101
|
Phan QM, Fine GM, Salz L, Herrera GG, Wildman B, Driskell IM, Driskell RR. Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds. eLife 2020; 9:e60066. [PMID: 32990218 PMCID: PMC7524549 DOI: 10.7554/elife.60066] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Scars are a serious health concern for burn victims and individuals with skin conditions associated with wound healing. Here, we identify regenerative factors in neonatal murine skin that transforms adult skin to regenerate instead of only repairing wounds with a scar, without perturbing development and homeostasis. Using scRNA-seq to probe unsorted cells from regenerating, scarring, homeostatic, and developing skin, we identified neonatal papillary fibroblasts that form a transient regenerative cell type that promotes healthy skin regeneration in young skin. These fibroblasts are defined by the expression of a canonical Wnt transcription factor Lef1 and using gain- and loss of function genetic mouse models, we demonstrate that Lef1 expression in fibroblasts primes the adult skin macroenvironment to enhance skin repair, including regeneration of hair follicles with arrector pili muscles in healed wounds. Finally, we share our genomic data in an interactive, searchable companion website (https://skinregeneration.org/). Together, these data and resources provide a platform to leverage the regenerative abilities of neonatal skin to develop clinically tractable solutions that promote the regeneration of adult tissue.
Collapse
Affiliation(s)
- Quan M Phan
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Gracelyn M Fine
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Lucia Salz
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Gerardo G Herrera
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Ben Wildman
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
- Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| |
Collapse
|
102
|
Adipocytic Progenitor Cells Give Rise to Pathogenic Myofibroblasts: Adipocyte-to-Mesenchymal Transition and Its Emerging Role in Fibrosis in Multiple Organs. Curr Rheumatol Rep 2020; 22:79. [PMID: 32978695 PMCID: PMC7518402 DOI: 10.1007/s11926-020-00957-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Adipocytes have recently been shown to be able to reprogram to a myofibroblastic phenotype in a process termed adipocyte mesenchymal transition (AMT). This review seeks to discuss the relevance of this process to disease and explore its mechanisms. Recent Findings AMT occurs in multiple organs and diseases, transdifferentiation goes through a precursor cell and there is a reversible process that can be influenced by metabolic stress, myeloid cells, immune dysregulation, and pharmacological intervention. Summary AMT is a newly appreciated and highly relevant process in multiple forms of fibrosis. Targeting AMT may serve as a novel method of treating fibrosis.
Collapse
|
103
|
Abbasi S, Biernaskie J. Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycle-dependent manner. Exp Dermatol 2020; 28:419-424. [PMID: 30919474 DOI: 10.1111/exd.13924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
The dermal papilla (DP) is one of two principal mesenchymal compartments of the hair follicle (HF). We previously reported that a population of HF dermal stem cells (hfDSCs) function to regenerate the dermal sheath (DS), but intriguingly also contribute new cells to the adult DP at the onset of anagen hair growth to maintain normal cycling of HFs and support the production of large hair fibres. Here, we asked whether injury altered the behaviour of hfDSCs and their progeny in order to support wound-induced hair growth (WIHG) and if the response was modulated by hair cycle stage. αSMACreERT 2 :ROSAYFP mice received tamoxifen to label the DS, including hfDSCs. Full-thickness excisions were made on the dorsal skin during various stages of the hair cycle. The skin was harvested at the subsequent anagen. Interestingly, there was an increase in the magnitude of recruitment of hfDSC progeny into the DP after injury compared to follicles entering natural second anagen. This bias towards a DP fate only occurred when a wound was induced during certain stages of the HC. In summary, injury modifies the fate of hfDSCs progeny, biasing them towards recruitment into the DP, with the hair cycle stage also influencing this response.
Collapse
Affiliation(s)
- Sepideh Abbasi
- Faculty of Veterinary Medicine, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
104
|
Abstract
The Hanahan and Weinberg "hallmarks of cancer" papers provide a useful structure for considering the various mechanisms driving cancer progression, and the same might be useful for wound healing. In this Review, we highlight how tissue repair and cancer share cellular and molecular processes that are regulated in a wound but misregulated in cancer. From sustained proliferative signaling and the activation of invasion and angiogenesis to the promoting role of inflammation, there are many obvious parallels through which one process can inform the other. For some hallmarks, the parallels are more obscure. We propose some new prospective hallmarks that might apply to both cancer and wound healing and discuss how wounding, as in biopsy and surgery, might positively or negatively influence cancer in the clinic.
Collapse
Affiliation(s)
- Lucy MacCarthy-Morrogh
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
105
|
Rivera-Gonzalez GC, Klopot A, Sabin K, Baida G, Horsley V, Budunova I. Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle-Dependent Dermal Adipose Expansion. J Invest Dermatol 2020; 140:1698-1705.e1. [PMID: 32032578 PMCID: PMC7398827 DOI: 10.1016/j.jid.2019.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
Dermal white adipose tissue (dWAT) expansion is associated with important homeostatic and pathologic processes in skin. Even though mTOR/protein kinase B signaling is important for adipogenesis, the role of regulated development of DNA damage responses 1 (REDD1), a negative regulator of mTOR/protein kinase B, is poorly understood. Loss of REDD1 in mice resulted in reduction of body mass, total fat, size of gonadal white adipose tissue, and interscapular brown adipose tissue. Inguinal subcutaneous white adipose tissue and dWAT in REDD1 knockouts were expanded compared with wild type mice. Size and number of mature adipocytes in dWAT were also increased in adult REDD1 knockouts. This dWAT phenotype was established around postnatal day 18 and did not depend on the hair growth cycle. Numbers of adipocyte precursor cells were lower in REDD1 knockout skin. In vitro analysis revealed increased differentiation of skin-derived REDD1 knockout adipocyte precursor cells as indicated by higher lipid accumulation and increased adipogenic marker expression. 3T3L1 cells overexpressing REDD1 had decreased sensitivity to differentiation. Overall, our findings indicate that REDD1 silencing induced expansion of dWAT through hypertrophy and hyperplasia. This REDD1-dependent mechanism of adipogenesis could be used to preferentially target skin-associated adipose tissue for therapeutic purposes.
Collapse
Affiliation(s)
- Guillermo C. Rivera-Gonzalez
- Department of Molecular, Cellular and Developmental Biology and Department of Dermatology, Yale University, New Haven, CT 06520
- Current address: Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110
| | - Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Kaitlyn Sabin
- Department of Molecular, Cellular and Developmental Biology and Department of Dermatology, Yale University, New Haven, CT 06520
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology and Department of Dermatology, Yale University, New Haven, CT 06520
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
106
|
Hosmani J, Patil S, Mohammed Almubarak H, Babji D, Bommanavar S, Sarode SC, Sarode GS. Diminishing reactive adipogenesis leads to disease progression of oral submucous fibrosis. Med Hypotheses 2020; 144:110219. [PMID: 33254526 DOI: 10.1016/j.mehy.2020.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Oral fibroblasts, similar to dermal fibroblasts, have the potential to resist the local insults like trauma to the oral mucosa by differentiating into adipocytes and secreting antimicrobial peptide cathelicidin (Camp) and this physiologic process in known as reactive adipogenesis. We hypothesize that in oral submucous fibrosis (OSF), due to constant secretion and up-streaming of transforming growth factor-beta (TGF- β), oral fibroblast lose their adipogenic differentiation potential and Camp production, which leads to progressive fibrosis in OSF. The implication of this hypothesis could open some promising vistas on still unexplored innate immune systems harboured by oral mucosa. Restoring and maintaining the adipogenic and protective potential of oral fibroblasts by inhibiting TGF- β receptors could hinder the disease progression of OSF.
Collapse
Affiliation(s)
- Jagadish Hosmani
- Oral Pathology Section, Department of Diagnostic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Hussain Mohammed Almubarak
- College of Dentistry, Department of Diagnostic Dental Sciences, King Khalid University, Abha, Saudi Arabia
| | - Deepa Babji
- Department of Oral Pathology and Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belagavi 590010, Karnataka, India
| | - Sushma Bommanavar
- Department of Oral Pathology and Microbiology, School of Dental Sciences, Krishna Institute of Medical Sciences, Karad 415539, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India.
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India.
| |
Collapse
|
107
|
Walker JM, Garcet S, Aleman JO, Mason CE, Danko D, Butler D, Zuffa S, Swann JR, Krueger J, Breslow JL, Holt PR. Obesity and ethnicity alter gene expression in skin. Sci Rep 2020; 10:14079. [PMID: 32826922 PMCID: PMC7442822 DOI: 10.1038/s41598-020-70244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Obesity is accompanied by dysfunction of many organs, but effects on the skin have received little attention. We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and ethnicity. Epidermal thickness did not differ with obesity but the expression of genes encoding proteins associated with skin blood supply and wound healing were altered. In the obese, many gene expression pathways were broadly downregulated and subdermal fat showed pronounced inflammation. There were no changes in skin microbiota or metabolites. African American subjects differed from European Americans with a trend to increased epidermal thickening. In obese African Americans, compared to obese European Americans, we observed altered gene expression that may explain known differences in water content and stress response. African Americans showed markedly lower expression of the gene encoding the cystic fibrosis transmembrane regulator characteristic of the disease cystic fibrosis. The results from this preliminary study may explain the functional changes found in the skin of obese subjects and African Americans.
Collapse
Affiliation(s)
- Jeanne M Walker
- The Rockefeller University Hospital, New York, NY, 10065, USA.
| | - Sandra Garcet
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jose O Aleman
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY, 10016, USA
| | | | - David Danko
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daniel Butler
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jonathan R Swann
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Krueger
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jan L Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
| | - Peter R Holt
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
108
|
Zhang F, Qiao S, Li C, Wu B, Reischl S, Neumann PA. The immunologic changes during different phases of intestinal anastomotic healing. J Clin Lab Anal 2020; 34:e23493. [PMID: 32692419 PMCID: PMC7676198 DOI: 10.1002/jcla.23493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023] Open
Abstract
Intestinal anatomosis is a complex and multicellular process that involving three overlapped phases: exudative phase, proliferative phase, and reparative phase. Undisturbed anastomotic healings are crucial for the recovery of patients after operations but unsuccessful healings are linked with a considerable mortality. This time, we concentrate on the immunologic changes during different phases of intestinal anastomotic healing and select several major immune cells and cytokines of each phase to get a better understanding of these immunologic changes in different phases, which will be significant for more precise therapy strategies in anastomoses.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China.,Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Song Qiao
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Chunqiao Li
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Bo Wu
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Stefan Reischl
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Philipp-Alexander Neumann
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| |
Collapse
|
109
|
Khademi B, Safari S, Mosleh-Shirazi MA, Mokhtari M, Chenari N, Razmkhah M. Therapeutic effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats. Stem Cell Investig 2020; 7:12. [PMID: 32832535 DOI: 10.21037/sci-2019-045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
Background Radiation-induced skin injury remains a serious concern, which may limit the duration and dose of radiation treatment. The concept that stem cell injection may reduce tissue injury or assist its recovery after radiation has been recently argued. Herein, we examined the effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats. Methods This study is an experimental case control study. ASCs were isolated from peri uterine fat tissue of the rats. Then the rats received a 30 Gy single dose radiation to their buttocks skin using gamma radiation. Next day stem cells were transplanted subcutaneously in 16 rats as the case group. A group of 16 rats was considered as control group with radiation but no transplantation of stem cells. Then rats were examined and observed by macroscopic analysis and phenotypic scores during 4 weeks of follow up. Results The wound size in control group was significantly higher than case group in the second, third and fourth weeks of evaluation (P<0.05). There was no significant difference in skin lesion severity, pathological factors, and the onset of recovery signs between two groups (P>0.05). Conclusions It seems that using ASCs alone has not profound effects on reducing radiation-induced cutaneous complications, while combination of these cells with growth factors may produce more promising results.
Collapse
Affiliation(s)
- Bijan Khademi
- Research Center of Otolaryngology Head and Neck Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Otolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Safari
- Department of Otolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Department of Radiotherapy and Oncology, Medical Imaging Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
110
|
Adipose Tissue: A Source of Stem Cells with Potential for Regenerative Therapies for Wound Healing. J Clin Med 2020; 9:jcm9072161. [PMID: 32650555 PMCID: PMC7408846 DOI: 10.3390/jcm9072161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in adipose tissue is fast becoming a focus of research after many years of being considered as a simple connective tissue. It is becoming increasingly apparent that adipose tissue contains a number of diverse cell types, including adipose-derived stem cells (ASCs) with the potential to differentiate into a number of cell lineages, and thus has significant potential for developing therapies for regenerative medicine. Currently, there is no gold standard treatment for scars and impaired wound healing continues to be a challenge faced by clinicians worldwide. This review describes the current understanding of the origin, different types, anatomical location, and genetics of adipose tissue before discussing the properties of ASCs and their promising applications for tissue engineering, scarring, and wound healing.
Collapse
|
111
|
Wu X, Jia Y, Sun X, Wang J. Tissue engineering in female pelvic floor reconstruction. Eng Life Sci 2020; 20:275-286. [PMID: 32647506 PMCID: PMC7336160 DOI: 10.1002/elsc.202000003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pelvic organ prolapse is a common and frequently occurring disease in middle-aged and elderly women. Mesh implantation is an ideal surgical treatment. The polypropylene mesh commonly used in clinical practice has good mechanical properties, but there are long-term complications. The application of tissue engineering technology in the treatment of pelvic organ prolapse disease can not only meet the mechanical requirements of pelvic floor support, but also be more biocompatible than traditional polypropylene mesh, and can promote tissue repair to a certain extent. In this paper, the progress of tissue engineering was summarized to understand the application of tissue engineering in the treatment of pelvic organ prolapse disease and will help in research.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - YuanYuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Xiuli Sun
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| |
Collapse
|
112
|
Zhao Y, Huang X, Zhang Z, Zhang Y, Zhang G, Zan T, Li Q. USP15 Enhances Re-epithelialization Through Deubiquitinating EIF4A1 During Cutaneous Wound Repair. Front Cell Dev Biol 2020; 8:529. [PMID: 32671073 PMCID: PMC7332549 DOI: 10.3389/fcell.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Re-epithelialization is a fundamental process in wound healing that involves various cytokines and cells during cutaneous barrier reconstruction. Ubiquitin-specific peptidase 15 (USP15), an important member of the deubiquitinating enzymes (DUBs), removes ubiquitin chains from target proteins and maintains protein stability. However, the dynamic role of USP15 in epithelialization remains unclear. We aimed to investigate the regulatory function of USP15 in re-epithelialization. An excisional wound splinting model was established to evaluate the re-epithelialization rate in Usp15 knockout (KO) mice. Coimmunoprecipitation (Co-IP) and mass spectrum analyses were performed to identify USP15-interacting proteins. RNA-sequencing was performed for transcriptome analysis in keratinocytes and uploaded into NODE database (http://www.biosino.org/node, accession numbers: OEP000770 and OEP000763). First, a significant delay in epithelialization was observed in the Usp15 KO mice. Moreover, inhibition of cell migration and proliferation was observed in the USP15-silenced keratinocytes (HaCaTs). Moreover, we revealed for the first time that USP15 could interact with eukaryotic initiation factor 4A-1 (EIF4A1), thereby promoting translational efficacy in keratinocytes, which is essential for keratinocyte proliferation and migration. Conclusively, the USP15-EIF4A1 complex significantly accelerated re-epithelialization in wound healing. These observations helped elucidate the function and mechanisms of USP15 in modulating re-epithelialization in wound healing, providing a promising target for refractory wound treatment.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
113
|
El-Hattab MY, Nagumo Y, Gourronc FA, Klingelhutz AJ, Ankrum JA, Sander EA. Human Adipocyte Conditioned Medium Promotes In Vitro Fibroblast Conversion to Myofibroblasts. Sci Rep 2020; 10:10286. [PMID: 32581231 PMCID: PMC7314785 DOI: 10.1038/s41598-020-67175-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Adipocytes and adipose tissue derived cells have been investigated for their potential to contribute to the wound healing process. However, the details of how these cells interact with other essential cell types, such as myofibroblasts/fibroblasts, remain unclear. Using a novel in-vitro 3D human adipocyte/pre-adipocyte spheroid model, we investigated whether adipocytes and their precursors (pre-adipocytes) secrete factors that affect human dermal fibroblast behavior. We found that both adipocyte and pre-adipocyte conditioned medium induced the migration of fibroblasts, but only adipocyte conditioned medium induced fibroblast differentiation into a highly contractile, collagen producing myofibroblast phenotype. Furthermore, adipocyte mediated myofibroblast induction occurred through a TGF-β independent mechanism. Our findings contribute to a better understanding on the involvement of adipose tissue in wound healing, and may help to uncover and develop fat-related wound healing treatments.
Collapse
Affiliation(s)
- Mariam Y El-Hattab
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Yoshiaki Nagumo
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
- Department of Plastic Surgery, Kindai University, Faculty of Medicine, Higashiosaka, Osaka, Japan
| | - Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| | - Edward A Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
114
|
Zhang R, Teramura Y, Fukazawa K, Ishihara K. Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromol Biosci 2020; 20:e2000114. [PMID: 32567166 DOI: 10.1002/mabi.202000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal-free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water-soluble polymers, 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine-immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue-mimicking ECM hybrid hydrogels are fabricated successfully.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Immunology, Genetics, and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala, SE-751 85, Sweden
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| |
Collapse
|
115
|
Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, Zhu Y, Ghaben AL, Wang MY, Li N, Onodera T, Joffin N, Crewe C, Zhu Q, Vishvanath L, Kumar A, Xing C, Wang QA, Gautron L, Deng Y, Gordillo R, Kruglikov I, Kusminski CM, Gupta RK, Scherer PE. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 2020; 129:5327-5342. [PMID: 31503545 DOI: 10.1172/jci130239] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Zhu
- Touchstone Diabetes Center
| | | | | | - Na Li
- Touchstone Diabetes Center
| | | | | | | | | | | | - Ashwani Kumar
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qiong A Wang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope/Beckman Research Institute, Duarte, California, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| | | | | | | |
Collapse
|
116
|
Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC, Zirak B, Rivera-Gonzalez GC, López-Giráldez F, Zarini S, Rezza A, Clark DA, Rendl M, Rosenblum MD, Gerstein MB, Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell 2020; 26:880-895.e6. [PMID: 32302523 PMCID: PMC7853423 DOI: 10.1016/j.stem.2020.03.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
Mature adipocytes store fatty acids and are a common component of tissue stroma. Adipocyte function in regulating bone marrow, skin, muscle, and mammary gland biology is emerging, but the role of adipocyte-derived lipids in tissue homeostasis and repair is poorly understood. Here, we identify an essential role for adipocyte lipolysis in regulating inflammation and repair after injury in skin. Genetic mouse studies revealed that dermal adipocytes are necessary to initiate inflammation after injury and promote subsequent repair. We find through histological, ultrastructural, lipidomic, and genetic experiments in mice that adipocytes adjacent to skin injury initiate lipid release necessary for macrophage inflammation. Tamoxifen-inducible genetic lineage tracing of mature adipocytes and single-cell RNA sequencing revealed that dermal adipocytes alter their fate and generate ECM-producing myofibroblasts within wounds. Thus, adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.
Collapse
Affiliation(s)
- Brett A Shook
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Renee R Wasko
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Michael Rutenberg-Schoenberg
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Denver Anschutz Medical Campus, CO 80045, USA
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Simona Zarini
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Damon A Clark
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
117
|
Kopcewicz M, Walendzik K, Bukowska J, Kur-Piotrowska A, Machcinska S, Gimble JM, Gawronska-Kozak B. Cutaneous wound healing in aged, high fat diet-induced obese female or male C57BL/6 mice. Aging (Albany NY) 2020; 12:7066-7111. [PMID: 32294622 PMCID: PMC7202484 DOI: 10.18632/aging.103064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Since there are limited studies analyzing the impact of age, sex and obesity on cutaneous repair, the current study evaluated excisional skin wound healing as a function of age, sex and diet in C57BL/6 mice subjected to either low (LFD) or high (HFD) fat diet. Older mice accumulated increased body fat relative to younger mice under HFD. Skin wound healing at particular stages was affected by age in the aspect of Tgfβ-1, MCP-1, Mmp-9 and Mmp-13 expression. The most profound, cumulative effect was observed for the combination of two parameters: age and sex. While skin of younger males displayed extremely high collagen 1 and collagen 3 expression, younger females showed exceptionally high Mmp-13 expression at day 3 and 7 after injury. Diet as a single variable modified the thickness of dermis due to increased dermal White Adipose Tissue (dWAT) accumulation in mice fed HFD. The combination of age and diet affected the re-epithelialization and inflammatory response of injured skin. Overall, our data indicate that age has the most fundamental impact although all components (age, sex and diet) contribute to skin repair.
Collapse
Affiliation(s)
- Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans, LA 70112, USA.,Obatala Sciences Inc., New Orleans, LA 70148, USA.,Departments of Medicine, Structural and Cellular Biology, and Surgery and Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
118
|
Zhang Y, Su X, Dong Y, Chen T, Zhang Y, Wu B, Li H, Sun X, Xia L, Zhang D, Wang H, Xu G. Cytological and functional characteristics of fascia adipocytes in rats: A unique population of adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158585. [DOI: 10.1016/j.bbalip.2019.158585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023]
|
119
|
Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J Dermatol Sci 2020; 97:152-160. [PMID: 32001116 DOI: 10.1016/j.jdermsci.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiation-induced skin injury is a serious concern during radiotherapy and radiation accidents. Skin fat represents the dominant architectural component of the human skin. However, the interplay between skin fat and the progression of radiation-induced skin injury remains largely unexplored. OBJECTIVE This study aims to elucidate the interplay between skin fat and the progression of radiation-induced skin injury. METHODS SD rats were irradiated with an electron beam. mRNA profiles were determined by RNA-Seq. The skin lipid mass was monitored by magnetic resonance imaging (MRI) and lipid profiles were measured by liquid chromatography-mass spectrometry (LC-MS). Human mature adipocytes isolated from dermal and subcutaneous white adipose tissues (WATs) were co-cultured with human keratinocytes (HaCaT) and skin fibroblasts (WS1) in the transwell culture system. Cell migration ability was measured by migration assay. RESULTS Radiation modulated cutaneous lipid metabolism by downregulating multiple pathways. Moreover, radiation decreased skin fat mass with altered lipid metabolite profiles. The rats fed with a high-fat diet showed resistance to radiogenic skin injury compared with that with a control diet, indicating that skin lipid plays a radioprotective role. Mature adipocytes promoted the migration but not the proliferation of co-cultured skin keratinocytes and fibroblasts. Palmitic acid, the most abundant fatty acid in skin tissues, facilitated the migration of WS1 cells. Moreover, fatty acid-binding protein 4 (FABP4) could be incorporated into skin cells and promote DNA damage repair in irradiated skin fibroblasts. CONCLUSION Radiation induces cutaneous lipid remolding, and skin adipocytes confer a protective role against radiation-induced skin injury.
Collapse
|
120
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
121
|
Abstract
Obesity is characterized by increased adipose tissue mass and has been associated with a strong predisposition towards metabolic diseases and cancer. Thus, it constitutes a public health issue of major proportion. The expansion of adipose depots can be driven either by the increase in adipocyte size (hypertrophy) or by the formation of new adipocytes from precursor differentiation in the process of adipogenesis (hyperplasia). Notably, adipocyte expansion through adipogenesis can offset the negative metabolic effects of obesity, and the mechanisms and regulators of this adaptive process are now emerging. Over the past several years, we have learned a considerable amount about how adipocyte fate is determined and how adipogenesis is regulated by signalling and systemic factors. We have also gained appreciation that the adipogenic niche can influence tissue adipogenic capability. Approaches aimed at increasing adipogenesis over adipocyte hypertrophy can now be explored as a means to treat metabolic diseases.
Collapse
|
122
|
Martin P, Wood W, Franz A. Cell migration by swimming: Drosophila adipocytes as a new in vivo model of adhesion-independent motility. Semin Cell Dev Biol 2019; 100:160-166. [PMID: 31812445 DOI: 10.1016/j.semcdb.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022]
Abstract
Several cell lineages migrate through the developing and adult tissues of our bodies utilising a variety of modes of motility to suit the different substrates and environments they encounter en route to their destinations. Here we describe a novel adhesion-independent mode of single cell locomotion utilised by Drosophila fat body cells - the equivalent of vertebrate adipocytes. Like their human counterpart, these large cells were previously presumed to be immotile. However, in the Drosophila pupa fat body cells appear to be motile and migrate in a directed way towards wounds by peristaltic swimming through the hemolymph. The propulsive force is generated from a wave of cortical actomyosin that travels rearwards along the length of the cell. We discuss how this swimming mode of motility overcomes the physical constraints of microscopic objects moving in fluids, how fat body cells switch on other "motility machinery" to plug the wound on arrival, and whether other cell lineages in Drosophila and other organisms may, under certain circumstances, also adopt swimming as an effective mode of migration.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK; School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Anna Franz
- Department of Cell and Developmental Biology, University College London, 21 University Street, London, WC1E 6DE, UK.
| |
Collapse
|
123
|
Agabalyan NA, Sparks HD, Tarraf S, Rosin NL, Anker K, Yoon G, Burnett LN, Nickerson D, Di Martino ES, Gabriel VA, Biernaskie J. Adult Human Dermal Progenitor Cell Transplantation Modulates the Functional Outcome of Split-Thickness Skin Xenografts. Stem Cell Reports 2019; 13:1068-1082. [PMID: 31735655 PMCID: PMC6915850 DOI: 10.1016/j.stemcr.2019.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/01/2023] Open
Abstract
Following full-thickness skin injuries, epithelialization of the wound is essential. The standard of care to achieve this wound "closure" in patients is autologous split-thickness skin grafting (STSG). However, patients living with STSGs report significant chronic impairments leading to functional deficiencies such as itch, altered sensation, fragility, hypertrophic scarring, and contractures. These features are attributable to the absence of functional dermis combined with the formation of disorganized fibrotic extracellular matrix. Recent work has demonstrated the existence of dermal progenitor cells (DPCs) residing within hair follicles that function to continuously regenerate mesenchymal tissue. The present work examines whether cultured DPCs could regenerate dermis within an STSG and improve overall graft function. Adult human DPCs were transplanted into a full-thickness skin wound in immune-compromised mice and closed with a human STSG. At 3 months, human DPCs (hDPCs) had successfully integrated into the xenograft and differentiated into various regionally specified phenotypes, improving both viscoelastic properties of the graft and mitigating pruritus.
Collapse
Affiliation(s)
- Natacha A Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Holly D Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Samar Tarraf
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Katie Anker
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Grace Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Duncan Nickerson
- Calgary Firefighters Burn Treatment Centre, Calgary, AB, Canada; Section of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Elena S Di Martino
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Department of Civil Engineering, Centre for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada
| | - Vincent A Gabriel
- Calgary Firefighters Burn Treatment Centre, Calgary, AB, Canada; Departments of Clinical Neurosciences, Surgery and Paediatrics, University of Calgary, Calgary, AB, Canada; McCaig Institute of Bone and Joint Research, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Section of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada.
| |
Collapse
|
124
|
Walendzik K, Kopcewicz M, Bukowska J, Panasiewicz G, Szafranska B, Gawronska-Kozak B. The Transcription Factor FOXN1 Regulates Skin Adipogenesis and Affects Susceptibility to Diet-Induced Obesity. J Invest Dermatol 2019; 140:1166-1175.e9. [PMID: 31811821 DOI: 10.1016/j.jid.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
FOXN1, a transcription factor expressed in the epidermis, regulates keratinocyte differentiation and participates in skin wound healing. In this study, we explored the impact of FOXN1 insufficiency on diet-stimulated weight gain and dermal white adipose tissue regulation in the intact and wounded skin of FOXN1eGFP/+ (heterozygotes, FOXN1-insufficient) mice in the context of age and diet. The results showed that on a high-fat diet, FOXN1eGFP/+ mice gained significantly less body weight than their FOXN1+/+ counterparts (FOXN1-sufficient mice). The intact and wounded skin of FOXN1eGFP/+ mice displayed abrogated expression of the master regulators of adipogenesis, PPARγ, FABP4, and leptin, which decreased with age in FOXN1+/+ mice. FOXN1 insufficiency also resulted in a decreased percentage of adipocyte-committed precursor cells (CD24+) in the skin. The proadipogenic pathway genes Bmp2, Igf2, and Mest showed a gradual decrease in expression that accompanied the gradual inactivation of FOXN1 in the skin of FOXN1+/+, FOXN1eGFP/+, and FOXN1eGFP/eGFP (lack of FOXN1) mice. Bone morphogenetic protein 2 and insulin-like growth factor 2 signals colocalized with FOXN1-eGFP in the epidermis and in hair follicles. These data demonstrated that FOXN1 initiates the cascade of adipogenic signaling that regulates skin homeostasis and wound healing and affects susceptibility to diet-induced obesity.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Bozena Szafranska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
125
|
Kim MS, Park HJ, Kim SJ, Park JE, Yun JI, Lim HW, Lee ST. Recombinant FNIII9-10-derived extracellular signaling effects on the physiology of dermal fibroblasts during in vitro culture. Tissue Cell 2019; 63:101323. [PMID: 32223958 DOI: 10.1016/j.tice.2019.101323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022]
Abstract
Previous reports showed that fibronectin (FN) was effective in stimulating the recovery of damaged dermis. However, native FN has multifunctional domains transmitting beneficial as well as unbeneficial signals to dermal tissue cells through the mediation of integrin heterodimers. The use of a functional domain [FN type III9-10 fragments (FNIII9-10)] providing beneficial effects on the physiology of dermal tissue cells would enhance an in vitro culture system for dermal fibroblasts (DFs). We therefore investigated the FNIII9-10-derived extracellular signaling effect on the physiology of DFs during in vitro culture. Recombinant FNIII9-10 proteins were constructed and their functionality was determined by observing the adhesion of adult human DFs (aHDFs) to recombinant FNIII9-10 and of low adhesion integrin α5β1- and αvβ3-blocked aHDFs to recombinant FNIII9-10. Cellular proliferation, morphology, and senescence were measured and compared in the aHDFs cultured on native FN and recombinant FNIII9-10 for short or long periods. The results show that recombinant FNIII9-10-derived extracellular signaling stimulated increased proliferation of aHDF (both in short- and long-term cultures) and inhibited the generation of morphological abnormalities (in short- and long-term cultures) and cellular senescence (long-term culture) when compared with native FN-derived extracellular signaling. Our results suggest that, instead of native FN, recombinant FNIII9-10 better enhanced the in vitro culture of aHDFs while diminishing the adverse effects associated with the use of human-derived materials.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hye Jin Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seong Jae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ji Eun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hye Won Lim
- Shebah Biotech Inc., Chuncheon, 24398, Republic of Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
126
|
Vidal Yucha SE, Tamamoto KA, Kaplan DL. The importance of the neuro-immuno-cutaneous system on human skin equivalent design. Cell Prolif 2019; 52:e12677. [PMID: 31441145 PMCID: PMC6869210 DOI: 10.1111/cpr.12677] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The skin is a highly complex organ, responsible for sensation, protection against the environment (pollutants, foreign proteins, infection) and thereby linked to the immune and sensory systems in the neuro-immuno-cutaneous (NIC) system. Cutaneous innervation is a key part of the peripheral nervous system; therefore, the skin should be considered a sensory organ and an important part of the central nervous system, an 'active interface' and the first connection of the body to the outside world. Peripheral nerves are a complex class of neurons within these systems, subsets of functions are conducted, including mechanoreception, nociception and thermoception. Epidermal and dermal cells produce signalling factors (such as cytokines or growth factors), neurites influence skin cells (such as via neuropeptides), and peripheral nerves have a role in both early and late stages of the inflammatory response. One way this is achieved, specifically in the cutaneous system, is through neuropeptide release and signalling, especially via substance P (SP), neuropeptide Y (NPY) and nerve growth factor (NGF). Cutaneous, neuronal and immune cells play a central role in many conditions, including psoriasis, atopic dermatitis, vitiligo, UV-induced immunosuppression, herpes and lymphomas. Therefore, it is critical to understand the connections and interplay between the peripheral nervous system and the skin and immune systems, the NIC system. Relevant in vitro tissue models based on human skin equivalents can be used to gain insight and to address impact across research and clinical needs.
Collapse
Affiliation(s)
- Sarah E Vidal Yucha
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Kasey A Tamamoto
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
127
|
Ehsanipour A, Nguyen T, Aboufadel T, Sathialingam M, Cox P, Xiao W, Walthers CM, Seidlits SK. Injectable, Hyaluronic Acid-Based Scaffolds with Macroporous Architecture for Gene Delivery. Cell Mol Bioeng 2019; 12:399-413. [PMID: 31719923 PMCID: PMC6816628 DOI: 10.1007/s12195-019-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Biomaterials can provide localized reservoirs for controlled release of therapeutic biomolecules and drugs for applications in tissue engineering and regenerative medicine. As carriers of gene-based therapies, biomaterial scaffolds can improve efficiency and delivery-site localization of transgene expression. Controlled delivery of gene therapy vectors from scaffolds requires cell-scale macropores to facilitate rapid host cell infiltration. Recently, advanced methods have been developed to form injectable scaffolds containing cell-scale macropores. However, relative efficacy of in vivo gene delivery from scaffolds formulated using these general approaches has not been previously investigated. Using two of these methods, we fabricated scaffolds based on hyaluronic acid (HA) and compared how their unique, macroporous architectures affected their respective abilities to deliver transgenes via lentiviral vectors in vivo. METHODS Three types of scaffolds-nanoporous HA hydrogels (NP-HA), annealed HA microparticles (HA-MP) and nanoporous HA hydrogels containing protease-degradable poly(ethylene glycol) (PEG) microparticles as sacrificial porogens (PEG-MP)-were loaded with lentiviral particles encoding reporter transgenes and injected into mouse mammary fat. Scaffolds were evaluated for their ability to induce rapid infiltration of host cells and subsequent transgene expression. RESULTS Cell densities in scaffolds, distances into which cells penetrated scaffolds, and transgene expression levels significantly increased with delivery from HA-MP, compared to NP-HA and PEG-MP, scaffolds. Nearly 8-fold greater cell densities and up to 16-fold greater transgene expression levels were found in HA-MP, over NP-HA, scaffolds. Cell profiling revealed that within HA-MP scaffolds, macrophages (F4/80+), fibroblasts (ERTR7+) and endothelial cells (CD31+) were each present and expressed delivered transgene. CONCLUSIONS Results demonstrate that injectable scaffolds containing cell-scale macropores in an open, interconnected architecture support rapid host cell infiltration to improve efficiency of biomaterial-mediated gene delivery.
Collapse
Affiliation(s)
- Arshia Ehsanipour
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Tommy Nguyen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Tasha Aboufadel
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mayilone Sathialingam
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Phillip Cox
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Weikun Xiao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Christopher M. Walthers
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA 90095 USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
- Center for Minimally Invasive Therapeutics, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
128
|
Drochioi CI, Sulea D, Timofte D, Mocanu V, Popescu E, Costan VV. Autologous Fat Grafting for Craniofacial Reconstruction in Oncologic Patients. ACTA ACUST UNITED AC 2019; 55:medicina55100655. [PMID: 31569502 PMCID: PMC6843458 DOI: 10.3390/medicina55100655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Due to the anatomical and functional complexity of the region, craniofacial tumor removal requires some of the most challenging surgical approaches, often complemented with advanced chemo-radiotherapy techniques. However, these modern therapies often lead to sequelae that can drastically reduce the quality of life for the surviving patients. Recent advances in the field of regenerative medicine opened new avenues for craniofacial reconstruction following head and neck cancer treatment. One of the most promising recent strategies relies on the use of autologous fat transplant. In this mini review, we briefly present some of the fat’s biological properties that make it an ideal tissue for craniofacial reconstruction following cancer treatment. We then outline the recent advances that led to a better understanding of the detailed anatomy of the craniofacial fat depots. Furthermore, we provide a succinct review of the methods used for fat harvesting, processing and engrafting in the craniofacial area after head and neck tumor removal, discussing their main applications, advantages and limitations.
Collapse
Affiliation(s)
- Cristian Ilie Drochioi
- Department of Surgery, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania.
| | - Daniela Sulea
- Department of Surgery, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania.
| | - Daniel Timofte
- Department of Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania.
| | - Veronica Mocanu
- Department of Pathophysiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania.
| | - Eugenia Popescu
- Department of Surgery, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania.
| | - Victor Vlad Costan
- Department of Surgery, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania.
| |
Collapse
|
129
|
Architecture of antimicrobial skin defense. Cytokine Growth Factor Rev 2019; 49:70-84. [PMID: 31473081 DOI: 10.1016/j.cytogfr.2019.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
The skin is the largest and the most exposed organ in the body and its defense is regulated at several anatomical levels. Here, we explore how skin layers, including the epidermis, dermis, adipose tissue, and skin appendages, as well as cutaneous microbiota, contribute to the function of skin antimicrobial defense. We highlight recent studies that reveal the differential and complementary responses of skin layers to bacterial, viral, and fungal infection. In particular, we focus on key soluble mediators in the layered skin defense, such as antimicrobial peptides, as well as on lipid antimicrobials, cytokines, chemokines, and barrier-maintaining molecules. We include our own evaluative analyses of transcriptomic datasets of human skin to map the involvement of antimicrobial peptides in skin protection under both steady state and infectious conditions. Furthermore, we explore the versatility of the mechanisms underlying skin defense by highlighting the role of the immune and nervous systems in their interaction with cutaneous microbes, and by illustrating the multifunctionality of selected antimicrobial peptides in skin protection.
Collapse
|
130
|
Maguire G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:E57-E69. [PMID: 31531174 PMCID: PMC6715117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.
Collapse
Affiliation(s)
- Greg Maguire
- Dr. Maguire is with NeoGenesis, Inc. in San Diego, California
| |
Collapse
|
131
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
132
|
Bayer ML, Bang L, Hoegberget-Kalisz M, Svensson RB, Olesen JL, Karlsson MM, Schjerling P, Hellsten Y, Hoier B, Magnusson SP, Kjaer M. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans. FASEB J 2019; 33:10369-10382. [PMID: 31211922 DOI: 10.1096/fj.201900542r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic strain injury in skeletal muscle is often associated with fluid accumulation at the site of rupture, but the role of this injury exudate (EX) in cellular responses and healing is unknown. We aimed to characterize the EX sampled from human hamstring or calf muscles following a strain injury (n = 12). The cytokine and growth-factor profile, gene expression, and transcriptome analysis of EX-derived cells were compared with blood taken simultaneously from the same individuals. Cellular responses to the EX were tested in 3-dimensional (3D) culture based on primary human fibroblasts and myoblasts isolated from hamstring muscles. The EX contained a highly proinflammatory profile with a substantial expression of angiogenic factors. The proinflammatory profile was present in samples taken early postinjury and in samples aspirated several weeks postinjury, suggesting persistent inflammation. Cells derived from the EX demonstrated an increased expression of fibrogenic, adipogenic, and angiogenesis-related genes in comparison with blood cells. The injury EX stimulated fibroblast proliferation 2-fold compared with plasma, whereas such an effect was not seen for myoblasts. Finally, in 3D cell culture, the EX induced an up-regulation of connective tissue-related genes. In summary, EX formation following a muscle-strain injury stimulates fibroblast proliferation and the synthesis of connective tissue in fibroblasts. This suggests that the EX promotes an acute tissue-healing response but potentially also contributes to the formation of fibrotic tissue in the later phases of tissue repair.-Bayer, M. L., Bang, L., Hoegberget-Kalisz, M., Svensson, R. B., Olesen, J. L., Karlsson, M. M., Schjerling, P., Hellsten, Y., Hoier, B., Magnusson, S. P., Kjaer, M. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans.
Collapse
Affiliation(s)
- Monika L Bayer
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Bang
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maren Hoegberget-Kalisz
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens L Olesen
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Research Unit for General Practice in Aalborg, Aalborg University, Aalborg, Denmark
| | - Mads M Karlsson
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Hoier
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - S Peter Magnusson
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
133
|
Wu Y, Li K, Zhang Y, Dong J, Yu M, Tian W. [Research progress in adipose tissue promoted wound healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:756-761. [PMID: 31198006 PMCID: PMC8355768 DOI: 10.7507/1002-1892.201811095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/18/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To summarize recent progress in adipose tissue acting as a more efficient and ideal therapy to facilitate wound repair and evaluate the therapeutic values of adipose tissue. METHODS The related literature about adipose tissue for wound healing in recent years was reviewed and analyzed. RESULTS Enormous studies focus on the capacity of adipose tissue to accelerate wound healing including cellular components, extracellular matrix, and paracrine signaling have been investigated. CONCLUSION Adipose tissue has generated great interest in recent years because of unique advantages such as abundant and accessible source, thriven potential to enhance the regeneration and repair of damaged tissue. However, there is still a need to explore the mechanism that adipose tissue regulates cellular function and tissue regeneration in order to facilitate clinical application of adipose tissue in wound healing.
Collapse
Affiliation(s)
- Yue Wu
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha Hunan, 410006, P.R.China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha Hunan, 410006, P.R.China
| | - Yan Zhang
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jia Dong
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Mei Yu
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041,
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
134
|
Crosstalk among adipose tissue, vitamin D level, and biomechanical properties of hypertrophic burn scars. Burns 2019; 45:1430-1437. [PMID: 31076207 DOI: 10.1016/j.burns.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE This cross-sectional study aimed to investigate whether adipose tissue loss and reduced vitamin D levels following severe burn injury are associated with pathologic scar formation and biomechanical scar properties. METHODS A total of 492 male subjects with hypertrophic burn scars were enrolled from January 2014 to July 2018 and analyzed. Body fat content was measured using dual-energy X-ray absorptiometry. Values of melanin, erythema, and trans-epidermal water loss (TEWL) and the distensibility and elasticity of hypertrophic scars were examined using pigment- and TEWL-measuring devices and a suction skin elasticity meter. RESULTS Burn patients with higher fat percentage tended to have higher 25(OH) vitamin D levels (P < 0.001). As body fat percentage increased, hypertrophic scars showed higher mean value of Uf (distensibility, P < 0.001) and lower mean value of Uv/Ue (viscoelasticity or interstitial fluid shifting, P < 0.001). Burn patients with higher 25(OH) vitamin D levels tended to have higher mean values of Uf (P < 0.001) and Ua/Uf (gross elasticity, P = 0.013) and lower mean value of Uv/Ue (P = 0.008). CONCLUSION Adipose tissue loss and decreased 25(OH) vitamin D levels following burn injury were related to scar rigidity and slow interstitial fluid shifting in hypertrophic scars.
Collapse
|
135
|
Rognoni E, Walko G. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells 2019; 8:cells8050411. [PMID: 31058846 PMCID: PMC6562585 DOI: 10.3390/cells8050411] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Skin is the largest organ of the human body. Its architecture and physiological functions depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss the current knowledge of how the Hippo pathway and its downstream effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) contribute to the maintenance, activation and coordination of the epidermal and dermal cell populations during development, homeostasis, wound healing and cancer.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gernot Walko
- Department of Biology and Biochemistry & Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
136
|
Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. J Invest Dermatol 2019; 139:1002-1009. [DOI: 10.1016/j.jid.2018.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
|
137
|
Zhao Y, Wang Z, Ho C, Zhang G, Li Q. Ubiquitin-Specific Protease 15 Maintains Transforming Growth Factor-β Pathway Activity by Deubiquitinating Transforming Growth Factor-β Receptor I during Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1351-1362. [PMID: 30980801 DOI: 10.1016/j.ajpath.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Wound healing is a process of cutaneous barrier reconstruction that occurs after skin injury and involves diverse cytokines and cell types. Similar to several deubiquitinating enzymes, ubiquitin-specific protease 15 (USP15) can remove ubiquitin chains from specific proteins to rescue them from degradation. However, the regulatory role of USP15 in wound healing remains unclear. We investigated the dynamic function of USP15 in wound healing. First, in USP15 knockout mice, we observed a significant delay in wound closure. In addition, inhibition of cell proliferation and migration was observed in USP15-silenced human dermal fibroblasts. Through RNA sequencing, it was revealed that the transforming growth factor-β (TGF-β) pathway was suppressed after USP15 knockdown. Furthermore, coimmunoprecipitation demonstrated that USP15 could interact with TGF-β receptor I and promote its deubiquitination, thereby maintaining TGF-β signaling pathway activity by enhancing TGF-β receptor I stability. These observations shed light on the function and mechanisms of USP15-mediated modulation of the TGF-β signaling pathway during wound healing, thus providing a novel potential target for the treatment of refractory wounds.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
138
|
Kim BS, Gao G, Kim JY, Cho D. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Adv Healthc Mater 2019; 8:e1801019. [PMID: 30358939 DOI: 10.1002/adhm.201801019] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Indexed: 11/09/2022]
Abstract
Although skin cell-printing has exhibited promises for fabrication of functional skin equivalents, existing skin models through 3D cell printing are still composed of dermal and epidermal layers. However, a key hope for printing skin is to improve structural complexity of human skin over conventional construction, enabling the precise localization of multiple cell types and biomaterials. Here, the complexity of skin anatomy is increased using 3D cell printing. A novel printing platform is suggested for engineering a matured perfusable vascularized 3D human skin equivalent composed of epidermis, dermis, and hypodermis. The skin model is evaluated using functional markers representing each region of epidermis, dermis, and hypodermis to confirm tissue maturation. It is hypothesized that the vascularized dermal and hypodermal compartments that provide a more realistic microenvironment can promote cross-talks with the epidermal compartment, producing better recapitulation of epidermal morphogenesis. Skin stemness in epithelial tissue is investigated. These findings reveal that the full-thickness skin has more similarities to the native human skin compared with the dermal and epidermal skin model, indicating that it better reflects the actual complexity of native human skin. It is envisioned that it offers better predictive and reliable in vitro platform for investigation of mechanisms of pathological research and skin disease modeling.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Ge Gao
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Dong‐Woo Cho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
139
|
Vidal SEL, Tamamoto KA, Nguyen H, Abbott RD, Cairns DM, Kaplan DL. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Biomaterials 2019; 198:194-203. [PMID: 29709325 PMCID: PMC6200656 DOI: 10.1016/j.biomaterials.2018.04.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/07/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023]
Abstract
Current commercially available human skin equivalents (HSEs) are used for relatively short term studies (∼1 week) due in part to the time-dependent contraction of the collagen gel-based matrix and the limited cell types and skin tissue components utilized. In contrast, here we describe a new matrix consisting of a silk-collagen composite system that provides long term, stable cultivation with reduced contraction and degradation over time. This matrix supports full thickness skin equivalents which include nerves. The unique silk-collagen composite system preserves cell-binding domains of collagen while maintaining the stability and mechanics of the skin system for long-term culture with silk. The utility of this new composite protein-based biomaterial was demonstrated by bioengineering full thickness human skin systems using primary cells, including nerves and immune cells to establish an HSE with a neuro-immuno-cutaneous system. The HSEs with neurons and hypodermis, compared to in vitro skin-only HSEs controls, demonstrated higher secretion of pro-inflammatory cytokines. Proteomics analysis confirmed the presence of several proteins associated with inflammation across all sample groups, but HSEs with neurons had the highest amount of detected protein due to the complexity of the model. This improved, in vitro full thickness HSE model system utilizes cross-linked silk-collagen as the biomaterial and allows reduced reliance on animal models and provides a new in vitro tissue system for the assessment of chronic responses related to skin diseases and drug discovery.
Collapse
Affiliation(s)
| | - Kasey A Tamamoto
- Tufts University, Department of Chemistry, Medford, MA 02155, USA
| | - Hanh Nguyen
- Tufts University, Department of Child Studies and Human Development, Medford, MA 02155, USA
| | - Rosalyn D Abbott
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburg, PA 15213, USA
| | - Dana M Cairns
- Tufts University, Department of Biomedical Engineering, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, 4 Colby St., Medford, MA 02155, USA.
| |
Collapse
|
140
|
Hoerst K, van den Broek L, Sachse C, Klein O, von Fritschen U, Gibbs S, Hedtrich S. Regenerative potential of adipocytes in hypertrophic scars is mediated by myofibroblast reprogramming. J Mol Med (Berl) 2019; 97:761-775. [DOI: 10.1007/s00109-019-01772-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
|
141
|
Abstract
Skin aging is of considerable interest from various perspectives, ranging from aesthetics to cancer development. Zhang et al. (2019) elucidate an immunological consequence of aging in the adipose layer of skin. Age-dependent increases in TGF-β signaling impair fibroblast adipogenic potential that results in impaired anti-bacterial host defense.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
142
|
Costa-Almeida R, Reis RL, Gomes ME. Metabolic Disease Epidemics: Emerging Challenges in Regenerative Medicine. Trends Endocrinol Metab 2019; 30:147-149. [PMID: 30704823 DOI: 10.1016/j.tem.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
The interplay between cell/tissue damage caused by metabolic dysfunction and regenerative potential remains elusive. The tissue engineering and regenerative medicine (TERM) field is now facing a worldwide epidemic of obesity. This Forum article uncovers prospective questions to be addressed in TERM toward the development of effective regenerative therapies adjusted to these new demands.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
143
|
Zhang X, Chen L, Xiao B, Liu H, Su Y. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway. Biochem Biophys Res Commun 2019; 511:551-558. [PMID: 30824182 DOI: 10.1016/j.bbrc.2019.02.082] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
It remains unclear why obese persons displayed a slower wound healing rate than the normal. In this study, we found that has_circ_0075932, a single-exon circular RNA, was outstandingly expressed in human normal adipose tissue and overexpressed in burned skin of obese persons compared with that of non-obese persons. Circ_0075932 overexpression or silencing in dermal keratinocytes had no obvious effect on cell behaviors, unless dozens of times overexpression, since its basal expression level in keratinocytes is too low. However, the exosome released from circ_0075932-overexpressing adipocytes displayed a significantly promoting effect on inflammation and apoptosis in dermal keratinocytes. Then, in our mechanism exploration, we found that circ_0075932 directly bound with the RNA-binding protein PUM2, which was reported to positively regulated AuroraA kinase, thus activating the NF-κB pathway. Moreover, either silencing PUM2, silencing AuroraA, or blockade of NF-κB activation, could abrogate the promoting effect of adipocyte-derived exosomal circ_0075932 on cell inflammation and apoptosis.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Plastic Surgery, Xijing Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, 710032, China.
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, 710032, China
| | - Bo Xiao
- Department of Plastic Surgery, Xijing Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, 710032, China
| | - Hengxin Liu
- Department of Plastic Surgery, Xijing Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, 710032, China
| | - Yingjun Su
- Department of Plastic Surgery, Xijing Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, 710032, China
| |
Collapse
|
144
|
Zhou ZQ, Chen Y, Chai M, Tao R, Lei YH, Jia YQ, Shu J, Ren J, Li G, Wei WX, Han YD, Han Y. Adipose extracellular matrix promotes skin wound healing by inducing the differentiation of adipose‑derived stem cells into fibroblasts. Int J Mol Med 2019; 43:890-900. [PMID: 30535488 PMCID: PMC6317660 DOI: 10.3892/ijmm.2018.4006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Fibroblasts are the major effector cells of skin wound healing. Adipose‑derived stem cells can differentiate into fibroblasts under certain conditions. In the present study, it was hypothesized that adipose‑derived stem cells (ADSCs) could be induced by the adipose extracellular matrix (ECM) to differentiate into fibroblasts in order to promote skin wound healing. First, flow cytometry was used to detect the ratio of fibroblasts and relative expression of the fibroblast markers cytokeratin 19 (CK19) and vimentin in ADSCs. Then, the effect of the adipose ECM during the differentiation of ADSCs into fibroblasts was investigated by detecting the total amount of collagen fibers and degree of fibrosis, and the proliferation and cell cycle of differentiated fibroblasts, using the MTT assay and flow cytometry analysis respectively. Finally, a mouse skin wound model was established and treated with PBS, ADSC suspension or ECM + ADSCs to compare wound healing rate and expression of collagen I and collagen III by immunohistochemistry. Following induction of ADSCs with the adipose ECM, more fibroblasts were found, expression of CK19 and vimentin increased, and a greater degree of fibrosis occurred, which revealed the positive effect of the adipose ECM on the differentiation of ADSCs into fibroblasts. In addition, the induced fibroblasts had enhanced proliferation activity, with more cells in the S phase and fewer in the G2/M phase. The in vivo experiment indicated that the ECM produced by the ADSCs had a faster wound healing rate and increased expression of collagen I and collagen III compared with mice injected with PBS or ADSCs alone, which verified that ADSCs induced by the adipose ECM had a positive effect on skin wound healing. The present study demonstrated that the adipose ECM in combination with ADSCs may be a novel therapeutic target for the repair of skin injury, due to the ability of the adipose ECM to induce the differentiation of ADSCs into fibroblasts and to facilitate the wound healing process.
Collapse
Affiliation(s)
- Zhi-Qiang Zhou
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yi Chen
- Institute of Bioengineering, Academy of Military Medical Research, Academy of Military Science of Chinese PLA, Beijing 100071, P.R. China
| | - Mi Chai
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yong-Hong Lei
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yi-Qing Jia
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Jun Shu
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Guo Li
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Wen-Xin Wei
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yu-Di Han
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853
| |
Collapse
|
145
|
Hu P, Yang Q, Wang Q, Shi C, Wang D, Armato U, Prà ID, Chiarini A. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. BURNS & TRAUMA 2019; 7:38. [PMID: 31890717 PMCID: PMC6933895 DOI: 10.1186/s41038-019-0178-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/19/2019] [Indexed: 04/13/2023]
Abstract
Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Qinxin Yang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Qi Wang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Chenshuo Shi
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Dali Wang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
146
|
Sarigil O, Anil-Inevi M, Yilmaz E, Mese G, Tekin HC, Ozcivici E. Label-free density-based detection of adipocytes of bone marrow origin using magnetic levitation. Analyst 2019; 144:2942-2953. [DOI: 10.1039/c8an02503g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first report on application of magnetic levitation technology for detection of adipogenic cells based on single cell density measurement.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Esra Yilmaz
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics
- Izmir Institute of Technology
- Urla
- Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Engin Ozcivici
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| |
Collapse
|
147
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1568] [Impact Index Per Article: 261.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
148
|
Abstract
A multilayered epithelium to fulfil its function must be replaced throughout the lifespan. This is possible due to the presence of multipotent, self-renewing epidermal stem cells that give rise to differentiated cell lineages: keratinocytes, hairs, as well as sebocytes. Till now the molecular mechanisms responsible for stem cell quiescent, proliferation, and differentiation have not been fully established. It is suggested that epidermal stem cells might change their fate, both due to intrinsic events and as a result of niche-dependent extrinsic signals; however other yet unknown factors may also be involved in this process. Given the increasing excitement evoked by self-renewing epidermal stem cells, as one of the sources of adult stem cells, it seems important to reveal the mechanisms that govern their fate. In this chapter, we describe recent advances in the characterisation of the epidermal stem cells and their compartments. Furthermore, we focus on the interplay between epidermal stem cells and extrinsic signals and their role in quiescence, proliferation, and differentiation of appropriate epidermal stem cell lineages.
Collapse
|
149
|
Zhang LJ, Chen SX, Guerrero-Juarez CF, Li F, Tong Y, Liang Y, Liggins M, Chen X, Chen H, Li M, Hata T, Zheng Y, Plikus MV, Gallo RL. Age-Related Loss of Innate Immune Antimicrobial Function of Dermal Fat Is Mediated by Transforming Growth Factor Beta. Immunity 2018; 50:121-136.e5. [PMID: 30594464 DOI: 10.1016/j.immuni.2018.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/20/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
Dermal fibroblasts (dFBs) resist infection by locally differentiating into adipocytes and producing cathelicidin antimicrobial peptide in response to Staphylococcus aureus (S. aureus). Here, we show that neonatal skin was enriched with adipogenic dFBs and immature dermal fat that highly expressed cathelicidin. The pool of adipogenic and antimicrobial dFBs declined after birth, leading to an age-dependent loss of dermal fat and a decrease in adipogenesis and cathelidicin production in response to infection. Transforming growth factor beta (TGF-β), which acted on uncommitted embryonic and adult dFBs and inhibited their adipogenic and antimicrobial function, was identified as a key upstream regulator of this process. Furthermore, inhibition of the TGF-β receptor restored the adipogenic and antimicrobial function of dFBs in culture and increased resistance of adult mice to S. aureus infection. These results provide insight into changes that occur in the skin innate immune system between the perinatal and adult periods of life.
Collapse
Affiliation(s)
- Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China; Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Stella Xiang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yun Tong
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuqiong Liang
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marc Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China
| | - Hao Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
150
|
Romaldini A, Mastrogiacomo M, Cancedda R, Descalzi F. Platelet Lysate Activates Human Subcutaneous Adipose Tissue Cells by Promoting Cell Proliferation and Their Paracrine Activity Toward Epidermal Keratinocytes. Front Bioeng Biotechnol 2018; 6:203. [PMID: 30622945 PMCID: PMC6308153 DOI: 10.3389/fbioe.2018.00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Skin chronic wounds are non-healing ulcerative defects, which arise in association with a morbidity state, such as diabetes and vascular insufficiency or as the consequence of systemic factors including advanced age. Platelet Rich Plasma, a platelet-rich blood fraction, can significantly improve the healing of human skin chronic ulcers. Given that the subcutaneous adipose tissue is located beneath the skin and plays a role in the skin homeostasis, in this study, we investigated the in vitro response of human subcutaneous adipose tissue cells to platelet content in a model mimicking in vitro the in situ milieu of a deep skin injury. Considering that, at the wound site, plasma turn to serum, platelets are activated and inflammation occurs, human adipose-derived stromal cells (hASC) were cultured with Human Serum (HS) supplemented or not with Platelet Lysate (PL) and/or IL-1α. We observed that HS sustained hASC proliferation more efficiently than FBS and induced a spontaneous adipogenic differentiation in the cells. PL added to HS enhanced hASC proliferation, regardless the presence of IL-1α. In the presence of PL, hASC progressively lessened the adipogenic phenotype, possibly because the proliferation of less committed cells was induced. However, these cells resumed adipogenesis in permissive conditions. Accordingly, PL induced in quiescent cells activation of the proliferation-related pathways ERK, Akt, and STAT-3 and expression of Cyclin D1. Moreover, PL induced an early and transient increase of the pro-inflammatory response triggered by IL-1α, by inducing COX-2 expression and secretion of a large amount of PGE2, IL-6, and IL-8. Media conditioned by PL-stimulated hASC exerted a chemotactic activity on human keratinocytes and favored the healing of an in vitro scratch wound. In order to bridge the gap between in vitro results and possible in vivo events, the stimuli were also tested in ex vivo cultures of in toto human adipose tissue biopsies (hAT). PL induced cell proliferation in hAT and outgrowth of committed progenitor cells able to differentiate in permissive conditions. In conclusion, we report that the adipose tissue responds to the wound microenvironment by activating the proliferation of adipose tissue progenitor cells and promoting the release of factors favoring wound healing.
Collapse
Affiliation(s)
- Alessio Romaldini
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiorella Descalzi
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|