101
|
Marotta A, Parhar K, Owen D, Dedhar S, Salh B. Characterisation of integrin-linked kinase signalling in sporadic human colon cancer. Br J Cancer 2003; 88:1755-62. [PMID: 12771992 PMCID: PMC2377140 DOI: 10.1038/sj.bjc.6600939] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The putative oncogene, integrin-linked kinase (ILK) is a protein serine/threonine kinase that has been reported to regulate a number of biological properties including anchorage-independent cell cycle progression, tumour cell invasion and apoptosis. Overexpression of ILK has been documented in a wide variety of human malignancies including Ewing's sarcoma (ES), primitive neural ectodermal tumours (PNETs) and prostate tumours (PT). We recently reported that ILK signalling was also dysregulated in patients with the genetic condition familial adenomatous polyposis (FAP), a precursor to colon cancer. In this study, we extended our previous work by investigating the ILK-signalling pathway in sporadic human colon cancer and representative lymph node metastases. The data indicate that the ILK protein is significantly hyperexpressed in malignant acini in relation to normal crypts. Moreover, overexpression of ILK not only coincided with increased MBP phosphotransferase activity but as well with effects on downstream targets like GSK3beta. Based upon the presented data, we propose that ILK signalling is dysregulated early during the development of human colon cancer, and that selective inhibition of this molecule alone or in combination with the standard therapeutic modality might be a more effective means of treating colon cancer.
Collapse
Affiliation(s)
- A Marotta
- Jack Bell Research Center, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
| | - K Parhar
- Jack Bell Research Center, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
| | - D Owen
- Vancouver General Hospital, 855 W12th Ave, Vancouver, BC, Canada V5Z 1M9
| | - S Dedhar
- Jack Bell Research Center, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
- BC Cancer Agency, 600 W10th Ave, Vancouver, BC, Canada V5Z 4E6
| | - B Salh
- Jack Bell Research Center, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
- Department of Medicine, Jack Bell Research Center, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6. E-mail:
| |
Collapse
|
102
|
Clark KA, McGrail M, Beckerle MC. Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes. Development 2003; 130:2611-21. [PMID: 12736206 DOI: 10.1242/dev.00492] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Integrins play a crucial role in cell motility, cell proliferation and cell survival. The evolutionarily conserved LIM protein PINCH is postulated to act as part of an integrin-dependent signaling complex. In order to evaluate the role of PINCH in integrin-mediated cellular events, we have tested directly the in vivo function of PINCH in Drosophila melanogaster. We demonstrate that the steamer duck (stck) alleles that were first identified in a screen for potential integrin effectors represent mutations in Drosophila pinch. stck mutants die during embryogenesis, revealing a key role for PINCH in development. Muscle cells within embryos that have compromised PINCH function display disturbed actin organization and cell-substratum adhesion. Mutation of stck also causes failure of integrin-dependent epithelial cell adhesion in the wing. Consistent with the idea that PINCH could contribute to integrin function, PINCH protein colocalizes with betaPS integrin at sites of actin filament anchorage in both muscle and wing epithelial cells. Furthermore, we show that integrins are required for proper localization of PINCH at the myotendinous junction. The integrin-linked kinase, ILK, is also essential for integrin function. We demonstrate that Drosophila PINCH and ILK are complexed in vivo and are coincident at the integrin-rich muscle-attachment sites in embryonic muscle. Interestingly, ILK localizes appropriately in stck mutant embryos, therefore the phenotypes exhibited by the stck mutants are not attributable to mislocalization of ILK. Our results provide direct genetic evidence that PINCH is essential for Drosophila development and is required for integrin-dependent cell adhesion.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
103
|
Wu MH, Rajkovic A, Burns KH, Yan W, Lin YN, Matzuk MM. Sequence and expression of testis-expressed gene 14 (Tex14): a gene encoding a protein kinase preferentially expressed during spermatogenesis. Gene Expr Patterns 2003; 3:231-6. [PMID: 12711554 DOI: 10.1016/s1567-133x(03)00036-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To discover germ cell-specific genes, we used in silico subtraction and identified testis expressed gene 14 (Tex14). Mouse Tex14 contains an open reading frame encoding a 1450-amino-acid protein, which shares 64% amino acid identity with the predicted human TEX14 protein. The predicted TEX14 amino acid sequence consists of three ankyrin repeats, a protein kinase domain, and a leucine zipper dimerization motif. Northern blot analysis and in situ hybridization show that Tex14 mRNA is expressed specifically in the testis, with highest levels observed in pachytene, diplotene, and meiotically dividing spermatocytes. Two 5' splice variants of mouse Tex14 were discovered by sequencing 5'-RACE polymerase chain reaction products. TEX14 is predicted to be localized to the nucleus, suggesting that it may play a key role in regulating gene expression or modulating nuclear events during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
104
|
Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 2003; 113:37-47. [PMID: 12679033 DOI: 10.1016/s0092-8674(03)00163-6] [Citation(s) in RCA: 297] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell-extracellular matrix adhesion is an important determinant of cell morphology. We show here that migfilin, a LIM-containing protein, localizes to cell-matrix adhesions, associates with actin filaments, and is essential for cell shape modulation. Migfilin interacts with the cell-matrix adhesion protein Mig-2 (mitogen inducible gene-2), a mammalian homolog of UNC-112, and the actin binding protein filamin through its C- and N-terminal domains, respectively. Loss of Mig-2 or migfilin impairs cell shape modulation. Mig-2 recruits migfilin to cell-matrix adhesions, while the interaction with filamin mediates the association of migfilin with actin filaments. Migfilin therefore functions as an important scaffold at cell-matrix adhesions. Together, Mig-2, migfilin and filamin define a connection between cell matrix adhesions and the actin cytoskeleton and participate in the orchestration of actin assembly and cell shape modulation.
Collapse
Affiliation(s)
- Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
105
|
Braun A, Bordoy R, Stanchi F, Moser M, Kostka G G, Ehler E, Brandau O, Fässler R. PINCH2 is a new five LIM domain protein, homologous to PINCHand localized to focal adhesions. Exp Cell Res 2003; 284:239-50. [PMID: 12651156 DOI: 10.1016/s0014-4827(02)00039-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.
Collapse
MESH Headings
- 3T3 Cells
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/metabolism
- Cell Membrane/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Eukaryotic Cells/metabolism
- Eukaryotic Cells/ultrastructure
- Extracellular Matrix/metabolism
- Extracellular Matrix/ultrastructure
- Fetus
- Fibroblasts/metabolism
- Focal Adhesions/metabolism
- Focal Adhesions/ultrastructure
- LIM Domain Proteins
- Membrane Proteins
- Mice
- Molecular Sequence Data
- Myocytes, Cardiac/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Viscera/embryology
- Viscera/metabolism
Collapse
Affiliation(s)
- Attila Braun
- Max Planck Institute for Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Fukuda T, Guo L, Shi X, Wu C. CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. J Cell Biol 2003; 160:1001-8. [PMID: 12654898 PMCID: PMC2172761 DOI: 10.1083/jcb.200212113] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell survival depends on proper propagation of protective signals through intracellular signaling intermediates. We report here that calponin homology domain-containing integrin-linked kinase (ILK)-binding protein (CH-ILKBP), a widely expressed adaptor protein localized at plasma membrane-actin junctions, is essential for transmission of survival signals. Cells that are depleted of CH-ILKBP undergo extensive apoptosis despite the presence of cell-extracellular matrix contacts and soluble growth factors. The activating phosphorylation of protein kinase B (PKB/Akt), a key regulator of apoptosis, is impaired in the absence of CH-ILKBP. Importantly, loss of CH-ILKBP prevents the membrane translocation of PKB/Akt. Furthermore, forced membrane targeting of PKB/Akt bypasses the requirement of CH-ILKBP for the activating phosphorylation of PKB/Akt, suggesting that CH-ILKBP is required for the membrane translocation but not the subsequent phosphorylation of PKB/Akt. Finally, we show that loss of CH-ILKBP is also required for the full activation of extracellular signal-regulated kinase (ERK)1/2. However, restoration of the PKB/Akt activation is sufficient for protection of cells from apoptosis induced by the depletion of CH-ILKBP despite the persistent suppression of the ERK1/2 activation. Thus, CH-ILKBP is an important component of the prosurvival signaling pathway functioning primarily by facilitating the membrane translocation of PKB/Akt and consequently the activation of PKB/Akt in response to extracellular survival signals.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
107
|
Vespa A, Darmon AJ, Turner CE, D'Souza SJA, Dagnino L. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes. J Biol Chem 2003; 278:11528-35. [PMID: 12547824 DOI: 10.1074/jbc.m208337200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.
Collapse
Affiliation(s)
- Alisa Vespa
- Department of Physiology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
108
|
Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S. alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 2003; 22:1688-702. [PMID: 12642872 DOI: 10.1038/sj.onc.1206347] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrins regulate both adhesion and signaling processes involved in proliferation and survival. alpha(v)beta(3) and alpha(v)beta(5) integrins have been shown to mediate cell adhesion and migration. Here we used human ovarian cancer cell lines (IGROV1, SKOV-3) that express alpha(v)beta(3) and alpha(v)beta(5) to study their role in cell proliferation and the signaling pathways involved. We found that alpha(v) integrins regulate cell proliferation through activation of integrin-linked kinase (ILK). An anti-alpha(v)-blocking antibody specifically inhibits the growth of IGROV1 and SKOV-3. The inhibition of cell proliferation involves alpha(v)beta(3) in IGROV1 cells, and both alpha(v)beta(3) and alpha(v)beta(5) in SKOV-3 cells. The reduced growth rate induced by alpha(v) integrin blockade is linked in both cell lines to G1/S cell cycle arrest. alpha(v) integrin blockade by neutralizing antibody as well as cyclic-RGD peptide caused an inhibition of ILK activity and phosphorylation of PKB/Akt on serine-473 but not on threonine-308, and was accompanied by an increase in p27(Kip1) expression. Overexpression of wild-type ILK rescued the phosphorylation of PKB/Akt on serine-473 in cells treated with anti-alpha(v) antibody. Inhibition of ILK by a pharmacological inhibitor results in inhibition of cell proliferation, PKB/Akt phosphorylation and increase of p27(Kip1). These results demonstrate that alpha(v) integrins regulate ovarian cancer cell proliferation through ILK.
Collapse
|
109
|
Campana WM, Myers RR, Rearden A. Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury. Glia 2003; 41:213-23. [PMID: 12528177 DOI: 10.1002/glia.10138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Particularly interesting new cysteine-histidine rich protein (PINCH) is a double zinc finger domain (LIM)-only adapter protein that functions to recruit the integrin-linked kinase (ILK) to sites of integrin activation. Genetic studies have shown that PINCH and ILK are required for integrin signaling. Since integrin activation is associated with Schwann cell migration, neurite outgrowth and regeneration, this study examined PINCH in the normal peripheral nervous system and after chronic constriction injury (CCI) in adult Sprague-Dawley rats. Immunohistochemistry identified PINCH immunoreactivity in cell bodies of dorsal root ganglia (DRG) neurons, axons, satellite cells, and Schwann cells. PINCH immunostaining was localized to the membrane of uninjured DRG cell bodies consistent with its localization at a site of integrin activation. In contrast, 5 days following CCI, PINCH immunostaining was diffuse throughout the DRG cell cytoplasm. Confocal microscopy of primary and transformed Schwann cells localized PINCH in cytoplasmic, perinuclear and nuclear areas. Examination of the PINCH sequence revealed a putative leucine-rich nuclear export signal (NES) and an overlapping basic nuclear localization signal (NLS). To demonstrate nuclear export of PINCH, rabbit anti-PINCH IgG was microinjected into Schwann cell nuclei and allowed to combine with PINCH contained within the nucleus. Immunofluorescence showed that the PINCH and anti-PINCH IgG complex rapidly translocated to the cytoplasm. Treatment with leptomycin B caused nuclear accumulation of PINCH, indicating that the CRM1 pathway mediates nuclear export of PINCH. ILK activity in Schwann cells was enhanced by platelet-derived growth factor (PDGF) and tumor necrosis factor alpha. PINCH immunoprecipitates from PDGF- and TNFalpha-stimulated Schwann cells contained several high-molecular-weight threonine-phosphorylated proteins. Taken together, these results indicate that PINCH is an abundant shuttling/signaling protein in Schwann cells and DRG neurons.
Collapse
Affiliation(s)
- W Marie Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0629, USA.
| | | | | |
Collapse
|
110
|
Zhang Y, Chen K, Tu Y, Velyvis A, Yang Y, Qin J, Wu C. Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. J Cell Sci 2002; 115:4777-86. [PMID: 12432066 DOI: 10.1242/jcs.00166] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PINCH, integrin-linked kinase (ILK) and calponin homology-containing ILK-binding protein (CH-ILKBP) form a ternary complex that plays crucial roles at cell-extracellular matrix adhesion sites. To understand the mechanism underlying the complex formation and recruitment to cell-adhesion sites we have undertaken a combined structural, mutational and cell biological analysis. Three-dimensional structure-based point mutations identified specific PINCH and ILK sites that mediate the complex formation. Analyses of the binding defective point mutants revealed that the assembly of the PINCH-ILK-CH-ILKBP complex is essential for their localization to cell-extracellular matrix adhesion sites. The formation of the PINCH-ILK-CH-ILKBP complex precedes integrin-mediated cell adhesion and spreading. Furthermore, inhibition of protein kinase C, but not that of actin polymerization, inhibited the PINCH-ILK-CH-ILKBP complex formation, suggesting that the PINCH-ILK-CH-ILKBP complex likely serves as a downstream effector of protein kinase C in the cellular control of focal adhesion assembly. Finally, we provide evidence that the formation of the PINCH-ILK-CH-ILKBP complex, while necessary, is not sufficient for ILK localization to cell-extracellular matrix adhesion sites. These results provide new insights into the molecular mechanism underlying the assembly and regulation of cell-matrix adhesion structures.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Zhang Y, Chen K, Guo L, Wu C. Characterization of PINCH-2, a new focal adhesion protein that regulates the PINCH-1-ILK interaction, cell spreading, and migration. J Biol Chem 2002; 277:38328-38. [PMID: 12167643 DOI: 10.1074/jbc.m205576200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Integrin-linked kinase (ILK) is a multidomain protein that plays important roles at cell-extracellular matrix (ECM) adhesion sites. We describe here a new LIM-domain containing protein (termed as PINCH-2) that forms a complex with ILK. PINCH-2 is co-expressed with PINCH-1 (previously known as PINCH), another member of the PINCH protein family, in a variety of human cells. Immunofluorescent staining of cells with PINCH-2-specific antibodies show that PINCH-2 localizes to both cell-ECM contact sites and the nucleus. Deletion of the first LIM (LIM1) domain of PINCH-2 abolished the ability of PINCH-2 to form a complex with ILK. The ILK-binding defective LIM1-deletion mutant, unlike the wild type PINCH-2 or the ILK-binding competent LIM5-deletion mutant, was incapable of localizing to cell-ECM contact sites, suggesting that ILK binding is required for this process. Importantly, the PINCH-2-ILK and PINCH-1-ILK interactions are mutually exclusive. Overexpression of PINCH-2 significantly inhibited the PINCH-1-ILK interaction and reduced cell spreading and migration. These results identify a novel nuclear and focal adhesion protein that associates with ILK and reveals an important role of PINCH-2 in the regulation of the PINCH-1-ILK interaction, cell shape change, and migration.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
112
|
Wang-Rodriguez J, Dreilinger AD, Alsharabi GM, Rearden A. The signaling adapter protein PINCH is up-regulated in the stroma of common cancers, notably at invasive edges. Cancer 2002; 95:1387-95. [PMID: 12216108 DOI: 10.1002/cncr.10878] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND PINCH is an LIM (double zinc finger domain) protein that functions as an adapter at a key convergence point for integrin and growth factor signal transduction. Because no information is available regarding its expression in vivo in human tissues, this study evaluated the distribution and abundance of PINCH in patients with breast, prostate, lung, colon, and skin carcinomas. METHODS A polyclonal antibody was raised to a purified 6-histidine PINCH fusion protein and used to evaluate 74 cases comprising 33 breast carcinomas (21 ductal carcinomas, 6 lobular carcinomas, 4 ductal carcinomas in situ, 2 lobular carcinomas in situ), 22 prostate carcinomas, 5 colon carcinomas, 6 lung carcinomas (3 adenocarcinomas and 3 squamous carcinomas), and 8 skin carcinomas (4 basal cell carcinomas and 4 squamous cell carcinomas) by immunoperoxidase histochemistry of formalin-fixed, paraffin-embedded tissues. Lysates of frozen tissue from the epithelium of two normal breasts and six breast carcinomas were evaluated by immunoblotting. RESULTS Immunostaining for PINCH was increased in the cytoplasm of fibroblastoid cells in areas of the tumor-associated stroma in all carcinomatous tissues evaluated. The most intense stromal immunostaining for PINCH was noted at invasive edges, particularly in breast carcinomatous tissue. Immunoblotting of lysates from normal breast and breast carcinomatous tissue confirmed that PINCH protein expression was markedly increased in breast carcinomatous tissues. CONCLUSIONS PINCH is up-regulated in tumor-associated stromal cells, particularly at invasive edges, and may be a marker for stroma manifesting the ability to facilitate invasion. Because of this and because PINCH functions as a "molecular switch" in signal transduction, PINCH may be a new target for drug discovery aimed at the tumor-associated stroma.
Collapse
|
113
|
Takada T, Noguchi T, Inagaki K, Hosooka T, Fukunaga K, Yamao T, Ogawa W, Matozaki T, Kasuga M. Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. J Biol Chem 2002; 277:34359-66. [PMID: 12101188 DOI: 10.1074/jbc.m206541200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1), a transmembrane-type protein-tyrosine phosphatase, is thought to inhibit integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. Adenovirus-mediated overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of this enzyme, has now been shown to induce apoptosis in NIH 3T3 fibroblasts. This effect of SAP-1 was dependent on cellular caspase activities and was preceded by inactivation of two serine-threonine protein kinases, Akt and integrin-linked kinase (ILK), both of which function downstream of phosphoinositide (PI) 3-kinase to promote cell survival. Coexpression of constitutively active forms of PI 3-kinase or Akt (which fully restored Akt and ILK activities) resulted in partial inhibition of SAP-1-induced cell death. Furthermore, expression of a dominant negative mutant of PI 3-kinase did not induce cell death as efficiently as did SAP-1, although this mutant inhibited Akt and ILK activities more effectively than did SAP-1. Overexpression of SAP-1 had no substantial effect on Ras activity. These results suggest that SAP-1 induces apoptotic cell death by at least two distinct mechanisms: inhibition of cell survival signaling mediated by PI 3-kinase, Akt, and ILK and activation of a caspase-dependent proapoptotic pathway.
Collapse
Affiliation(s)
- Toshiyuki Takada
- Division of Diabetes and Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Guo L, Wu C. Regulation of fibronectin matrix deposition and cell proliferation by the PINCH-ILK-CH-ILKBP complex. FASEB J 2002; 16:1298-300. [PMID: 12060675 DOI: 10.1096/fj.02-0089fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alteration in renal glomerular mesangial cell growth and fibronectin matrix deposition is a hallmark of glomerulosclerosis, which ultimately leads to end-stage renal failure. We have previously shown that the expression of integrin-linked kinase (ILK), a cytoplasmic component of the cell-extracellular matrix contacts, is increased in mesangial cells in human patients with diabetic nephropathy. We show here that ILK forms a complex with PINCH and CH-ILKBP in primary mesangial cells, which are co-clustered at fibrillar adhesions, sites that are involved in fibronectin matrix deposition. To investigate functional significance of the PINCH-ILK-CH-ILKBP complex formation, we expressed the PINCH-binding N-terminal fragment and the CH-ILKBP-binding C-terminal fragment of ILK, respectively, in mesangial cells by using an adenoviral expression system. Overexpression of either the N-terminal fragment or the C-terminal fragment of ILK effectively inhibited the PINCH-ILK-CH-ILKBP complex formation. Inhibition of the PINCH-ILK-CH-ILKBP complex formation significantly reduced fibronectin matrix deposition and inhibited cell proliferation. These results indicate that the PINCH-ILK-CH-ILKBP complex is critically involved in the regulation of mesangial fibronectin matrix deposition and cell proliferation, and suggest that it may potentially serve as a useful target in the therapeutic control of progressive renal failure and other pathological processes involving abnormal cell proliferation and fibronectin matrix deposition.
Collapse
Affiliation(s)
- Lida Guo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
115
|
Sun P, Wang XQ, Lopatka K, Bangash S, Paller AS. Ganglioside loss promotes survival primarily by activating integrin-linked kinase/Akt without phosphoinositide 3-OH kinase signaling. J Invest Dermatol 2002; 119:107-17. [PMID: 12164932 DOI: 10.1046/j.1523-1747.2002.01802.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Keratinocyte gangliosides influence cellular functions, including proliferation, adhesion, migration, and differentiation. The effects of endogenous depletion of membrane gangliosides by gene transfection of a human ganglioside-specific sialidase on cell survival were investigated. Ganglioside depletion promotes survival of the human keratinocyte-derived SCC12 cell line through upregulated phosphorylation of beta1 integrin, and increased phosphorylation and activity of integrin-linked kinase, protein kinase B/Akt, and Bad, with resultant inhibition of caspase-9 activation. Ganglioside deficiency also increases expression of cyclins D1 and E, promoting cell cycle progression from G1 phase to S phase. Inhibition of either protein kinase B/Akt or integrin-linked kinase activity renders the ganglioside-deficient cells susceptible to triggers of apoptosis. Both serine-473 and threonine-308 sites of protein kinase B/Akt show increased phosphorylation in ganglioside-deficient cells, but the cell survival correlates with increased phosphorylation of the serine-473 site of Akt, not with increased phosphorylation of the threonine-308 site. Consistently, blockade of ganglioside GT1b function activates integrin-linked kinase and only the serine-473 site of protein kinase B/Akt. In contrast, antibody-induced blockade of GM3 function increases only threonine-308 phosphorylation of ganglioside-deficient cells. Whereas blockade of phosphoinositide 3-OH kinase function suppresses threonine-308 phosphorylation, it neither inhibits serine-473 phosphorylation nor triggers apoptosis. These data suggest that ganglioside depletion modulates cell survival primarily through protein kinase B/Akt stimulation by a pathway that does not require phosphoinositide 3-OH kinase and epidermal growth factor receptor signaling.
Collapse
Affiliation(s)
- Ping Sun
- Department of Pediatrics, Children's Memorial Institute for Education and Research, North-western University Medical School, 2300 Children's Plaza, Chicago, IL 60614, U.S.A
| | | | | | | | | |
Collapse
|
116
|
Abstract
Recent genetic studies in the worm Caenorhabditis elegans and fruitfly Drosophila have revealed the essential role integrin-linked kinase plays in integrin adhesion - but it apparently acts in this role as an adaptor rather than a kinase.
Collapse
Affiliation(s)
- Christos G Zervas
- Department of Anatomy, University of Cambridge, Tennis Court Road, CB2 1QR, Cambridge, UK
| | | |
Collapse
|
117
|
Yoganathan N, Yee A, Zhang Z, Leung D, Yan J, Fazli L, Kojic DL, Costello PC, Jabali M, Dedhar S, Sanghera J. Integrin-linked kinase, a promising cancer therapeutic target: biochemical and biological properties. Pharmacol Ther 2002; 93:233-42. [PMID: 12191615 DOI: 10.1016/s0163-7258(02)00192-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Integrin-linked kinase (ILK) is an ankyrin repeat-containing Ser/Thr kinase that interacts with the cytoplasmic domains of beta(1) and beta(3) integrins. ILK is widely expressed in tissues throughout the body, and, as might be expected, appears to mediate a diversity of functions relating to its role in coupling integrins and growth factor receptors to downstream signaling pathways. Through its downstream targets protein kinase B/Akt and glycogen synthase kinase-3beta, ILK appears to be involved in several oncogenesis-related events, including suppression of apoptosis and promotion of cell survival, as well as cell migration and invasion. Over-expression of ILK in epithelial cells results in anchorage-independent cell growth with increased cell cycle progression. Inoculation of nude mice with ILK over-expressing cells leads to tumor formation. Furthermore, increased ILK expression and activity have been correlated with malignancy in several human tumor types, including breast, prostate, brain, and colon carcinomas. Based on these findings, ILK represents an excellent therapeutic target for the prevention of tumor progression. Here, we provide an overview of the physical and biochemical properties of ILK, and present data describing the impact of small-molecule ILK inhibitors on several ILK-mediated cellular functions.
Collapse
Affiliation(s)
- N Yoganathan
- Kinetek Pharmaceuticals Inc., Suite 850, 1200 West 73rd Avenue, Vancouver, B.C., V6P 6G5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Nikolopoulos SN, Turner CE. Molecular dissection of actopaxin-integrin-linked kinase-Paxillin interactions and their role in subcellular localization. J Biol Chem 2002; 277:1568-75. [PMID: 11694518 DOI: 10.1074/jbc.m108612200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Paxillin is a focal adhesion adapter protein involved in integrin signaling. We have recently reported that the paxillin LD1 motif acts as a binding interface for both the actin-binding protein actopaxin and the serine/threonine integrin-linked kinase (ILK). In this report we demonstrate the direct association between actopaxin and ILK and dissect the role of the respective interactions in their subcellular localization. Co-immunoprecipitation experiments were employed to map the binding sites on ILK and actopaxin. ILK binds to the CH2 domain of actopaxin. However, an actopaxin CH2 domain mutant defective for paxillin binding (paxillin binding subdomain mutant) retains the capacity to bind ILK, indicating that paxillin and ILK binding sites on actopaxin are distinct. Actopaxin binds to the C terminus of ILK. Despite the direct binding between actopaxin and ILK, mutation analysis confirmed a primary role for paxillin in their localization to focal adhesions. Interestingly, an ILK mutant (E359K) that was previously reported to act as dominant negative for ILK function was unable to bind actopaxin or paxillin and failed to localize to focal adhesions. This mutant also exhibited in vitro kinase activity comparable with wild-type ILK. Taken together, these data suggest that normal ILK signaling is dependent on efficient localization involving multiple protein interactions.
Collapse
Affiliation(s)
- Sotiris N Nikolopoulos
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
119
|
Zhang Y, Guo L, Chen K, Wu C. A critical role of the PINCH-integrin-linked kinase interaction in the regulation of cell shape change and migration. J Biol Chem 2002; 277:318-26. [PMID: 11694512 DOI: 10.1074/jbc.m108257200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The interaction of cells with extracellular matrix recruits multiple proteins to cell-matrix contact sites (e.g. focal and fibrillar adhesions), which connect the extracellular matrix to the actin cytoskeleton and regulate cell shape change, migration, and other cellular processes. We previously identified PINCH, an adaptor protein comprising primarily five LIM domains, as a binding protein for integrin-linked kinase (ILK). In this study, we show that PINCH co-localizes with ILK in both focal adhesions and fibrillar adhesions. Furthermore, we have investigated the molecular basis underlying the targeting of PINCH to the cell-matrix contact sites and the functional significance of the PINCH-ILK interaction. We have found that the N-terminal LIM1 domain, which mediates the ILK binding, is required for the targeting of PINCH to the cell-matrix contact sites. The C-terminal LIM domains, although not absolutely required, play an important regulatory role in the localization of PINCH to cell-matrix contact sites. Inhibition of the PINCH-ILK interaction, either by overexpression of a PINCH N-terminal fragment containing the ILK-binding LIM1 domain or by overexpression of an ILK N-terminal fragment containing the PINCH-binding ankyrin domain, retarded cell spreading, and reduced cell motility. These results suggest that PINCH, through its interaction with ILK, is crucially involved in the regulation of cell shape change and motility.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
120
|
Wang XQ, Sun P, Paller AS. Inhibition of integrin-linked kinase/protein kinase B/Akt signaling: mechanism for ganglioside-induced apoptosis. J Biol Chem 2001; 276:44504-11. [PMID: 11577096 DOI: 10.1074/jbc.m106563200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ganglioside GT1b inhibits keratinocyte attachment to and migration on a fibronectin matrix by binding to alpha(5)beta(1) and preventing alpha(5)beta(1) interaction with fibronectin. The role of gangliosides in triggering keratinocyte apoptosis, however, is unknown. Addition of GT1b to keratinocyte-derived SCC12 cells, grown in serum-free medium but exposed to fibronectin, suppressed Bad phosphorylation, activated caspase-9, and inhibited cyclin D and E expression, resulting in cell cycle arrest at G(1) phase and initiation of apoptosis. The mechanism of GT1b activation of caspase-9 involved inhibition of beta(1) integrin serine/threonine phosphorylation and decreased phosphorylation of both integrin-linked kinase and protein kinase B/Akt at its Ser-473 site, leading to cytochrome c release from mitochondria. Consistently, blockade of GT1b function with anti-GT1b antibody specifically activated the Ser-473 site of Akt, markedly suppressing apoptosis. The ganglioside-induced inhibition of Akt phosphorylation was GT1b-specific and was not observed when cells were treated with other keratinocyte gangliosides, including GD3. These studies suggest that the modulation of keratinocyte cell cycle and survival by GT1b is mediated by its direct interaction with alpha(5)beta(1) and resultant inhibition of the integrin/integrin-linked kinase/protein kinase B/Akt signaling pathway.
Collapse
Affiliation(s)
- X Q Wang
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
121
|
Ishii T, Satoh E, Nishimura M. Integrin-linked kinase controls neurite outgrowth in N1E-115 neuroblastoma cells. J Biol Chem 2001; 276:42994-3003. [PMID: 11560928 DOI: 10.1074/jbc.m105198200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mouse N1E-115 cells grown on a laminin matrix exhibit neurite outgrowth in response to serum deprivation. Treatment of cells with an antibody against beta(1) integrin inhibits neurite outgrowth. Thus, beta(1) integrin is involved in the neuritogenesis of N1E-115 cells on a laminin matrix. Integrin-linked kinase (ILK), a recently identified cytoplasmic serine/threonine protein kinase that binds to the cytoplasmic domain of beta(1) integrin, has an important role in transmembrane signal transduction via integrins. We report that ILK is expressed in N1E-115 cells, the expression levels of which are constant under both normal and differentiating conditions. A stable transfection of a kinase-deficient mutant of ILK (DN-ILK) results in inhibition of neurite outgrowth in serum-starved N1E-115 cells grown on laminin. On the other hand, a transient expression of wild type ILK stimulated neurite outgrowth. The ILK activity in the parental cells was transiently activated after seeding on the laminin matrix, whereas that in the DN-ILK-transfected cells was not. These results suggest that transient activation of ILK is required for neurite outgrowth in serum-starved N1E-115 cells on laminin. Under the same conditions, p38 mitogen-activated protein (MAP) kinase, but neither MAP kinase/extracellular signal-regulated kinase kinase (MEK) nor extracellular signal-regulated kinases (ERK), was transiently activated after N1E-115 cell attachment to laminin, but not in the DN-ILK-expressed cells. The time course of p38 MAP kinase activation was very similar to that of ILK activation. Furthermore, a p38 MAP kinase inhibitor, SB203580, significantly blocked neurite outgrowth. Thus, activation of p38 MAP kinase is involved in ILK-mediated signal transduction leading to integrin-dependent neurite outgrowth in N1E-115 cells.
Collapse
Affiliation(s)
- T Ishii
- Department of Pharmacology, University of Obihiro School of Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | | | | |
Collapse
|
122
|
Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 2001; 155:505-10. [PMID: 11696562 PMCID: PMC2198863 DOI: 10.1083/jcb.200108077] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
How intracellular cytoskeletal and signaling proteins connect and communicate with the extracellular matrix (ECM) is a fundamental question in cell biology. Recent biochemical, cell biological, and genetic studies have revealed important roles of cytoplasmic integrin-linked kinase (ILK) and its interactive proteins in these processes. Cell adhesion to ECM is an important process that controls cell shape change, migration, proliferation, survival, and differentiation. Upon adhesion to ECM, integrins and a selective group of cytoskeletal and signaling proteins are recruited to cell matrix contact sites where they link the actin cytoskeleton to the ECM and mediate signal transduction between the intracellular and extracellular compartments. In this review, we discuss the molecular activities and cellular functions of ILK, a protein that is emerging as a key component of the cell-ECM adhesion structures.
Collapse
Affiliation(s)
- C Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
123
|
Guo L, Sanders PW, Woods A, Wu C. The distribution and regulation of integrin-linked kinase in normal and diabetic kidneys. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1735-42. [PMID: 11696434 PMCID: PMC1867072 DOI: 10.1016/s0002-9440(10)63020-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alteration in cell adhesion and extracellular matrix deposition is a hallmark of diabetic glomerulosclerosis. Integrin-linked kinase (ILK) is a recently identified integrin cytoplasmic-binding protein that has been implicated in the regulation of cell adhesion and extracellular matrix deposition. To begin to investigate whether ILK is involved in the pathogenesis of diabetic glomerulosclerosis, we have analyzed the distribution and regulation of ILK in normal and diabetic kidneys as well as in isolated mesangial cells. We have found that ILK is normally expressed at high concentration in visceral epithelial cells. In diabetic glomeruli, ILK expression in the mesangium is dramatically increased. The increase in ILK level is associated with diffuse mesangial expansion. In glomeruli where advanced nodular sclerosis and global sclerosis were dominant, ILK level was reduced, suggesting that the increase in ILK expression likely associates with relatively early glomerulosclerosis. Additionally, we have found that exposure of mesangial cells to high concentrations of glucose significantly increased the ILK level. Finally, we show that ILK localizes to regions of cell membranes that are in close contact with mesangial fibronectin matrix. These results suggest that ILK is likely involved in mesangial matrix expansion in response to hyperglycemia in the pathogenesis of diabetic glomerulosclerosis.
Collapse
Affiliation(s)
- L Guo
- Department of Cell Biology and the Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
124
|
Chapin RE, Wine RN, Harris MW, Borchers CH, Haseman JK. Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium. JOURNAL OF ANDROLOGY 2001; 22:1030-52. [PMID: 11700851 DOI: 10.1002/j.1939-4640.2001.tb03444.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spermiation, the release of late spermatids from the Sertoli cell, is disrupted by a number of toxicants. Control of the spermiation process, and the proteins that interact to adhere mature spermatids to Sertoli cells, is poorly understood. In these studies we used immunohistochemistry, coimmunoprecipitation/Western blotting, and mass spectrometry to refine an earlier model of sperm adhesion proposed by our laboratory. We have identified specific proteins linked together as part of a multiprotein complex, as well as several additional proteins (cortactin, ERK1/2, and 14-3-3 zeta) that may be functioning in both structural and signal transduction roles. The current and prior data suggest that protein phosphorylation is central to the control of spermiation. We also present and characterize an in vitro tubule culture system that allowed functional testing of the spermiation model by pharmacologic manipulation, and yielded data consistent with the importance of protein phosphorylation in spermiation.
Collapse
Affiliation(s)
- R E Chapin
- Reproductive Toxicology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | | | | | | | |
Collapse
|
125
|
Nikolopoulos SN, Turner CE. Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions. J Biol Chem 2001; 276:23499-505. [PMID: 11304546 DOI: 10.1074/jbc.m102163200] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paxillin is a focal adhesion adapter protein involved in integrin signaling. Paxillin LD motifs bind several focal adhesion proteins including the focal adhesion kinase, vinculin, the Arf-GTPase-activating protein paxillin-kinase linker, and the newly identified actin-binding protein actopaxin. Microsequencing of peptides derived from a 50-kDa paxillin LD1 motif-binding protein revealed 100% identity with integrin-linked kinase (ILK)-1, a serine/threonine kinase that has been implicated in integrin, growth factor, and Wnt signaling pathways. Cloning of ILK from rat smooth muscle cells generated a cDNA that exhibited 99.6% identity at the amino acid level with human ILK-1. A monoclonal antibody raised against a region of the carboxyl terminus of ILK, which is identical in rat and human ILK-1 protein, recognized a 50-kDa protein in all cultured cells and tissues examined. Binding experiments showed that ILK binds directly to the paxillin LD1 motif in vitro. Co-immunoprecipitation from fibroblasts confirmed that the association between paxillin and ILK occurs in vivo in both adherent cells and cells in suspension. Immunofluorescence microscopy of fibroblasts demonstrated that endogenous ILK as well as transfected green fluorescent protein-ILK co-localizes with paxillin in focal adhesions. Analysis of the deduced amino acid sequence of ILK identified a paxillin-binding subdomain in the carboxyl terminus of ILK. In contrast to wild-type ILK, paxillin-binding subdomain mutants of ILK were unable to bind to the paxillin LD1 motif in vitro and failed to localize to focal adhesions. Thus, paxillin binding is necessary for efficient focal adhesion targeting of ILK and may therefore impact the role of ILK in integrin-mediated signal transduction events.
Collapse
Affiliation(s)
- S N Nikolopoulos
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
126
|
Yamaji S, Suzuki A, Sugiyama Y, Koide YI, Yoshida M, Kanamori H, Mohri H, Ohno S, Ishigatsubo Y. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction. J Cell Biol 2001; 153:1251-64. [PMID: 11402068 PMCID: PMC2192033 DOI: 10.1083/jcb.153.6.1251] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Focal adhesions (FAs) are essential structures for cell adhesion, migration, and morphogenesis. Integrin-linked kinase (ILK), which is capable of interacting with the cytoplasmic domain of beta1 integrin, seems to be a key component of FAs, but its exact role in cell-substrate interaction remains to be clarified. Here, we identified a novel ILK-binding protein, affixin, that consists of two tandem calponin homology domains. In CHOcells, affixin and ILK colocalize at FAs and at the tip of the leading edge, whereas in skeletal muscle cells they colocalize at the sarcolemma where cells attach to the basal lamina, showing a striped pattern corresponding to cytoplasmic Z-band striation. When CHO cells are replated on fibronectin, affixin and ILK but not FA kinase and vinculin concentrate at the cell surface in blebs during the early stages of cell spreading, which will grow into membrane ruffles on lamellipodia. Overexpression of the COOH-terminal region of affixin, which is phosphorylated by ILK in vitro, blocks cell spreading at the initial stage, presumably by interfering with the formation of FAs and stress fibers. The coexpression of ILK enhances this effect. These results provide evidence suggesting that affixin is involved in integrin-ILK signaling required for the establishment of cell-substrate adhesion.
Collapse
Affiliation(s)
- Satoshi Yamaji
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Suzuki
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Sugiyama
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yu-ichi Koide
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michihiko Yoshida
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Heiwa Kanamori
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hiroshi Mohri
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yoshiaki Ishigatsubo
- The First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
127
|
Tu Y, Huang Y, Zhang Y, Hua Y, Wu C. A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol 2001; 153:585-98. [PMID: 11331308 PMCID: PMC2190577 DOI: 10.1083/jcb.153.3.585] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 03/21/2001] [Indexed: 12/12/2022] Open
Abstract
Integrin-linked kinase (ILK) is a multidomain focal adhesion (FA) protein that functions as an important regulator of integrin-mediated processes. We report here the identification and characterization of a new calponin homology (CH) domain-containing ILK-binding protein (CH-ILKBP). CH-ILKBP is widely expressed and highly conserved among different organisms from nematodes to human. CH-ILKBP interacts with ILK in vitro and in vivo, and the ILK COOH-terminal domain and the CH-ILKBP CH2 domain mediate the interaction. CH-ILKBP, ILK, and PINCH, a FA protein that binds the NH(2)-terminal domain of ILK, form a complex in cells. Using multiple approaches (epitope-tagged CH-ILKBP, monoclonal anti-CH-ILKBP antibodies, and green fluorescent protein-CH-ILKBP), we demonstrate that CH-ILKBP localizes to FAs and associates with the cytoskeleton. Deletion of the ILK-binding CH2 domain abolished the ability of CH-ILKBP to localize to FAs. Furthermore, the CH2 domain alone is sufficient for FA targeting, and a point mutation that inhibits the ILK-binding impaired the FA localization of CH-ILKBP. Thus, the CH2 domain, through its interaction with ILK, mediates the FA localization of CH-ILKBP. Finally, we show that overexpression of the ILK-binding CH2 fragment or the ILK-binding defective point mutant inhibited cell adhesion and spreading. These findings reveal a novel CH-ILKBP-ILK-PINCH complex and provide important evidence for a crucial role of this complex in the regulation of cell adhesion and cytoskeleton organization.
Collapse
Affiliation(s)
- Yizeng Tu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yao Huang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yongjun Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yun Hua
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
128
|
Somasiri A, Howarth A, Goswami D, Dedhar S, Roskelley CD. Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J Cell Sci 2001; 114:1125-36. [PMID: 11228156 DOI: 10.1242/jcs.114.6.1125] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signals generated by the interaction of (β)1 integrins with laminin in the basement membrane contribute to mammary epithelial cell morphogenesis and differentiation. The integrin-linked kinase (ILK) is one of the signaling moieties that associates with the cytoplasmic domain of (β)1 integrin subunits with some specificity. Forced expression of a dominant negative, kinase-dead form of ILK subtly altered mouse mammary epithelial cell morphogenesis but it did not prevent differentiative milk protein expression. In contrast, forced overexpression of wild-type ILK strongly inhibited both morphogenesis and differentiation. Overexpression of wild-type ILK also caused the cells to lose the cell-cell adhesion molecule E-cadherin, become invasive, reorganize cortical actin into cytoplasmic stress fibers, and switch from an epithelial cytokeratin to a mesenchymal vimentin intermediate filament phenotype. Forced expression of E-cadherin in the latter mesenchymal cells rescued epithelial cytokeratin expression and it partially restored the ability of the cells to differentiate and undergo morphogenesis. These data demonstrate that ILK, which responds to interactions between cells and the extracellular matrix, induces a mesenchymal transformation in mammary epithelial cells, at least in part, by disrupting cell-cell junctions.
Collapse
Affiliation(s)
- A Somasiri
- Dept of Anatomy, University of British Columbia, Vancouver B.C., Canada, V6T 1Z3
| | | | | | | | | |
Collapse
|
129
|
Zervas CG, Gregory SL, Brown NH. Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol 2001; 152:1007-18. [PMID: 11238456 PMCID: PMC2198807 DOI: 10.1083/jcb.152.5.1007] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Integrin-linked kinase (ILK) was identified by its interaction with the cytoplasmic tail of human beta1 integrin and previous data suggest that ILK is a component of diverse signaling pathways, including integrin, Wnt, and protein kinase B. Here we show that the absence of ILK function in Drosophila causes defects similar to loss of integrin adhesion, but not similar to loss of these signaling pathways. ILK mutations cause embryonic lethality and defects in muscle attachment, and clones of cells lacking ILK in the adult wing fail to adhere, forming wing blisters. Consistent with this, an ILK-green fluorescent protein fusion protein colocalizes with the position-specific integrins at sites of integrin function: muscle attachment sites and the basal junctions of the wing epithelium. Surprisingly, mutations in the kinase domain shown to inactivate the kinase activity of human ILK do not show any phenotype in Drosophila, suggesting a kinase-independent function for ILK. The muscle detachment in ILK mutants is associated with detachment of the actin filaments from the muscle ends, unlike integrin mutants, in which the primary defect is detachment of the plasma membrane from the extracellular matrix. Our data suggest that ILK is a component of the structure linking the cytoskeleton and the plasma membrane at sites of integrin-mediated adhesion.
Collapse
Affiliation(s)
- Christos G. Zervas
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Stephen L. Gregory
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Nicholas H. Brown
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
130
|
Velyvis A, Yang Y, Wu C, Qin J. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain. J Biol Chem 2001; 276:4932-9. [PMID: 11078733 DOI: 10.1074/jbc.m007632200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.
Collapse
Affiliation(s)
- A Velyvis
- Structural Biology Program, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
131
|
Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, de Herreros AG, Dedhar S. Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells. Oncogene 2001; 20:133-40. [PMID: 11244511 DOI: 10.1038/sj.onc.1204052] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of functional adenomatous polyposis coli (APC) protein results in the stabilization of cytosolic beta-catenin and activation of genes that are responsive to Lef/Tcf family transcription factors. We have recently shown that an independent cell adhesion and integrin linked kinase (ILK)-dependent pathway can also activate beta-catenin/LEF mediated gene transcription and downregulate E-cadherin expression. In addition, ILK activity and expression are elevated in adenomatous polyposis and colon carcinomas. To examine the role of this pathway in the background of APC mutations we inhibited ILK activity in APC-/- human colon carcinoma cell lines. In all cases, inhibition of ILK resulted in substantial inhibition of TCF mediated gene transcription and inhibition of transcription and expression of the TCF regulated gene, cyclin D1. Inhibition of ILK resulted in decreased nuclear beta-catenin expression, and in the inhibition of phosphorylation of GSK-3 and stimulation of its activity, leading to accelerated degradation of beta-catenin. In addition, inhibition of ILK suppressed cell growth in culture as well as growth of human colon carcinoma cells in SCID mice. Strikingly, inhibition of ILK also resulted in the transcriptional stimulation of E-cadherin expression and correlated with the inhibition of gene transcription of snail, a repressor of E-cadherin gene expression. Overexpression of ILK caused a stimulation of expression of snail, but snail expression was found not to be regulated by beta-catenin/Tcf. These data demonstrate that ILK can regulate beta-catenin/TCF and snail transcription factors by distinct pathways. We propose that inhibition of ILK may be a useful strategy in the control of progression of colon as well as other carcinomas. Oncogene (2001) 20, 133 - 140.
Collapse
Affiliation(s)
- C Tan
- BC Cancer Agency and Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | | | | | | | | | | | | |
Collapse
|
132
|
Huang Y, Li J, Zhang Y, Wu C. The roles of integrin-linked kinase in the regulation of myogenic differentiation. J Cell Biol 2000; 150:861-72. [PMID: 10953009 PMCID: PMC2175275 DOI: 10.1083/jcb.150.4.861] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Accepted: 07/07/2000] [Indexed: 01/14/2023] Open
Abstract
Myogenic differentiation is a highly orchestrated, multistep process that is coordinately regulated by growth factors and cell adhesion. We show here that integrin-linked kinase (ILK), an intracellular integrin- and PINCH-binding serine/threonine protein kinase, is an important regulator of myogenic differentiation. ILK is abundantly expressed in C2C12 myoblasts, both before and after induction of terminal myogenic differentiation. However, a noticeable amount of ILK in the Triton X-100-soluble cellular fractions is significantly reduced during terminal myogenic differentiation, suggesting that ILK is involved in cellular control of myogenic differentiation. To further investigate this, we have overexpressed the wild-type and mutant forms of ILK in C2C12 myoblasts. Overexpression of ILK in the myoblasts inhibited the expression of myogenic proteins (myogenin, MyoD, and myosin heavy chain) and the subsequent formation of multinucleated myotubes. Furthermore, mutations that eliminate either the PINCH-binding or the kinase activity of ILK abolished its ability to inhibit myogenic protein expression and allowed myotube formation. Although overexpression of the ILK mutants is permissive for the initiation of terminal myogenic differentiation, the myotubes derived from myoblasts overexpressing the ILK mutants frequently exhibited an abnormal morphology (giant myotubes containing clustered nuclei), suggesting that ILK functions not only in the initial decision making process, but also in later stages (fusion or maintaining myotube integrity) of myogenic differentiation. Additionally, we show that overexpression of ILK, but not that of the PINCH-binding defective or the kinase-deficient ILK mutants, prevents inactivation of MAP kinase, which is obligatory for the initiation of myogenic differentiation. Finally, inhibition of MAP kinase activation reversed the ILK-induced suppression of myogenic protein expression. Thus, ILK likely influences the initial decision making process of myogenic differentiation by regulation of MAP kinase activation.
Collapse
Affiliation(s)
- Yao Huang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
- The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Ji Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
- The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Yongjun Zhang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
- The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Chuanyue Wu
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
- The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| |
Collapse
|
133
|
Mulrooney J, Foley K, Vineberg S, Barreuther M, Grabel L. Phosphorylation of the beta1 integrin cytoplasmic domain: toward an understanding of function and mechanism. Exp Cell Res 2000; 258:332-41. [PMID: 10896784 DOI: 10.1006/excr.2000.4964] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As F9 stem cells differentiate into parietal endoderm they form focal adhesion sites. There is a concomitant decrease in the level of phosphorylation of S785 in the cytoplasmic domain of the beta1 integrin subunit. Previous transfection studies demonstrate that site-specific mutations at this residue, mimicking different phosphorylation states, can alter the subcellular localization of the subunit in differentiating F9 cells. We now extend these observations in an attempt to substantiate the function of beta1 phosphorylation and determine how the phosphorylation levels are regulated. We show that treatment of parietal endoderm with okadaic acid induces an increase in beta1 phosphorylation and selective loss of beta1 from focal adhesion sites. Using a PCR approach, we identify two phosphatases expressed in parietal endoderm, including PP2A. Using a crosslinking approach, where antibodies are added to live cells, we show that the catalytic subunit of PP2A co-immunoprecipitates with beta1. Immunocytochemistry shows PP2A colocalizing to focal adhesion sites with beta1. In addition integrin-linked kinase (ILK) co-immunoprecipitates with beta1 in parietal endoderm and localizes to focal adhesion sites. Okadaic acid treatment significantly decreases the level of ILK associated with beta1. A possible role for regulated beta1 phosphorylation in cell migration is discussed.
Collapse
Affiliation(s)
- J Mulrooney
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459-0170, USA
| | | | | | | | | |
Collapse
|
134
|
Janji B, Melchior C, Vallar L, Kieffer N. Cloning of an isoform of integrin-linked kinase (ILK) that is upregulated in HT-144 melanoma cells following TGF-beta1 stimulation. Oncogene 2000; 19:3069-77. [PMID: 10871859 DOI: 10.1038/sj.onc.1203640] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have shown previously that integrin-linked kinase (ILK) is upregulated in human HT-144 melanoma cells following TGF-beta1 stimulation. Using mRNA from TGF-beta1 stimulated HT-144 cells and reverse transcriptase polymerase chain reaction, we have isolated a cDNA encoding a protein highly homologous to ILK. Sequencing of the full-length 1359 base pair cDNA and polypeptide translation revealed that this protein, designated ILK-2, differs from the known ILK (hereafter called ILK-1) by only four amino acids, while the cDNA sequence diverges by 102 nucleotides, thus excluding that ILK-2 is an allelic variant of ILK-1. Expression of ILK-2 mRNA was observed in metastatic human HT-144 melanoma and HT-1080 fibrosarcoma cell lines, but not in normal human tissues. Moreover, stimulation of HT-144 cells with TGF-beta1, but not with EGF, PDGF-AB or insulin, induced a selective overexpression of ILK-2 mRNA as compared to ILK-1 mRNA. Bacterially-expressed GST/ILK-2 autophosphorylated and labeled myelin basic protein as well as a recombinant GST/beta3 integrin cytoplasmic tail peptide. Transfection of either ILK-2 or ILK-1 cDNA into the non-metastatic melanoma cell line SK-Mel-2, expressing exclusively ILK-1, induced anchorage independent cell growth and cell proliferation, as demonstrated by growth in soft agar. Our data provide evidence that ILK-2 is a new isoform of ILK-1 that is expressed in some highly invasive tumor cell lines but not in normal adult human tissues and whose expression is regulated by TGF-beta1.
Collapse
Affiliation(s)
- B Janji
- Laboratoire Franco-Luxembourgeois de Recherche Biomedicale (CRP-Sante/CNRS), University Center, L-1511 Luxembourg, Grand-Duchy of Luxembourg
| | | | | | | |
Collapse
|
135
|
Abstract
Interactions between cells and the extracellular matrix (ECM) result in the regulation of cell growth, cell differentiation and cell migration. These interactions are mediated by integrins and growth factor receptors and intracellular effectors that couple these receptors to downstream components are key to the transduction of ECM signals. This review summarizes recent advances in our understanding of signal transduction via integrins, focusing on the role of integrin-linked kinase in some of these pathways. Research into this interesting protein is uncovering novel aspects of coordinated signaling by the ECM and growth factors.
Collapse
Affiliation(s)
- S Dedhar
- Department of Biochemistry, University of British Columbia, BC Cancer Agency and Vancouver Hospital, Jack Bell Research Center, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
136
|
Persad S, Attwell S, Gray V, Delcommenne M, Troussard A, Sanghera J, Dedhar S. Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci U S A 2000; 97:3207-12. [PMID: 10716737 PMCID: PMC16217 DOI: 10.1073/pnas.97.7.3207] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PTEN is a tumor suppressor gene located on chromosome 10q23 that encodes a protein and phospholipid phosphatase. Somatic mutations of PTEN are found in a number of human malignancies, and loss of expression, or mutational inactivation of PTEN, leads to the constitutive activation of protein kinase B (PKB)/Akt via enhanced phosphorylation of Thr-308 and Ser-473. We recently have demonstrated that the integrin-linked kinase (ILK) can phosphorylate PKB/Akt on Ser-473 in a phosphoinositide phospholipid-dependent manner. We now demonstrate that the activity of ILK is constitutively elevated in a serum- and anchorage-independent manner in PTEN-mutant cells, and transfection of wild-type (WT) PTEN into these cells inhibits ILK activity. Transfection of a kinase-deficient, dominant-negative form of ILK or exposure to a small molecule ILK inhibitor suppresses the constitutive phosphorylation of PKB/Akt on Ser-473, but not on Thr-308, in the PTEN-mutant prostate carcinoma cell lines PC-3 and LNCaP. Transfection of dominant-negative ILK and WT PTEN into these cells also results in the inhibition of PKB/Akt kinase activity. Furthermore, dominant-negative ILK or WT PTEN induces G(1) phase cycle arrest and enhanced apoptosis. Together, these data demonstrate a critical role for ILK in PTEN-dependent cell cycle regulation and survival and indicate that inhibition of ILK may be of significant value in PTEN-mutant tumor therapy.
Collapse
Affiliation(s)
- S Persad
- British Columbia Cancer Agency and Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | | | | | | | | | | | | |
Collapse
|
137
|
Wu C. Integrin-linked kinase and PINCH: partners in regulation of cell-extracellular matrix interaction and signal transduction. J Cell Sci 1999; 112 ( Pt 24):4485-9. [PMID: 10574698 DOI: 10.1242/jcs.112.24.4485] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-linked kinase (ILK) is a focal adhesion serine/threonine protein kinase that is emerging as a key signaling protein functioning at one of the early convergence points of integrin- and growth factor-signaling pathways. ILK binds to PINCH through the N-terminal ankyrin (ANK) repeat domain and the PINCH binding is crucial for focal adhesion localization of ILK. The ILK-PINCH interaction also connects ILK to Nck-2, an SH2-SH3-containing adaptor protein that interacts with components of growth factor and small GTPase signaling pathways. The kinase activity of ILK is regulated by both cell adhesion and growth factors in a phosphoinositide 3-kinase (PI3K)-dependent manner. ILK phosphorylates downstream targets such as protein kinase B (PKB, also known as Akt) and glycogen synthase kinase 3 (GSK-3) and regulates their activities. Overexpression of ILK in epithelial cells leads to striking morphological changes mimicking epithelial-mesenchymal transition, including upregulation of integrin-mediated fibronectin matrix assembly and downregulation of cell-cell adhesions. Furthermore, ILK regulates nuclear translocation of (beta)-catenin and gene expression, and promotes cell cycle progression and tumor formation. Recent genetic studies in Drosophila melanogaster and Caenorhabditis elegans have shown that lack of expression of ILK or PINCH results in phenotypes resembling those of integrin-null mutants, which demonstrates that ILK and PINCH are indispensable for integrin function during embryonic development.
Collapse
Affiliation(s)
- C Wu
- Department of Cell Biology and The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.
| |
Collapse
|