomoko Watanabe
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - John S Biggins
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Neeta Bala Tannan
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
112
|
Rivera-Pérez JA, Hadjantonakis AK. The Dynamics of Morphogenesis in the Early Mouse Embryo. Cold Spring Harb Perspect Biol 2014; 7:cshperspect.a015867. [PMID: 24968703 DOI: 10.1101/cshperspect.a015867] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARYOver the past two decades, our understanding of mouse development from implantation to gastrulation has grown exponentially with an upsurge of genetic, molecular, cellular, and morphogenetic information. New discoveries have exalted the role of extraembryonic tissues in orchestrating embryonic patterning and axial specification. At the same time, the identification of unexpected morphogenetic processes occurring during mouse gastrulation has challenged established dogmas and brought new insights into the mechanisms driving germ layer formation. In this article, we summarize the key findings that have reinvigorated the contemporary view of early postimplantation mammalian development.
Collapse
Affiliation(s)
- Jaime A Rivera-Pérez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
113
|
Kaspi H, Chapnik E, Levy M, Beck G, Hornstein E, Soen Y. Brief report: miR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6. Stem Cells 2014; 31:2266-72. [PMID: 23843298 DOI: 10.1002/stem.1465] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 11/09/2022]
Abstract
microRNAs of the miR-290-295 family are selectively expressed at high levels in mouse embryonic stem cells (mESCs) and have established roles in regulating self-renewal. However, the potential influence of these microRNAs on cell fate acquisition during differentiation has been overlooked. Here, we show that miR-290-295 regulate the propensity of mESCs to acquire specific fates. We generated a new miR-290-295-null mESC model, which exhibits increased propensity to generate ectoderm, at the expense of endoderm and mesoderm lineages. We further found that in wild-type cells, miR-290-295 repress Pax6 and ectoderm differentiation; accordingly, Pax6 knockdown partially rescues the mESCs differentiation impairment that is caused by loss of miR-290-295. Thus, in addition to regulating self-renewal, the large reservoir of miR-290-295 in undifferentiated mESCs fine-tunes the expression of master transcriptional factors, such as Pax6, thereby regulating the equilibrium of fate acquisition by mESC descendants.
Collapse
Affiliation(s)
- Haggai Kaspi
- Department of Biological Chemistry and Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
114
|
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, Economou C, Karagianni E, Zhao S, Lowell S, Wilson V. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 2014; 141:1209-21. [PMID: 24595287 PMCID: PMC3943179 DOI: 10.1242/dev.101014] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Yang D, Lutter D, Burtscher I, Uetzmann L, Theis FJ, Lickert H. miR-335 promotes mesendodermal lineage segregation and shapes a transcription factor gradient in the endoderm. Development 2014; 141:514-25. [PMID: 24449834 DOI: 10.1242/dev.104232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transcription factors (TFs) pattern developing tissues and determine cell fates; however, how spatio-temporal TF gradients are generated is ill defined. Here we show that miR-335 fine-tunes TF gradients in the endoderm and promotes mesendodermal lineage segregation. Initially, we identified miR-335 as a regulated intronic miRNA in differentiating embryonic stem cells (ESCs). miR-335 is encoded in the mesoderm-specific transcript (Mest) and targets the 3'-UTRs of the endoderm-determining TFs Foxa2 and Sox17. Mest and miR-335 are co-expressed and highly accumulate in the mesoderm, but are transiently expressed in endoderm progenitors. Overexpression of miR-335 does not affect initial mesendoderm induction, but blocks Foxa2- and Sox17-mediated endoderm differentiation in ESCs and ESC-derived embryos. Conversely, inhibition of miR-335 activity leads to increased Foxa2 and Sox17 protein accumulation and endoderm formation. Mathematical modeling predicts that transient miR-335 expression in endoderm progenitors shapes a TF gradient in the endoderm, which we confirm by functional studies in vivo. Taken together, our results suggest that miR-335 targets endoderm TFs for spatio-temporal gradient formation in the endoderm and to stabilize lineage decisions during mesendoderm formation.
Collapse
Affiliation(s)
- Dapeng Yang
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
116
|
Villegas SN, Rothová M, Barrios-Llerena ME, Pulina M, Hadjantonakis AK, Le Bihan T, Astrof S, Brickman JM. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix. eLife 2013; 2:e00806. [PMID: 24368729 PMCID: PMC3871052 DOI: 10.7554/elife.00806] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key to specifying anterior endodermal identity in vivo and in vitro. Thus, localized PI3K activity affects ECM composition and ECM in turn patterns the endoderm. DOI:http://dx.doi.org/10.7554/eLife.00806.001 From conception to birth, a single fertilised egg will multiply into trillions of cells, with each cell becoming one of the 200 or so different types of cell that are found in the human body. The development of an embryo is complex and dynamic, with cells giving up their ability to become any cell type and committing to becoming a specific cell type within a given tissue. At the same time, different groups of cells migrate to the appropriate locations within the developing embryo. Although it is challenging to decipher the roles of the individual signalling pathways that control an embryo’s development, several important components have been found. Fibroblast growth factor (FGF) is a protein that regulates the formation of the endoderm: this is the innermost of the three layers of cells that form in the early embryo, and it gives rise to internal organs such as the gut, liver and pancreas. As well as ‘telling’ cells to become the front part, or anterior, of the endoderm, FGF also controls the migration of these cells within the embryo. However, uncoupling these two roles has been a major challenge, and the molecular mechanisms behind them are unclear. Now, Villegas et al. have discovered that FGF activates a signalling cascade involving two enzymes called PI3K and Akt1. In lab-grown embryonic stem cells—cells that can be coaxed to become any of the cell types formed during development—this signalling cascade is essential for FGF to trigger differentiation of the cell types found in the anterior endoderm. The PI3K/Akt1 signalling cascade achieves this by reducing the level of a protein called fibronectin in the ‘extracellular matrix’ that surrounds the cells. This low level of fibronectin will in turn induce cells to stick together in an organized layer; and this rearrangement of cell-cell and cell-matrix interactions appears linked to triggering the differentiation of anterior endoderm cell types. Villegas et al. showed that the PI3K/Akt1 pathway was also essential for endoderm formation in living mouse embryos. As a normal embryo develops, the anterior endoderm cells move into a ‘groove’ at the front the embryo, where the level of fibronectin is lower than it is at the posterior end of the embryo. These findings highlight the importance of the extracellular matrix in the regulation of embryonic development, and should assist in the effort to turn lab-grown stem cells into the useful cell types found in internal organs. DOI:http://dx.doi.org/10.7554/eLife.00806.002
Collapse
Affiliation(s)
- S Nahuel Villegas
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Filant J, Lydon JP, Spencer TE. Integrated chromatin immunoprecipitation sequencing and microarray analysis identifies FOXA2 target genes in the glands of the mouse uterus. FASEB J 2013; 28:230-43. [PMID: 24025729 DOI: 10.1096/fj.13-237446] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Uterine glands and their secretions are indispensable for endometrial function and fertility; however, the mechanisms regulating their development and function are not well understood. Forkhead transcription factor box A2 (FOXA2) is uniquely expressed in the glandular epithelial (GE) cells of the uterus, and conditional deletion of Foxa2 after birth impedes uterine gland development. An integrative approach was used here to define the FOXA2 cistrome in the murine uterus. Genome-wide mapping of FOXA2 binding sites was combined with transcriptomic analyses of isolated GE and Foxa2-deleted uteri. ChIP-Seq analyses found the number of FOXA2 target genes was substantially greater in the adult (8893) than neonatal uterus (1101). In the neonatal uterus, FOXA2-bound and GE-expressed genes (469) were enriched for developmentally related processes, including cell cycle, cell junction, focal adhesion, and WNT signaling. In the adult uterus, FOXA2-bound and GE-expressed genes (3730) were enriched for functional processes, including metabolic pathways, focal adhesion, bacterial invasion of epithelial cells, and WNT signaling. Analysis of the uterine FOXA2 cistrome provides novel insights into mechanisms governing endometrial gland development and function, which are important to understand fundamental aspects of uterine differentiation, regeneration and disease.
Collapse
Affiliation(s)
- Justyna Filant
- 1Department of Animal Sciences, 1815 Ferdinand's Lane, VMRB 175, Washington State University, Pullman, WA 83843, USA.
| | | | | |
Collapse
|
118
|
Cieślik M, Hoang SA, Baranova N, Chodaparambil S, Kumar M, Allison DF, Xu X, Wamsley JJ, Gray L, Jones DR, Mayo MW, Bekiranov S. Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition. Epigenetics Chromatin 2013; 6:28. [PMID: 24004852 PMCID: PMC3847279 DOI: 10.1186/1756-8935-6-28] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the relationship between reprogramming and the coordination of cellular processes is largely unexplored. We have previously developed a system to study EMT in a canonical non-small cell lung cancer (NSCLC) model. In this system we have shown that the induction of EMT results in constitutive NF-κB activity. We hypothesized a role for chromatin remodeling in the sustained deregulation of cellular signaling pathways. RESULTS We mapped sixteen histone modifications and two variants for epithelial and mesenchymal states. Combinatorial patterns of epigenetic changes were quantified at gene and enhancer loci. We found a distinct chromatin signature among genes in well-established EMT pathways. Strikingly, these genes are only a small minority of those that are differentially expressed. At putative enhancers of genes with the 'EMT-signature' we observed highly coordinated epigenetic activation or repression. Furthermore, enhancers that are activated are bound by a set of transcription factors that is distinct from those that bind repressed enhancers. Upregulated genes with the 'EMT-signature' are upstream regulators of NF-κB, but are also bound by NF-κB at their promoters and enhancers. These results suggest a chromatin-mediated positive feedback as a likely mechanism for sustained NF-κB activation. CONCLUSIONS There is highly specific epigenetic regulation at genes and enhancers across several pathways critical to EMT. The sites of these changes in chromatin state implicate several inducible transcription factors with critical roles in EMT (NF-κB, AP-1 and MYC) as targets of this reprogramming. Furthermore, we find evidence that suggests that these transcription factors are in chromatin-mediated transcriptional feedback loops that regulate critical EMT genes. In sum, we establish an important link between chromatin remodeling and shifts in cellular reprogramming.
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Stephen A Hoang
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Natalya Baranova
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Sanjay Chodaparambil
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Manish Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - David F Allison
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Xiaojiang Xu
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - J Jacob Wamsley
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Lisa Gray
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - David R Jones
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA.,Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| |
Collapse
|
119
|
Coutu DL, Schroeder T. Probing cellular processes by long-term live imaging--historic problems and current solutions. J Cell Sci 2013; 126:3805-15. [PMID: 23943879 DOI: 10.1242/jcs.118349] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Living organisms, tissues, cells and molecules are highly dynamic. The importance of their continuous and long-term observation has been recognized for over a century but has been limited by technological hurdles. Improvements in imaging technologies, genetics, protein engineering and data analysis have more recently allowed us to answer long-standing questions in biology using quantitative continuous long-term imaging. This requires a multidisciplinary collaboration between scientists of various backgrounds: biologists asking relevant questions, imaging specialists and engineers developing hardware, and informaticians and mathematicians developing software for data acquisition, analysis and computational modeling. Despite recent improvements, there are still obstacles to be addressed before this technology can achieve its full potential. This Commentary aims at providing an overview of currently available technologies for quantitative continuous long-term single-cell imaging, their limitations and what is required to bring this field to the next level. We provide an historical perspective on the development of this technology and discuss key issues in time-lapse imaging: keeping cells alive, using labels, reporters and biosensors, and hardware and software requirements. We highlight crucial and often non-obvious problems for researchers venturing into the field and hope to inspire experts in the field and from related disciplines to contribute to future solutions.
Collapse
Affiliation(s)
- Daniel L Coutu
- ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | | |
Collapse
|
120
|
Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 2013; 140:3128-38. [PMID: 23824574 DOI: 10.1242/dev.088765] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.
Collapse
Affiliation(s)
- Silvia Engert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
121
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
122
|
Burtscher I, Barkey W, Lickert H. Foxa2-venus fusion reporter mouse line allows live-cell analysis of endoderm-derived organ formation. Genesis 2013; 51:596-604. [PMID: 23712942 DOI: 10.1002/dvg.22404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 01/06/2023]
Abstract
The Foxa2-winged helix/forkhead box transcription factor (TF) is absolutely required for endoderm formation and organogenesis. Foxa2 plays essential roles during lung, liver, pancreas, and gastrointestinal tract development and regulates cell-type specific programs in the adult organism. To specifically address Foxa2 function during organ development and homeostasis, we generated a Foxa2-Venus fusion (FVF) reporter protein by gene targeting in embryonic stem (ES) cells. The FVF knock-in reporter is expressed under endogenous Foxa2 control and the fluorescent protein fusion does not interfere with TF function, as homozygous mice are viable and fertile. Moreover, the FVF protein localizes to the nucleus, associates with chromatin during mitosis, and reflects the endogenous Foxa2 protein distribution pattern in several tissues in heterozygous animals. Importantly, live-cell imaging on single-cell level of the FVF and Sox17-Cherry fusion double knock-in reporter ES cell line reveals the dynamics of endoderm TF accumulation during ES cell differentiation. The FVF reporter also allowed us to identify the endoderm progenitors during gastrulation and to visualize the different branching morphogenesis modes of the lung and pancreas epithelium in ex vivo embryo and organ cultures. In summary, the generation of the FVF reporter line adds an important new tool to visualize and analyse endoderm-derived organ development and homeostasis on the cellular and molecular level.
Collapse
Affiliation(s)
- Ingo Burtscher
- Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
| | | | | |
Collapse
|
123
|
Ets2-dependent trophoblast signalling is required for gastrulation progression after primitive streak initiation. Nat Commun 2013; 4:1658. [DOI: 10.1038/ncomms2646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/25/2013] [Indexed: 11/09/2022] Open
|
124
|
Tan JY, Sriram G, Rufaihah AJ, Neoh KG, Cao T. Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. Stem Cells Dev 2013; 22:1893-906. [PMID: 23413973 DOI: 10.1089/scd.2012.0590] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The vertebrae mesoderm is a source of cells that forms a variety of tissues, including the heart, vasculature, and blood. Consequently, the derivation of various mesoderm-specific cell types from human embryonic stem cells (hESCs) has attracted the interest of many investigators owing to their therapeutic potential in clinical applications. However, the need for efficient and reliable methods of differentiation into mesoderm lineage cell types remains a significant challenge. Here, we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) is an essential first step toward efficient generation of the mesoderm. Under chemically defined conditions without additional growth factors/cytokines, short-term GSK inhibitor (GSKi) treatment effectively drives differentiation of hESCs into the primitive streak (PS), which can potentially commit toward the mesoderm when further supplemented with bone morphogenetic protein 4. Further analysis confirmed that the PS-like cells derived from GSKi treatment are bipotential, being able to specify toward the endoderm as well. Our findings suggest that the bipotential, PS/mesendoderm-like cell population exists only at the initial stages of GSK-3 inhibition, whereas long-term inhibition results in an endodermal fate. Lastly, we demonstrated that our differentiation approach could efficiently generate lateral plate (CD34(+)KDR(+)) and paraxial (CD34(-)PDGFRα(+)) mesoderm subsets that can be further differentiated along the endothelial and smooth muscle lineages, respectively. In conclusion, our study presents a unique approach for generating early mesoderm progenitors in a chemically directed fashion through the use of small-molecule GSK-3 inhibitor, which may be useful for future applications in regenerative medicine.
Collapse
Affiliation(s)
- Jia Yong Tan
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
125
|
Serrano F, Calatayud CF, Blazquez M, Torres J, Castell JV, Bort R. Gata4 Blocks Somatic Cell Reprogramming By Directly Repressing Nanog. Stem Cells 2012; 31:71-82. [DOI: 10.1002/stem.1272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/04/2012] [Indexed: 12/31/2022]
|
126
|
Bertocchini F, Alev C, Nakaya Y, Sheng G. A little winning streak: The reptilian-eye view of gastrulation in birds. Dev Growth Differ 2012; 55:52-9. [DOI: 10.1111/dgd.12014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Federica Bertocchini
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC); CSIC-SODERCAN-Universidad de Cantabria; Facultad de Medicina; Avda. Cardenal Herrera Oria, s/n; 39011; Santander; Spain
| | - Cantas Alev
- Lab for Early Embryogenesis; RIKEN Center for Developmental Biology; 2-2-3 Minatojima-minamimachi; Chuo-Ku; Kobe; Hyogo; 650-0047; Japan
| | - Yukiko Nakaya
- Lab for Early Embryogenesis; RIKEN Center for Developmental Biology; 2-2-3 Minatojima-minamimachi; Chuo-Ku; Kobe; Hyogo; 650-0047; Japan
| | - Guojun Sheng
- Lab for Early Embryogenesis; RIKEN Center for Developmental Biology; 2-2-3 Minatojima-minamimachi; Chuo-Ku; Kobe; Hyogo; 650-0047; Japan
| |
Collapse
|
127
|
Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, Eisenberg LM. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cells Dev 2012; 22:654-67. [PMID: 22994322 DOI: 10.1089/scd.2012.0181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype.
Collapse
Affiliation(s)
- Nadejda V Mezentseva
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The lack or dysfunction of insulin-producing β-cells is the cause of all forms of diabetes. In vitro generation of β-cells from pluripotent stem cells for cell-replacement therapy or triggering endogenous mechanisms of β-cell repair have great potential in the field of regenerative medicine. Both approaches rely on a thorough understanding of β-cell development and homeostasis. Here, we briefly summarize the current knowledge of β-cell differentiation during pancreas development in the mouse. Furthermore, we describe how this knowledge is translated to instruct differentiation of both mouse and human pluripotent stem cells towards the β-cell lineage. Finally, we shortly summarize the current efforts to identify stem or progenitor cells in the adult pancreatic organ and to harness the endogenous regenerative potential. Understanding development and regeneration of β-cells already led to identification of molecular targets for therapy and informed on pathomechanisms of diabetes. In the future this knowledge might [corrected] lead to β-cell repair and replacement therapies.
Collapse
Affiliation(s)
- Aurelia Raducanu
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | | |
Collapse
|
129
|
Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T, Draper JS. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 2012; 22:279-95. [PMID: 22827698 DOI: 10.1089/scd.2012.0168] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The cell cycle in pluripotent stem cells is notable for the brevity of the G1 phase, permitting rapid proliferation and reducing the duration of differentiation signal sensitivity associated with the G1 phase. Changes in the length of G1 phase are understood to accompany the differentiation of human embryonic stem cells (hESCs), but the timing and extent of such changes are poorly defined. Understanding the early steps governing the differentiation of hESCs will facilitate better control over differentiation for regenerative medicine and drug discovery applications. Here we report the first use of real-time cell cycle reporters in hESCs. We coexpressed the chromatin-decorating H2B-GFP fusion protein and the fluorescence ubiquitination cell cycle indicator (FUCCI)-G1 fusion protein, a G1 phase-specific reporter, in hESCs to measure the cell cycle status in live cells. We found that FUCCI-G1 expression is weakly detected in undifferentiated hESCs, but rapidly increases upon differentiation. hESCs in the G1 phase display a reduction in undifferentiated colony-initiating cell function, underscoring the relationship between G1 phase residence and differentiation. Importantly, we demonstrate inter- and intracolony variation in response to chemicals that induce differentiation, implying extensive cell-cell variation in the threshold necessary to alter the G1 phase length. Finally, gain of differentiation markers appears to be coincident with G1 phase lengthening, with distinct G1 phase profiles associated with different markers of early hESC differentiation. Our data demonstrate the tight coupling of cell cycle changes to hESC differentiation, and highlight the cell cycle reporter system and assays we have implemented as a novel avenue for investigating pluripotency and differentiation.
Collapse
Affiliation(s)
- Ashley Calder
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Burtscher I, Barkey W, Schwarzfischer M, Theis FJ, Lickert H. The Sox17-mCherry fusion mouse line allows visualization of endoderm and vascular endothelial development. Genesis 2012; 50:496-505. [PMID: 22121118 DOI: 10.1002/dvg.20829] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/04/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023]
Abstract
Sox17 is a HMG-box transcription factor that has been shown to play important roles in both cardio-vascular development and endoderm formation. To analyze these processes in greater detail, we have generated a Sox17-mCherry fusion (SCF) protein by gene targeting in ES cells. SCF reporter mice are homozygous viable and faithfully reflect the endogenous Sox17 protein localization. We report that SCF positive cells constitute a subpopulation in the visceral endoderm before gastrulation and time-lapse imaging reveals that SCF monitors the nascent definitive endoderm during epithelialization. After gastrulation, SCF marks the mid- and hindgut endoderm and vascular endothelial network, which can be imaged during establishment in allantois explant cultures. The SCF reporter is downregulated in the endoderm epithelium and upregulated in endothelial cells of the intestine, lung, and pancreas during organogenesis. In summary, the generation of the Sox17-mCherry reporter mouse line allows direct visualization of endoderm and vascular development in culture and the mouse embryo.
Collapse
Affiliation(s)
- Ingo Burtscher
- Institute of Diabetes and Regeneration, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
131
|
Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Loso T, Sugimoto T, Niwa H, Bosch TCG. Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 2012; 29:3267-80. [PMID: 22595987 DOI: 10.1093/molbev/mss134] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
How distinct stem cell populations originate and whether there is a clear stem cell "genetic signature" remain poorly understood. Understanding the evolution of stem cells requires molecular profiling of stem cells in an animal at a basal phylogenetic position. In this study, using transgenic Hydra polyps, we reveal for each of the three stem cell populations a specific signature set of transcriptions factors and of genes playing key roles in cell type-specific function and interlineage communication. Our data show that principal functions of stem cell genes, such as maintenance of stemness and control of stem cell self-renewal and differentiation, arose very early in metazoan evolution. They are corroborating the view that stem cell types shared common, multifunctional ancestors, which achieved complexity through a stepwise segregation of function in daughter cells.
Collapse
Affiliation(s)
- Georg Hemmrich
- Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Sharivkin R, Walker MD, Soen Y. Proteomics-based dissection of human endoderm progenitors by differential cell capture on antibody array. Mol Cell Proteomics 2012; 11:586-95. [PMID: 22580589 DOI: 10.1074/mcp.m111.016840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneity, shortage of material, and lack of progenitor-specific cell surface markers are major obstacles to elucidating the mechanisms underlying developmental processes. Here we report a proteomics platform that alleviates these difficulties and demonstrate its effectiveness in fractionating heterogeneous cultures of early endoderm derived from human embryonic stem cells. The approach, designated differential cell-capture antibody array, is based on highly parallel, comparative screening of live cell populations using hundreds of antibodies directed against cell-surface antigens. We used this platform to fractionate the hitherto unresolved early endoderm compartment of CXCR4+ cells and identify several endoderm (CD61+ and CD63+) and non-endoderm (CD271+, CD49F+, CD44+ and B2M+) sub-populations. We provide evidence that one of these sub-populations, CD61+, is directly derived from CXCR4+ cells, displays characteristic kinetics of emergence, and exhibits a distinct gene expression profile. The results demonstrate the potential of the cell-capture antibody array as a powerful proteomics tool for detailed dissection of heterogeneous cellular systems.
Collapse
Affiliation(s)
- Revital Sharivkin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
133
|
Acloque H, Ocaña OH, Nieto MA. Mutual exclusion of transcription factors and cell behaviour in the definition of vertebrate embryonic territories. Curr Opin Genet Dev 2012; 22:308-14. [PMID: 22560468 DOI: 10.1016/j.gde.2012.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 12/27/2022]
Abstract
Early embryonic territories are transient entities under permanent remodelling to form newly derived cell populations that will eventually give rise to the adult tissues and organs. A vast effort has been devoted to identifying the determinants and mechanisms that define embryonic territories. Indeed, studies in the vertebrate embryo from the morula stage to the segregation of the main embryonic layers-ectoderm, mesoderm and endoderm-have highlighted the importance of the mutual exclusion/repression between pairs of transcription factors, in coordination with the control exerted over cell division, adhesion and motility.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias CSIC-UMH, Avda Ramón y Cajal s/n, San Juan de Alicante, 03550, Spain; UMR 444, INRA-ENVT, Génétique Cellulaire, Toulouse, France
| | | | | |
Collapse
|
134
|
Vidigal JA, Ventura A. Embryonic stem cell miRNAs and their roles in development and disease. Semin Cancer Biol 2012; 22:428-36. [PMID: 22561239 DOI: 10.1016/j.semcancer.2012.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/17/2012] [Indexed: 01/07/2023]
Abstract
MicroRNAs have emerged as important modulators of gene expression. Both during development and disease, regulation by miRNAs controls the choice between self-renewal and differentiation, survival and apoptosis and dictates how cells respond to external stimuli. In mouse pluripotent embryonic stem cells, a surprisingly small set of miRNAs, encoded by four polycistronic genes is at the center of such decisions. miR-290-295, miR-302-367, miR-17-92 and miR-106b-25 encode for miRNAs with highly related sequences that seem to control largely overlapping gene sets. Recent studies have highlighted the importance of these miRNAs in the maintenance of 'stemness' and regulation of normal development and have linked the deregulation of their expression to a variety of human diseases.
Collapse
Affiliation(s)
- Joana Alves Vidigal
- Memorial Sloan-Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, United States
| | | |
Collapse
|
135
|
Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, Callery EM, Trotter MW, Hemberger M, Smith JC, Bardwell L, Moffett A, Pedersen RA. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 2012; 9:144-55. [PMID: 21816365 PMCID: PMC3567433 DOI: 10.1016/j.stem.2011.06.015] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 04/14/2011] [Accepted: 06/30/2011] [Indexed: 11/01/2022]
Abstract
BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.
Collapse
Affiliation(s)
- Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Harrelson Z, Kaestner KH, Evans SM. Foxa2 mediates critical functions of prechordal plate in patterning and morphogenesis and is cell autonomously required for early ventral endoderm morphogenesis. Biol Open 2012. [DOI: 10.1242/bio.2011040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Summary
Axial mesendoderm is comprised of prechordal plate and notochord. Lack of a suitable Cre driver has hampered the ability to genetically dissect the requirement for each of these components, or genes expressed within them, to anterior patterning. Here, we have utilized Isl1-Cre to investigate roles of the winged helix transcription factor Foxa2 specifically in prechordal plate and ventral endoderm. Foxa2loxP/loxP; Isl1-Cre mutants died at 13.5 dpc, exhibiting aberrations in anterior neural tube and forebrain patterning, and in ventral foregut morphogenesis and cardiac fusion. Molecular analysis of Foxa2loxP/loxP; Isl1-Cre mutants indicated that Foxa2 is required in Isl1 lineages for expression of notochord and dorsal foregut endoderm markers, Shh. Brachyury, and Hlxb9. Our results support a requirement for Foxa2 in prechordal plate for notochord morphogenesis, axial patterning, and patterning of dorsal foregut endoderm. Loss of Foxa2 in ventral endoderm resulted in reduced expression of Sox17, Gata4, and ZO proteins, accounting at least in part for observed lack of foregut fusion, cardia bifida, and increased apoptosis of ventral endoderm.
Collapse
Affiliation(s)
- Zachary Harrelson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive MC0613C, La Jolla, CA 92093, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, 752b Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive MC0613C, La Jolla, CA 92093, USA
- School of Medicine, University of California San Diego, 9500 Gilman Drive MC0613C, La Jolla, CA 92093, USA
| |
Collapse
|
137
|
Harrelson Z, Kaestner KH, Evans SM. Foxa2 mediates critical functions of prechordal plate in patterning and morphogenesis and is cell autonomously required for early ventral endoderm morphogenesis. Biol Open 2012; 1:173-81. [PMID: 23213408 PMCID: PMC3507292 DOI: 10.1242/bio.2012040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Axial mesendoderm is comprised of prechordal plate and notochord. Lack of a suitable Cre driver has hampered the ability to genetically dissect the requirement for each of these components, or genes expressed within them, to anterior patterning. Here, we have utilized Isl1-Cre to investigate roles of the winged helix transcription factor Foxa2 specifically in prechordal plate and ventral endoderm. Foxa2loxP/loxP; Isl1-Cre mutants died at 13.5 dpc, exhibiting aberrations in anterior neural tube and forebrain patterning, and in ventral foregut morphogenesis and cardiac fusion. Molecular analysis of Foxa2loxP/loxP; Isl1-Cre mutants indicated that Foxa2 is required in Isl1 lineages for expression of notochord and dorsal foregut endoderm markers, Shh. Brachyury, and Hlxb9. Our results support a requirement for Foxa2 in prechordal plate for notochord morphogenesis, axial patterning, and patterning of dorsal foregut endoderm. Loss of Foxa2 in ventral endoderm resulted in reduced expression of Sox17, Gata4, and ZO proteins, accounting at least in part for observed lack of foregut fusion, cardia bifida, and increased apoptosis of ventral endoderm.
Collapse
Affiliation(s)
- Zachary Harrelson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , 9500 Gilman Drive MC0613C, La Jolla, CA 92093 , USA
| | | | | |
Collapse
|
138
|
An ensemble approach for inferring semi-quantitative regulatory dynamics for the differentiation of mouse embryonic stem cells using prior knowledge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:247-60. [PMID: 22161333 DOI: 10.1007/978-1-4419-7210-1_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The process of differentiation of embryonic stem cells (ESCs) is currently becoming the focus of many systems biologists not only due to mechanistic interest but also since it is expected to play an increasingly important role in regenerative medicine, in particular with the advert to induced pluripotent stem cells. These ESCs give rise to the formation of the three germ layers and therefore to the formation of all tissues and organs. Here, we present a computational method for inferring regulatory interactions between the genes involved in ESC differentiation based on time resolved microarray profiles. Fully quantitative methods are commonly unavailable on such large-scale data; on the other hand, purely qualitative methods may fail to capture some of the more detailed regulations. Our method combines the beneficial aspects of qualitative and quantitative (ODE-based) modeling approaches searching for quantitative interaction coefficients in a discrete and qualitative state space. We further optimize on an ensemble of networks to detect essential properties and compare networks with respect to robustness. Applied to a toy model our method is able to reconstruct the original network and outperforms an entire discrete boolean approach. In particular, we show that including prior knowledge leads to more accurate results. Applied to data from differentiating mouse ESCs reveals new regulatory interactions, in particular we confirm the activation of Foxh1 through Oct4, mediating Nodal signaling.
Collapse
|
139
|
Van Campenhout CA, Eitelhuber A, Gloeckner CJ, Giallonardo P, Gegg M, Oller H, Grant SGN, Krappmann D, Ueffing M, Lickert H. Dlg3 trafficking and apical tight junction formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases. Dev Cell 2011; 21:479-91. [PMID: 21920314 PMCID: PMC4452538 DOI: 10.1016/j.devcel.2011.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/24/2011] [Accepted: 08/01/2011] [Indexed: 01/01/2023]
Abstract
The Drosophila Discs large (Dlg) scaffolding protein acts as a tumor suppressor regulating basolateral epithelial polarity and proliferation. In mammals, four Dlg homologs have been identified; however, their functions in cell polarity remain poorly understood. Here, we demonstrate that the X-linked mental retardation gene product Dlg3 contributes to apical-basal polarity and epithelial junction formation in mouse organizer tissues, as well as to planar cell polarity in the inner ear. We purified complexes associated with Dlg3 in polarized epithelial cells, including proteins regulating directed trafficking and tight junction formation. Remarkably, of the four Dlg family members, Dlg3 exerts a distinct function by recruiting the ubiquitin ligases Nedd4 and Nedd4-2 through its PPxY motifs. We found that these interactions are required for Dlg3 monoubiquitination, apical membrane recruitment, and tight junction consolidation. Our findings reveal an unexpected evolutionary diversification of the vertebrate Dlg family in basolateral epithelium formation.
Collapse
|
140
|
de-Leon SBT. The conserved role and divergent regulation of foxa, a pan-eumetazoan developmental regulatory gene. Dev Biol 2011; 357:21-6. [PMID: 21130759 PMCID: PMC3074024 DOI: 10.1016/j.ydbio.2010.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 11/23/2022]
Abstract
Foxa is a forkhead transcription factor that is expressed in the endoderm lineage across metazoans. Orthologs of foxa are expressed in cells that intercalate, polarize, and form tight junctions in the digestive tracts of the mouse, the sea urchin, and the nematode and in the chordate notochord. The loss of foxa expression eliminates these morphogenetic processes. The remarkable similarity in foxa phenotypes in these diverse organisms raises the following questions: why is the developmental role of Foxa so highly conserved? Is foxa transcriptional regulation as conserved as its developmental role? Comparison of the regulation of foxa orthologs in sea urchin and in Caenorhabditis elegans shows that foxa transcriptional regulation has diverged significantly between these two organisms, particularly in the cells that contribute to the C. elegans pharynx formation. We suggest that the similarity of foxa phenotype is due to its role in an ancestral gene regulatory network that controlled intercalation followed by mesenchymal-to-epithelial transition. foxa transcriptional regulation had evolved to support the developmental program in each species so foxa would play its role controlling morphogenesis at the necessary embryonic address.
Collapse
|
141
|
Halacheva V, Fuchs M, Dönitz J, Reupke T, Püschel B, Viebahn C. Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo. Dev Dyn 2011; 240:1905-16. [DOI: 10.1002/dvdy.22687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
142
|
Wolf XA, Serup P, Hyttel P. Three-dimensional immunohistochemical characterization of lineage commitment by localization of T and FOXA2 in porcine peri-implantation embryos. Dev Dyn 2011; 240:890-7. [DOI: 10.1002/dvdy.22602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2011] [Indexed: 01/06/2023] Open
|
143
|
Shaykhiev R, Otaki F, Bonsu P, Dang DT, Teater M, Strulovici-Barel Y, Salit J, Harvey BG, Crystal RG. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci 2011; 68:877-92. [PMID: 20820852 PMCID: PMC3838912 DOI: 10.1007/s00018-010-0500-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/15/2010] [Accepted: 08/05/2010] [Indexed: 01/11/2023]
Abstract
The apical junctional complex (AJC), composed of tight and adherens junctions, maintains epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating airway epithelial AJC integrity. Transcriptome analysis revealed global down-regulation of physiological AJC gene expression in the airway epithelium of healthy smokers (n = 59) compared to nonsmokers (n = 53) in association with changes in canonical epithelial differentiation pathways such as PTEN signaling accompanied by induction of cancer-related AJC components. The overall expression of AJC-related genes was further decreased in COPD smokers (n = 23). Exposure of airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC genes paralleled by decreased transepithelial resistance. Thus, cigarette smoking induces transcriptional reprogramming of airway epithelial AJC architecture from its physiological pattern necessary for barrier function toward a disease-associated molecular phenotype.
Collapse
Affiliation(s)
- Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
| | - Fouad Otaki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY USA
| | - Prince Bonsu
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
| | - David T. Dang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
| | - Matthew Teater
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
| | - Ben-Gary Harvey
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 96, New York, NY 10065 USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
144
|
Feuerborn A, Srivastava PK, Küffer S, Grandy WA, Sijmonsma TP, Gretz N, Brors B, Gröne HJ. The Forkhead factor FoxQ1 influences epithelial differentiation. J Cell Physiol 2011; 226:710-9. [PMID: 20717954 DOI: 10.1002/jcp.22385] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Forkhead family of transcription factors comprises numerous members and is implicated in various cellular functions, including cell growth, apoptosis, migration, and differentiation. In this study, we identified the Forkhead factor FoxQ1 as increased in expression during TGF-β1 induced changes in epithelial differentiation, suggesting functional roles of FoxQ1 for epithelial plasticity. The repression of FoxQ1 in mammary epithelial cells led to a change in cell morphology characterized by an increase in cell size, pronounced cell-cell contacts, and an increased expression of several junction proteins (e.g., E-cadherin). In addition, FoxQ1 knock-down cells revealed rearrangements in the actin-cytoskeleton and slowed down cell cycle G1-phase progression. Furthermore, repression of FoxQ1 enhanced the migratory capacity of coherent mammary epithelial cells. Gene expression profiling of NM18 cells indicated that FoxQ1 is a relevant downstream mediator of TGF-β1-induced gene expression changes. This included the differential expression of transcription factors involved in epithelial plasticity, for example, Ets-1, Zeb1, and Zeb2. In summary, this study has elucidated the functional impact of FoxQ1 on epithelial differentiation.
Collapse
Affiliation(s)
- A Feuerborn
- Department of Cellular and Molecular Pathology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Werth M, Walentin K, Aue A, Schönheit J, Wuebken A, Pode-Shakked N, Vilianovitch L, Erdmann B, Dekel B, Bader M, Barasch J, Rosenbauer F, Luft FC, Schmidt-Ott KM. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development 2010; 137:3835-45. [PMID: 20978075 DOI: 10.1242/dev.055483] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Differentiation of epithelial cells and morphogenesis of epithelial tubes or layers is closely linked with the establishment and remodeling of the apical junctional complex, which includes adherens junctions and tight junctions. Little is known about the transcriptional control of apical junctional complex components. Here, we show that the transcription factor grainyhead-like 2 (Grhl2), an epithelium-specific mammalian homolog of Drosophila Grainyhead, is essential for adequate expression of the adherens junction gene E-cadherin and the tight junction gene claudin 4 (Cldn4) in several types of epithelia, including gut endoderm, surface ectoderm and otic epithelium. We have generated Grhl2 mutant mice to demonstrate defective molecular composition of the apical junctional complex in these compartments that coincides with the occurrence of anterior and posterior neural tube defects. Mechanistically, we show that Grhl2 specifically associates with cis-regulatory elements localized at the Cldn4 core promoter and within intron 2 of the E-cadherin gene. Cldn4 promoter activity in epithelial cells is crucially dependent on the availability of Grhl2 and on the integrity of the Grhl2-associated cis-regulatory element. At the E-cadherin locus, the intronic Grhl2-associated cis-regulatory region contacts the promoter via chromatin looping, while loss of Grhl2 leads to a specific decrease of activating histone marks at the E-cadherin promoter. Together, our data provide evidence that Grhl2 acts as a target gene-associated transcriptional activator of apical junctional complex components and, thereby, crucially participates in epithelial differentiation.
Collapse
Affiliation(s)
- Max Werth
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Hassoun R, Schwartz P, Rath D, Viebahn C, Männer J. Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos. J Anat 2010; 217:665-78. [PMID: 20874819 DOI: 10.1111/j.1469-7580.2010.01303.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal-epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations.
Collapse
Affiliation(s)
- Romia Hassoun
- Department of Anatomy and Embryology, Göttingen University, Göttingen, Germany
| | | | | | | | | |
Collapse
|
147
|
Tang Y, Shu G, Yuan X, Jing N, Song J. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Res 2010; 21:316-26. [PMID: 20820189 DOI: 10.1038/cr.2010.126] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box transcription factor A2 (FOXA2) is an important regulator in animal development and body homeostasis. However, whether FOXA2 is involved in transforming growth factor β1 (TGF-β1)-mediated epithelial-to-mesenchymal transition (EMT) and tumor metastasis remains unknown. The present study showed that in human lung cancer cell lines, the abundance of FOXA2 positively correlates with epithelial phenotypes and negatively correlates with the mesenchymal phenotypes of cells, and TGF-β1 treatment decreased FOXA2 protein level. Consistently, knockdown of FOXA2 promoted EMT and invasion of lung cancer cells, whereas overexpression of FOXA2 reduced the invasion and suppressed TGF-β1-induced EMT. In addition, knockdown of FOXA2 induced slug expression, and ectopic expression of FOXA2 inhibited slug transcription. Furthermore, we identified that FOXA2 can bind to slug promoter through a conserved binding site, and that the DNA-binding region and transactivation region II of FOXA2 are required for repression of the slug promoter. These data demonstrate that FOXA2 functions as a suppressor of tumor metastasis by inhibition of EMT.
Collapse
Affiliation(s)
- Yunneng Tang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
148
|
Nowotschin S, Hadjantonakis AK. Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Curr Opin Genet Dev 2010; 20:420-7. [PMID: 20566281 PMCID: PMC2908213 DOI: 10.1016/j.gde.2010.05.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Coordinated cell movements and reciprocal tissue interactions direct the formation of the definitive germ layers and the elaboration of the major axes of the mouse embryo. Genetic and embryological studies have defined the major molecular pathways that mediate these morphogenetic processes and provided 'snapshots' of the morphogenetic program. However, it is increasingly clear that this foundation needs to be validated, and can be significantly refined and extended using live imaging approaches. In situ visualization of these processes in living specimens is a major goal, as it provides unprecedented detail of the individual cellular behaviors, which translate into the large-scale tissue rearrangements that shape the embryo.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY10065, USA
| | | |
Collapse
|
149
|
Cox BJ, Vollmer M, Tamplin O, Lu M, Biechele S, Gertsenstein M, van Campenhout C, Floss T, Kühn R, Wurst W, Lickert H, Rossant J. Phenotypic annotation of the mouse X chromosome. Genome Res 2010; 20:1154-64. [PMID: 20548051 PMCID: PMC2909578 DOI: 10.1101/gr.105106.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Mutational screens are an effective means used in the functional annotation of a genome. We present a method for a mutational screen of the mouse X chromosome using gene trap technologies. This method has the potential to screen all of the genes on the X chromosome without establishing mutant animals, as all gene-trapped embryonic stem (ES) cell lines are hemizygous null for mutations on the X chromosome. Based on this method, embryonic morphological phenotypes and expression patterns for 58 genes were assessed, approximately 10% of all human and mouse syntenic genes on the X chromosome. Of these, 17 are novel embryonic lethal mutations and nine are mutant mouse models of genes associated with genetic disease in humans, including BCOR and PORCN. The rate of lethal mutations is similar to previous mutagenic screens of the autosomes. Interestingly, some genes associated with X-linked mental retardation (XLMR) in humans show lethal phenotypes in mice, suggesting that null mutations cannot be responsible for all cases of XLMR. The entire data set is available via the publicly accessible website (http://xlinkedgenes.ibme.utoronto.ca/).
Collapse
Affiliation(s)
- Brian J. Cox
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Marion Vollmer
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Owen Tamplin
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mei Lu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Steffen Biechele
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marina Gertsenstein
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Toronto Centre for Phenogenomics, Transgenic Core, Toronto M5T 3H7, Canada
| | - Claude van Campenhout
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Thomas Floss
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
- MPI für Psychiatrie, München 80804, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health Institute of Developmental Genetics, Neuherberg 85764, Germany
- Technical University Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Neuherberg 85764, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, München 80336, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| |
Collapse
|
150
|
Kinzel D, Boldt K, Davis EE, Burtscher I, Trümbach D, Diplas B, Attié-Bitach T, Wurst W, Katsanis N, Ueffing M, Lickert H. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell 2010; 19:66-77. [PMID: 20643351 PMCID: PMC3671612 DOI: 10.1016/j.devcel.2010.06.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/16/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
A variety of developmental disorders have been associated with ciliary defects, yet the controls that govern cilia disassembly are largely unknown. Here we report a mouse embryonic node gene, which we named Pitchfork (Pifo). Pifo associates with ciliary targeting complexes and accumulates at the basal body during cilia disassembly. Haploinsufficiency causes a unique node cilia duplication phenotype, left-right asymmetry defects, and heart failure. This phenotype is likely relevant in humans, because we identified a heterozygous R80K PIFO mutation in a fetus with situs inversus and cystic liver and kidneys, and in patient with double-outflow right ventricle. We show that PIFO, but not R80K PIFO, is sufficient to activate Aurora A, a protooncogenic kinase that induces cilia retraction, and that Pifo/PIFO mutation causes cilia retraction, basal body liberation, and overreplication defects. Thus, the observation of a disassembly phenotype in vivo provides an entry point to understand and categorize ciliary disease. AUTHOR AUDIO:
Collapse
Affiliation(s)
- Doris Kinzel
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karsten Boldt
- Department of Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Division of Experimental Ophthalmology, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Erica E. Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ingo Burtscher
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Bill Diplas
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tania Attié-Bitach
- Département de Génétique et INSERM U-781, Hôpital Necker-Enfant Malades, 75015 Paris Cedex 15, France
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, NC 27708, USA
| | - Marius Ueffing
- Department of Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Division of Experimental Ophthalmology, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|