101
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
102
|
Seo H, Li X, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA. Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta 2019; 90:62-70. [PMID: 32056554 DOI: 10.1016/j.placenta.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Our aim was to evaluate whether mechanical forces applied to the placenta of pigs correlate with morphological changes that coordinate the development of placental folds. METHODS We examined changes in the length of placental folds, expression of mechanotransduction-implicated molecules in placental tissues, changes in the size of subepithelial blood vessels within the endometrium, and effects of in vivo supplementation with arginine on fold development. RESULTS We observed that: 1) the length of folds increased 2) osteopontin, talin and focal adhesion kinase co-localized into aggregates at the maternal placental (uterine)-fetal placental interface; 3) filamin, actin related protein 2, and F-actin were enriched in the tops of maternal placental folds extending into fetal placental tissue; 4) maternal stromal fibroblasts acquired alpha smooth muscle actin; 5) endometrial blood vessels increased in size; and 6) supplementation with arginine increased fold length. CONCLUSION Results indicate that lengthening of folds associates with polymerization of actin that coincides with FA assembly, endometrial fibroblasts differentiate into myofibroblasts, and dilation of subepithelial blood vessels correlates with development of folds that is enhanced by arginine. We propose that dilation of subepithelial endometrial blood vessels delivers increased blood flow that pushes upward on the interface between the uterine luminal epithelium (LE) and the placental chorionic epithelium (CE), protrusive forces from growing uterine blood vessels trigger focal adhesion assembly and actin polymerization between the LE and CE, and endometrial fibroblasts differentiate into contractile myofibroblasts that pull connective tissue downward and inward to sculpt folds at the maternal placental-fetal placental interface.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M System Health Sciences Center, College Station, TX, 77843, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA.
| |
Collapse
|
103
|
Garoffolo G, Pesce M. Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology. Cells 2019; 8:cells8121607. [PMID: 31835742 PMCID: PMC6953076 DOI: 10.3390/cells8121607] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
With the term ‘mechanotransduction’, it is intended the ability of cells to sense and respond to mechanical forces by activating intracellular signal transduction pathways and the relative phenotypic adaptation. While a known role of mechanical stimuli has been acknowledged for developmental biology processes and morphogenesis in various organs, the response of cells to mechanical cues is now also emerging as a major pathophysiology determinant. Cells of the cardiovascular system are typically exposed to a variety of mechanical stimuli ranging from compression to strain and flow (shear) stress. In addition, these cells can also translate subtle changes in biophysical characteristics of the surrounding matrix, such as the stiffness, into intracellular activation cascades with consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes. Since cellular mechanotransduction has a potential readout on long-lasting modifications of the chromatin, exposure of the cells to mechanically altered environments may have similar persisting consequences to those of metabolic dysfunctions or chronic inflammation. In the present review, we highlight the roles of mechanical forces on the control of cardiovascular formation during embryogenesis, and in the development and pathogenesis of the cardiovascular system.
Collapse
Affiliation(s)
- Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, 4, I-20138 Milan, Italy;
- PhD Program in Translational and Molecular Medicine DIMET, Università di Milano - Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, 4, I-20138 Milan, Italy;
| |
Collapse
|
104
|
Beech DJ, Kalli AC. Force Sensing by Piezo Channels in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol 2019; 39:2228-2239. [PMID: 31533470 PMCID: PMC6818984 DOI: 10.1161/atvbaha.119.313348] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Mechanical forces are fundamental in cardiovascular biology, and deciphering the mechanisms by which they act remains a testing frontier in cardiovascular research. Here, we raise awareness of 2 recently discovered proteins, Piezo1 and Piezo2, which assemble as transmembrane triskelions to combine exquisite force sensing with regulated calcium influx. There is emerging evidence for their importance in endothelial shear stress sensing and secretion, NO generation, vascular tone, angiogenesis, atherosclerosis, vascular permeability and remodeling, blood pressure regulation, insulin sensitivity, exercise performance, and baroreceptor reflex, and there are early suggestions of relevance to cardiac fibroblasts and myocytes. Human genetic analysis points to significance in lymphatic disease, anemia, varicose veins, and potentially heart failure, hypertension, aneurysms, and stroke. These channels appear to be versatile force sensors, used creatively to inform various force-sensing situations. We discuss emergent concepts and controversies and suggest that the potential for new important understanding is substantial.
Collapse
Affiliation(s)
- David J. Beech
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| | - Antreas C. Kalli
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| |
Collapse
|
105
|
Duchemin AL, Vignes H, Vermot J, Chow R. Mechanotransduction in cardiovascular morphogenesis and tissue engineering. Curr Opin Genet Dev 2019; 57:106-116. [PMID: 31586750 DOI: 10.1016/j.gde.2019.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Cardiovascular morphogenesis involves cell behavior and cell identity changes that are activated by mechanical forces associated with heart function. Recently, advances in in vivo imaging, methods to alter blood flow, and computational modelling have greatly advanced our understanding of how forces produced by heart contraction and blood flow impact different morphogenetic processes. Meanwhile, traditional genetic approaches have helped to elucidate how endothelial cells respond to forces at the cellular and molecular level. Here we discuss the principles of endothelial mechanosensitity and their interplay with cellular processes during cardiovascular morphogenesis. We then discuss their implications in the field of cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Anne-Laure Duchemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Helene Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
106
|
Li R, Baek KI, Chang CC, Zhou B, Hsiai TK. Mechanosensitive Pathways Involved in Cardiovascular Development and Homeostasis in Zebrafish. J Vasc Res 2019; 56:273-283. [PMID: 31466069 DOI: 10.1159/000501883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases such as coronary heart disease, myocardial infarction, and cardiac arrhythmia are the leading causes of morbidity and mortality in developed countries and are steadily increasing in developing countries. Fundamental mechanistic studies at the molecular, cellular, and animal model levels are critical for the diagnosis and treatment of these diseases. Despite being phylogenetically distant from humans, zebrafish share remarkable similarity in the genetics and electrophysiology of the cardiovascular system. In the last 2 decades, the development and deployment of innovative genetic manipulation techniques greatly facilitated the application of zebrafish as an animal model for studying basic biology and diseases. Hemodynamic shear stress is intimately involved in vascular development and homeostasis. The critical mechanosensitive signaling pathways in cardiovascular development and pathophysiology previously studied in mammals have been recapitulated in zebrafish. In this short article, we reviewed recent knowledge about the role of mechanosensitive pathways such as Notch, PKCε/PFKFB3, and Wnt/Ang2 in cardiovas-cular development and homeostasis from studies in the -zebrafish model.
Collapse
Affiliation(s)
- Rongsong Li
- College of Health Sciences and Environmental Engineering, Shenzhen Technology University, Shenzhen, China,
| | - Kyung In Baek
- Department of Bioengineering,University of California, Los Angeles, California, USA
| | - Chih-Chiang Chang
- Department of Bioengineering,University of California, Los Angeles, California, USA
| | - Bill Zhou
- Department of Radiology, University of California, Los Angeles, California, USA
| | - Tzung K Hsiai
- Department of Bioengineering,University of California, Los Angeles, California, USA.,Department of Medicine (Cardiology) and Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
107
|
Geudens I, Coxam B, Alt S, Gebala V, Vion AC, Meier K, Rosa A, Gerhardt H. Artery-vein specification in the zebrafish trunk is pre-patterned by heterogeneous Notch activity and balanced by flow-mediated fine-tuning. Development 2019; 146:dev.181024. [PMID: 31375478 PMCID: PMC6737902 DOI: 10.1242/dev.181024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 01/04/2023]
Abstract
How developing vascular networks acquire the right balance of arteries, veins and lymphatic vessels to efficiently supply and drain tissues is poorly understood. In zebrafish embryos, the robust and regular 50:50 global balance of intersegmental veins and arteries that form along the trunk prompts the intriguing question of how does the organism keep ‘count’? Previous studies have suggested that the ultimate fate of an intersegmental vessel (ISV) is determined by the identity of the approaching secondary sprout emerging from the posterior cardinal vein. Here, we show that the formation of a balanced trunk vasculature involves an early heterogeneity in endothelial cell behaviour and Notch signalling activity in the seemingly identical primary ISVs that is independent of secondary sprouting and flow. We show that Notch signalling mediates the local patterning of ISVs, and an adaptive flow-mediated mechanism subsequently fine-tunes the global balance of arteries and veins along the trunk. We propose that this dual mechanism provides the adaptability required to establish a balanced network of arteries, veins and lymphatic vessels. Highlighted Article: A stepwise dual mechanism involving Notch signalling and flow provides the adaptability required to establish a balanced network of arteries and veins in the zebrafish trunk.
Collapse
Affiliation(s)
- Ilse Geudens
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium.,Vascular Patterning Laboratory, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Silvanus Alt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Véronique Gebala
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Anne-Clémence Vion
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Andre Rosa
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium .,Vascular Patterning Laboratory, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
108
|
Abstract
The formation and remodeling of a functional circulatory system is critical for sustaining prenatal and postnatal life. During embryogenesis, newly differentiated endothelial cells require further specification to create the unique features of distinct vessel subtypes needed to support tissue morphogenesis. In this review, we explore signaling pathways and transcriptional regulators that modulate endothelial cell differentiation and specification, as well as applications of these processes to stem cell biology and regenerative medicine. We also summarize recent technical advances, including the growing utilization of single-cell sequencing to study vascular heterogeneity and development.
Collapse
Affiliation(s)
- Jingyao Qiu
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| | - Karen K Hirschi
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
109
|
Huang Y, Li M, Huang D, Qiu Q, Lin W, Liu J, Yang W, Yao Y, Yan G, Qu N, Tuchin VV, Fan S, Liu G, Zhao Q, Chen X. Depth-Resolved Enhanced Spectral-Domain OCT Imaging of Live Mammalian Embryos Using Gold Nanoparticles as Contrast Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902346. [PMID: 31304667 DOI: 10.1002/smll.201902346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Indexed: 05/12/2023]
Abstract
High-resolution and real-time visualization of the morphological changes during embryonic development are critical for studying congenital anomalies. Optical coherence tomography (OCT) has been used to investigate the process of embryogenesis. However, the structural visibility of the embryo is decreased with the depth due to signal roll-off and high light scattering. To overcome these obstacles, in this study, combined is a spectral-domain OCT (SD-OCT) with gold nanorods (GNRs) for 2D/3D imaging of live mouse embryos. Inductively coupled plasma mass spectrometry is used to confirm that GNRs can be effectively delivered to the embryos during ex vivo culture. OCT signal, image contrast, and penetration depth are all enhanced on the embryos with GNRs. These results show that after GNR treatment, more accurate spatial localization and better contrasting of the borders among organs can be observed on E9.5 and E10.5 mouse embryos. Furthermore, the strong optical absorbance of GNRs results in much clearer 3D images of the embryos, which can be used for calculating the heart areas and volumes of E9.5 and E10.5 embryos. These findings provide a promising strategy for monitoring organ development and detecting congenital structural abnormalities in mice.
Collapse
Affiliation(s)
- Yali Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Minghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qi Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenzhen Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiyan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wensheng Yang
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen, 361000, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guoliang Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ning Qu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Science, Saratov, 410028, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Shanhui Fan
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
110
|
Abstract
The systemic circulation depends upon a highly organized, hierarchal blood vascular network that requires the successful specification of arterial and venous endothelial cells during development. This process is driven by a cascade of signaling events (including Hedgehog, vascular endothelial growth factor (VEGF), Notch, connexin (Cx), transforming growth factor-beta (TGF- β), and COUP transcription factor 2 (COUP-TFII)) to influence endothelial cell cycle status and expression of arterial or venous genes and is further regulated by hemodynamic flow. Failure of endothelial cells to properly undergo arteriovenous specification may contribute to vascular malformation and dysfunction, such as in hereditary hemorrhagic telangiectasia (HHT) and capillary malformation-arteriovenous malformation (CM-AVM) where abnormal vessel structures, such as large shunts lacking clear arteriovenous identity and function, form and compromise peripheral blood flow. This review provides an overview of recent findings in the field of arteriovenous specification and highlights key regulators of this process.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karen Hirschi
- 2Departments of Medicine, Genetics, and Biomedical Engineering, Yale Cardiovascular Research Center, Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
111
|
Yuan S, Yurdagul A, Peretik JM, Alfaidi M, Al Yafeai Z, Pardue S, Kevil CG, Orr AW. Cystathionine γ-Lyase Modulates Flow-Dependent Vascular Remodeling. Arterioscler Thromb Vasc Biol 2019; 38:2126-2136. [PMID: 30002061 DOI: 10.1161/atvbaha.118.311402] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective- Flow patterns differentially regulate endothelial cell phenotype, with laminar flow promoting vasodilation and disturbed flow promoting endothelial proinflammatory activation. CSE (cystathionine γ-lyase), a major source of hydrogen sulfide (H2S) in endothelial cells, critically regulates cardiovascular function, by both promoting vasodilation and reducing endothelial activation. Therefore, we sought to investigate the role of CSE in the endothelial response to flow. Approach and Results- Wild-type C57Bl/6J and CSE knockout ( CSE-/-) mice underwent partial carotid ligation to induce disturbed flow in the left carotid. In addition, endothelial cells isolated from wild-type and CSE -/- mice were exposed to either laminar or oscillatory flow, an in vitro model of disturbed flow. Interestingly, laminar flow significantly reduced CSE expression in vitro, and only disturbed flow regions show discernable CSE protein expression in vivo, correlating with enhanced H2S production in wild-type C57BL/6J but not CSE-/- mice. Lack of CSE limited disturbed flow-induced proinflammatory gene expression (ICAM-1[intercellular adhesion molecule 1], VCAM-1 [vascular cell adhesion molecular 1]) and monocyte infiltration and CSE-/- endothelial cells showed reduced NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and proinflammatory gene expression in response to oscillatory flow in vitro. In addition, CSE-/- mice showed reduced inward remodeling after partial carotid ligation. CSE-/- mice showed elevated vascular nitrite levels (measure of nitric oxide [NO]) in the unligated carotids, suggesting an elevation in baseline NO production, and the NO scavenger 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide normalized the reduced inward remodeling, but not inflammation, of ligated carotids in CSE-/- mice. Conclusions- CSE expression in disturbed flow regions critically regulates both endothelial activation and flow-dependent vascular remodeling, in part through altered NO availability.
Collapse
Affiliation(s)
- Shuai Yuan
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.)
| | - Arif Yurdagul
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.)
| | - Jonette M Peretik
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Zaki Al Yafeai
- Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.)
| | - Sibile Pardue
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Christopher G Kevil
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.).,Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.).,Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.).,Center for Cardiovascular Diseases and Sciences (C.G.K., A.W.O.), Louisiana State University Health Sciences Center, Shreveport
| | - A Wayne Orr
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.).,Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.).,Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.).,Center for Cardiovascular Diseases and Sciences (C.G.K., A.W.O.), Louisiana State University Health Sciences Center, Shreveport
| |
Collapse
|
112
|
Boriushkin E, Fancher IS, Levitan I. Shear-Stress Sensitive Inwardly-Rectifying K + Channels Regulate Developmental Retinal Angiogenesis by Vessel Regression. Cell Physiol Biochem 2019; 52:1569-1583. [PMID: 31145841 PMCID: PMC7063968 DOI: 10.33594/000000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Shear stress plays major roles in developmental angiogenesis, particularly in blood vessel remodeling and maturation but little is known about the shear stress sensors involved in this process. Our recent study identified endothelial Kir2.1 channels as major contributors to flow-induced vasodilation, a hallmark of the endothelial flow response. The goal of this study is to establish the role of Kir2.1 in the regulation of retinal angiogenesis. METHODS The retina of newly born Kir2.1+/- mice were used to investigate the sprouting angiogenesis and remodeling of newly formed branched vessels. The structure, blood density and mural cell coverage have been evaluated by immunohistochemistry of the whole-mount retina. Endothelial cell alignment was assessed using CD31 staining. The experiments with flow-induced vasodilation were used to study the cerebrovascular response to flow. RESULTS Using Kir2.1-deficient mice, we show that the retinas of Kir2.1+/- mice have higher vessel density, increased lengths and increased number of the branching points, as compared to WT littermates. In contrast, the coverage by αSMA is decreased in Kir2.1+/- mice while pericyte coverage does not change. Furthermore, to determine whether deficiency of Kir2.1 affects vessel pruning, we discriminated between intact and degraded vessels or "empty matrix sleeves" and found a significant reduction in the number of empty sleeves on the peripheral part of the retina or "angiogenic front" in Kir2.1+/- mice. We also show that Kir2.1 deficiency results in decreased endothelial alignment in retinal endothelium and impaired flow-induced vasodilation of cerebral arteries, verifying the involvement of Kir2.1 in shear-stress sensing in retina and cerebral circulation. CONCLUSION This study shows that shear-stress sensitive Kir2.1 channels play an important role in pruning of excess vessels and vascular remodeling during retinal angiogenesis. We propose that Kir2.1 mediates the effect of shear stress on vessel maturation.
Collapse
Affiliation(s)
| | - Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
113
|
Outhwaite JE, Patel J, Simmons DG. Secondary Placental Defects in Cxadr Mutant Mice. Front Physiol 2019; 10:622. [PMID: 31338035 PMCID: PMC6628872 DOI: 10.3389/fphys.2019.00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
The Coxsackie virus and adenovirus receptor (CXADR) is an adhesion molecule known for its role in virus-cell interactions, epithelial integrity, and organogenesis. Loss of Cxadr causes numerous embryonic defects in mice, notably abnormal development of the cardiovascular system, and embryonic lethality. While CXADR expression has been reported in the placenta, the precise cellular localization and function within this tissue are unknown. Since impairments in placental development and function can cause secondary cardiovascular abnormalities, a phenomenon referred to as the placenta-heart axis, it is possible placental phenotypes in Cxadr mutant embryos may underlie the reported cardiovascular defects and embryonic lethality. In the current study, we determine the cellular localization of placental Cxadr expression and whether there are placental abnormalities in the absence of Cxadr. In the placenta, CXADR is expressed specifically by trophoblast labyrinth progenitors as well as cells of the visceral yolk sac (YS). In the absence of Cxadr, we observed altered expression of angiogenic factors coupled with poor expansion of trophoblast and fetal endothelial cell subpopulations, plus diminished placental transport. Unexpectedly, preserving endogenous trophoblast Cxadr expression revealed the placental defects to be secondary to primary embryonic and/or YS phenotypes. Moreover, further tissue-restricted deletions of Cxadr suggest that the secondary placental defects are likely influenced by embryonic lineages such as the fetal endothelium or those within the extraembryonic YS vascular plexus.
Collapse
Affiliation(s)
- Jennifer E Outhwaite
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jatin Patel
- Translational Research Institute, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - David G Simmons
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
114
|
Man HSJ, Marsden PA. LncRNAs and epigenetic regulation of vascular endothelium: genome positioning system and regulators of chromatin modifiers. Curr Opin Pharmacol 2019; 45:72-80. [PMID: 31125866 DOI: 10.1016/j.coph.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms regulate the cell type-specific expression of endothelial-enriched genes. A major question has been how chromatin modifiers without inherent sequence specificity can be targeted to genomic coordinates. Recently, long noncoding RNAs (lncRNAs) have emerged as candidates for specifying genomic positioning for chromatin modifiers. However, lncRNAs function by a number of mechanisms in both the nucleus and the cytoplasm. Recent studies indicate the existence of endothelial-enriched lncRNAs. This review discusses lncRNA regulation in endothelial cells with a focus on four recently described nuclear-enriched lncRNAs: MANTIS, LEENE, STEEL, and GATA6-AS. This emerging work on these lncRNAs contributes to our understanding of epigenetic regulation in the vascular endothelium with links to important themes in endothelial biology, including angiogenesis and shear stress.
Collapse
Affiliation(s)
- Hon-Sum Jeffrey Man
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Philip A Marsden
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
115
|
Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. Bioessays 2019; 41:e1800198. [PMID: 30805984 PMCID: PMC6478158 DOI: 10.1002/bies.201800198] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Indexed: 12/13/2022]
Abstract
A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.
Collapse
Affiliation(s)
- Kristy Red-Horse
- Department of Biology, Stanford University, Stanford 94305 California,
| | - Arndt F. Siekmann
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104 Pennsylvania,
| |
Collapse
|
116
|
Courchaine K, Gray MJ, Beel K, Thornburg K, Rugonyi S. 4-D Computational Modeling of Cardiac Outflow Tract Hemodynamics over Looping Developmental Stages in Chicken Embryos. J Cardiovasc Dev Dis 2019; 6:E11. [PMID: 30818869 PMCID: PMC6463052 DOI: 10.3390/jcdd6010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiogenesis is interdependent with blood flow within the embryonic system. Recently, a number of studies have begun to elucidate the effects of hemodynamic forces acting upon and within cells as the cardiovascular system begins to develop. Changes in flow are picked up by mechanosensors in endocardial cells exposed to wall shear stress (the tangential force exerted by blood flow) and by myocardial and mesenchymal cells exposed to cyclic strain (deformation). Mechanosensors stimulate a variety of mechanotransduction pathways which elicit functional cellular responses in order to coordinate the structural development of the heart and cardiovascular system. The looping stages of heart development are critical to normal cardiac morphogenesis and have previously been shown to be extremely sensitive to experimental perturbations in flow, with transient exposure to altered flow dynamics causing severe late stage cardiac defects in animal models. This paper seeks to expand on past research and to begin establishing a detailed baseline for normal hemodynamic conditions in the chick outflow tract during these critical looping stages. Specifically, we will use 4-D (3-D over time) optical coherence tomography to create in vivo geometries for computational fluid dynamics simulations of the cardiac cycle, enabling us to study in great detail 4-D velocity patterns and heterogeneous wall shear stress distributions on the outflow tract endocardium. This information will be useful in determining the normal variation of hemodynamic patterns as well as in mapping hemodynamics to developmental processes such as morphological changes and signaling events during and after the looping stages examined here.
Collapse
Affiliation(s)
- Katherine Courchaine
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| | - MacKenzie J Gray
- School of Public Health, Portland State University, Portland, OR 97035, USA.
| | | | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
117
|
Padget RL, Mohite SS, Hoog TG, Justis BS, Green BE, Udan RS. Hemodynamic force is required for vascular smooth muscle cell recruitment to blood vessels during mouse embryonic development. Mech Dev 2019; 156:8-19. [PMID: 30796970 DOI: 10.1016/j.mod.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/16/2019] [Accepted: 02/16/2019] [Indexed: 12/13/2022]
Abstract
Blood vessel maturation, which is characterized by the investment of vascular smooth muscle cells (vSMCs) around developing blood vessels, begins when vessels remodel into a hierarchy of proximal arteries and proximal veins that branch into smaller distal capillaries. The ultimate result of maturation is formation of the tunica media-the middlemost layer of a vessel that is composed of vSMCs and acts to control vessel integrity and vascular tone. Though many studies have implicated the role of various signaling molecules in regulating maturation, no studies have determined a role for hemodynamic force in the regulation of maturation in the mouse. In the current study, we provide evidence that a hemodynamic force-dependent mechanism occurs in the mouse because reduced blood flow mouse embryos exhibited a diminished or absent coverage of vSMCs around vessels, and in normal-flow embryos, extent of coverage correlated to the amount of blood flow that vessels were exposed to. We also determine that the cellular mechanism of force-induced maturation was not by promoting vSMC differentiation/proliferation, but instead involved the recruitment of vSMCs away from neighboring low-flow distal capillaries towards high-flow vessels. Finally, we hypothesize that hemodynamic force may regulate expression of specific signaling molecules to control vSMC recruitment to high-flow vessels, as reduction of flow results in the misexpression of Semaphorin 3A, 3F, 3G, and the Notch target gene Hey1, all of which are implicated in controlling vessel maturation. This study reveals another role for hemodynamic force in regulating blood vessel development of the mouse, and opens up a new model to begin elucidating mechanotransduction pathways regulating vascular maturation.
Collapse
Affiliation(s)
- Rachel L Padget
- Department of Biology, Missouri State University, United States of America
| | - Shilpa S Mohite
- Department of Biology, Missouri State University, United States of America
| | - Tanner G Hoog
- Department of Biology, Missouri State University, United States of America
| | - Blake S Justis
- Department of Biology, Missouri State University, United States of America
| | - Bruce E Green
- Department of Biology, Missouri State University, United States of America
| | - Ryan S Udan
- Department of Biology, Missouri State University, United States of America.
| |
Collapse
|
118
|
Daniel E, Cleaver O. Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Curr Top Dev Biol 2019; 132:177-220. [PMID: 30797509 DOI: 10.1016/bs.ctdb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organogenesis requires tightly coordinated and patterned growth of numerous cell types to form a fully mature and vascularized organ. Endothelial cells (ECs) that line blood vessels develop alongside the growing organ, but only recently has their role in directing epithelial and stromal growth been appreciated. Endothelial, epithelial, and stromal cells in embryonic organs actively communicate with one another throughout development to ensure that the organ forms appropriately. What signals tell blood vessel progenitors where to go? How are tissues influenced by the vasculature that pervades it? In this chapter, we review the ways in which crosstalk between ECs and epithelial or stromal cells during development leads to a fully patterned pancreas, lung, or kidney. ECs in all of these organs are necessary for proper epithelial and stromal growth, but how they direct this process is organ- and time-specific, highlighting the concept of dynamic EC heterogeneity. We end with a discussion on how understanding cell-cell crosstalk during development can be applied therapeutically through the generation of transplantable miniature organ-like tissues called "organoids." We will discuss the current state of organoid technology and highlight the major challenges in forming a properly patterned vascular network that will be critical in transforming them into a viable therapeutic option.
Collapse
Affiliation(s)
- Edward Daniel
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
119
|
Kang H, Hong Z, Zhong M, Klomp J, Bayless KJ, Mehta D, Karginov AV, Hu G, Malik AB. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am J Physiol Cell Physiol 2019; 316:C92-C103. [PMID: 30427721 PMCID: PMC6383143 DOI: 10.1152/ajpcell.00346.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.
Collapse
Affiliation(s)
- Hojin Kang
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
- Department of Anesthesiology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Zhigang Hong
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Ming Zhong
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Jennifer Klomp
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center , College Station, Texas
| | - Dolly Mehta
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Andrei V Karginov
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Guochang Hu
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
- Department of Anesthesiology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
120
|
Materna SC, Sinha T, Barnes RM, Lammerts van Bueren K, Black BL. Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Dev Biol 2018; 445:170-177. [PMID: 30521808 DOI: 10.1016/j.ydbio.2018.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
MEF2C is a member of the highly conserved MEF2 family of transcription factors and is a key regulator of cardiovascular development. In mice, Mef2c is expressed in the developing heart and vasculature, including the endothelium. Loss of Mef2c function in germline knockout mice leads to early embryonic demise and profound developmental abnormalities in the cardiovascular system. Previous attempts to uncover the cause of embryonic lethality by specifically disrupting Mef2c function in the heart or vasculature failed to recapitulate the global Mef2c knockout phenotype and instead resulted in relatively minor defects that did not compromise viability or result in significant cardiovascular defects. However, previous studies examined the requirement of Mef2c in the myocardial and endothelial lineages using Cre lines that begin to be expressed after the expression of Mef2c has already commenced. Here, we tested the requirement of Mef2c in the myocardial and endothelial lineages using conditional knockout approaches in mice with Cre lines that deleted Mef2c prior to onset of its expression in embryonic development. We found that deletion of Mef2c in the early myocardial lineage using Nkx2-5Cre resulted in cardiac and vascular abnormalities that were indistinguishable from the defects in the global Mef2c knockout. In contrast, early deletion of Mef2c in the vascular endothelium using an Etv2::Cre line active prior to the onset of Mef2c expression resulted in viable offspring that were indistinguishable from wild type controls with no overt defects in vascular development, despite nearly complete early deletion of Mef2c in the vascular endothelium. Thus, these studies support the idea that the requirement of MEF2C for vascular development is secondary to its requirement in the heart and suggest that the observed failure in vascular remodeling in Mef2c knockout mice results from defective heart function.
Collapse
Affiliation(s)
- Stefan C Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ralston M Barnes
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Lammerts van Bueren
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
121
|
Driessen RCH, Stassen OMJA, Sjöqvist M, Suarez Rodriguez F, Grolleman J, Bouten CVC, Sahlgren CM. Shear stress induces expression, intracellular reorganization and enhanced Notch activation potential of Jagged1. Integr Biol (Camb) 2018; 10:719-726. [PMID: 30328449 PMCID: PMC6256362 DOI: 10.1039/c8ib00036k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/15/2018] [Indexed: 01/20/2023]
Abstract
Notch signaling and blood flow regulate vascular formation and maturation, but how shear stress affects the different components of the Notch pathway in endothelial cells is poorly understood. We show that laminar shear stress results in a ligand specific gene expression profile in endothelial cells (HUVEC). JAG1 expression increases while DLL4 expression decreases. Jagged1 shows a unique response by clustering intracellularly six to nine hours after the onset of flow. The formation of the Jagged1 clusters requires protein production, ER export and endocytosis. Clustering is associated with reduced membrane levels but is not affected by Notch signaling activity. Jagged1 relocalization is reversible, the clusters disappear and membrane levels increase upon removal of shear stress. We further demonstrate that the signaling potential of endothelial cells is enhanced after exposure to shear stress. Together we demonstrate a Jagged1 specific shear stress response for Notch signaling in endothelial cells.
Collapse
Affiliation(s)
- R. C. H. Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
- Institute for Complex Molecular Systems, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
| | - O. M. J. A. Stassen
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
| | - M. Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University
,
Turku
, Finland
| | - F. Suarez Rodriguez
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University
,
Turku
, Finland
| | - J. Grolleman
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
| | - C. V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
- Institute for Complex Molecular Systems, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
| | - C. M. Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
- Institute for Complex Molecular Systems, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University
,
Turku
, Finland
| |
Collapse
|
122
|
Effects of Icariin on Atherosclerosis and Predicted Function Regulatory Network in ApoE Deficient Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9424186. [PMID: 30533443 PMCID: PMC6247691 DOI: 10.1155/2018/9424186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Objective. Icariin plays a pivotal role in ameliorating atherosclerosis for animal models although its comprehensive biological role remains largely unexplored. This study aimed to fully understand the effects of icariin on atherosclerosis in high-fat diet-induced ApoE-/- mice and investigate mRNA-miRNA regulation based on microarray and bioinformatics analysis. Methods. The areas of atherosclerotic lesions in en face aorta were evaluated. Microarray analysis was performed on atherosclerotic aortic tissues. The integrative analysis of mRNA and miRNA profiling was utilized to suggest specific functions of gene and supply an integrated and corresponding method to study the protective effect of icariin on atherosclerosis. Results. Icariin attenuated the development of atherosclerosis that the mean atherosclerotic lesion area was reduced by 5.8% (P < 0.05). Significant changes were observed in mRNA and miRNA expression patterns. Several miRNAs obtained from the miRNA-Gene-Network might play paramount part in antiatherosclerotic effect of icariin, such as mmu-miR-6931-5p, mmu-miR-3547-5p, mmu-miR-5107-5p, mmu-miR-6368, and mmu-miR-7118-5p. Specific miRNAs and GO terms associated with icariin in the pathogenesis of atherosclerosis were validated using GO analysis and miRNA-GO-Network. MiRNA-Pathway-Network indicated that icariin induced miRNAs mainly regulate the signaling pathways of PI3K/Akt signaling pathway, Ras signaling pathway, ErbB signaling pathway, and VEGF signaling pathway in aorta atherosclerotic lesion. Conclusions. Our data provides evidence that icariin is able to exhibit one antiatherosclerotic action by mediating multiple biological processes or cascades, suggesting the pleiotropic effects of icariin in atherosclerosis alleviation. The identified gene functional categories and pathways are potentially valuable targets for future development of RNA-guided gene regulation to fight disease.
Collapse
|
123
|
Baeyens N. Fluid shear stress sensing in vascular homeostasis and remodeling: Towards the development of innovative pharmacological approaches to treat vascular dysfunction. Biochem Pharmacol 2018; 158:185-191. [PMID: 30365948 DOI: 10.1016/j.bcp.2018.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Blood circulation, facilitating gas exchange and nutrient transportation, is a quintessential feature of life in vertebrates. Any disruption to blood flow, may it be by blockade or traumatic rupture, irrevocably leads to tissue infarction or death. Therefore, it is not surprising that hemostasis and vascular adaptation measures have been evolutionarily selected to mitigate the adverse consequences of altered circulation. Blood vessels can be broadly categorized as arteries, veins, or capillaries, based on their structure, hemodynamics, and gas exchange. However, all of them share one property: they are lined with an epithelial sheet called the endothelium, which typically lies on a basement membrane. This endothelium is the primary interface between the flowing blood and the rest of the body, and it has highly specialized molecular mechanisms to detect and respond to changes in blood perfusion. The purpose of this commentary will be to highlight some of the recent developments in the research on blood flow sensing, vascular remodeling, and homeostasis and to discuss the development of innovative pharmaceutical approaches targeting mechanosensing mechanisms to prolong patient survival and improve quality of life.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Laboratoire de physiologie et pharmacologie, Faculté de Médecine, Université libre de Bruxelles, ULB, Belgium.
| |
Collapse
|
124
|
Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:95-110. [PMID: 29772208 PMCID: PMC6109420 DOI: 10.1016/j.pbiomolbio.2018.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The role of hemodynamics in cardiovascular development is not well understood. Indeed, it would be remarkable if it were, given the dauntingly complex array of intricately synchronized genetic, molecular, mechanical, and environmental factors at play. However, with congenital heart defects affecting around 1 in 100 human births, and numerous studies pointing to hemodynamics as a factor in cardiovascular morphogenesis, this is not an area in which we can afford to remain in the dark. This review seeks to present the case for the importance of research into the biomechanics of the developing cardiovascular system. This is accomplished by i) illustrating the basics of some of the highly complex processes involved in heart development, and discussing the known influence of hemodynamics on those processes; ii) demonstrating how altered hemodynamic environments have the potential to bring about morphological anomalies, citing studies in multiple animal models with a variety of perturbation methods; iii) providing examples of widely used technological innovations which allow for accurate measurement of hemodynamic parameters in embryos; iv) detailing the results of studies in avian embryos which point to exciting correlations between various hemodynamic manipulations in early development and phenotypic defect incidence in mature hearts; and finally, v) stressing the relevance of uncovering specific biomechanical pathways involved in cardiovascular formation and remodeling under adverse conditions, to the potential treatment of human patients. The time is ripe to unravel the contributions of hemodynamics to cardiac development, and to recognize their frequently neglected role in the occurrence of heart malformation phenotypes.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Graham Rykiel
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA.
| |
Collapse
|
125
|
Caolo V, Peacock HM, Kasaai B, Swennen G, Gordon E, Claesson-Welsh L, Post MJ, Verhamme P, Jones EA. Shear Stress and VE-Cadherin. Arterioscler Thromb Vasc Biol 2018; 38:2174-2183. [DOI: 10.1161/atvbaha.118.310823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Vascular fusion represents an important mechanism of vessel enlargement during development; however, its significance in postnatal vessel enlargement is still unknown. During fusion, 2 adjoining vessels merge to share 1 larger lumen. The aim of this research was to identify the molecular mechanism responsible for vascular fusion.
Approach and Results—
We previously showed that both low shear stress and DAPT (
N
-[
N
-(3,5-difluorophenacetyl)-L-alanyl]-
S
-phenylglycine t-butyl ester) treatment in the embryo result in a hyperfused vascular plexus and that increasing shear stress levels could prevent DAPT-induced fusion. We, therefore, investigated vascular endothelial-cadherin (VEC) phosphorylation because this is a common downstream target of low shear stress and DAPT treatment. VEC phosphorylation increases after DAPT treatment and decreased shear stress. The increased phosphorylation occurred independent of the cleavage of the Notch intracellular domain. Increasing shear stress rescues hyperfusion by DAPT treatment by causing the association of the phosphatase vascular endothelial-protein tyrosine phosphatase with VEC, counteracting VEC phosphorylation. Finally, Src (proto-oncogene tyrosine-protein kinase Src) inhibition prevents VEC phosphorylation in endothelial cells and can rescue hyperfusion induced by low shear stress and DAPT treatment. Moesin, a VEC target that was previously reported to mediate endothelial cell rearrangement during lumenization, relocalizes to cell membranes in vascular beds undergoing hyperfusion.
Conclusions—
This study provides the first evidence that VEC phosphorylation, induced by DAPT treatment and low shear stress, is involved in the process of fusion during vascular remodeling.
Collapse
Affiliation(s)
- Vincenza Caolo
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Hanna M. Peacock
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Bahar Kasaai
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Geertje Swennen
- Department of Physiology, CARIM, Maastricht University, The Netherlands (G.S., M.J.P.)
| | - Emma Gordon
- Department of Immunology, Genetics, and Pathology, Uppsala University, Rudbeck Laboratory, Sweden (E.G., L.C.-W.)
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics, and Pathology, Uppsala University, Rudbeck Laboratory, Sweden (E.G., L.C.-W.)
| | - Mark J. Post
- Department of Physiology, CARIM, Maastricht University, The Netherlands (G.S., M.J.P.)
| | - Peter Verhamme
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Elizabeth A.V. Jones
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| |
Collapse
|
126
|
Weckbach LT, Preissner KT, Deindl E. The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. Int J Mol Sci 2018; 19:E2559. [PMID: 30158425 PMCID: PMC6163309 DOI: 10.3390/ijms19092559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces in blood circulation such as shear stress play a predominant role in many physiological and pathophysiological processes related to vascular responses or vessel remodeling. Arteriogenesis, defined as the growth of pre-existing arterioles into functional collateral arteries compensating for stenosed or occluded arteries, is such a process. Midkine, a pleiotropic protein and growth factor, has originally been identified to orchestrate embryonic development. In the adult organism its expression is restricted to distinct tissues (including tumors), whereby midkine is strongly expressed in inflamed tissue and has been shown to promote inflammation. Recent investigations conferred midkine an important function in vascular remodeling and growth. In this review, we introduce the midkine gene and protein along with its cognate receptors, and highlight its role in inflammation and the vascular system with special emphasis on arteriogenesis, particularly focusing on shear stress-mediated vascular cell proliferation and vasodilatation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, 81377 Munich, Germany.
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany.
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
127
|
Szymborska A, Gerhardt H. Hold Me, but Not Too Tight-Endothelial Cell-Cell Junctions in Angiogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029223. [PMID: 28851748 DOI: 10.1101/cshperspect.a029223] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial cell-cell junctions must perform seemingly incompatible tasks during vascular development-providing stable connections that prevent leakage, while allowing dynamic cellular rearrangements during sprouting, anastomosis, lumen formation, and functional remodeling of the vascular network. This review aims to highlight recent insights into the molecular mechanisms governing endothelial cell-cell adhesion in the context of vascular development.
Collapse
Affiliation(s)
- Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium.,DZHK (German Centre for Cardiovascular Research), partner site Berlin.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
128
|
Hoog TG, Fredrickson SJ, Hsu CW, Senger SM, Dickinson ME, Udan RS. The effects of reduced hemodynamic loading on morphogenesis of the mouse embryonic heart. Dev Biol 2018; 442:127-137. [PMID: 30012423 DOI: 10.1016/j.ydbio.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Development of the embryonic heart involves an intricate network of biochemical and genetic cues to ensure its proper growth and morphogenesis. However, studies from avian and teleost models reveal that biomechanical force, namely hemodynamic loading (blood pressure and shear stress), plays a significant role in regulating heart development. To study how hemodynamic loading impacts development of the mammalian embryonic heart, we utilized mouse embryo culture and manipulation techniques and performed optical projection tomography imaging followed by morphometric analysis to determine how reduced-loading affects heart volume, myocardial thickness, trabeculation and looping. Our results reveal that hemodynamic loading can regulate these features at different thresholds. Intermediate levels of hemodynamic loading are sufficient to promote proper myocardial growth and heart size, but insufficient to promote looping and trabeculation. Whereas, low levels of hemodynamic loading fails to promote proper growth of the myocardium and heart size. These results reveal that the regulation of heart development by biomechanical force is conserved across many vertebrate classes, and this study begins to elucidate how these specific forces regulate development of the mammalian heart.
Collapse
Affiliation(s)
- Tanner G Hoog
- Department of Biology, Missouri State University, United States
| | | | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, United States
| | - Steven M Senger
- Department of Mathematics, Missouri State University, United States
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, United States
| | - Ryan S Udan
- Department of Biology, Missouri State University, United States.
| |
Collapse
|
129
|
Development of the renal vasculature. Semin Cell Dev Biol 2018; 91:132-146. [PMID: 29879472 DOI: 10.1016/j.semcdb.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The kidney vasculature has a unique and complex architecture that is central for the kidney to exert its multiple and essential physiological functions with the ultimate goal of maintaining homeostasis. An appropriate development and coordinated assembly of the different vascular cell types and their association with the corresponding nephrons is crucial for the generation of a functioning kidney. In this review we provide an overview of the renal vascular anatomy, histology, and current knowledge of the embryological origin and molecular pathways involved in its development. Understanding the cellular and molecular mechanisms involved in renal vascular development is the first step to advance the field of regenerative medicine.
Collapse
|
130
|
Roy AR, Ahmed A, DiStefano PV, Chi L, Khyzha N, Galjart N, Wilson MD, Fish JE, Delgado-Olguín P. The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells. J Biol Chem 2018; 293:8449-8461. [PMID: 29610276 PMCID: PMC5986204 DOI: 10.1074/jbc.m117.814699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.
Collapse
Affiliation(s)
- Anna R Roy
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abdalla Ahmed
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lijun Chi
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| | - Paul Delgado-Olguín
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
131
|
Freyer L, Hsu CW, Nowotschin S, Pauli A, Ishida J, Kuba K, Fukamizu A, Schier AF, Hoodless PA, Dickinson ME, Hadjantonakis AK. Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Rep 2018; 20:2116-2130. [PMID: 28854362 DOI: 10.1016/j.celrep.2017.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023] Open
Abstract
Apela (also known as Elabela, Ende, and Toddler) is a small signaling peptide that activates the G-protein-coupled receptor Aplnr to stimulate cell migration during zebrafish gastrulation. Here, using CRISPR/Cas9 to generate a null, reporter-expressing allele, we study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low-penetrance cardiovascular defects that manifest after the onset of circulation. Three-dimensional micro-computed tomography revealed a higher penetrance of vascular remodeling defects, from which some mutants recover, and identified extraembryonic anomalies as the earliest morphological distinction in Apela mutant embryos. Transcriptomics at late gastrulation identified aberrant upregulation of erythroid and myeloid markers in mutant embryos prior to the appearance of physical malformations. Double-mutant analyses showed that loss of Apela signaling impacts early Aplnr-expressing mesodermal populations independently of the alternative ligand Apelin, leading to lethal cardiac defects in some Apela null embryos.
Collapse
Affiliation(s)
- Laina Freyer
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Andrea Pauli
- The Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University, Akita 010-8543, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
132
|
Scholz N. Cancer Cell Mechanics: Adhesion G Protein-coupled Receptors in Action? Front Oncol 2018; 8:59. [PMID: 29594040 PMCID: PMC5859372 DOI: 10.3389/fonc.2018.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
In mammals, numerous organ systems are equipped with adhesion G protein-coupled receptors (aGPCRs) to shape cellular processes including migration, adhesion, polarity and guidance. All of these cell biological aspects are closely associated with tumor cell biology. Consistently, aberrant expression or malfunction of aGPCRs has been associated with dysplasia and tumorigenesis. Mounting evidence indicates that cancer cells comprise viscoelastic properties that are different from that of their non-tumorigenic counterparts, a feature that is believed to contribute to the increased motility and invasiveness of metastatic cancer cells. This is particularly interesting in light of the recent identification of the mechanosensitive facility of aGPCRs. aGPCRs are signified by large extracellular domains (ECDs) with adhesive properties, which promote the engagement with insoluble ligands. This configuration may enable reliable force transmission to the ECDs and may constitute a molecular switch, vital for mechano-dependent aGPCR signaling. The investigation of aGPCR function in mechanosensation is still in its infancy and has been largely restricted to physiological contexts. It remains to be elucidated if and how aGPCR function affects the mechanoregulation of tumor cells, how this may shape the mechanical signature and ultimately determines the pathological features of a cancer cell. This article aims to view known aGPCR functions from a biomechanical perspective and to delineate how this might impinge on the mechanobiology of cancer cells.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
133
|
Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018; 22:340-354. [PMID: 29499152 PMCID: PMC5849079 DOI: 10.1016/j.stem.2018.02.009] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the clinical demand for bioengineered blood vessels continues to rise, current options for vascular conduits remain limited. The synergistic combination of emerging advances in tissue fabrication and stem cell engineering promises new strategies for engineering autologous blood vessels that recapitulate not only the mechanical properties of native vessels but also their biological function. Here we explore recent bioengineering advances in creating functional blood macro and microvessels, particularly featuring stem cells as a seed source. We also highlight progress in integrating engineered vascular tissues with the host after implantation as well as the exciting pre-clinical and clinical applications of this technology.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rowza T Rumma
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
134
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
135
|
Affiliation(s)
- Chris M Brewer
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute (C.M.B., M.W.M.), Department of Pediatrics (M.W.M.), Department of Pathology (C.M.B., M.W.M.), and Molecular Basis of Disease Graduate Program (C.M.B., M.W.M.), University of Washington, Seattle
| | - Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute (C.M.B., M.W.M.), Department of Pediatrics (M.W.M.), Department of Pathology (C.M.B., M.W.M.), and Molecular Basis of Disease Graduate Program (C.M.B., M.W.M.), University of Washington, Seattle.
| |
Collapse
|
136
|
Li N, Zhang W, Lin L, He Z, Khan M, Lin JM. Live imaging of cell membrane-localized MT1-MMP activity on a microfluidic chip. Chem Commun (Camb) 2018; 54:11435-11438. [DOI: 10.1039/c8cc07117a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We designed an enzyme-activatable probe for real time in situ tracking of MT1-MMP activity.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Weifei Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
- Beijing
- China
| | - Ziyi He
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| |
Collapse
|
137
|
García-Cardeña G, Slegtenhorst BR. Hemodynamic Control of Endothelial Cell Fates in Development. Annu Rev Cell Dev Biol 2017; 32:633-648. [PMID: 27712101 DOI: 10.1146/annurev-cellbio-100814-125610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. From the onset of blood flow, the embryonic vasculature is continuously exposed to a variety of hemodynamic forces. These biomechanical stimuli are key determinants of vascular cell specification and remodeling and the establishment of vascular homeostasis. In recent years, major advances have been made in our understanding of mechano-activated signaling networks that control both spatiotemporal and structural aspects of vascular development. It has become apparent that a major site for mechanotransduction is situated at the interface of blood and the vessel wall and that this process is controlled by the vascular endothelium. In this review, we discuss the hemodynamic control of endothelial cell fates, focusing on arterial-venous specification, lymphatic development, and the endothelial-to-hematopoietic transition, and present some recent insights into the mechano-activated pathways driving these cell fate decisions in the developing embryo.
Collapse
Affiliation(s)
- Guillermo García-Cardeña
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Bendix R Slegtenhorst
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Surgery, Erasmus MC-University Medical Center, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
138
|
Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, Chittenden TW, Burt JM, Schwartz MA, Hirschi KK. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun 2017; 8:2149. [PMID: 29247167 PMCID: PMC5732288 DOI: 10.1038/s41467-017-01742-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/13/2017] [Indexed: 01/26/2023] Open
Abstract
Establishment of a functional vascular network is rate-limiting in embryonic development, tissue repair and engineering. During blood vessel formation, newly generated endothelial cells rapidly expand into primitive plexi that undergo vascular remodeling into circulatory networks, requiring coordinated growth inhibition and arterial-venous specification. Whether the mechanisms controlling endothelial cell cycle arrest and acquisition of specialized phenotypes are interdependent is unknown. Here we demonstrate that fluid shear stress, at arterial flow magnitudes, maximally activates NOTCH signaling, which upregulates GJA4 (commonly, Cx37) and downstream cell cycle inhibitor CDKN1B (p27). Blockade of any of these steps causes hyperproliferation and loss of arterial specification. Re-expression of GJA4 or CDKN1B, or chemical cell cycle inhibition, restores endothelial growth control and arterial gene expression. Thus, we elucidate a mechanochemical pathway in which arterial shear activates a NOTCH-GJA4-CDKN1B axis that promotes endothelial cell cycle arrest to enable arterial gene expression. These insights will guide vascular regeneration and engineering.
Collapse
Affiliation(s)
- Jennifer S Fang
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cardiovascular Research Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Brian G Coon
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cardiovascular Research Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Noelle Gillis
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cardiovascular Research Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Zehua Chen
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE 55 Cambridge Parkway, 8th Floor, Cambridge, MA, 02142, USA
| | - Jingyao Qiu
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cardiovascular Research Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Thomas W Chittenden
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE 55 Cambridge Parkway, 8th Floor, Cambridge, MA, 02142, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street #56-651, Cambridge, MA, 02142, USA
| | - Janis M Burt
- Department of Physiology, College of Medicine, The University of Arizona, 1501 N. Campbell Road, Tucson, AZ, 85724, USA
| | - Martin A Schwartz
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cardiovascular Research Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Karen K Hirschi
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cardiovascular Research Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
139
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
140
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
141
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
142
|
Ingason AB, Goldstone AB, Paulsen MJ, Thakore AD, Truong VN, Edwards BB, Eskandari A, Bollig T, Steele AN, Woo YJ. Angiogenesis precedes cardiomyocyte migration in regenerating mammalian hearts. J Thorac Cardiovasc Surg 2017; 155:1118-1127.e1. [PMID: 29452461 DOI: 10.1016/j.jtcvs.2017.08.127] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Although the mammalian heart's ability to fully regenerate is debated, its potential to extensively repair itself is gaining support. We hypothesized that heart regeneration relies on rapid angiogenesis to support myocardial regrowth and sought to characterize the timeline for angiogenesis and cell proliferation in regeneration. METHODS One-day-old CD-1 mice (P1, N = 60) underwent apical resection or sham surgery. Hearts were explanted at serial time points from 0 to 30 days postresection and analyzed with immunohistochemistry to visualize vessel ingrowth and cardiomyocyte migration into the resected region. Proliferating cells were labeled with 5-ethynyl-2'-deoxyuridine injections 12 hours before explant. 5-Ethynyl-2'-deoxyuridine-positive cells were counted in both the apex and remote areas of the heart. Masson's trichrome was used to assess fibrosis. RESULTS By 30 days postresection, hearts regenerated with minimal fibrosis. Compared with sham surgery, apical resection stimulated a significant increase in proliferation of preexisting cardiomyocytes between 3 and 11 days after injury. Capillary migration into the apical thrombus was detected as early as 2 days postresection, with development of mature arteries by 5 days postresection. New vessels became perfused by 5 days postresection as evidenced by lectin injection. Vessel density and diameter significantly increased within the resected area over 21 days, and vessel ingrowth always preceded cardiomyocyte migration, with coalignment of most migrating cardiomyocytes with ingrowing vessels. CONCLUSIONS Endothelial cells migrate into the apical thrombus early after resection, develop into functional arteries, and precede cardiomyocyte ingrowth during mammalian heart regeneration. This endogenous neonatal response emphasizes the importance of expeditious angiogenesis required for neomyogenesis.
Collapse
Affiliation(s)
- Arnar B Ingason
- Department of Medicine, University of Iceland, Reykjavík, Iceland; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Vi N Truong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Bryan B Edwards
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Tanner Bollig
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
143
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
144
|
Surya VN, Michalaki E, Huang EY, Fuller GG, Dunn AR. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. J R Soc Interface 2017; 13:rsif.2016.0823. [PMID: 27974574 DOI: 10.1098/rsif.2016.0823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023] Open
Abstract
The endothelial cells that line blood and lymphatic vessels undergo complex, collective migration and rearrangement processes during embryonic development, and are known to be exquisitely responsive to fluid flow. At present, the molecular mechanisms by which endothelial cells sense fluid flow remain incompletely understood. Here, we report that both the G-protein-coupled receptor sphingosine 1-phosphate receptor 1 (S1PR1) and its ligand sphingosine 1-phosphate (S1P) are required for collective upstream migration of human lymphatic microvascular endothelial cells in an in vitro setting. These findings are consistent with a model in which signalling via S1P and S1PR1 are integral components in the response of lymphatic endothelial cells to the stimulus provided by fluid flow.
Collapse
Affiliation(s)
- Vinay N Surya
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eleftheria Michalaki
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva Y Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
145
|
Wu C, Le H, Ran S, Singh M, Larina IV, Mayerich D, Dickinson ME, Larin KV. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. BIOMEDICAL OPTICS EXPRESS 2017; 8:4629-4639. [PMID: 29082090 PMCID: PMC5654805 DOI: 10.1364/boe.8.004629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 05/04/2023]
Abstract
Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from multiple angles. SPIM enables high-resolution, 3D imaging with less phototoxicity and photobleaching than laser scanning confocal microscopy (LSCM) by illuminating the sample with a focused sheet of light. Side by side comparisons are supplemented with co-registered images. The results demonstrate that SPIM and RI-OCT are highly complementary and could provide more comprehensive tissue characterization for mouse embryonic research.
Collapse
Affiliation(s)
- Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Henry Le
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - Shihao Ran
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Equal contribution
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
- Equal contribution
| |
Collapse
|
146
|
Huang YL, Segall JE, Wu M. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. LAB ON A CHIP 2017; 17:3221-3233. [PMID: 28805874 PMCID: PMC6007858 DOI: 10.1039/c7lc00623c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tumor cell invasion, whether penetrating through the extracellular matrix (ECM) or crossing a vascular endothelium, is a critical step in the cancer metastatic cascade. Along the way from a primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biomechanical (e. g. ECM stiffness) or biochemical (e.g. secreted cytokines) signals. Increasingly, it is recognized that the tumor microenvironment (TME) is a critical player in tumor cell invasion. A main challenge for the mechanistic understanding of tumor cell-TME interactions comes from the complexity of the TME, which consists of extracellular matrices, fluid flows, cytokine gradients and other cell types. It is difficult to control TME parameters in conventional in vitro experimental designs such as Boyden chambers or in vivo such as in mouse models. Microfluidics has emerged as an enabling tool for exploring the TME parameter space because of its ease of use in recreating a complex and physiologically realistic three dimensional TME with well-defined spatial and temporal control. In this perspective, we will discuss designing principles for modeling the biophysical microenvironment (biological flows and ECM) for tumor cells using microfluidic devices and the potential microfluidic technology holds in recreating a physiologically realistic tumor microenvironment. The focus will be on applications of microfluidic models in tumor cell invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
147
|
Hwa JJ, Beckouche N, Huang L, Kram Y, Lindskog H, Wang RA. Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow. Sci Rep 2017; 7:11965. [PMID: 28931948 PMCID: PMC5607254 DOI: 10.1038/s41598-017-12353-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
The functions of blood flow in the morphogenesis of mammalian arteries and veins are not well understood. We examined the development of the dorsal aorta (DA) and the cardinal vein (CV) in Ncx1 -/- mutants, which lack blood flow due to a deficiency in a sodium calcium ion exchanger expressed specifically in the heart. The mutant DA and CV were abnormally connected. The endothelium of the Ncx1 -/- mutant DA lacked normal expression of the arterial markers ephrin-B2 and Connexin-40. Notch1 activation, known to promote arterial specification, was decreased in mutant DA endothelial cells (ECs), which ectopically expressed the venous marker Coup-TFII. These findings suggest that flow has essential functions in the DA by promoting arterial and suppressing venous marker expression. In contrast, flow plays a lesser role in the CV, because expression of arterial-venous markers in CV ECs was not as dramatically affected in Ncx1 -/- mutants. We propose a molecular mechanism by which blood flow mediates DA and CV morphogenesis, by regulating arterial-venous specification of DA ECs to ensure proper separation of the developing DA and CV.
Collapse
Affiliation(s)
- Jennifer J Hwa
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nathan Beckouche
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lawrence Huang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yoseph Kram
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Henrik Lindskog
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rong A Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
148
|
Zhou S, Huang YS, Kingsley PD, Cyr KH, Palis J, Wan J. Microfluidic assay of the deformability of primitive erythroblasts. BIOMICROFLUIDICS 2017; 11:054112. [PMID: 29085523 PMCID: PMC5653377 DOI: 10.1063/1.4999949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
Collapse
Affiliation(s)
- Sitong Zhou
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Yu-Shan Huang
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, USA
| | - Paul D Kingsley
- Department of Pediatric and Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | - Kathryn H Cyr
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | | |
Collapse
|
149
|
Nakajima H, Mochizuki N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 2017; 16:1893-1901. [PMID: 28820314 DOI: 10.1080/15384101.2017.1364324] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Blood flow provides endothelial cells (ECs) lining the inside of blood vessels with mechanical stimuli as well as humoral stimuli. Fluid shear stress, the frictional force between flowing blood and ECs, is recognized as an essential mechanical cue for vascular growth, remodeling, and homeostasis. ECs differentially respond to distinct flow patterns. High laminar shear flow leads to inhibition of cell cycle progression and stabilizes vessels, whereas low shear flow or disturbed flow leads to increased turnover of ECs and inflammatory responses of ECs prone to atherogenic. These differences of EC responses dependent on flow pattern are mainly ascribed to distinct patterns of gene expression. In this review, we highlight flow pattern-dependent transcriptional regulation in ECs by focusing on KLF2 and NFκB, major transcription factors responding to laminar flow and disturbed flow, respectively. Moreover, we introduce roles of a new flow-responsive transcriptional co-regulator, YAP, in blood vessel maintenance and discuss how these transcriptional regulators are spatiotemporally regulated by flow and then regulate EC functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Naoki Mochizuki
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan.,b AMED-CREST. National Cerebral and Cardiovascular Center , Suita , Osaka , Japan
| |
Collapse
|
150
|
Raghunathan R, Zhang J, Wu C, Rippy J, Singh M, Larin KV, Scarcelli G. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-6. [PMID: 28861955 PMCID: PMC5582619 DOI: 10.1117/1.jbo.22.8.086013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 05/19/2023]
Abstract
Embryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use of external agents, others are compromised in terms of spatial and temporal resolutions. We propose the use of Brillouin microscopy in combination with optical coherence tomography (OCT) to measure stiffness as well as structural changes in a developing embryo. While Brillouin microscopy assesses the changes in stiffness among different organs of the embryo, OCT provides the necessary structural guidance.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Jitao Zhang
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Justin Rippy
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Address all correspondence to: Kirill V. Larin, E-mail: ; Giuliano Scarcelli, E-mail:
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
- Address all correspondence to: Kirill V. Larin, E-mail: ; Giuliano Scarcelli, E-mail:
| |
Collapse
|