101
|
Cooperation of Endoderm-Derived BMP2 and Extraembryonic Ectoderm-Derived BMP4 in Primordial Germ Cell Generation in the Mouse. Dev Biol 2001. [DOI: 10.1006/dbio.2001.0173 s0012-1606(01)90173-3[pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
102
|
Schaller SA, Li S, Ngo-Muller V, Han MJ, Omi M, Anderson R, Muneoka K. Cell biology of limb patterning. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:483-517. [PMID: 11131524 DOI: 10.1016/s0074-7696(01)03014-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Of vertebrate organ systems, the developing limb has been especially well characterized. Morphological studies have yielded a wealth of information describing limb outgrowth and have allowed for the identification of a multitude of important factors. In terms of the latter, key signaling pathways are known to control numerous aspects of limb development, including establishment of the early limb field, determination of limb identity, elongation of the limb bud, specification of digit pattern, and sculpting of the digits. Modification of underlying signaling pathways can thus result in dramatic alterations of the limb phenotype, accounting for many of the diverse limb patterns observed in nature. Given this, it is clear that signaling pathways regulate the highly orchestrated and tightly controlled sequence of cellular events necessary for limb outgrowth; however, exactly how molecular signals interface with the cell biology of limb development remains largely a mystery. In this review we first provide an overview of a number of the morphogenetic signaling pathways that have been identified in the developing limb and then review how a subset of these signals are known to modify cell behaviors important for limb outgrowth.
Collapse
Affiliation(s)
- S A Schaller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Lousiana 70118, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Sakiyama J, Yokouchi Y, Kuroiwa A. HoxA and HoxB cluster genes subdivide the digestive tract into morphological domains during chick development. Mech Dev 2001; 101:233-6. [PMID: 11231082 DOI: 10.1016/s0925-4773(00)00564-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The digestive tract exhibits region-specific morphology and cytodifferentiation along the anteroposterior axis. We analyzed the spatial expression patterns of Hox genes belonging to the HoxA and HoxB cluster (Hoxa-4 approximately a-9, Hoxb-5 approximately b-9) in the developing chick digestive tract. The expression domains of these Hox genes correlated with morphological subdivision of the digestive tract along the anteroposterior axis.
Collapse
Affiliation(s)
- J Sakiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Japan
| | | | | |
Collapse
|
104
|
Grotewold L, Plum M, Dildrop R, Peters T, Rüther U. Bambi is coexpressed with Bmp-4 during mouse embryogenesis. Mech Dev 2001; 100:327-30. [PMID: 11165491 DOI: 10.1016/s0925-4773(00)00524-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling of TGF-beta superfamily members is tightly controlled by an elaborate network of regulators (for recent review see Trends Genet. 15 (1999) 3; Genes Dev. 14 (2000) 627). Recently, the transmembrane protein BAMBI (BMP and activin membrane-bound inhibitor) has been shown to interfere with Bmp and activin-like signaling by inhibiting Tgf-beta type I receptor activation (Nature 401 (1999) 480). In striking contrast to other Bmp antagonists like noggin (Cell 86 (1996) 599) or chordin (Cell 86 (1996) 589), BAMBI is strictly coexpressed with Bmp-4 during early Xenopus embryogenesis. The grouping of genes according to their shared complex spatial expression pattern and their involvement in the same biological signaling pathway has been referred to as synexpression group. This concept facilitates prognoses about the roles of a group member with unknown function. Apparently, only a minority of genes is organized in synexpression groups and up to now they have mainly been described in yeast and Xenopus (for review see Nature 402 (1999) 483). In the frog, BAMBI is a member of the Bmp-4 synexpression group (Nature 401 (1999) 480). We identified two murine homologues of BAMBI one of which, named Bambi-psi, is a pseudogene. We show that the spatiotemporal expression pattern of Bambi closely matches that of Bmp-4 during mouse embryonic development. Moreover, we show that Bambi expression is induced in mouse embryonic fibroblasts by Bmp-4. Hence, we provide first evidence for the existence of an evolutionarily conserved Bmp-4 synexpression group in mammals.
Collapse
Affiliation(s)
- L Grotewold
- Entwicklungs- und Molekularbiologie der Tiere, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
105
|
Olivera-Martinez I, Thélu J, Teillet MA, Dhouailly D. Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech Dev 2001; 100:233-44. [PMID: 11165480 DOI: 10.1016/s0925-4773(00)00540-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the origin and nature of the signals responsible for specification of the dermatomal lineage, excised axial organs in 2-day-old chick embryos were replaced by grafts of the dorsal neural tube, or the ventral neural tube plus the notochord, or aggregates of cells engineered to produce Sonic hedgehog (Shh), Noggin, BMP-2, Wnt-1, or Wnt-3a. By E10, grafts of the ventral neural tube plus notochord or of cells producing Shh led to differentiation of cartilage and muscles, and an impaired dermis derived from already segmented somites. In contrast, grafts of the dorsal neural tube, or of cells producing Wnt-1, triggered the formation of a feather-inducing dermis. These results show that the dermatome inducer is produced by the dorsal neural tube. The signal can be Wnt-1 itself, or can be mediated, or at least mimicked by Wnt-1.
Collapse
Affiliation(s)
- I Olivera-Martinez
- Equipe Biologie de la Différenciation Epithéliale, UMR Centre National de la Recherche Scientifique (CNRS) 5538, LEDAC, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
106
|
Spector JA, Luchs JS, Mehrara BJ, Greenwald JA, Smith LP, Longaker MT. Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg 2001; 107:124-34. [PMID: 11176610 DOI: 10.1097/00006534-200101000-00018] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For the reconstructive plastic surgeon, knowledge of the molecular biology underlying membranous fracture healing is becoming increasingly vital. Understanding the complex patterns of gene expression manifested during the course of membranous fracture repair will be crucial to designing therapies that augment poor fracture healing or that expedite normal osseous repair by strategic manipulation of the normal course of gene expression. In the current study, we present a rat model of membranous bone repair. This model has great utility because of its technical simplicity, reproducibility, and relatively low cost. Furthermore, it is a powerful tool for analysis of the molecular regulation of membranous bone repair by immunolocalization and/or in situ hybridization techniques. In this study, an osteotomy was made within the caudal half of the hemimandible, thus producing a stable bone defect without the need for external or internal fixation. The healing process was then catalogued histologically in 28 Sprague-Dawley rats that were serially killed at 1, 2, 3, 4, 5, 6, and 8 weeks after operation. Furthermore, using this novel model, we analyzed, within the context of membranous bone healing, the temporal and spatial expression patterns of several members of the bone morphogenetic protein (BMP) family, known to be critical regulators of cells of osteoblast lineage. Our data suggest that BMP-2/-4 and BMP-7, also known as osteogenic protein-1 (OP-1), are expressed by osteoblasts, osteoclasts, and other more primitive mesenchymal cells within the fracture callus during the early stages of membranous fracture healing. These proteins continue to be expressed during the process of bone remodeling, albeit less prominently. The return of BMP-2/-4 and OP-1 immunostaining to baseline intensity coincides with the histological appearance of mature lamellar bone. Taken together, these data underscore the potentially important regulatory role played by the bone morphogenetic proteins in the process of membranous bone repair.
Collapse
Affiliation(s)
- J A Spector
- Laboratory of Developmental Biology and Repair, New York University Medical Center, NY, USA
| | | | | | | | | | | |
Collapse
|
107
|
Ellies DL, Church V, Francis-West P, Lumsden A. The WNT antagonist cSFRP2 modulates programmed cell death in the developing hindbrain. Development 2000; 127:5285-95. [PMID: 11076751 DOI: 10.1242/dev.127.24.5285] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the avian hindbrain, the loss of premigratory neural crest cells from rhombomeres 3 and 5 (r3, r5) through programmed cell death contributes to the patterning of emigrant crest cells into three discrete streams. Programmed cell death is induced by the upregulation of Bmp4 and Msx2 in r3 and r5. We show that cSFRP2, a WNT antagonist, is expressed in the even-numbered rhombomeres and that over-expression of cSfrp2 inhibits Bmp4 expression in r3 and r5, preventing programmed cell death. By contrast, depleting cSFRP2 function in r4 results in elevated levels of Msx2 expression and ectopic programmed cell death, as does overexpression of Wnt1. We propose that programmed cell death in the rhombencephalic neural crest is modulated by pre-patterned cSfrp2 expression and a WNT-BMP signalling loop.
Collapse
Affiliation(s)
- D L Ellies
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | | | | | |
Collapse
|
108
|
Goltzené F, Skalski M, Wolff CM, Meyer D, Mager-Heckel AM, Darribère T, Remy P. Heterotopic expression of the Xl-Fli transcription factor during Xenopus embryogenesis: modification of cell adhesion and engagement in the apoptotic pathway. Exp Cell Res 2000; 260:233-47. [PMID: 11035918 DOI: 10.1006/excr.2000.5005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the Xenopus laevis embryo, the overexpression of the Xl-FLI protein, a transcription factor of the ETS family, provokes severe developmental anomalies, which affect anteroposterior and dorsoventral polarities, optic cup formation, head cartilage morphogenesis, and erythrocyte differentiation. It has been proposed that these effects could be correlated to modifications of cell adhesion properties and/or to an increased engagement of cells in the apoptotic pathway during early development (Remy et al., Int. J. Dev. Biol. 40, 577-589, 1996). To address these questions, we have first analyzed the behavior of cells overexpressing the protein in both aggregation and adhesion assays. We observe perturbations of cell-cell interactions as well as perturbations of cell adhesion and spreading on fibronectin and extracellular matrix (ECM). Second, we have analyzed apoptosis of cells overexpressing the Xl-FLI protein, by testing DNA fragmentation, caspase-3 activity and by performing TUNEL assay. We show that Xl-Fli overexpression results in the appearance of hallmarks of apoptosis, including exclusion of cells from the interior of the embryo, internucleosomal fragmentation of DNA and dose-dependent induction of caspase-3, resulting in the hydrolysis of poly(ADP-ribose) polymerase. In addition, a dominant-negative mutation of BMPs receptors decreases the effects of Xl-Fli overexpression, suggesting that a modification of the BMP signalling could be responsible for increased apoptosis. The latter appears to affect predominantly ventral and ventrolateral regions of the embryo.
Collapse
Affiliation(s)
- F Goltzené
- FRE 2168 du CNRS "MMDCD,", Institut de Physiologie et Chimie Biologique, 21 rue René Descartes, Strasbourg-cedex, 67084, France
| | | | | | | | | | | | | |
Collapse
|
109
|
Sakiyama J, Yokouchi Y, Kuroiwa A. Coordinated expression of Hoxb genes and signaling molecules during development of the chick respiratory tract. Dev Biol 2000; 227:12-27. [PMID: 11076673 DOI: 10.1006/dbio.2000.9880] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the molecular mechanism for regulating the region-specific morphogenesis of the chicken respiratory tract, we analyzed the spatiotemporal expression patterns of the Hoxb genes, Bmp-2, Bmp-4, Wnt-5a, and Wnt-11 in the developing respiratory tract. We found region-specific expression of these genes in the mesenchymal layer of the respiratory tract. Before bronchial branching proceeds, Hoxb genes show nested expression patterns around the ventral-distal tip of the lung bud. As morphogenesis proceeds, these expression domains correspond to the morphological subdivisions of the chick respiratory tract. Hoxb-5 and Hoxb-6 expression domains demarcate the trachea, bronchial tree, and air sacs. Particularly the expression domains of Hoxb-6 to -9 correspond to the morphological subdivisions of the air sacs along the proximodistal axis. Bmp-4 and Bmp-2 are expressed throughout the entire pulmonary mesenchyme and its dorsal half, respectively. Wnt-5a and Wnt-11 are expressed in the tracheal mesenchyme. Interestingly, the expression domain of Bmp-2 is complementary to the Hoxb-6 domain. The respiratory mesenchyme influences the process of epithelial branching during morphogenesis. By tissue recombination experiments, we found that the dorsal and the ventral pulmonary mesenchyme, demarcated by Hoxb-6 expression, have different inductive capacities toward the tracheal epithelium. These observations suggest the possibility that Hoxb genes are involved in the system specifying regional differences in morphogenesis and cytodifferentiation of respiratory tract. In addition, it is possible that BMPs and WNTs mediate region-specific epithelial-mesenchymal interaction in this system.
Collapse
Affiliation(s)
- J Sakiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-01, Japan
| | | | | |
Collapse
|
110
|
Abstract
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)–β superfamily, are a group of related proteins that are capable of inducing the formation of cartilage and bone but are now regarded as multifunctional cytokines. We show in this report a novel function of BMPs in hematopoietic cells: BMP-2 induces apoptosis not only in human myeloma cell lines (U266, RPMI 8226, HS-Sultan, IM-9, OPM-2, and KMS-12 cells), but also in primary samples from patients with multiple myeloma. The mechanism of BMP-2–induced apoptosis was investigated with the use of U266 cells, which are dependent on the interleukin-6 autocrine loop. We showed that BMP-2 caused cell-cycle arrest in the G1 phase and the subsequent apoptosis of myeloma cells. BMP-2 up-regulated the expression of cyclin-dependent kinase inhibitors (p21CIP1/WAF1 and p27KIP1) and caused hypophosphorylation of retinoblastoma (Rb) protein. In studies of apoptosis-associated proteins, BMP-2 was seen to down-regulate the expression of Bcl-xL; however, BMP-2 had no effects on the expression of Bcl-2, Bax, or Bad. Therefore, BMP-2 induces apoptosis in various human myeloma cells by means of the down-regulation of Bcl-xL and by cell-cycle arrest through the up-regulation of p21CIP1/WAF1 and p27KIP1 and by the hypophosphorylation of Rb. Further analysis showed that the signal transducer and activator of transcription 3 (STAT3) was inactivated immediately after BMP-2 treatment. We conclude that BMP-2 would be useful as a novel therapeutic agent in the treatment of multiple myeloma both by means of its antitumor effect of inducing apoptotis and through its original bone-inducing activity, because bone lesions are frequently seen in myeloma patients.
Collapse
|
111
|
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)–β superfamily, are a group of related proteins that are capable of inducing the formation of cartilage and bone but are now regarded as multifunctional cytokines. We show in this report a novel function of BMPs in hematopoietic cells: BMP-2 induces apoptosis not only in human myeloma cell lines (U266, RPMI 8226, HS-Sultan, IM-9, OPM-2, and KMS-12 cells), but also in primary samples from patients with multiple myeloma. The mechanism of BMP-2–induced apoptosis was investigated with the use of U266 cells, which are dependent on the interleukin-6 autocrine loop. We showed that BMP-2 caused cell-cycle arrest in the G1 phase and the subsequent apoptosis of myeloma cells. BMP-2 up-regulated the expression of cyclin-dependent kinase inhibitors (p21CIP1/WAF1 and p27KIP1) and caused hypophosphorylation of retinoblastoma (Rb) protein. In studies of apoptosis-associated proteins, BMP-2 was seen to down-regulate the expression of Bcl-xL; however, BMP-2 had no effects on the expression of Bcl-2, Bax, or Bad. Therefore, BMP-2 induces apoptosis in various human myeloma cells by means of the down-regulation of Bcl-xL and by cell-cycle arrest through the up-regulation of p21CIP1/WAF1 and p27KIP1 and by the hypophosphorylation of Rb. Further analysis showed that the signal transducer and activator of transcription 3 (STAT3) was inactivated immediately after BMP-2 treatment. We conclude that BMP-2 would be useful as a novel therapeutic agent in the treatment of multiple myeloma both by means of its antitumor effect of inducing apoptotis and through its original bone-inducing activity, because bone lesions are frequently seen in myeloma patients.
Collapse
|
112
|
Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 2000; 127:3107-18. [PMID: 10862748 DOI: 10.1242/dev.127.14.3107] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Involution of the mammary gland following weaning is divided into two distinct phases. Initially, milk stasis results in the induction of local factors that cause apoptosis in the alveolar epithelium. Secondly after a prolonged absence of suckling, the consequent decline in circulating lactogenic hormone concentrations initiates remodeling of the mammary gland to the virgin-like state. We have shown that immediately following weaning TGFbeta3 mRNA and protein is rapidly induced in the mammary epithelium and that this precedes the onset of apoptosis. Unilateral inhibition of suckling and hormonal reconstitution experiments showed that TGFbeta3 induction is regulated by milk stasis and not by the circulating hormonal concentration. Directed expression of TGFbeta3 in the alveolar epithelium of lactating mice using a beta-lactoglobulin promoter mobilized SMAD4 translocation to the nucleus and caused apoptosis of these cells, but not tissue remodeling. Transplantation of neonatal mammary tissue derived from TGFbeta3 null mutant mice into syngenic hosts resulted in a significant inhibition of cell death compared to wild-type mice upon milk stasis. These results provide direct evidence that TGFbeta3 is a local mammary factor induced by milk stasis that causes apoptosis in the mammary gland epithelium during involution.
Collapse
Affiliation(s)
- A V Nguyen
- Department of Developmental and Molecular Biology, and Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
113
|
Affiliation(s)
- M O Hengartner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
114
|
Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T. BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 2000; 275:17647-52. [PMID: 10748100 DOI: 10.1074/jbc.m908622199] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-beta (TGF-beta) superfamily, regulates a variety of cell fates and functions. At present, the molecular mechanism by which BMP2 induces apoptosis has not been fully elucidated. Here we propose a BMP2 signaling pathway that mediates apoptosis in mouse hybridoma MH60 cells whose growth is interleukin-6 (IL-6)-dependent. BMP2 dose-dependently induces apoptosis in MH60 cells even in the presence of IL-6. BMP2 has no inhibitory effect on the IL-6-induced tyrosine phosphorylation of STAT3, and the bcl-2 gene expression which is known to be regulated by STAT3, suggesting that BMP2-induced apoptosis is not attributed to alteration of the IL-6-mediated bcl-2 pathway. We demonstrate that BMP2 induces activation of TGF-beta-activated kinase (TAK1) and subsequent phosphorylation of p38 stress-activated protein kinase. In addition, forced expression of kinase-negative TAK1 in MH60 cells blocks BMP2-induced apoptosis. These results indicate that BMP2-induced apoptosis is mediated through the TAK1-p38 pathway in MH60 cells. We also show that MH60-derived transfectants expressing Smad6 are resistant to the apoptotic signal of BMP2. Interestingly, this ectopic expression of Smad6 blocks BMP2-induced TAK1 activation and p38 phosphorylation. Moreover, Smad6 can directly bind to TAK1. These findings suggest that Smad6 is likely to function as a negative regulator of the TAK1 pathway in the BMP2 signaling, in addition to the previously reported Smad pathway.
Collapse
Affiliation(s)
- N Kimura
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | |
Collapse
|
115
|
Abstract
While chickens have many properties that are advantageous for embryological studies, their genetic analysis has been restricted. However, by using retrovirus vector systems in combination with classical techniques of experimental developmental biology, it has recently become possible to analyze the function of genes involved in the development of this organism. Avian retrovirus vectors are unique in that they can be divided into two categories: replication-competent and replication-defective (replication-incompetent). By choosing the vectors correctly, there are many experimental applications of these vectors such as induction of constitutive (or regulated) gene expression in a restricted region of tissues, organs and embryos; cell lineage analysis; and formation of concentration gradients of morphogens in micromass cultures. In this paper, several retrovirus vectors available for the chicken will be introduced and their applications in developmental biology will be reviewed.
Collapse
Affiliation(s)
- H Iba
- Department of Gene Regulation, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
116
|
Zhang Z, Yu X, Zhang Y, Geronimo B, Lovlie A, Fromm SH, Chen Y. Targeted misexpression of constitutively active BMP receptor-IB causes bifurcation, duplication, and posterior transformation of digit in mouse limb. Dev Biol 2000; 220:154-67. [PMID: 10753507 DOI: 10.1006/dbio.2000.9637] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of bone morphogenetic proteins (BMPs) play important roles in many aspects of vertebrate embryogenesis. In developing limbs, BMPs have been implicated in control of anterior-posterior patterning, outgrowth, chondrogenesis, and apoptosis. These diverse roles of BMPs in limb development are apparently mediated by different BMP receptors (BMPR). To identify the developmental processes in mouse limb possibly contributed by BMP receptor-IB (BMPR-IB), we generated transgenic mice misexpressing a constitutively active Bmpr-IB (caBmpr-IB). The transgene driven by the mouse Hoxb-6 promoter was ectopically expressed in the posterior mesenchyme of the forelimb bud, the lateral plate mesoderm, and the whole mesenchyme of the hindlimb bud. While the forelimbs appeared normal, the transgenic hindlimbs exhibited several phenotypes, including bifurcation, preaxial polydactyly, and posterior transformation of the anterior digit. However, the size of bones in the transgenic limbs seemed unaltered. Defects in sternum and ribs were also found. The bifurcation in the transgenic hindlimb occurred early in the limb development (E10.5) and was associated with extensive cell death in the mesenchyme and occasionally in the apical ectodermal ridge (AER). Sonic hedgehog (Shh) and Patched (Ptc) expression appeared unaffected in the transgenic limb buds, suggesting that the BMPR-IB mediated signaling pathway is downstream from Shh. However, ectopic Fgf4 expression was found in the anterior AER, which may account for the duplication of the anterior digit. An ectopic expression of Gremlin found in the transgenic limb bud would be responsible for the ectopic Fgf4 expression. The observations that Hoxd-12 and Hoxd-13 expression patterns were extended anteriorly provide a molecular basis for the posterior transformation of the anterior digit. Together these results suggest that BMPR-IB is the endogenous receptor to mediate the role of BMPs in anterior-posterior patterning and apoptosis in mouse developing limb. In addition, BMPR-IB may represent a critical component in the Shh/FGF4 feedback loop by regulating Gremlin expression.
Collapse
Affiliation(s)
- Z Zhang
- Department of Oral Biology, University of Oslo, Oslo, 0316, Norway
| | | | | | | | | | | | | |
Collapse
|
117
|
Liu J, Tseu I, Wang J, Tanswell K, Post M. Transforming growth factor beta2, but not beta1 and beta3, is critical for early rat lung branching. Dev Dyn 2000; 217:343-60. [PMID: 10767079 DOI: 10.1002/(sici)1097-0177(200004)217:4<343::aid-dvdy2>3.0.co;2-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal-epithelial tissue interactions are critical for lung branching morphogenesis, and polypeptide growth factors are likely involved in these tissue interactions. Transforming growth factorbetas (TGFbetas) have been implicated in lung development, but their involvement in early lung branching morphogenesis is unclear. In the present study, we investigated the role of the three mammalian TGFbeta subtypes (beta1, beta2, and beta3) and their receptors (type III (TbetaR-III), type II (TbetaR-II), and two types I (TbetaR-I), ALK-1 and ALK-5) in early rat lung organogenesis by using an embryonic rat lung explant culture. Transcripts and proteins for all three TGFbetas and their receptors were detected during the embryonic period of fetal rat lung development. Inhibition of TGFbeta2, but not beta1 and beta3, with antisense oligonucleotides and neutralizing antibodies resulted in significant inhibition of early lung branching in culture. Addition of minute amounts (</=1 ng/ml) of exogenous TGFbeta2, but not beta1 and beta3, restored the branching of TGFbeta2 antisense-treated explants. Higher concentrations of TGFbeta2 were inhibitory. BrdU labeling of lung explants was not altered by antisense TGFbeta2 treatment, but low concentrations of TGFbeta2 increased thymidine uptake by isolated epithelial cells. Fibronectin and metallogelatinase activities of embryonic lung cells were not affected by any TGFbeta isoform but TGFbeta2 specifically decreased mesenchymal hyaluronan synthesis. Antisense inhibition of ALK-5 and TbetaR-II showed a similar reduction in early lung branching as observed with antisense TGFbeta2. Incubation of lung explants with soluble TbetaR-II receptors also abrogated lung branching. ALK-1 antisense treatment did not affect early branching. Administration of neither activin A, which can act via ALK-1, nor follistatin, the natural inhibitor of activin, to the explants cultures had any significant effect on lung branching. Antisense inhibition of the activin receptor-II (Act-RII) also did not affect lung branching. These results are consistent with TGFbeta2, but not beta1 and beta3, regulating pattern formation during early rat lung organogenesis. This TGFbeta signaling in rat lung branching in vitro appears to be predominantly mediated via the TbetaR-I(ALK-5)/TbetaR-II heteromeric complex.
Collapse
Affiliation(s)
- J Liu
- The Medical Research Council Group in Lung Development, Hospital for Sick Children Research Institute's Lung Biology Program, Department of Paediatrics, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
118
|
Levesque BM, Vosatka RJ, Nielsen HC. Dihydrotestosterone stimulates branching morphogenesis, cell proliferation, and programmed cell death in mouse embryonic lung explants. Pediatr Res 2000; 47:481-91. [PMID: 10759155 DOI: 10.1203/00006450-200004000-00012] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early gestation lung development is characterized by branching morphogenesis of the airways and basic lung structure formation. Androgens delay late-gestation lung development if the androgen exposure begins in early gestation. We hypothesized that there would be effects of early gestation androgens on lung development. Embryonic mouse lungs (d 11.5) were cultured with dihydrotestosterone (DHT), DHT plus flutamide, or with nothing as controls. Branching morphogenesis was significantly increased after 24, 48, and 72 h of culture. This effect was blocked by simultaneous flutamide treatment. Fetal sex did not influence the DHT response. DHT increased cell proliferation as measured by [3H]thymidine incorporation into DNA. Autoradiography showed prominent [3H]thymidine labeling of epithelia and mesenchyme in regions of new bud formation. DHT treatment significantly increased the thymidine-labeling index of fibroblasts and airway epithelial cells. Programmed cell death, which is found in developing organs in association with cell proliferation during structure formation and tissue remodeling, was studied using terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling assay. In control lungs, programmed cell death occurred in the peripheral mesenchyme surrounding newly forming buds and underlying airway branch points. DHT treatment increased programmed cell death in association with increased branching morphogenesis. Evaluation of near-adjacent sections (control and DHT-treated lungs) showed that apoptotic mesenchymal cells were flanked by [3H]thymidine-labeled fibroblasts and epithelial cells, suggesting a coordination of these processes in the progression of branching morphogenesis. We conclude that androgen enhances the process of early lung morphogenesis by increasing cell proliferation and programmed cell death and by promoting the structural progression of branching morphogenesis.
Collapse
Affiliation(s)
- B M Levesque
- Division of Newborn Medicine, Floating Hospital for Children at New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
119
|
Liu J, Tseu I, Wang J, Tanswell K, Post M. Transforming growth factor ?2, but not ?1 and ?3, is critical for early rat lung branching. Dev Dyn 2000. [DOI: 10.1002/(sici)1097-0177(200004)217:4%3c343::aid-dvdy2%3e3.0.co;2-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
120
|
Ngo-Muller V, Muneoka K. Influence of FGF4 on digit morphogenesis during limb development in the mouse. Dev Biol 2000; 219:224-36. [PMID: 10694418 DOI: 10.1006/dbio.2000.9612] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Much of what we currently know about digit morphogenesis during limb development is deduced from embryonic studies in the chick. In this study, we used ex utero surgical procedures to study digit morphogenesis during mouse embryogenesis. Our studies reveal some similarities; however, we have found considerable differences in how the chick and the mouse autopods respond to experimentation. First, we are not able to induce ectopic digit formation from interdigital cells as a result of wounding or TGFbeta-1 application in the mouse, in contrast to what is observed in the chick. Second, FGF4, which inhibits the formation of ectopic digits in the chick, induces a digit bifurcation response in the mouse. We demonstrate with cell marking studies that this bifurcation response results from a reorganization of the prechondrogenic tip of the digit rudiment. The FGF4 effect on digit morphogenesis correlates with changes in the expression of a number of genes, including Msx1, Igf2, and the posterior members of the HoxD cluster. In addition, the bifurcation response is digit-specific, being restricted to digit IV. We propose that FGF4 is an endogenous signal essential for skeletal branching morphogenesis in the mouse. This work stresses the existence of major differences between the chick and the mouse in how digit morphogenesis is regulated and is thus consistent with the view that vertebrate digit evolution is a relatively recent event. Finally, we discuss the relationship between the digit IV bifurcation restriction and the placement of the metapterygial axis in the evolution of the tetrapod limb.
Collapse
Affiliation(s)
- V Ngo-Muller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, 70118, USA
| | | |
Collapse
|
121
|
Narita T, Saitoh K, Kameda T, Kuroiwa A, Mizutani M, Koike C, Iba H, Yasugi S. BMPs are necessary for stomach gland formation in the chicken embryo: a study using virally induced BMP-2 and Noggin expression. Development 2000; 127:981-8. [PMID: 10662637 DOI: 10.1242/dev.127.5.981] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epithelial-mesenchymal interactions are necessary for the normal development of various digestive organs. In chicken proventriculus (glandular stomach), morphogenesis and differentiation of the epithelium depend upon the inductive signals coming from underlying mesenchyme. However, the nature of such signals is still unclear despite extensive analyses carried out using experimental tissue recombinations. In this study we have examined the possible involvement of bone morphogenetic proteins (BMPs) in the formation of stomach glands in the chicken embryo. Analysis of the expression patterns of BMP-2, −4 and −7 showed that these BMPs were present in the proventricular mesenchyme prior to the initiation of the proventricular gland formation. BMP-2 expression, in particular, was restricted to the proventriculus among anterior digestive organs. Virus-mediated BMP-2 overexpression resulted in an increase in the number of glands formed. Moreover, ectopic expression of Noggin, which antagonizes the effect of BMPs, in the proventricular mesenchyme or epithelium, led to the complete inhibition of gland formation, indicating that BMP signals are necessary for the proventricular gland formation. These findings suggest that BMPs are of prime importance as mesenchymal signals for inducing proventricular glands.
Collapse
Affiliation(s)
- T Narita
- Department of Biology, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Raatikainen-Ahokas A, Hytönen M, Tenhunen A, Sainio K, Sariola H. BMP-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn 2000; 217:146-58. [PMID: 10706139 DOI: 10.1002/(sici)1097-0177(200002)217:2<146::aid-dvdy2>3.0.co;2-i] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bone morphogenetic protein-4 (BMP4), a member of the transforming growth factor-beta (TGF-beta) family, regulates several developmental processes during animal development. We have now studied the effects of BMP-4 in the metanephric kidney differentiation by using organ culture technique. Human recombinant BMP-4 diminishes the number of ureteric branches and changes the branching pattern. Our data suggest that BMP-4 affects the ureteric branching indirectly via interfering with the differentiation of the nephrogenic mesenchyme. The clear positional preference of the defects to posterior mesenchyme might reflect an early anterior-posterior patterning of the metanephric mesenchyme. The smooth muscle alpha-actin expressing cell population around the ureteric stalk, highly expressing Bmp-4 mRNA, is also expanded in kidneys treated with BMP-4. Thus, BMP-4 may be a physiological regulator of the development of the periureteric smooth muscle layer and ureteric elongation.
Collapse
Affiliation(s)
- A Raatikainen-Ahokas
- Developmental Biology Research Program, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
123
|
Tang MK, Leung AK, Kwong WH, Chow PH, Chan JY, Ngo-Muller V, Li M, Lee KK. Bmp-4 requires the presence of the digits to initiate programmed cell death in limb interdigital tissues. Dev Biol 2000; 218:89-98. [PMID: 10644413 DOI: 10.1006/dbio.1999.9578] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of Bmp-4 on interdigital cell death were investigated in the mouse. Affi-Gel beads, loaded with recombinant Bmp-4 protein, were transplanted into the interdigital tissues of day 12.5 hindlimb, ex utero. It was established that Bmp-4 could induce precocious interdigital cell death. Using in situ hybridization, the expression patterns of bmp-4 and alk-6 receptor were established. Both genes were found coexpressed in the interdigital region of 12.5- and 13. 5-day hindlimbs. This suggests that Bmp-4 may act in an autocrine fashion. We have also studied the effects of Bmp-4 on 12.5-day interdigital tissue cultures. In all specimens examined, the interdigital tissues produced cartilage instead of participating in cell death. The addition of exogenous Bmp-4 to the interdigital cultures did not induce apoptosis but instead enhanced chondrogenesis. The discrepancy between the effects of Bmp-4 in vitro and ex utero was attributed to the presence of digits. When a flanking digit was left attached to the interdigital tissues, in vitro, Bmp-4 promoted apoptosis instead of chondrogenesis. In sum, the results suggest that Bmp-4 is a multifunctional protein and its effect on the interdigital tissues is dependent on the modulating influence of the digits.
Collapse
Affiliation(s)
- M K Tang
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Peoples' Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Baur ST, Mai JJ, Dymecki SM. Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 2000; 127:605-19. [PMID: 10631181 DOI: 10.1242/dev.127.3.605] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we use a mouse insertional mutant to delineate gene activities that shape the distal limb skeleton. A recessive mutation that results in brachydactyly was found in a lineage of transgenic mice. Sequences flanking the transgene insertion site were cloned, mapped to chromosome 3, and used to identify the brachydactyly gene as the type IB bone morphogenetic protein receptor, BmprIB (ALK6). Expression analyses in wild-type mice revealed two major classes of BmprIB transcripts. Rather than representing unique coding RNAs generated by alternative splicing of a single pro-mRNA transcribed from one promoter, the distinct isoforms reflect evolution of two BmprIB promoters: one located distally, driving expression in the developing limb skeleton, and one situated proximally, initiating transcription in neural epithelium. The distal promoter is deleted in the insertional mutant, resulting in a regulatory allele (BmprIB(Tg)) lacking cis-sequences necessary for limb BmprIB expression. Mutants fail to generate digit cartilage, indicating that BMPRIB is the physiologic transducer for the formation of digit cartilage from the skeletal blastema. Expansion of BmprIB expression into the limb through acquisition of these distal cis-regulatory sequences appears, therefore, to be an important genetic component driving morphological diversity in distal extremities. GDF5 is a BMP-related signal, which is also required for proper digit formation. Analyses incorporating both Gdf5 and BmprIB(Tg) alleles revealed that BMPRIB regulates chondrogenesis and segmentation through both GDF5-dependent and -independent processes, and that, reciprocally, GDF5 acts through both IB and other type I receptors. Together, these findings provide in vivo support for the concept of combinatorial BMP signaling, in which distinct outcomes result both from a single receptor being triggered by different ligands and from a single ligand binding to different receptors.
Collapse
Affiliation(s)
- S T Baur
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
125
|
Okuda T, Kondoh H. Identification of new genes ndr2 and ndr3 which are related to Ndr1/RTP/Drg1 but show distinct tissue specificity and response to N-myc. Biochem Biophys Res Commun 1999; 266:208-15. [PMID: 10581191 DOI: 10.1006/bbrc.1999.1780] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ndr1 was isolated as a gene upregulated in N-myc mutant mouse embryos and is repressed by N-myc and c-myc. Consistent with Myc regulation, the same gene was also isolated as one sensitive to transformation (Drg1), and in addition as one induced under a few stress conditions (RTP). Two new genes, Ndr2 and Ndr3, were identified which encode proteins highly related to Ndr1/RTP/Drg1 and constitute the Ndr gene family. Ndr2 and Ndr3 are under spatio-temporal regulations distinct from Ndr1, and are not activated in N-myc mutants. When whole embryo RNA was analyzed, Ndr3 expression was already high at 9.5 days postcoitus (dpc), while expression of Ndr2 and Ndr1 became significant after 12.5 dpc and 13. 5 dpc, respectively. At 14.5 dpc, expression of these genes partially overlaps, but many tissues are unique to one of them. For instance, Ndr1 is strongly expressed in the liver and gut epithelium, Ndr2 in the ventricular zone throughout the CNS, and Ndr3 in the spinal cord and the thymus rudiment. Genes of the Ndr family probably have tissue-dependent allotments of the possibly related functions.
Collapse
Affiliation(s)
- T Okuda
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
126
|
Merino R, Rodriguez-Leon J, Macias D, Gañan Y, Economides AN, Hurle JM. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 1999; 126:5515-22. [PMID: 10556075 DOI: 10.1242/dev.126.23.5515] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we have analyzed the expression and function of Gremlin in the developing avian limb. Gremlin is a member of the DAN family of BMP antagonists highly conserved through evolution able to bind and block BMP2, BMP4 and BMP7. At early stages of development, gremlin is expressed in the dorsal and ventral mesoderm in a pattern complementary to that of bmp2, bmp4 and bmp7. The maintenance of gremlin expression at these stages is under the control of the AER, ZPA, and BMPs. Exogenous administration of recombinant Gremlin indicates that this protein is involved in the control of limb outgrowth. This function appears to be mediated by the neutralization of BMP function to maintain an active AER, to restrict the extension of the areas of programmed cell death and to confine chondrogenesis to the central core mesenchyme of the bud. At the stages of digit formation, gremlin is expressed in the proximal boundary of the interdigital mesoderm of the chick autopod. The anti-apoptotic influence of exogenous Gremlin, which results in the formation of soft tissue syndactyly in the chick, together with the expression of gremlin in the duck interdigital webs, indicates that Gremlin regulates the regression of the interdigital tissue. At later stages of limb development, gremlin is expressed in association with the differentiating skeletal pieces, muscles and the feather buds. The different expression of Gremlin in relation with other BMP antagonists present in the limb bud, such as Noggin, Chordin and Follistatin indicates that the functions of BMPs are regulated specifically by the different BMP antagonists, acting in a complementary fashion rather than being redundant signals.
Collapse
Affiliation(s)
- R Merino
- Unidad de Investigación, Hospital Universitario Marques de Valdecilla, Santander 39008, Spain
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
The most obvious phenotype of Ft/+ mice is a syndactyly of fore limbs characterised by a fusion of the tips of digits 1 to 4. The tempospatial expression of genes involved in limb development revealed that patterning of Ft/+ limb buds is not affected by the mutation. However, an upregulation of Bmp4 in the anterior-distal region of the limb bud at d12.0 of embryonic development is accompanied by a loss of Fgf8 expression in the distal part of the AER. Downstream target genes of Bmp action such as Msx1 and 2 are upregulated. This induction of the signalling cascade indicates ectopic expression of functional Bmp4. Nevertheless, analysis of physical parameters of bones from adult mice revealed a reduction of the bone mass of the autopod. The data suggest a negative effect of Bmp4 on Fgf8 expression and a positive influence on the induction of bone elements.
Collapse
Affiliation(s)
- J Heymer
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | |
Collapse
|
128
|
|
129
|
Abstract
Rapid progress is being made in understanding how integrated signaling pathways direct patterned outgrowth of the vertebrate limb. In contrast, the mechanisms that constrain limb outgrowth, and thus delimit adult morphology, remain poorly understood. Two recent pioneering reports have implicated bone morphogenetic proteins (BMPs) in negatively regulating the function of the apical ectodermal ridge (AER), an inductive structure required for continued proximodistal specification of limb elements. These studies provide the first insights into how the termination of a limb bud signaling center is accomplished, and intriguingly suggest how distinct aspects of limb morphogenesis are regulated.
Collapse
Affiliation(s)
- R D Dahn
- Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
130
|
Merino R, Macias D, Gañan Y, Rodriguez-Leon J, Economides AN, Rodriguez-Esteban C, Izpisua-Belmonte JC, Hurle JM. Control of digit formation by activin signalling. Development 1999; 126:2161-70. [PMID: 10207141 DOI: 10.1242/dev.126.10.2161] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major advances in the genetics of vertebrate limb development have been obtained in recent years. However, the nature of the signals which trigger differentiation of the mesoderm to form the limb skeleton remains elusive. Previously, we have obtained evidence for a role of TGFbeta2 in digit formation. Here, we show that activins A and B and/or AB are also signals involved in digit skeletogenesis. activin betaA gene expression correlates with the initiation of digit chondrogenesis while activin betaB is expressed coincidently with the formation of the last phalanx of each digit. Exogenous administration of activins A, B or AB into the interdigital regions induces the formation of extra digits. follistatin, a natural antagonist of activins, is expressed, under the control of activin, peripherally to the digit chondrogenic aggregates marking the prospective tendinous blastemas. Exogenous application of follistatin blocks physiological and activin-induced digit formation. Evidence for a close interaction between activins and other signalling molecules, such as BMPs and FGFs, operating at the distal tip of the limb at these stages is also provided. Chondrogenesis by activins is mediated by BMPs through the regulation of the BMP receptor bmpR-1b and in turn activin expression is upregulated by BMP signalling. In addition, AER hyperactivity secondary to Wnt3A misexpression or local administration of FGFs, inhibits activin expression. In correlation with the restricted expression of activins in the course of digit formation, neither activin nor follistatin treatment affects the development of the skeletal components of the stylopod or zeugopod indicating that the formation of the limb skeleton is regulated by segment-specific chondrogenic signals.
Collapse
Affiliation(s)
- R Merino
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander 39011, Spain
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
A functional skeletal system requires the coordinated development of many different tissue types, including cartilage, bones, joints, and tendons. Members of the Bone morphogenetic protein (BMP) family of secreted signaling molecules have been implicated as endogenous regulators of skeletal development. This is based on their expression during bone and joint formation, their ability to induce ectopic bone and cartilage, and the skeletal abnormalities present in animals with mutations in BMP family members. One member of this family, Growth/differentiation factor 5 (GDF5), is encoded by the mouse brachypodism locus. Mice with mutations in this gene show reductions in the length of bones in the limbs, altered formation of bones and joints in the sternum, and a reduction in the number of bones in the digits. The expression pattern of Gdf5 during normal development and the phenotypes seen in mice with single or double mutations in Gdf5 and Bmp5 suggested that Gdf5 has multiple functions in skeletogenesis, including roles in joint and cartilage development. To further understand the function of GDF5 in skeletal development, we assayed the response of developing chick and mouse limbs to recombinant GDF5 protein. The results from these assays, coupled with an analysis of the development of brachypodism digits, indicate that GDF5 is necessary and sufficient for both cartilage development and the restriction of joint formation to the appropriate location. Thus, GDF5 function in the digits demonstrates a link between cartilage development and joint development and is an important determinant of the pattern of bones and articulations in the digits.
Collapse
Affiliation(s)
- E E Storm
- Howard Hughes Medical Institute and the Department of Developmental Biology, Stanford University, Beckman Center B300, Palo Alto, California 94305-5329, USA
| | | |
Collapse
|
132
|
Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua Belmonte JC. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 1999; 398:814-8. [PMID: 10235264 DOI: 10.1038/19769] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During embryonic development, initially similar fields can develop into distinct structures, such as the vertebrate fore- and hindlimbs. Although considerable progress has been made in our understanding of the genetic control underlying the establishment of the different limb axes, the molecular cues that specify the differential development of the fore- and hindlimbs are unknown. Possible candidates for genes determining limb identity are Pitx1, a gene whose transcripts are detected in the early hind- but not forelimb bud, and two members of the T-box (Tbx) gene family, Tbx4 and Tbx5, which are specifically expressed in the hindlimb and forelimb buds, respectively. Here we show that Tbx4 and Tbx5 are essential regulators of limb outgrowth whose roles seem to be tightly linked to the activity of three signalling proteins that are required for limb outgrowth and patterning: fibroblast growth factor (FGF), bone morphogenetic protein (BMP) and Wnt. In addition, we provide evidence that Tbx4 and Tbx5 are involved in controlling limb identity. Our findings provide insight into how similar developmental fields can evolve into homologous but distinct structures.
Collapse
Affiliation(s)
- C Rodriguez-Esteban
- Gene Expression Laboratory, The Salk Institute, La Jolla, California 92037-1099, USA
| | | | | | | | | | | |
Collapse
|
133
|
Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res 1999; 78:826-34. [PMID: 10326726 DOI: 10.1177/00220345990780040201] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Development of the mammalian tooth has for many years served as a useful model system for the study of cell-cell interactions in organogenesis. Early development of teeth (tooth buds) shows many morphological and molecular similarities with early development of other organs such as the lung, hair, kidney, etc. There has been much progress toward understanding epithelial/mesenchymal cell signaling in tooth germ formation. Advances in understanding the formation of different shapes of teeth (morphogenesis) at their correct positions in the jaws (patterning) has, until recently, been less forthcoming. We review here the latest ideas on the control of odontogenic patterning and morphogenesis. The stages of early tooth development are well-defined histologically and have been described in numerous textbooks. The progression from localized thickenings of oral epithelium to bud, cap, and bell stages provides an adequate description of the gross morphological changes seen in the epithelial cells of early developing tooth germs. Less obvious are the concomitant changes taking place in the dental (ecto)mesenchymal cells which originate from the cranial neural crest and which condense around the tooth bud epithelium. However, it is very clear that these mesenchymal cells are equal partners with epithelium during the early stages of tooth germ formation and undergo complex changes which, although not obvious histologically, are revealed with molecular (gene) probes. Genes identified as being important for the early communication between the epithelial and ectomesenchymal cells mainly comprise those which code for proteins which act as secreted signals between the cells (ligands) and those that code for nuclear proteins that act to control gene expression in response to the signals. Little is presently known about the changes in structural proteins such as cell adhesion molecules which are involved in mediating the physical interactions between cells and generating the morphological changes.
Collapse
Affiliation(s)
- A S Tucker
- Department of Craniofacial Development, UMDS, Dental School, Guy's Hospital, London, UK
| | | |
Collapse
|
134
|
Pizette S, Niswander L. BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 1999; 126:883-94. [PMID: 9927590 DOI: 10.1242/dev.126.5.883] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apical ectodermal ridge (AER), a transient specialized epithelium at the distal limb tip, is essential for vertebrate embryonic limb outgrowth along the proximodistal axis. Among all the molecules expressed in the AER, only the Fibroblast Growth Factors (FGFs) have been shown to substitute for its function in limb outgrowth. After specification of the skeletal progenitors is complete, the AER regresses, having fulfilled its function. However, the cellular processes underlying AER regression remain largely unclear, and the molecular ones, totally unknown. Members of the Bone Morphogenetic Protein (BMP) family are expressed in the AER throughout its life and in the mesenchyme. Our studies using misexpression of Noggin, a BMP inhibitor, reveal an unsuspected role for BMPs in the negative regulation of Fgf expression and AER function. We find that BMPs limit limb outgrowth by promoting AER regression, as BMP inhibition results in persistence of the AER, prolonged Fgf expression and excess soft-tissue growth. In addition, the Noggin misexpression studies uncover an earlier role for BMPs in repression of AER function. Noggin overexpression results in extension of the AER anteriorly and loss of AER asymmetry. We show that overall the AER becomes taller, and its anterior half becomes more similar to a normal posterior AER. In addition, Fgf4 transcripts, which are usually restricted to the posterior half of the AER, are now also expressed anteriorly. Moreover, ectopicFgf4 expression is induced independently of Sonic Hedgehog, contrary to current models of Fgf4 regulation in the limb. Our studies also provide insight into the activity of the hypothesized apical ectodermal maintenance factor (AEMF), which is thought to maintain the tall shape of the posterior part of the AER. Our work shows that the AER is negatively regulated by BMP.
Collapse
Affiliation(s)
- S Pizette
- Molecular Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
135
|
Kameda T, Koike C, Saitoh K, Kuroiwa A, Iba H. Developmental patterning in chondrocytic cultures by morphogenic gradients: BMP induces expression of indian hedgehog and noggin. Genes Cells 1999; 4:175-84. [PMID: 10320482 DOI: 10.1046/j.1365-2443.1999.00250.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The maturation of chondrocytes is essential for endochondral bone formation. The Indian Hedgehog (Ihh) gene is expressed in prehypertropic chondrocytes and has been proposed to regulate chondrocyte maturation. While such secretary factors as PTHrP and BMP are thought to be involved in Ihh expression, the mechanism of the restricted expression of Ihh is not clear. RESULTS Using primary chondrocytes, we have developed here a modified micromass culture (MM-C) system that allows the formation of concentration gradients of secreted factors, expressed either endogenously or retrovirally, from each of plural micromass cultures on a single plate. Using this system, we determined that chondrocytes create the inhibitory micro-environment, partly dependent on PTHrP secretion, for the Ihh expression. We also showed that retrovirally induced BMP-2 induces the expression of both Ihh and Noggin (encoding the BMP-inactivating protein), and we further present evidence that a negative-feedback loop involving Noggin might account for the precise localization of BMP signalling for Ihh induction. CONCLUSION These results suggest that the expression of the Ihh gene in cartilage is regulated by several mechanisms that include the secretion of inhibitory factors (including PTHrP) and the negative-feed back loop formed by BMPs and Noggin.
Collapse
Affiliation(s)
- T Kameda
- Department of Gene Regulation, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
136
|
Abstract
Organs have to develop at precisely determined sites to ensure functionality of the whole organism. Organogenesis is typically regulated by a series of interactions between morphologically distinct tissues. The developing tooth of the mouse is an excellent model to study these processes and we are beginning to understand the networks regulating reciprocal tissue interactions at the molecular level. Synergistic and antagonistic effects of signaling molecules including FGFs and BMPs are recursively used to induce localized responses in the adjacent tissue layer (mesenchyme or epithelium). However, at different phases of odontogenesis these secreted growth factors have distinct effects and at the same time they are regulated by different upstream factors. The mesenchymal transcription factors Msx1 and Pax9 are initially regulated by epithelial FGFs and BMPs, but subsequently they function upstream of these signaling molecules. This cascade provides a molecular model by which reciprocal tissue interactions are controlled.
Collapse
Affiliation(s)
- H Peters
- GSF-Research Center for Environment and Health, Institute for Mammalian Genetics, Neuherberg, Germany.
| | | |
Collapse
|
137
|
Coucouvanis E, Martin GR. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 1999; 126:535-46. [PMID: 9876182 DOI: 10.1242/dev.126.3.535] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At E4.0 the inner cell mass of the mouse blastocyst consists of a core of embryonic ectoderm cells surrounded by an outer layer of primitive (extraembryonic) endoderm, which subsequently gives rise to both visceral endoderm and parietal endoderm. Shortly after blastocyst implantation, the solid mass of ectoderm cells is converted by a process known as cavitation into a pseudostratified columnar epithelium surrounding a central cavity. We have previously used two cell lines, which form embryoid bodies that do (PSA1) or do not (S2) cavitate, as an in vitro model system for studying the mechanism of cavitation in the early embryo. We provided evidence that cavitation is the result of both programmed cell death and selective cell survival, and that the process depends on signals from visceral endoderm (Coucouvanis, E. and Martin, G. R. (1995) Cell 83, 279–287). Here we show that Bmp2 and Bmp4 are expressed in PSA1 embryoid bodies and embryos at the stages when visceral endoderm differentiation and cavitation are occurring, and that blocking BMP signaling via expression of a transgene encoding a dominant negative mutant form of BMP receptor IB inhibits expression of the visceral endoderm marker, Hnf4, and prevents cavitation in PSA1 embryoid bodies. Furthermore, we show that addition of BMP protein to cultures of S2 embryoid bodies induces expression of Hnf4 and other visceral endoderm markers and also cavitation. Taken together, these data indicate that BMP signaling is both capable of promoting, and required for differentiation of, visceral endoderm and cavitation of embryoid bodies. Based on these and other data, we propose a model for the role of BMP signaling during peri-implantation stages of mouse embryo development.
Collapse
Affiliation(s)
- E Coucouvanis
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California, San Francisco, CA 94143-0452, USA.
| | | |
Collapse
|
138
|
Merino R, Macias D, Gañan Y, Economides AN, Wang X, Wu Q, Stahl N, Sampath KT, Varona P, Hurle JM. Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 1999; 206:33-45. [PMID: 9918693 DOI: 10.1006/dbio.1998.9129] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) constitute a large family of secreted signals involved in the formation of the skeleton but the specific function of each member of this family remains elusive. GDF-5 is a member of the BMP family which has been implicated in several skeletogenic events including the induction and growth of the appendicular cartilages, the determination of joint forming regions, and the establishment of tendons. Here, we have studied the function of GDF-5 in digit skeletogenesis by analyzing the effects of its local administration in the developing autopod of embryonic chick and the regulation of its pattern of gene expression by other signals involved in digit morphogenesis. As reported in the mouse, the gdf-5 gene exhibits a precise distribution in the joint-forming regions of the developing chicken digital rays. GDF-5 beads implanted at the tip of the digits promote intense cartilage growth and fail to induce morphological or molecular signs of joint formation. Furthermore, GDF-5 beads implanted in the interdigits inhibit the formation of joints in the adjacent digits. These data suggest that the role of GDF-5 in joint formation is the control of growth and differentiation of the cartilage of the epiphyseal regions of the phalanges rather than accounting for the differentiation of the sinovial joint tissues. The interdigital mesoderm in spite of its potential to form ectopic digits with their tendinous apparatus failed to form either ectopic cartilages or ectopic tendons after the implantation of GDF-5 beads in the stages preceding cell death. At difference with other BMPs, GDF-5 exhibited only a weak cell death promoting effect. The BMP antagonist Noggin binds to GDF-5 and is able to inhibit all the observed effects of this growth factor in vivo. Potential interactions of GDF-5 with other signals involved in digits morphogenesis were also explored. BMP-7 regulates negatively the expression of gdf-5 gene in the joint forming regions and local treatment with Noggin induces the ectopic expression of gdf-5 in the interdigital mesoderm. Retroviral-induced misexpression of Indian or Sonic Hedgehog genes in the developing digits leads to the formation of digits without joints in which gdf-5 expression occurs throughout the entire perichondrial surface. In conclusion, this study indicates that GDF-5 is a signal regulated by other BMPs which controls the growth and differentiation of the epiphyses of the digital cartilages acting in close relationship with Hedgehog signaling.
Collapse
Affiliation(s)
- R Merino
- Facultad de Medicina, Universidad de Cantabria, Santander, 39011, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Lu MF, Cheng HT, Lacy AR, Kern MJ, Argao EA, Potter SS, Olson EN, Martin JF. Paired-related homeobox genes cooperate in handplate and hindlimb zeugopod morphogenesis. Dev Biol 1999; 205:145-57. [PMID: 9882503 DOI: 10.1006/dbio.1998.9116] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The closely related homeobox genes prx-1 and prx-2 are expressed in lateral plate and limb bud mesoderm, but targeted inactivation of these genes failed to demonstrate a limb phenotype. Here we report that mice carrying compound mutations in prx-1 and prx-2 have severe limb deformities. In the forelimb autopod, pre- and postaxial polydactyly were found most commonly, but also syndactyly, oligodactyly, and abnormal digit placement affecting posterior elements were observed. In the hindlimb, preaxial polydactyly with variable expressivity was seen in all cases. Extreme distal digit duplications were seen in both the fore- and hindlimbs. prx-1; prx-2 double-mutant mice also displayed extreme shortening and impaired ossification of the hindlimb zeugopods. Integrity of the forelimb apical ectodermal ridge was abnormal as determined by expression of FGF8 and BMP4. Expression of msx-1 and msx-2, markers for BMP signaling pathways, was absent in regions of the posterior handplates, while expression of Shh and patched was unaffected. The mutant phenotypes were dosage dependent, since prx-1 -/-; prx-2 +/- mice also displayed severe limb abnormalities. These data suggest that prx-1 and prx-2 cooperatively regulate handplate and hindlimb zeugopod morphogenesis through BMP-mediated signaling pathways.
Collapse
Affiliation(s)
- M F Lu
- Center for Cancer Biology and Nutrition, Texas A & M University, Houston, Texas, 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
|
141
|
Ng JK, Tamura K, Büscher D, Izpisúa-Belmonte JC. Molecular and cellular basis of pattern formation during vertebrate limb development. Curr Top Dev Biol 1998; 41:37-66. [PMID: 9784972 DOI: 10.1016/s0070-2153(08)60269-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The body plan is generated by cells and tissues that become arranged precisely in the embryo. This process, termed pattern formation, involves cell interactions in which a particular group of cells produce signals that specify new cell types or patterns of differentiation in responding cells. These patterning signals emanate from very discrete centers called "organizer centers," such as the Hensen's node or Spemann organizer, the midbrain-hindbrain junction, the notochord, or in the case of the limb, the zone of polarizing activity (ZPA) or the apical ectodermal ridge (AER). The developing vertebrate limb is an ideal model system for the study of pattern formation because, in addition to surgical manipulations, molecular manipulations are now feasible. In this review we summarize early experiments that established, by means of surgical manipulations, the different organizer centers of the vertebrate limb: the ectoderm covering the limb bud, the apical ectodermal ridge, the zone of polarizing activity, and the distal mesoderm (progress zone) underlying the AER. We then describe the domains of expression of various genes present during the development of the limb and discuss some of the functional approaches (overexpression and lack of function studies) undertaken to ascertain their role in limb outgrowth. The knowledge acquired in the last few years has had an enormous impact not only on our view of how limbs develop (perhaps now one of the most approachable vertebrate model systems) but also in a more general sense of how the embryo is organized in space and time.
Collapse
Affiliation(s)
- J K Ng
- Gene Expression Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
142
|
Hofmann C, Drossopoulou G, McMahon A, Balling R, Tickle C. Inhibitory action of BMPs on Pax1 expression and on shoulder girdle formation during limb development. Dev Dyn 1998; 213:199-206. [PMID: 9786420 DOI: 10.1002/(sici)1097-0177(199810)213:2<199::aid-aja5>3.0.co;2-b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Pax1 expression in vertebrate limb buds is confined to cells in a discrete anterior proximal domain (Timmons et al. [1994] Development 120:2773-2785; Ebensperger et al. [1995] Anat. Embryol. 191:297-310). In dorsoventral patterning of Drosophila, expression of pox meso, an insect gene with high sequence similarity to Pax1, is repressed by decapentaplegic (dpp) in dorsal mesoderm and, thus, is restricted to a discrete ventral domain (Staehling-Hampton et al. [1994] Nature 372:783-786). In the chick wing, cells expressing a vertebrate homolog of dpp, bone morphogenetic protein 4 (Bmp4), abut the Pax1 domain, suggesting a similar relationship between homologous genes in both vertebrates and invertebrates. Here, we show that two BMPs (BMP4, and BMP2, also highly related to dpp) can repress Pax1 in the developing chick wing. Chick wing bud cells expressing Pax1 give rise to the shoulder girdle. Cells in an equivalent position in the mouse forelimb also express Pax1, and Pax1 mutant mice display shoulder girdle defects. Similarly in chick embryos, girdle defects are produced by treatments with signalling molecules that lead to expression of BMPs, which subsequently reduce Pax1 expression in the limb bud. Recently, BMP4 has been shown to inhibit Pax1 expression in the developing trunk (Monsoro-Burq et al. [1996] Development 122:3607-3616) and Pax9 expression in developing teeth (Neubüser et al. [1997] Cell 90:247-255). Thus, a property of BMPs appears to be to regulate pox meso homologs negatively and, thus, limit their expression domains.
Collapse
Affiliation(s)
- C Hofmann
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Säugetiergenetik, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
143
|
Yang Y, Guillot P, Boyd Y, Lyon MF, McMahon AP. Evidence that preaxial polydactyly in the Doublefoot mutant is due to ectopic Indian Hedgehog signaling. Development 1998; 125:3123-32. [PMID: 9671585 DOI: 10.1242/dev.125.16.3123] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patterning of the vertebrate limb along the anterior-posterior axis is controlled by the zone of polarizing activity (ZPA) located at the posterior limb margin. One of the vertebrate Hh family members, Shh, has been shown to be able to mediate the function of the ZPA. Several naturally occurring mouse mutations with the phenotype of preaxial polydactyly exhibit ectopic Shh expression at the anterior limb margin. In this study, we report the molecular characterization of a spontaneous mouse mutation, Doublefoot (Dbf). Dbf is a dominant mutation which maps to chromosome 1. Heterozygous and homozygous embryos display a severe polydactyly with 6 to 8 digits on each limb. We show here that Shh is expressed normally in Dbf mutants. In contrast, a second Hh family member, Indian hedgehog (Ihh) which maps close to Dbf, is ectopically expressed in the distal limb bud. Ectopic Ihh expression in the distal and anterior limb bud results in the ectopic activation of several genes associated with anterior-posterior and proximal-distal patterning (Fgf4, Hoxd13, Bmp2). In addition, specific components in the Hedgehog pathway are either ectopically activated (Ptc, Ptc-2, Gli1) or repressed (Gli2). We propose that misexpression of Ihh, and not a novel Smoothened ligand as recently suggested (Hayes et al., 1998), is responsible for the Dbf phenotype. We consider that Ihh has a similar activity to Shh when expressed in the early Shh-responsive limb bud. To determine whether Dbf maps to the Ihh locus, which is also on chromosome 1, we performed an interspecific backcross. These results demonstrate that Dbf and Ihh are genetically separated by approximately 1.3 centimorgans, suggesting that Dbf mutation may cause an exceptionally long-range disruption of Ihh regulation. Although this leads to ectopic activation of Ihh, normal expression of Ihh in the cartilaginous elements is retained.
Collapse
Affiliation(s)
- Y Yang
- Department of Molecular and Cellular Biology, The Biolabs, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
144
|
Abstract
The anteroposterior axis of the vertebrate limb bud is determined by signals from the zone of polarizing activity (ZPA). Sonic hedgehog (Shh) is expressed in the posterior mesoderm, which corresponds closely to ZPA activity. Moreover, Bmp-2 and HoxD genes are expressed in the broader posterior mesoderm, and it is thought that the ZPA signaling pathway consists of these gene products. Limb outgrowth and patterning, including expression of these genes, depend on the apical ectodermal ridge (AER). Fibroblast growth factors (FGF) have been identified as candidates for signal molecules from the AER. To further understand the ZPA signaling pathway and the participation of FGF, expressions of these genes were examined by reverse transcription-polymerase chain reaction in chick limb bud cells cultured with FGF-4. The present results indicate that FGF-4 cannot maintain Shh expression but can maintain Hoxd-13 expression in cultured posterior cells; moreover, Bmp-2 is expressed independently of FGF-4. These results suggest that Bmp-2 and Hoxd-13 expressions do not require a continuous expression of Shh. Further, it was demonstrated that posterior cells cultured with FGF-4 recovered Shh expression when grafted to the limb bud, indicating that FGF-4 maintains not Shh expression itself but competence of Shh expression.
Collapse
Affiliation(s)
- J Kimura
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | |
Collapse
|
145
|
Merino R, Gañan Y, Macias D, Economides AN, Sampath KT, Hurle JM. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev Biol 1998; 200:35-45. [PMID: 9698454 DOI: 10.1006/dbio.1998.8946] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the final stages of limb morphogenesis, autopodial cells leaving the progress zone differentiate into cartilage or undergo apoptotic cell death, depending on whether they are incorporated into the digital rays or interdigital spaces. Most evidence indicates that these two opposite fates of the autopodial mesoderm are controlled by BMP signaling. However, the molecular basis for these two distinct actions of BMPs, including the receptors involved in the process, is controversial. In this study we have addressed this question by exploring the presence in the developing autopod of diffusible signals able to modulate BMP function and by analyzing the effects of their exogenous administration on the pattern of expression of BMP receptor genes. Our findings show that tgfbeta2 and noggin genes are expressed in the condensing region of the developing digital rays in addition to the well-known distribution in the autopodial tissues of FGFs (apical ectodermal ridge, AER) and BMPs (AER, progress zone mesoderm, and interdigital regions). Exogenous administration of all the factors causes changes in the expression of the bmpR-1b gene which are followed by parallel alterations of the skeletal phenotype: FGFs inhibit the expression of bmpR-1b compatible with their function in the maintenance of the progress zone mesoderm in an undifferentiated state; and TGFbetas induce the expression of bmpR-1b and promote ectopic chondrogenesis, compatible with a function in the establishment of the position of the digital rays. In addition we provide evidence for the occurrence of an interactive loop between BMPs and noggin accounting for the spatial distribution of bmpR-1b which may control the size and shape of the skeletal pieces. In contrast to the bmpR-1b gene, the bmpR-1a gene is expressed at low levels in the autopodial mesoderm and its expression is not modified by any of the tested factors regardless of their effects on chondrogenesis or cell death. Finally, the role of BMPs in programmed cell death is confirmed here by the intense inhibitory effect of noggin on apoptosis, but the lack of correlation between changes in the pattern of cell death induced by treatment with the studied factors and the expression of either bmpR-1a or bmpR-1b genes suggest that a still-unidentified BMP receptor may account for this BMP function.
Collapse
Affiliation(s)
- R Merino
- Facultad de Medicina, Universidad de Cantabria, C/Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | | | | | | | | | | |
Collapse
|
146
|
Affiliation(s)
- T Sakou
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University, Japan.
| |
Collapse
|
147
|
Ritter SJ, Davies PJ. Identification of a transforming growth factor-beta1/bone morphogenetic protein 4 (TGF-beta1/BMP4) response element within the mouse tissue transglutaminase gene promoter. J Biol Chem 1998; 273:12798-806. [PMID: 9582307 DOI: 10.1074/jbc.273.21.12798] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue transglutaminase is a calcium-dependent, protein cross-linking enzyme that is highly expressed in cells undergoing apoptosis. The expression of tissue transglutaminase is regulated by a variety of molecules including retinoids, interleukin-6, and transforming growth factor-beta1 (TGF-beta1). Retinoid and interleukin-6 inductions of tissue transglutaminase expression are mediated by specific cis-regulatory elements located within the first 4.0 kilobase pairs of the promoter of the gene. The present studies were designed to identify the molecular mechanisms mediating the regulation of tissue transglutaminase gene expression by TGF-beta family members. Transient transfection of Mv1Lu cells with transglutaminase promoter constructs demonstrated that 0.2 nM TGF-beta1 maximally induced the activation of the promoter through a 10-base pair TGF-beta1 response element (TRE; GAGTTGGTGC) located 868 base pairs upstream of the transcription start site. This same element mediated an inhibitory activity of TGF-beta1 on the transglutaminase promoter in MC3T3 E1 cells. The TRE through which TGF-beta1-regulated the activity of the transglutaminase promoter was necessary and sufficient for bone morphogenetic protein 2- (BMP) and BMP4-dependent inhibition of the tissue transglutaminase promoter. The TGF-beta1, BMP2, and BMP4 regulation of the transglutaminase promoter activity was similar to the responses we observed for the endogenous transglutaminase activity of Mv1Lu and MC3T3 E1 cells. For BMP2 and BMP4, this regulation was paralleled by a decrease in tissue transglutaminase mRNA in MC3T3 E1 cells. The results of these experiments suggest that TGF-beta1, BMP2, and BMP4 regulation of mouse tissue transglutaminase gene expression requires a composite TRE located in the 5'-flanking DNA.
Collapse
Affiliation(s)
- S J Ritter
- Department of Integrative Biology, Pharmacology and Physiology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
148
|
Capdevila J, Johnson RL. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev Biol 1998; 197:205-17. [PMID: 9630747 DOI: 10.1006/dbio.1997.8824] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene noggin, originally cloned in Xenopus, encodes a secreted factor expressed in the Spemann organizer, where it functions to oppose the ventralizing influence of bone morphogenetic proteins (BMPs). Noggin protein acts by binding directly to BMPs, thereby preventing them from interacting with their receptors. Here we describe the pattern of expression of the chicken noggin gene during somite and limb development, two tissues in which BMPs have been postulated to play essential patterning roles. We find that noggin is expressed in dynamic restricted patterns consistent with an important role in the modulation of BMP signaling. Using a replication competent retrovirus we have ectopically expressed noggin in developing somitic and limb bud mesoderm and observed phenotypes consistent with complete block of BMP activity. This includes suppression of lateral somite differentiation and, in the limb, complete inhibition of chondrogenesis and local suppression of programmed cell death. In addition, we find that ectopic noggin expression in the limb has no effect on anteroposterior limb pattern, suggesting that BMPs are unlikely to play a significant role in this process. Taken together,, our results indicate that noggin is a key regulator of vertebrate limb and somite patterning and suggest that the antagonistic Noggin-BMP interaction is a widely used mechanism to modulate BMP signaling during multiple inductive events in vertebrate embryogenesis.
Collapse
Affiliation(s)
- J Capdevila
- Department of Biochemistry and Molecular Biology, M.D. Anderson Cancer Center, University of Texas, Houston 77030, USA
| | | |
Collapse
|
149
|
Ferrari D, Lichtler AC, Pan ZZ, Dealy CN, Upholt WB, Kosher RA. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis. Dev Biol 1998; 197:12-24. [PMID: 9578615 DOI: 10.1006/dbio.1998.8880] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER.
Collapse
Affiliation(s)
- D Ferrari
- Department of Anatomy, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | |
Collapse
|
150
|
Bushdid PB, Brantley DM, Yull FE, Blaeuer GL, Hoffman LH, Niswander L, Kerr LD. Inhibition of NF-kappaB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis. Nature 1998; 392:615-8. [PMID: 9560159 DOI: 10.1038/33435] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Drosophila, the Dorsal protein establishes the embryonic dorso-ventral axis during development. Here we show that the vertebrate homologue of Dorsal, nuclear factor-kappa B (NF-kappaB), is vital for the formation of the proximo-distal organizer of the developing limb bud, the apical ectodermal ridge (AER). Transcription of the NF-kappaB proto-oncogene c-rel is regulated, in part, during morphogenesis of the limb bud by AER-derived signals such as fibroblast growth factors. Interruption of NF-kappaB activity using viral-mediated delivery of an inhibitor results in a highly dysmorphic AER, reduction in overall limb size, loss of distal elements and reversal in the direction of limb outgrowth. Furthermore, inhibition of NF-kappaB activity in limb mesenchyme leads to a reduction in expression of Sonic hedgehog and Twist but derepresses expression of the bone morphogenetic protein-4 gene. These results are the first evidence that vertebrate NF-kappaB proteins act to transmit growth factor signals between the ectoderm and the underlying mesenchyme during embryonic limb formation.
Collapse
Affiliation(s)
- P B Bushdid
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | | | | | |
Collapse
|