101
|
Abstract
Skeletal muscle injuries are extremely common, accounting for up to 35%-55% of all sports injuries and quite possibly affecting all musculoskeletal traumas. These injuries result in the formation of fibrosis, which may lead to the development of painful contractures, increases patients' risk for repeat injuries, and limits their ability to return to a baseline or pre-injury level of function. The development of successful therapies for these injuries must consider the pathophysiology of these musculoskeletal conditions. We discuss the direct use of muscle-derived stem cells and some key cell population dynamics as well as the use of clinically applicable modalities that may enhance the local supply of stem cells to the zone of injury by promoting angiogenesis.
Collapse
Affiliation(s)
- Andres J Quintero
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15213
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Vonda J Wright
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15213
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Freddie H Fu
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15213
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Johhny Huard
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15213
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| |
Collapse
|
102
|
Boonen KJ, Post MJ. The Muscle Stem Cell Niche: Regulation of Satellite Cells During Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:419-31. [DOI: 10.1089/ten.teb.2008.0045] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kristel J.M. Boonen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mark J. Post
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
103
|
Andriamanalijaona R, Duval E, Raoudi M, Lecourt S, Vilquin JT, Marolleau JP, Pujol JP, Galera P, Boumediene K. Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage 2008; 16:1509-18. [PMID: 18554936 DOI: 10.1016/j.joca.2008.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 04/19/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the differentiation potential of two populations of muscle-derived cells (CD56- and CD56+) towards chondrogenic phenotype in alginate beads culture and to compare the effect of transforming growth factor beta 1 (TGFbeta1) on the differentiation process in these populations. METHODS Muscle CD56- and CD56+ cells were cultured in alginate beads, in a chondrogenic medium, containing or not TGFbeta1 (10 ng/ml). Cultures were maintained for 3, 7, 14 or 21 days in a humidified culture incubator. At harvest, one culture of each set was fixed for alcian blue staining and aggrecan detection. The steady-state level of matrix macromolecules mRNA was assessed by real-time polymerase chain reaction (PCR). Protein detection was performed by western-blot analysis. The binding activity of nuclear extracts to Cbfa1 DNA sequence was also evaluated by electrophoretic mobility shift assays (EMSA). RESULTS Chondrogenic differentiation of both CD56+ and CD56- muscle-derived cells was improved in alginate scaffold, even without growth factor, as suggested by increased chondrogenesis markers expression during the culture. Furthermore, TGFbeta1 enhanced the differentiation process and allowed to maintain a high expression of markers of mature chondrocytes. Of importance, the combination of alginate and TGFbeta1 treatment resulted in a further down-regulation of collagen type I and type X, as well as Cbfa1 both expression and binding activity. CONCLUSIONS Thus, alginate scaffold and chondrogenic medium are sufficient to lead both populations CD56+ and CD56- towards chondrogenic differentiation. Moreover, TGFbeta1 enhances this process and allows to maintain the chondrogenic phenotype by inhibiting terminal differentiation, particularly for CD56- cells.
Collapse
Affiliation(s)
- R Andriamanalijaona
- Laboratory of Extracellular Matrix and Pathology, EA 3214, IFR 146 ICORE, University of Caen Basse-Normandie, Caen Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Blake JA, Thomas M, Thompson JA, White R, Ziman M. Perplexing Pax: From puzzle to paradigm. Dev Dyn 2008; 237:2791-803. [DOI: 10.1002/dvdy.21711] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
105
|
|
106
|
Abstract
Over three-quarters of all craniofacial defects observed in the US per year are cleft palates. Usually involving significant bony defects in both the hard palate and alveolar process of the maxilla, repair of these defects is typically performed surgically using autologous bone grafts taken from appropriate sites (i.e., iliac crest). However, surgical intervention is not without its complications. As such, the reconstructive surgeon has turned to the scientist and engineer for help. In this review, the application of the field of tissue engineering to craniofacial defects (e.g., cleft palates) is discussed. Specifically the use of adult stem cells, such as mesenchymal stem cells from bone marrow and Adipose-derived Stem Cells (ASCs) in combination with currently available biomaterials is presented in the context of healing craniofacial defects like the cleft palate. Finally, future directions with regards to the use of ASCs in craniofacial repair are discussed, including possible scaffold-driven and gene-driven approaches.
Collapse
Affiliation(s)
- Patricia A Zuk
- Department of Surgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 10833, USA.
| |
Collapse
|
107
|
Chung KY, Johnson BJ. Application of cellular mechanisms to growth and development of food producing animals1,2. J Anim Sci 2008; 86:E226-35. [DOI: 10.2527/jas.2007-0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
108
|
Pelus LM, Fukuda S. Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 2008; 22:466-73. [PMID: 17972941 PMCID: PMC2814589 DOI: 10.1038/sj.leu.2405021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 12/22/2022]
Abstract
Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GRObeta can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.
Collapse
Affiliation(s)
- L M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
109
|
Case J, Horvath TL, Ballas CB, March KL, Srour EF. In vitro clonal analysis of murine pluripotent stem cells isolated from skeletal muscle and adipose stromal cells. Exp Hematol 2008; 36:224-34. [PMID: 18023524 PMCID: PMC2553759 DOI: 10.1016/j.exphem.2007.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Possible clinical utility of pluripotent stem cells (PSCs) with multilineage differentiation capacity depends on their ability to adapt to tissue-specific differentiation conditions. Previous data from our laboratory suggest that putative PSCs exhibiting an immunophenotype of CD45(-)Sca-1+CD117(-)CD90+ can be isolated from multiple tissues. In the present study, the clonal in vitro differentiation potential of two isolates of PSCs was examined. MATERIALS AND METHODS Clonal analysis of the differentiation potential of skeletal muscle- (SM) and adipose stromal cell (ASC)-derived PSCs into myogenic, adipogenic, and neurogenic cells was investigated by expanding single PSCs prior to specification under three separate differentiation conditions. RESULTS Differentiation of SM- and ASC-derived PSCs into myotubes, adipocytes, and neuronal-like cells was evident in clonal cultures promoting differentiation along these lineages. A total of 2.0%, 1.0%, and 0.33% of SM-derived clones demonstrated unipotent, bipotent, and tripotent differentiation, respectively, into combinations of myocytes, adipocytes, and neuronal cells. As a percentage of SM-derived PSCs, tripotent clones comprised 0.016% of total muscle cells. Similar results were obtained with ASC-derived PSCs, suggesting phenotypic and functional similarities between PSCs from both tissues. Following differentiation of single PSCs into three lineages, a clear and complete commitment to tissue-specific gene expression accompanied by inactivation of lineage-unrelated genes could not be demonstrated in several SM- and ASC-derived clones. CONCLUSIONS These data demonstrate that phenotypically defined PSCs remain functionally heterogeneous at the single-cell level and illustrate that morphologic lineage commitment may be independent of exclusive expression and/or loss of associated lineage specific genes.
Collapse
Affiliation(s)
- Jamie Case
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind., USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Tamara L. Horvath
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Christopher B. Ballas
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Keith L. March
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind., USA
- Indiana Center for Vascular Biology and Medicine Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Edward F. Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind., USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind., USA
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Ind., USA
| |
Collapse
|
110
|
Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. ACTA ACUST UNITED AC 2008; 3:226-37. [PMID: 17917136 DOI: 10.1007/s12015-007-9000-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/29/2022]
Abstract
The myogenic stem cell (satellite cell) is almost solely responsible for the remarkable regeneration of adult skeletal muscle fibers after injury. The availability and the functionality of satellite cells are the determinants of efficient muscle regeneration. During aging, the efficiency of muscle regeneration declines, suggesting that the functionality of satellite cells and their progeny may be altered. Satellite cells do not sit in isolation but rather are surrounded by, and influenced by, many extrinsic factors within the muscle tissue that can alter their functionality. These factors likely change during aging and impart both reversible and irreversible changes to the satellite cells and on their proliferating progeny. In this review, we discuss the possible mechanisms of impaired muscle regeneration with respect to the biology of satellite cells. Future studies that enhance our understanding of the interactions between stem cells and the environment in which they reside will offer promise for therapeutic applications in age-related diseases.
Collapse
Affiliation(s)
- Andrew S Brack
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5235, USA
| | | |
Collapse
|
111
|
Weaver CV, Garry DJ. Regenerative biology: a historical perspective and modern applications. Regen Med 2008; 3:63-82. [PMID: 18154463 DOI: 10.2217/17460751.3.1.63] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic diseases are both common and deadly. Due to the limitations of conventional therapies for chronic diseases such as advanced heart failure and diabetes mellitus, recent interest has been directed towards regenerative medicine. In this review, we examine the history of regenerative biology and emphasize the dynamic and multidisciplinary growth of this field. We highlight the spectrum of adult tissues that have a remarkable regenerative capacity (i.e., skeletal muscle) versus those that have a more limited regenerative capacity (i.e., heart). We further emphasize the use of relevant contemporary models for the study of regenerative biology (i.e., pancreatic regeneration), which highlight both the challenges for this field of study and the potential for regenerative medicine, including the use of cell-based strategies, to revolutionize medical therapies for chronic diseases.
Collapse
Affiliation(s)
- Cyprian V Weaver
- University of Minnesota, 286 Variety Club Research Center, Lillihei Heart Institute, Minneapolis, MN 55455, USA
| | | |
Collapse
|
112
|
Koh JS, Lee JY, Lee JY. The Effects of Human Muscle Derived Stem Cells on the Induction of Peripheral Nerve Regeneration. Korean J Urol 2008. [DOI: 10.4111/kju.2008.49.4.350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jun Sung Koh
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
113
|
BAN A, YAMANOUCHI K, MATSUWAKI T, NISHIHARA M. In Vivo Gene Transfer of PPAR.GAMMA. Is Insulfficient to Induce Adipogenesis in Skeletal Muscle. J Vet Med Sci 2008; 70:761-7. [DOI: 10.1292/jvms.70.761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ayako BAN
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Keitaro YAMANOUCHI
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takashi MATSUWAKI
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masugi NISHIHARA
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
114
|
Yamanouchi K, Yada E, Ishiguro N, Nishihara M. 18alpha-glycyrrhetinic acid induces phenotypic changes of skeletal muscle cells to enter adipogenesis. Cell Physiol Biochem 2007; 20:781-90. [PMID: 17982260 DOI: 10.1159/000110438] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2007] [Indexed: 11/19/2022] Open
Abstract
The importance of connexins is implicated in proliferation and differentiation of cells. In skeletal muscle cells, connexin43 (Cx43) has been identified as the major connexin, and gap-junctional communication mediated by connexins has been shown to be required for their myogenic differentiation. In addition, inhibition of connexin function has been shown to induce transdifferentiation of osteoblasts to an adipocytic phenotype. In the present study, we examined whether the inhibition of connexin function could induce phenotypic changes in skeletal muscle cells. Treatment of skeletal muscle cells with an inhibitor of connexin function, 18alpha-glycyrrhetinic acid (AGRA), resulted in a reduction in the number of MyoD-positive cells and complete inhibition of myotube formation, concomitantly with an increase in the number of C/EBPalpha-positive cells. AGRA-treated cells cultured in adipogenic differentiation medium could give rise to mature adipocytes that express both PPARgamma and C/EBPalpha. The presence of AGRA during adipogenic differentiation did not inhibit adipogenesis of skeletal muscle cells. AGRA treatment did not affect Cx43 expression in skeletal muscle cells but reduced its phosphorylation. These results indicate that inhibition of connexin function induces phenotypic changes of skeletal muscle cells to enter adipogenesis.
Collapse
Affiliation(s)
- Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan.
| | | | | | | |
Collapse
|
115
|
Ozernyuk ND, Balan OV. Muscle satellite cells and regulation of recovery potential of muscle. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007060027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
116
|
Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 2007; 28:5401-6. [PMID: 17915311 PMCID: PMC2095130 DOI: 10.1016/j.biomaterials.2007.09.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/01/2007] [Indexed: 11/29/2022]
Abstract
Skeletal muscle has been recognized as an essential source of progenitor or satellite cells, which are primarily responsible for muscle regeneration. Recently, muscle has also been identified as a valuable source of postnatal stem cells that appear to be distinct from satellite cells and possess the ability to differentiate into other cell lineages. These cells, named muscle-derived stem cells, possess a high myogenic capacity and effectively regenerate both skeletal and cardiac muscle. Remarkably, when genetically modified ex vivo to express growth factors, these cells can differentiate into osteogenic and chondrogenic lineages and have been shown to promote the repair of bone and cartilage. Muscle stem cell-based regenerative therapy and tissue engineering using ex vivo gene therapy, are promising approaches for the treatment of various musculoskeletal, cardiovascular, and urological disorders.
Collapse
Affiliation(s)
- Arvydas Usas
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Johnny Huard
- Stem Cell Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Departments of Orthopaedic Surgery, Molecular Genetic and Biochemistry, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
117
|
Hashimoto N, Kiyono T, Wada MR, Umeda R, Goto YI, Nonaka I, Shimizu S, Yasumoto S, Inagawa-Ogashiwa M. Osteogenic properties of human myogenic progenitor cells. Mech Dev 2007; 125:257-69. [PMID: 18164186 DOI: 10.1016/j.mod.2007.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Here, we identified human myogenic progenitor cells coexpressing Pax7, a marker of muscle satellite cells and bone-specific alkaline phosphatase, a marker of osteoblasts, in regenerating muscle. To determine whether human myogenic progenitor cells are able to act as osteoprogenitor cells, we cultured both primary and immortalized progenitor cells derived from the healthy muscle of a nondystrophic woman. The undifferentiated myogenic progenitors spontaneously expressed two osteoblast-specific proteins, bone-specific alkaline phosphatase and Runx2, and were able to undergo terminal osteogenic differentiation without exposure to an exogenous inductive agent such as bone morphogenetic proteins. They also expressed the muscle lineage-specific proteins Pax7 and MyoD, and lost their osteogenic characteristics in association with terminal muscle differentiation. Both myoblastic and osteoblastic properties are thus simultaneously expressed in the human myogenic cell lineage prior to commitment to muscle differentiation. In addition, C3 transferase, a specific inhibitor of Rho GTPase, blocked myogenic but not osteogenic differentiation of human myogenic progenitor cells. These data suggest that human myogenic progenitor cells retain the capacity to act as osteoprogenitor cells that form ectopic bone spontaneously, and that Rho signaling is involved in a critical switch between myogenesis and osteogenesis in the human myogenic cell lineage.
Collapse
Affiliation(s)
- Naohiro Hashimoto
- Stem Cell Research Team, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kook SH, Son YO, Choi KC, Lee HJ, Chung WT, Hwang IH, Lee JC. Cyclic mechanical stress suppresses myogenic differentiation of adult bovine satellite cells through activation of extracellular signal-regulated kinase. Mol Cell Biochem 2007; 309:133-41. [DOI: 10.1007/s11010-007-9651-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/31/2007] [Indexed: 11/29/2022]
|
119
|
Mukai A, Hashimoto N. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion. Exp Cell Res 2007; 314:387-97. [PMID: 18001711 DOI: 10.1016/j.yexcr.2007.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/07/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.
Collapse
Affiliation(s)
- Atsushi Mukai
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522, Japan
| | | |
Collapse
|
120
|
Johnson BJ, Chung KY. Alterations in the physiology of growth of cattle with growth-enhancing compounds. Vet Clin North Am Food Anim Pract 2007; 23:321-32, viii. [PMID: 17606154 DOI: 10.1016/j.cvfa.2007.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Commonly used growth promotants such as steroidal implants and beta-adrenergic agonists have recently been implicated in the reduction of marbling scores in beef cattle. These compounds are effective at improving lean tissue deposition in cattle, thus significantly improving feed efficiency. This article discusses skeletal muscle growth and development in cattle, the process of transdifferentiation between two cell types, and how growth promotants may push a nondifferentiated cell to become a certain lineage of cells. Increased understanding of how these agents affect cellular aspects of growth and development of skeletal muscle and adipose tissue will allow cattle feeders, consultants, and researchers to instigate intervention strategies to ameliorate the reduced marbling scores. Successful strategies would allow maximal lean tissue growth and result in carcasses with optimal quality.
Collapse
Affiliation(s)
- Bradley J Johnson
- Nutritional Growth and Development, Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-1600, USA.
| | | |
Collapse
|
121
|
Invernici G, Cristini S, Madeddu P, Brock S, Spillmann F, Bernasconi P, Cappelletti C, Calatozzolo C, Fascio U, Bisleri G, Muneretto C, Alessandri G, Parati EA. Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitro. Exp Cell Res 2007; 314:366-76. [PMID: 17888423 DOI: 10.1016/j.yexcr.2007.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 07/13/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Cell transplantation to repair or regenerate injured myocardium is a new frontier in the treatment of cardiovascular disease. Most studies on stem cell transplantation therapy in both experimental heart infarct and in phase-I human clinical trials have focused on the use of undifferentiated stem cells. Based on our previous observations demonstrating the presence of multipotent progenitor cells in human adult skeletal muscle, in this study we investigated the capacity of these progenitors to differentiate into cardiomyocytes. Here we show an efficient protocol for the cardiomyogenic differentiation of human adult skeletal muscle stem cells in vitro. We found that treatment with Retinoic Acid directed cardiomyogenic differentiation of skeletal muscle stem cells in vitro. After Retinoic Acid treatment, cells expressed cardiomyocyte markers and acquired spontaneous contraction. Functional assays exhibited cardiac-like response to increased extracellular calcium. When cocultured with mouse cardiomyocytes, Retinoic Acid-treated skeletal muscle stem cells expressed connexin43 and when transplanted into ischemic heart were detectable even 5 weeks after injection. Based on these results, we can conclude that human adult skeletal muscle stem cells, if opportunely treated, can transdifferentiate into cells of cardiac lineage and once injected into infarcted heart can integrate, survive in cardiac tissue and improve the cardiac function.
Collapse
Affiliation(s)
- Gloria Invernici
- Neurobiology and Neuroregenerative Therapies Unit, Fondazione IRCCS Neurological Institute C. Besta, Milan #20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Miyazaki M, Hardjo M, Masaka T, Tomiyama K, Mahmut N, Medina RJ, Niida A, Sonegawa H, Du G, Yong R, Takaishi M, Sakaguchi M, Huh NH. Isolation of a bone marrow-derived stem cell line with high proliferation potential and its application for preventing acute fatal liver failure. Stem Cells 2007; 25:2855-63. [PMID: 17702985 DOI: 10.1634/stemcells.2007-0078] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transplantation of hepatocytes or hepatocyte-like cells of extrahepatic origin is a promising strategy for treatment of acute and chronic liver failure. We examined possible utility of hepatocyte-like cells induced from bone marrow cells for such a purpose. Clonal cell lines were established from the bone marrow of two different rat strains. One of these cell lines, rBM25/S3 cells, grew rapidly (doubling time, approximately 24 hours) without any appreciable changes in cell properties for at least 300 population doubling levels over a period of 300 days, keeping normal diploid karyotype. The cells expressed CD29, CD44, CD49b, CD90, vimentin, and fibronectin but not CD45, indicating that they are of mesenchymal cell origin. When plated on Matrigel with hepatocyte growth factor and fibroblast growth factor-4, the cells efficiently differentiated into hepatocyte-like cells that expressed albumin, cytochrome P450 (CYP) 1A1, CYP1A2, glucose 6-phosphatase, tryptophane-2,3-dioxygenase, tyrosine aminotransferase, hepatocyte nuclear factor (HNF)1 alpha, and HNF4alpha. Intrasplenic transplantation of the differentiated cells prevented fatal liver failure in 90%-hepatectomized rats. In conclusion, a clonal stem cell line derived from adult rat bone marrow could differentiate into hepatocyte-like cells, and transplantation of the differentiated cells could prevent fatal liver failure in 90%-hepatectomized rats. The present results indicate a promising strategy for treating human fatal liver diseases.
Collapse
Affiliation(s)
- Masahiro Miyazaki
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Schikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Fukada SI, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 2007; 25:2448-59. [PMID: 17600112 DOI: 10.1634/stemcells.2007-0019] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skeletal muscle satellite cells play key roles in postnatal muscle growth and regeneration. To study molecular regulation of satellite cells, we directly prepared satellite cells from 8- to 12-week-old C57BL/6 mice and performed genome-wide gene expression analysis. Compared with activated/cycling satellite cells, 507 genes were highly upregulated in quiescent satellite cells. These included negative regulators of cell cycle and myogenic inhibitors. Gene set enrichment analysis revealed that quiescent satellite cells preferentially express the genes involved in cell-cell adhesion, regulation of cell growth, formation of extracellular matrix, copper and iron homeostasis, and lipid transportation. Furthermore, reverse transcription-polymerase chain reaction on differentially expressed genes confirmed that calcitonin receptor (CTR) was exclusively expressed in dormant satellite cells but not in activated satellite cells. In addition, CTR mRNA is hardly detected in nonmyogenic cells. Therefore, we next examined the expression of CTR in vivo. CTR was specifically expressed on quiescent satellite cells, but the expression was not found on activated/proliferating satellite cells during muscle regeneration. CTR-positive cells reappeared at the rim of regenerating myofibers in later stages of muscle regeneration. Calcitonin stimulation delayed the activation of quiescent satellite cells. Our data provide roles of CTR in quiescent satellite cells and a solid scaffold to further dissect molecular regulation of satellite cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- So-ichiro Fukada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Yada E, Yamanouchi K, Nishihara M. Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J Vet Med Sci 2007; 68:479-86. [PMID: 16757891 DOI: 10.1292/jvms.68.479] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The possible relationship between myofiber type composition and adipose tissue development in skeletal muscle in vivo has been suggested. Recent evidence indicated that satellite cells are multipotent cells that can undergo not only myogenic, but also adipogenic differentiation. In the present study, rat satellite cells were isolated from soleus, back, extensor digitorum longus, tibialis anterior and quadriceps muscles, and their adipogenic potentials were compared by culturing them under adipogenic conditions in vitro. Cells from soleus muscle exhibited the highest adipogenic potential as judged from Oil Red-staining and immunocytochemical C/EBPalpha-staining. The adipogenic potential of satellite cells was positively correlated with type I myofiber distribution in the corresponding muscle of origin. These results demonstrated that the adipogenic potential of satellite cells differs according to the muscle of origin and suggested that its possible correlation to type I myofiber distribution may account for preferential adipose tissue development in slow oxidative muscles.
Collapse
Affiliation(s)
- Erica Yada
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
125
|
Watanabe H, Ochiya T, Ueda S, Kominami Y, Gon R, Nishiki M, Hayashi M, Sasaki A, Shiraishi M, Kashimoto N, Myojin Y, Kamiya K. Differentiation of a hepatic phenotype after heterotropic transplantation of heart, kidney, brain, and skin tissues into liver in F344 rats. Biochem Biophys Res Commun 2007; 354:841-5. [PMID: 17276398 DOI: 10.1016/j.bbrc.2006.12.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 12/21/2006] [Indexed: 01/23/2023]
Abstract
While organ-specific stem cells with roles in tissue injury repair have been documented, their pathogenic significance in diseases and the factors potentially responsible for their activation remain largely unclear. In the present study, heart, kidney, brain, and skin samples from F344 transgenic rats carrying the GFP gene were transplanted into normal F344 rat liver one day after an intraperitoneal injection (i.p.) of carbon tetrachloride (CCl(4)) to test their differentiation capacity. The transplantation was carried out by female donors to male recipients, and vice versa. One week after transplantation, GFP antigen-positive cells with phenotypic characteristics of hepatocytes were noted. After two weeks, their extent increased, and at 4 weeks, large areas of strongly GFP-stained cells developed. All recipient livers had GFP antigen-positive hepatocyte cells. PCR analysis coupled with laser capture micro-dissection (LCM) revealed those cells to contain GFP DNA. Thus, our results indicate that tissue stem cells have multipotential ability, differentiating into hepatocytes when transplanted into an injured liver.
Collapse
Affiliation(s)
- Hiromitsu Watanabe
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Hashimoto N. Muscle Satellite Cells as Muscle-specific Adult Stem Cells : Two Models for Self-renewal. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
127
|
Yamanouchi K, Hosoyama T, Murakami Y, Nishihara M. Myogenic and Adipogenic Properties of Goat Skeletal Muscle Stem Cells. J Reprod Dev 2007; 53:51-8. [PMID: 17008759 DOI: 10.1262/jrd.18094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of the present study were to establish a culture system for goat skeletal muscle stem cells and to examine their myogenic and adipogenic properties in vitro. Cells were isolated from the skeletal muscle of the Shiba goat and cultured in vitro. Most of the cells were positive for myogenic markers, such as Pax7, MyoD, and desmin, and immunocytochemistry revealed they differentiated to form myotubes expressing myosin heavy chain, indicating they were highly myogenic. Myogenic differentiation was strongly suppressed by the addition of basic fibroblast growth factor, while proliferation was unaffected. When the cells were cultured in adipogenic differentiation medium, some of the cells differentiated into mature adipocytes that stained with Oil Red-O. These cells were immunocytochemically positive for adipogenic markers, including peroxisome proliferator-activated receptor-gamma (PPAR gamma) and CCAAT/enhancer-binding protein-alpha (C/EBP alpha). These results clearly demonstrate the presence of both myogenic and adipogenic stem cells in goat skeletal muscle.
Collapse
Affiliation(s)
- Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | | | |
Collapse
|
128
|
Elango N, Li Y, Shivshankar P, Katz MS. Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation. J Cell Biochem 2006; 99:1108-21. [PMID: 16767703 DOI: 10.1002/jcb.20909] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RUNX2, a major regulator of skeletogenesis, is expressed as type-I and type-II isoforms. Whereas most eukaryotic mRNAs are translated by the cap-dependent scanning mechanism, translation of many mRNAs including type-I and type-II RUNX2 mRNAs has been reported to be initiated by a cap independent internal ribosomal entry site (IRES). Since the dicistronic plasmid assay used to demonstrate IRES has been questioned, we investigated the presence of IRES in RUNX2 mRNAs using dicistronic plasmid and mRNA assays. Our results show that the dicistronic plasmid assay cannot be used to demonstrate IRES in RUNX2 mRNAs because the intercistronic region of dicistronic plasmids containing the 5'-UTRs of both RUNX2 mRNAs operates as a cryptic promoter. In dicistronic mRNA transfection studies the 5'-UTRs of both RUNX2 mRNAs exhibited no IRES activity. When transfected into osteoblastic cells, monocistronic reporter mRNA preceded by the 5'-UTR of type-II RUNX2 (Type-II-FLuc-A100) was translated to a high degree only in the presence of a functional cap (m(7)GpppG); in contrast, luciferase mRNA preceded by the 5'-UTR of type-I RUNX2 mRNA (Type-I-FLuc-A100) was translated poorly in the presence of either m(7)GpppG or a nonfunctional cap (ApppG). Notably, in transfected cells inhibitors of cap-dependent translation suppressed the translation of m(7)GpppG-capped Type-II-FLuc-A100, but not ApppG-capped reporter mRNA preceded by the IRES-containing hepatitis C virus (HCV) 5'-UTR. Our study demonstrates that type-II RUNX2 mRNA is translated by the cap-dependent mechanism. Although efficient translation of type-I RUNX2 mRNA appears to require a process other than cap-dependent, the mechanism of type-I RUNX2 mRNA translation remains to be resolved.
Collapse
Affiliation(s)
- Narayanasamy Elango
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas 78229, USA.
| | | | | | | |
Collapse
|
129
|
Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006; 27:6064-82. [PMID: 16890988 DOI: 10.1016/j.biomaterials.2006.07.008] [Citation(s) in RCA: 627] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/06/2006] [Indexed: 12/27/2022]
Abstract
Silks are naturally occurring polymers that have been used clinically as sutures for centuries. When naturally extruded from insects or worms, silk is composed of a filament core protein, termed fibroin, and a glue-like coating consisting of sericin proteins. In recent years, silk fibroin has been increasingly studied for new biomedical applications due to the biocompatibility, slow degradability and remarkable mechanical properties of the material. In addition, the ability to now control molecular structure and morphology through versatile processability and surface modification options have expanded the utility for this protein in a range of biomaterial and tissue-engineering applications. Silk fibroin in various formats (films, fibers, nets, meshes, membranes, yarns, and sponges) has been shown to support stem cell adhesion, proliferation, and differentiation in vitro and promote tissue repair in vivo. In particular, stem cell-based tissue engineering using 3D silk fibroin scaffolds has expanded the use of silk-based biomaterials as promising scaffolds for engineering a range of skeletal tissues like bone, ligament, and cartilage, as well as connective tissues like skin. To date fibroin from Bombyx mori silkworm has been the dominant source for silk-based biomaterials studied. However, silk fibroins from spiders and those formed via genetic engineering or the modification of native silk fibroin sequence chemistries are beginning to provide new options to further expand the utility of silk fibroin-based materials for medical applications.
Collapse
Affiliation(s)
- Yongzhong Wang
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
130
|
Case J, Horvath TL, Howell JC, Yoder MC, March KL, Srour EF. Clonal multilineage differentiation of murine common pluripotent stem cells isolated from skeletal muscle and adipose stromal cells. Ann N Y Acad Sci 2006; 1044:183-200. [PMID: 15958712 DOI: 10.1196/annals.1349.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pluripotent stem cells (PSCs) with transdifferentiation capacity may provide useful therapeutic modalities in the areas of cellular restoration and regenerative medicine. The utility of PSCs depends on their ability to respond to different stimuli and to adapt to tissue-specific differentiation conditions. Given that a number of cells possessing characteristics of PSCs have been identified and isolated from several adult murine tissues, we hypothesized that a common PSC may exist in multiple murine tissues and that these cells may either reside permanently in specific sites or continue to circulate and colonize tissues as needed. Previous data from our laboratory suggest that PSCs exhibiting an immunophenotype of CD45(-)Sca-1(+)c-kit(-)Thy-1(+) can be isolated from multiple murine tissues and may represent putative common PSCs (CoPSCs). To investigate whether the multiple tissue differentiation potential observed with these cells resulted from the presence of different tissue-restricted progenitors within CD45(-)Sca-1(+)c-kit(-)Thy-1(+) cells or was the product of clonal differentiation of CoPSCs, clonality studies were performed. Single skeletal muscle (SM)-derived CoPSCs were expanded for 10 days, and progeny cells were split into three culture conditions designed to stimulate myogenic, adipogenic, and neurogenic differentiation. Analysis of 600 clones indicated that 2.16%, 0.83%, and 0.33% of the total number of plated single cells were capable of unipotent, bipotent, and tripotent differentiation, respectively, into combinations of myocytes, adipocytes, and neuronal cells. Given that SM-derived CoPSCs represent 4.78% of the total cells analyzed, tripotent CoPSCs made up 0.016% of the total muscle cells. Similar results were obtained in clonal analyses using adipose stromal cell (ASC)-derived CoPSCs, suggesting that both SM- and ASC-derived CoPSCs may be phenotypically and functionally identical. Taken together, these data demonstrate that a common PSC can be identified in different murine tissues and suggest that a small fraction of these cells are capable of clonal differentiation into multiple cell types.
Collapse
Affiliation(s)
- Jamie Case
- Indiana University School of Medicine, Cancer Research Institute, 1044 West Walnut Street, R4-202, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Ozeki N, Lim M, Yao CC, Tolar M, Kramer RH. alpha7 integrin expressing human fetal myogenic progenitors have stem cell-like properties and are capable of osteogenic differentiation. Exp Cell Res 2006; 312:4162-80. [PMID: 17054947 PMCID: PMC2766282 DOI: 10.1016/j.yexcr.2006.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
During muscle development, precursor cells fuse to form myofibers. Following injury in adult muscle, quiescent satellite cells become activated to regenerate muscle in a fashion similar to fetal development. Recent studies indicate that murine skeletal myoblasts can differentiate along multiple cell lineages including the osteoblastic pathway. However, little is known about the multipotency of human myogenic cells. Here, we isolate myogenic precursor cells from human fetal and adult muscle by sorting for the laminin-binding alpha7 integrin and demonstrate their differentiation potential and alteration in adhesive behavior. The alpha7-positive human fetal progenitors were efficient at forming myotubes and a majority expressed known muscle markers including M-cadherin and c-Met, but were heterogeneous for desmin and MyoD expression. To test their pluripotent differentiation potential, enriched populations of alpha7-positive fetal cells were subjected to inductive protocols. Although the myoblasts appeared committed to a muscle lineage, they could be converted to differentiate along the osteoblastic pathway in the presence of BMP-2. Interestingly, osteogenic cells showed altered adhesion and migratory activity that reflected growth factor-induced changes in integrin expression. These results indicate that alpha7-expressing fetal myoblasts are capable of differentiation to osteoblast lineage with a coordinated switch in integrin profiles and may represent a mechanism that promotes homing and recruitment of myogenic stem cells for tissue repair and remodeling.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
- Department of Endodontics, School of Dentistry, Aichigakuin University, 2–11 Suemori-dori Chikusa-ku, Nagoya, 464–8651, Japan
| | - Moon Lim
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| | - Chung-Chen Yao
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| | - Mirek Tolar
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| | - Randall H. Kramer
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| |
Collapse
|
132
|
Hashimoto N, Kiyono T, Wada MR, Shimizu S, Yasumoto S, Inagawa M. Immortalization of human myogenic progenitor cell clone retaining multipotentiality. Biochem Biophys Res Commun 2006; 348:1383-8. [PMID: 16919240 DOI: 10.1016/j.bbrc.2006.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 08/01/2006] [Indexed: 11/30/2022]
Abstract
Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.
Collapse
Affiliation(s)
- Naohiro Hashimoto
- Stem Cell Research Unit, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | |
Collapse
|
133
|
Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 2006; 54:1177-91. [PMID: 16899758 DOI: 10.1369/jhc.6r6995.2006] [Citation(s) in RCA: 462] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The muscle satellite cell was first described and actually named on the basis of its anatomic location under the basement membrane surrounding each myofiber. For many years following its discovery, electron microscopy provided the only definitive method of identification. More recently, several molecular markers have been described that can be used to detect satellite cells, making them more accessible for study at the light microscope level. Satellite cells supply myonuclei to growing myofibers before becoming mitotically quiescent in muscle as it matures. They are then activated from this quiescent state to fulfill their roles in routine maintenance, hypertrophy, and repair of adult muscle. Because muscle is able to efficiently regenerate after repeated bouts of damage, systems must be in place to maintain a viable satellite cell pool, and it was proposed over 30 years ago that self-renewal was the primary mechanism. Self-renewal entails either a stochastic event or an asymmetrical cell division, where one daughter cell is committed to differentiation whereas the second continues to proliferate or becomes quiescent. This classic model of satellite cell self-renewal and the importance of satellite cells in muscle maintenance and repair have been challenged during the past few years as bone marrow-derived cells and various intramuscular populations were shown to be able to contribute myonuclei and occupy the satellite cell niche. This is a fast-moving and dynamic field, however, and in this review we discuss the evidence that we think puts this enigmatic cell firmly back at the center of adult myogenesis.
Collapse
Affiliation(s)
- Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL England.
| | | | | |
Collapse
|
134
|
Machida S, Narusawa M. The roles of satellite cells and hematopoietic stem cells in impaired regeneration of skeletal muscle in old rats. Ann N Y Acad Sci 2006; 1067:349-53. [PMID: 16804010 DOI: 10.1196/annals.1354.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sarcopenia is the involuntary loss of skeletal muscle mass and strength that occurs with aging, resulting in physical frailty. One potential explanation for sarcopenia is the failure of muscle to regenerate after damage, some of which may be due to changes in the function of satellite cells. Recent studies have identified novel populations of adult stem cells in skeletal muscle, such as hematopoietic stem cells. To understand the cellular mechanisms of sarcopenia, we examined the expression of satellite cells and hematopoietic stem cells in old regenerating muscles based on the expression profiles of several markers related to those cells.
Collapse
Affiliation(s)
- Shuichi Machida
- Department of Physical Education, International Budo University, Chiba, Japan.
| | | |
Collapse
|
135
|
Abstract
Quiescent satellite cells are responsible for the repair of post-natal skeletal muscle. These cells are easily identified by their unique morphology within skeletal muscle as well as by several recently elucidated molecular markers. Careful examination of the function of these markers has provided insight into the early events surrounding satellite cell specification and activation. However, the origin of these cells, as well as the mechanisms by which this population is maintained within the adult remain elusive. Furthermore, the ability of non-muscle derived stem cells and the potential multipotency of satellite cells have altered the traditional views of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chet E Holterman
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada K1H 8L6
| | | |
Collapse
|
136
|
Yamanouchi K, Yada E, Ishiguro N, Hosoyama T, Nishihara M. Increased adipogenicity of cells from regenerating skeletal muscle. Exp Cell Res 2006; 312:2701-11. [PMID: 16750191 DOI: 10.1016/j.yexcr.2006.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 11/24/2022]
Abstract
Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.
Collapse
Affiliation(s)
- Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
137
|
Morrison JI, Lööf S, He P, Simon A. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. ACTA ACUST UNITED AC 2006; 172:433-40. [PMID: 16449193 PMCID: PMC2063652 DOI: 10.1083/jcb.200509011] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.
Collapse
Affiliation(s)
- Jamie I Morrison
- Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
138
|
Sarig R, Baruchi Z, Fuchs O, Nudel U, Yaffe D. Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem Cells 2006; 24:1769-78. [PMID: 16574751 DOI: 10.1634/stemcells.2005-0547] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated from mouse skeletal muscle a subpopulation of slow adherent myogenic cells that can proliferate for at least several months as suspended clusters of cells (myospheres). In the appropriate conditions, the myospheres adhere to the plate, spread out, and form a monolayer of MyoD(+) cells. Unlike previously described myogenic cell lines, most of the myosphere cells differentiate, without cell fusion, into thin mononucleated contractile fibers, which express myogenin and skeletal muscle myosin heavy chain. The presence of Pax-7 in a significant proportion of these cells suggests that they originate from satellite cells. The addition of leukemia inhibitory factor to the growth medium of the myospheres enhances proliferation and dramatically increases the proportion of cells expressing Sca-1, which is expressed by several types of stem cells. The capacity of myosphere cells to transdifferentiate to other mesodermal cell lineages was examined. Exposure of cloned myosphere cells to bone morphogenetic protein resulted in suppression of myogenic differentiation and induction of osteogenic markers such as alkaline phosphatase and osteocalcin. These cells also sporadically differentiated to adipocytes. Myosphere cells could not, so far, be induced to transdifferentiate to hematopoietic cells. When inoculated into injured muscle, myosphere-derived cells participated in regeneration, forming multinucleated cross-striated mature fibers. This suggests a potential medical application.
Collapse
Affiliation(s)
- Rachel Sarig
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
139
|
Hattori H, Ishihara M, Fukuda T, Suda T, Katagiri T. Establishment of a novel method for enriching osteoblast progenitors from adipose tissues using a difference in cell adhesive properties. Biochem Biophys Res Commun 2006; 343:1118-23. [PMID: 16580630 DOI: 10.1016/j.bbrc.2006.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/28/2022]
Abstract
In the clinical field, cell-based therapies are used to treat bone defects. Adipose tissues contain many osteoblast progenitors, among other cell types. We separated mouse adipose tissue-derived stromal cells (ATSCs) according to their cell adhesive properties. Cells in a fraction adherent to the culture dishes 0.5h after inoculation (AF-0.5) had a potent ability to differentiate into both osteoblasts and adipocytes in vitro. Their differentiation pathways depended on the culture conditions. In these cells, the expression of marker genes for osteoblast differentiation was induced in osteogenic medium. Moreover, the AF-0.5 cells, which were induced to differentiate into osteoblasts in vitro, formed abundant bone tissues in vivo. These results suggest that the AF-0.5 cells have been enriched with bi-potential progenitor cells destined for either osteoblasts or adipocytes. This simple and efficient method for preparing osteoblast progenitor cells from ATSCs may be utilized for bone defect treatment clinically.
Collapse
Affiliation(s)
- Hidemi Hattori
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical School, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | | | | | | | | |
Collapse
|
140
|
Abstract
Skeletal muscle contains heterogenous progenitor cells that give rise to muscle, hematopoietic cells and bone. The exact phenotypic definition of skeletal muscle progenitor cells has not been fully elucidated nor the potential of these cells to differentiate into neurons. Here, we demonstrate that phenotypically homogenous skeletal muscle progenitor cells defined as Lin-CD45-CD117-CD90+ cells express neural stem cell markers and are responsive to neural induction signals. When exposed to neural induction medium containing basic fibroblast growth factor and brain-derived neurotrophic factor, skeletal muscle progenitor cells dramatically changed their cell morphology, became postmitotic and began expressing neuronal markers. These results reveal unexpected potentials of muscle progenitor cells and suggest that these cells may potentially be used in cell-based therapies to replace damaged neurons.
Collapse
Affiliation(s)
- Takako Kondo
- Department of Otolaryngology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
141
|
Cao B, Deasy BM, Pollett J, Huard J. Cell Therapy for Muscle Regeneration and Repair. Phys Med Rehabil Clin N Am 2005; 16:889-907, viii. [PMID: 16214050 DOI: 10.1016/j.pmr.2005.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Baohong Cao
- Department of Orthopaedic Surgery, University of Pittsburgh, Growth and Development Laboratory, Children's Hospital of Pittsburgh, 4100 Rangos Research Center, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
142
|
Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005; 26:5158-66. [PMID: 15792543 DOI: 10.1016/j.biomaterials.2005.01.002] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 01/04/2005] [Indexed: 01/22/2023]
Abstract
Functional engineering of musculoskeletal tissues generally involves the use of differentiated or progenitor cells seeded with specific growth factors in biomaterial scaffolds. Ideally, the scaffold should be a functional and structural biomimetic of the native extracellular matrix and support multiple tissue morphogenesis. We have previously shown that electrospun, three-dimensional nanofibrous scaffolds that morphologically resemble collagen fibrils are capable of promoting favorable biological responses from seeded cells, indicative of their potential application for tissue engineering. In this study, we tested a three-dimensional nanofibrous scaffold fabricated from poly(epsilon-caprolactone) (PCL) for its ability to support and maintain multilineage differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) in vitro. hMSCs were seeded onto pre-fabricated nanofibrous scaffolds, and were induced to differentiate along adipogenic, chondrogenic, or osteogenic lineages by culturing in specific differentiation media. Histological and scanning electron microscopy observations, gene expression analysis, and immunohistochemical detection of lineage-specific marker molecules confirmed the formation of three-dimensional constructs containing cells differentiated into the specified cell types. These results suggest that the PCL-based nanofibrous scaffold is a promising candidate scaffold for cell-based, multiphasic tissue engineering.
Collapse
Affiliation(s)
- Wan-Ju Li
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1503, MSC 8022, Bethesda, MD 20892-8022, USA
| | | | | | | | | |
Collapse
|
143
|
Gotzmann J, Foisner R. A-type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases? Histochem Cell Biol 2005; 125:33-41. [PMID: 16142451 DOI: 10.1007/s00418-005-0050-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2005] [Indexed: 01/09/2023]
Abstract
The lamins are nuclear intermediate filament-type proteins forming the nuclear lamina meshwork at the inner nuclear membrane as well as complexes in the nucleoplasm. The recent discoveries that mutated A-type lamins and lamin-binding nuclear membrane proteins can be linked to numerous rare human diseases (laminopathies) affecting a multitude of tissues has changed the cell biologist's view of lamins as mere structural nuclear scaffold proteins. It is still unclear how mutations in these ubiquitously expressed proteins give rise to tissue-restricted pathological phenotypes. Potential disease models include mutation-caused defects in lamin structure and stability, the deregulation of gene expression, and impaired cell cycle control. This review brings together various previously proposed ideas and suggests a novel, more general, disease model based on an impairment of adult stem cell function and thus compromised tissue regeneration in laminopathic diseases.
Collapse
Affiliation(s)
- Josef Gotzmann
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030, Vienna, Austria
| | | |
Collapse
|
144
|
Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda SI, Ide C, Nabeshima YI. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005; 309:314-7. [PMID: 16002622 DOI: 10.1126/science.1110364] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Yoshidakonoecho, Sakyo-ku, Kyoto, 606-8501 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Aas V, Rokling-Andersen M, Wensaas AJ, Thoresen GH, Kase ET, Rustan AC. Lipid metabolism in human skeletal muscle cells: effects of palmitate and chronic hyperglycaemia. ACTA ACUST UNITED AC 2005; 183:31-41. [PMID: 15654918 DOI: 10.1111/j.1365-201x.2004.01381.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review focuses on the effect of exogenous factors known to be of importance for the development of insulin resistance in differentiated human myotubes. Recent data from our laboratory on the effects of fatty acid pre-treatment and chronic glucose oversupply on fatty acid and glucose metabolism, without and with acute insulin are presented, and discussed in the context of other recent publications in the field. Pre-treatment of myotubes with palmitate, chronic hyperglycaemia, and acute high concentrations of insulin changed fatty acid metabolism in favour of accumulation of intracellular lipids. Acute insulin exposure increased (14)C-oleate uptake and levels of free fatty acids (FFA) and triacylglycerol (TAG). Palmitate pre-treatment further increased oleate uptake, both under basal conditions and in the presence of insulin, with a marked increase in the phospholipid (PL) fraction, with a concomitant reduction in oleate oxidation. Chronic hyperglycaemia also promoted increased lipogenesis and elevated levels of cellular lipids. Changes in fatty acid metabolism in human muscle, in particular fatty acid oxidation, are probably crucial for the molecular mechanism behind skeletal muscle insulin resistance and impaired glucose metabolism. Differentiated human skeletal muscle cells may be an ideal system to further explore the mechanisms regulating lipid metabolism.
Collapse
Affiliation(s)
- V Aas
- Department of Pharmacology, School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
146
|
Tcacencu I, Carlsöö B, Stierna P. Cell origin in experimental repair of cricoid cartilage defects treated with recombinant human bone morphogenetic protein-2. Wound Repair Regen 2005; 13:341-9. [PMID: 15953055 DOI: 10.1111/j.1067-1927.2005.130318.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We determined the origin of new cartilage and new bone induced by recombinant human bone morphogenetic protein-2 (rhBMP-2) at the site of cricoid cartilage defects in rabbits randomly divided into eight groups. The cricoid cartilage was split vertically along the anterior midline and a strip was excised from the anterior part of the cricoid cartilage in all rabbits. The perichondrium from the anterior part of the cricoid cartilage was trimmed off in four groups; two groups treated with rhBMP-2 and two control groups. In four other groups, the anterior perichondrium was detached and used as a flap with two groups treated with rhBMP-2 and two groups serving as controls. The rabbits were killed 1 week or 4 weeks after surgery. The larynges were removed, fixed and sectioned, and the sections were stained for light microscopy using various cytochemical and immunological techniques. New cartilage was only present close to the host perichondrium adherent to cricoid cartilage in rabbits treated with rhBMP-2. New bone was present 4 weeks after surgery, although calcified matrix and alkaline phosphatase activity could be detected at the site of cricoid defects as early as 1 week after surgery. The cell proliferation marker Ki-67 was strongly expressed in granulation tissue and bone marrow, and it was moderately expressed in muscles adjacent to the cricoid cartilage in rhBMP-2-treated specimens. BMP receptors were strongly expressed in cartilage and moderately expressed in adjacent muscles. We conclude that new cartilage originates from the mesenchymal progenitor cells of host perichondrium adherent to cricoid cartilage in rabbits treated with rhBMP-2. New bone may originate from local muscle.
Collapse
Affiliation(s)
- Ion Tcacencu
- Department of Otorhinolaryngology, Karolinska University Huddinge Hospital, Karolinska Institutet, Huddinge, Sweden.
| | | | | |
Collapse
|
147
|
Kappler R, Bauer R, Calzada-Wack J, Rosemann M, Hemmerlein B, Hahn H. Profiling the molecular difference between Patched- and p53-dependent rhabdomyosarcoma. Oncogene 2005; 23:8785-95. [PMID: 15480423 DOI: 10.1038/sj.onc.1208133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant tumor that is histologically related to skeletal muscle, yet genetic and molecular lesions underlying its genesis and progression remain largely unknown. In this study we have compared the molecular profiles of two different mouse models of RMS, each associated with a defined primary genetic defect known to play a role in rhabdomyosarcomagenesis in man. We report that RMS of heterozygous Patched1 (Ptch1) mice show less aggressive growth and a greater degree of differentiation than RMS of heterozygous p53 mice. By means of cDNA microarray analysis we demonstrate that RMS in Ptch1 mutants predominantly express a number of myogenic markers, including myogenic differentiation 1, myosin heavy chain, actin, troponin and tropomyosin, as well as genes associated with Hedgehog/Patched signaling like insulin-like growth factor 2, forkhead box gene Foxf1 and the growth arrest and DNA-damage-inducible gene Gadd45a. In sharp contrast, RMS in p53 mutants display higher expression levels of cell cycle-associated genes like cyclin B1, cyclin-dependent kinase 4 and the proliferation marker Ki-67. These results demonstrate that different causative mutations lead to distinct gene expression profiles in RMS, which appear to reflect their different biological characteristics. Our results provide a first step towards a molecular classification of different forms of RMS. If the described differences can be confirmed in human RMS our results will contribute to a new molecular taxonomy of this cancer, which will be critical for gene mutation- and expression-specific therapy.
Collapse
Affiliation(s)
- Roland Kappler
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker-Weg 12, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Le Grand F, Auda-Boucher G, Levitsky D, Rouaud T, Fontaine-Pérus J, Gardahaut MF. Endothelial cells within embryonic skeletal muscles: a potential source of myogenic progenitors. Exp Cell Res 2005; 301:232-41. [PMID: 15530859 DOI: 10.1016/j.yexcr.2004.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/26/2004] [Indexed: 11/30/2022]
Abstract
We investigated whether the vessel-associated or endothelial cells within mouse embryo muscles can be a source of myogenic progenitors. Immunodetection of the stem cell surface markers, CD34 and Flk1, which are known to characterize the endothelial lineage, was done throughout the course of embryo muscle development. Both markers appeared to be restricted to the vessel-associated cells. On the basis of CD34 labeling, the reactive cells were purified by magnetic-bead selection from the limb muscles of 17-dpc desmin+/-LacZ mouse embryos and characterized by fluorescence-activated cell sorting. The cells in the selected CD34(+) population appeared to be approximately 95% positive for Flk1, but usually negative for CD45. We demonstrated that in vitro the CD34(+)/Flk1(+) population differentiated into endothelial cells and skeletal myofibers. When transplanted into mdx mouse muscle, this population displayed a high propensity to disperse within the recipient muscle, fuse with the host myofibers, and restore dystrophin expression. The marked ability of the embryonic muscle endothelial cells to activate myogenic program could be related to their somitic origin.
Collapse
Affiliation(s)
- Fabien Le Grand
- CNRS UMR 6204, Faculté des Sciences et des Techniques, 44322 Nantes Cedex 3, France
| | | | | | | | | | | |
Collapse
|
149
|
Mastrogiacomo M, Derubeis AR, Cancedda R. Bone and cartilage formation by skeletal muscle derived cells. J Cell Physiol 2005; 204:594-603. [PMID: 15744752 DOI: 10.1002/jcp.20325] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In adult individuals when most tissues have progressively lost the ability to regenerate, bone maintains the potential for a continuous self remodeling. The bone marrow has been so far the main recognized source of osteoprogenitor cells that contribute to the turnover of the skeletal scaffold. The possibility though exists that a pool of osteoprogenitor cells resides within other adult tissues and in particular, as reported previously, in other connective tissues such as fat and skeletal muscle. In an attempt to identify an alternative source of osteoprogenitor cells other than bone marrow we looked into the skeletal muscle. A plastic adhering cell population, from now on referred to as skeletal muscle derived cells (SMDCs), was obtained from biopsies of human skeletal muscle. SMDCs were clonogenic and displayed a fibroblast-like morphology. The isolated cell population had a mesenchymal origin as indicated by abundant expression of type I collagen, fibronectin, and vimentin and appeared heterogeneous. SMDCs were positive for alpha smooth actin, and to a lesser extent for desmin and alpha sarcomeric myosin, two specific markers of the myogenic phenotype. Surprisingly though SMDCs expressed early markers of an osteogenic commitment as indicated by positive staining for alkaline phosphatase, osteopontin, and osteonectin. Under the appropriate stimuli, these cells deposited in vitro a mineralized bone matrix and a proteoglycan rich matrix. In addition, SMDCs cultured in the presence of low serum and insulin differentiated towards adipocytes developing abundant lipid droplets in the cytoplasm. Furthermore SMDCs formed three-dimensional bone tissue in vivo when implanted in an immunodeficient mouse, and a mature cartilage rudiment when maintained as a pellet culture. In summary, we report the isolation and characterization of a cell population from the human skeletal muscle not only able to express in vitro specific markers of distinct mesenchymal lineages (adipogenic, chondrogenic, and osteogenic), but most importantly, able to complete the differentiation pathway leading to the formation of bone and cartilage. In this respect SMDCs resemble bone marrow stromal cells (BMSCs).
Collapse
Affiliation(s)
- M Mastrogiacomo
- Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.
| | | | | |
Collapse
|
150
|
Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, Peterson CA. Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 2004; 3:353-61. [PMID: 15569352 DOI: 10.1111/j.1474-9728.2004.00135.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myogenic progenitors in adult muscle are necessary for the repair, maintenance and hypertrophy of post-mitotic muscle fibers. With age, fat deposition and fibrosis contribute to the decline in the integrity and functional capacity of muscles. In a previous study we reported increased accumulation of lipid in myogenic progenitors obtained from aged mice, accompanied by an up-regulation of genes involved in adipogenic differentiation. The present study was designed to extend our understanding of how aging affects the fate and gene expression profile of myogenic progenitors. Affymetrix murine U74 Genechip analysis was performed using RNA extracted from myogenic progenitors isolated from adult (8-month-old) and aged (24-month-old) DBA/2JNIA mice. The cells from the aged animals exhibited major alterations in the expression level of many genes directly or indirectly involved with the TGFbeta signaling pathway. Our data indicate that with age, myogenic progenitors acquire the paradoxical phenotype of being both TGFbeta activated based on overexpression of TGFbeta-inducible genes, but resistant to the differentiation-inhibiting effects of exogenous TGFbeta. The overexpression of TGFbeta-regulated genes, such as connective tissue growth factor, may play a role in increasing fibrosis in aging muscle.
Collapse
Affiliation(s)
- Marjorie L Beggs
- Department of Geriatrics, Reynolds Center on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|