101
|
Zhang JF, Mehta S, Zhang J. Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors. Annu Rev Pharmacol Toxicol 2021; 61:587-608. [PMID: 33411579 DOI: 10.1146/annurev-pharmtox-010617-053137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How cells muster a network of interlinking signaling pathways to faithfully convert diverse external cues to specific functional outcomes remains a central question in biology. Through their ability to convert dynamic biochemical activities to rapid and precise optical readouts, genetically encoded fluorescent biosensors have become instrumental in unraveling the molecular logic controlling the specificity of intracellular signaling. In this review, we discuss how the use of genetically encoded fluorescent biosensors to visualize dynamic signaling events within their native cellular context is elucidating the different strategies employed by cells to organize signaling activities into discrete compartments, or signaling microdomains, to ensure functional specificity.
Collapse
Affiliation(s)
- Jin-Fan Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA;
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
102
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
103
|
Vaccari Cardoso B, Barrera I, Mosienko V, Gourine AV, Kasparov S, Teschemacher AG. Expression of Microbial Enzymes in Mammalian Astrocytes to Modulate Lactate Release. Brain Sci 2021; 11:brainsci11081056. [PMID: 34439675 PMCID: PMC8394253 DOI: 10.3390/brainsci11081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Astrocytes support and modulate neuronal activity through the release of L-lactate. The suggested roles of astrocytic lactate in the brain encompass an expanding range of vital functions, including central control of respiration and cardiovascular performance, learning, memory, executive behaviour and regulation of mood. Studying the effects of astrocytic lactate requires tools that limit the release of lactate selectively from astrocytes. Here, we report the validation in vitro of novel molecular constructs derived from enzymes originally found in bacteria, that when expressed in astrocytes, interfere with lactate handling. When lactate 2-monooxygenase derived from M. smegmatis was specifically expressed in astrocytes, it reduced intracellular lactate pools as well as lactate release upon stimulation. D-lactate dehydrogenase derived from L. bulgaricus diverts pyruvate towards D-lactate production and release by astrocytes, which may affect signalling properties of lactate in the brain. Together with lactate oxidase, which we have previously described, this set of transgenic tools can be employed to better understand astrocytic lactate release and its role in the regulation of neuronal activity in different behavioural contexts.
Collapse
Affiliation(s)
- Barbara Vaccari Cardoso
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; (B.V.C.); (I.B.); (S.K.)
| | - Iliana Barrera
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; (B.V.C.); (I.B.); (S.K.)
| | - Valentina Mosienko
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK;
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK;
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; (B.V.C.); (I.B.); (S.K.)
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; (B.V.C.); (I.B.); (S.K.)
- Correspondence:
| |
Collapse
|
104
|
Bonvento G, Bolaños JP. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab 2021; 33:1546-1564. [PMID: 34348099 DOI: 10.1016/j.cmet.2021.07.006] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
The brain has almost no energy reserve, but its activity coordinates organismal function, a burden that requires precise coupling between neurotransmission and energy metabolism. Deciphering how the brain accomplishes this complex task is crucial to understand central facets of human physiology and disease mechanisms. Each type of neural cell displays a peculiar metabolic signature, forcing the intercellular exchange of metabolites that serve as both energy precursors and paracrine signals. The paradigm of this biological feature is the astrocyte-neuron couple, in which the glycolytic metabolism of astrocytes contrasts with the mitochondrial oxidative activity of neurons. Astrocytes generate abundant mitochondrial reactive oxygen species and shuttle to neurons glycolytically derived metabolites, such as L-lactate and L-serine, which sustain energy needs, conserve redox status, and modulate neurotransmitter-receptor activity. Conversely, early disruption of this metabolic cooperation may contribute to the initiation or progression of several neurological diseases, thus requiring innovative therapies to preserve brain energetics.
Collapse
Affiliation(s)
- Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
105
|
Bearham J, Krutrök N, Lindberg B, Woodall M, Astrand A, Taylor JD, Biggart M, Vasiljevs S, Tarran R, Baines DL. A modified fluorescent sensor for reporting glucose concentration in the airway lumen. PLoS One 2021; 16:e0254248. [PMID: 34242292 PMCID: PMC8270177 DOI: 10.1371/journal.pone.0254248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
We have modified the periplasmic Escherichia coli glucose/galactose binding protein (GBP) and labelled with environmentally sensitive fluorophores to further explore its potential as a sensor for the evaluation of glucose concentration in airway surface liquid (ASL). We identified E149C/A213R GBP labelled with N,N'-Dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, emission wavelength maximum 536nm) with a Kd for D-glucose of 1.02mM and a fluorescence dynamic range of 5.8. This sensor was specific for D-glucose and exhibited fluorescence stability in experiments for several hours. The use of E149C/A213R GBP-IANBD in the ASL of airway cells grown at air-liquid-interface (ALI) detected an increase in glucose concentration 10 minutes after raising basolateral glucose from 5 to 15mM. This sensor also reported a greater change in ASL glucose concentration in response to increased basolateral glucose in H441 airway cells compared to human bronchial epithelial cells (HBEC) and there was less variability with HBEC data than that of H441 indicating that HBEC more effectively regulate glucose movement into the ASL. The sensor detected glucose in bronchoalveolar lavage fluid (BALf) from diabetic db/db mice but not normoglycaemic wildtype mice, indicating limited sensitivity of the sensor at glucose concentrations <50μM. Using nasal inhalation of the sensor and spectral unmixing to generate images, E149C/A213R GBP-IANBD fluorescence was detected in luminal regions of cryosections of the murine distal lung that was greater in db/db than wildtype mice. In conclusion, this sensor provides a useful tool for further development to measure luminal glucose concentration in models of lung/airway to explore how this may change in disease.
Collapse
Affiliation(s)
- Jade Bearham
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Nina Krutrök
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Botilda Lindberg
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maximillian Woodall
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Annika Astrand
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - John D. Taylor
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Biggart
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| |
Collapse
|
106
|
Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab 2021; 33:1307-1321. [PMID: 33915111 PMCID: PMC9015673 DOI: 10.1016/j.cmet.2021.04.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Altered tissue mechanics and metabolism are defining characteristics of cancer that impact not only proliferation but also migration. While migrating through a mechanically and spatially heterogeneous microenvironment, changes in metabolism allow cells to dynamically tune energy generation and bioenergetics in response to fluctuating energy needs. Physical cues from the extracellular matrix influence mechanosignaling pathways, cell mechanics, and cytoskeletal architecture to alter presentation and function of metabolic enzymes. In cancer, altered mechanosensing and metabolic reprogramming supports metabolic plasticity and high energy production while cells migrate and metastasize. Here, we discuss the role of mechanoresponsive metabolism in regulating cell migration and supporting metastasis as well as the potential of therapeutically targeting cancer metabolism to block motility and potentially metastasis.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
107
|
Matrix Stiffness Modulates Metabolic Interaction between Human Stromal and Breast Cancer Cells to Stimulate Epithelial Motility. Metabolites 2021; 11:metabo11070432. [PMID: 34357326 PMCID: PMC8308000 DOI: 10.3390/metabo11070432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Breast tumors belong to the type of desmoplastic lesion in which a stiffer tissue structure is a determinant of breast cancer progression and constitutes a risk factor for breast cancer development. It has been proposed that cancer-associated stromal cells (responsible for this fibrotic phenomenon) are able to metabolize glucose via lactate production, which supports the catabolic metabolism of cancer cells. The aim of this work was to investigate the possible functional link between these two processes. To measure the effect of matrix rigidity on metabolic determinations, we used compliant elastic polyacrylamide gels as a substrate material, to which matrix molecules were covalently linked. We evaluated metabolite transport in stromal cells using two different FRET (Fluorescence Resonance Energy Transfer) nanosensors specific for glucose and lactate. Cell migration/invasion was evaluated using Transwell devices. We show that increased stiffness stimulates lactate production and glucose uptake by mammary fibroblasts. This response was correlated with the expression of stromal glucose transporter Glut1 and monocarboxylate transporters MCT4. Moreover, mammary stromal cells cultured on stiff matrices generated soluble factors that stimulated epithelial breast migration in a stiffness-dependent manner. Using a normal breast stromal cell line, we found that a stiffer extracellular matrix favors the acquisition mechanistical properties that promote metabolic reprograming and also constitute a stimulus for epithelial motility. This new knowledge will help us to better understand the complex relationship between fibrosis, metabolic reprogramming, and cancer malignancy.
Collapse
|
108
|
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. Proc Natl Acad Sci U S A 2021; 118:2026786118. [PMID: 34140336 DOI: 10.1073/pnas.2026786118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.
Collapse
|
109
|
Hong S, Pawel GT, Pei R, Lu Y. Recent progress in developing fluorescent probes for imaging cell metabolites. Biomed Mater 2021; 16. [PMID: 33915523 DOI: 10.1088/1748-605x/abfd11] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/29/2021] [Indexed: 01/12/2023]
Abstract
Cellular metabolites play a crucial role in promoting and regulating cellular activities, but it has been difficult to monitor these cellular metabolites in living cells and in real time. Over the past decades, iterative development and improvements of fluorescent probes have been made, resulting in the effective monitoring of metabolites. In this review, we highlight recent progress in the use of fluorescent probes for tracking some key metabolites, such as adenosine triphosphate, cyclic adenosine monophosphate, cyclic guanosine 5'-monophosphate, Nicotinamide adenine dinucleotide (NADH), reactive oxygen species, sugar, carbon monoxide, and nitric oxide for both whole cell and subcellular imaging.
Collapse
Affiliation(s)
- Shanni Hong
- Department of Medical Imaging Technology, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.,CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Gregory T Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
110
|
Sorge S, Theelke J, Yildirim K, Hertenstein H, McMullen E, Müller S, Altbürger C, Schirmeier S, Lohmann I. ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila. Cell Rep 2021; 31:107659. [PMID: 32433968 DOI: 10.1016/j.celrep.2020.107659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial electron transport chain (ETC) enables essential metabolic reactions; nonetheless, the cellular responses to defects in mitochondria and the modulation of signaling pathway outputs are not understood. We show that Notch signaling and ETC attenuation via knockdown of COX7a induces massive over-proliferation. The tumor-like growth is caused by a transcriptional response through the eIF2α-kinase PERK and ATF4, which activates the expression of metabolic enzymes, nutrient transporters, and mitochondrial chaperones. We find this stress adaptation to be beneficial for progenitor cell fitness, as it renders cells sensitive to proliferation induced by the Notch signaling pathway. Intriguingly, over-proliferation is not caused by transcriptional cooperation of Notch and ATF4, but it is mediated in part by pH changes resulting from the Warburg metabolism induced by ETC attenuation. Our results suggest that ETC function is monitored by the PERK-ATF4 pathway, which can be hijacked by growth-promoting signaling pathways, leading to oncogenic pathway activity.
Collapse
Affiliation(s)
- Sebastian Sorge
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Theelke
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerem Yildirim
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Helen Hertenstein
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ellen McMullen
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Stephan Müller
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | | | - Stefanie Schirmeier
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
111
|
Vaccari Cardoso B, Shevelkin AV, Terrillion C, Mychko O, Mosienko V, Kasparov S, Pletnikov MV, Teschemacher AG. Reducing l-lactate release from hippocampal astrocytes by intracellular oxidation increases novelty induced activity in mice. Glia 2021; 69:1241-1250. [PMID: 33400321 PMCID: PMC8576740 DOI: 10.1002/glia.23960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited. We therefore developed new viral vectors for astrocyte-specific expression of a mammalianized version of lactate oxidase (LOx) from Aerococcus viridans. LOx expression in astrocytes in vitro reduced their intracellular lactate levels as well as the release of lactate to the extracellular space. Selective expression of LOx in astrocytes of the dorsal hippocampus in mice resulted in increased locomotor activity in response to novel stimuli. Our findings suggest that a localized decreased intracellular lactate pool in hippocampal astrocytes could contribute to greater responsiveness to environmental novelty. We expect that use of this molecular tool to chronically limit astrocytic lactate release will significantly facilitate future studies into the roles and mechanisms of intercellular lactate communication in the brain.
Collapse
Affiliation(s)
| | - Alexey V. Shevelkin
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Chantelle Terrillion
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olga Mychko
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Valentina Mosienko
- Institute of Biomedical and Clinical SciencesCollege of Medicine and Health, University of ExeterExeterUK
| | - Sergey Kasparov
- School of PhysiologyPharmacology and Neuroscience, University of BristolBristolUK
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Physiology and BiophysicsUniversity at BuffaloNew YorkNew YorkUSA
| | - Anja G. Teschemacher
- School of PhysiologyPharmacology and Neuroscience, University of BristolBristolUK
| |
Collapse
|
112
|
Wu D, Harrison DL, Szasz T, Yeh CF, Shentu TP, Meliton A, Huang RT, Zhou Z, Mutlu GM, Huang J, Fang Y. Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat Metab 2021; 3:714-727. [PMID: 34031595 PMCID: PMC8362837 DOI: 10.1038/s42255-021-00390-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
Single-cell motility is spatially heterogeneous and driven by metabolic energy. Directly linking cell motility to cell metabolism is technically challenging but biologically important. Here, we use single-cell metabolic imaging to measure glycolysis in individual endothelial cells with genetically encoded biosensors capable of deciphering metabolic heterogeneity at subcellular resolution. We show that cellular glycolysis fuels endothelial activation, migration and contraction and that sites of high lactate production colocalize with active cytoskeletal remodelling within an endothelial cell. Mechanistically, RhoA induces endothelial glycolysis for the phosphorylation of cofilin and myosin light chain in order to reorganize the cytoskeleton and thus control cell motility; RhoA activation triggers a glycolytic burst through the translocation of the glucose transporter SLC2A3/GLUT3 to fuel the cellular contractile machinery, as demonstrated across multiple endothelial cell types. Our data indicate that Rho-GTPase signalling coordinates energy metabolism with cytoskeleton remodelling to regulate endothelial cell motility.
Collapse
Affiliation(s)
- David Wu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Devin L Harrison
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Teodora Szasz
- Research Computing Center, The University of Chicago, Chicago, IL, USA
| | - Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Pin Shentu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Angelo Meliton
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Zhengjie Zhou
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Gökhan M Mutlu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jun Huang
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA.
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
113
|
Bischof H, Burgstaller S, Springer A, Matt L, Rauter T, Bachkönig OA, Schmidt T, Groschner K, Schindl R, Madl T, Plesnila N, Lukowski R, Graier WF, Malli R. Potassium ions promote hexokinase-II dependent glycolysis. iScience 2021; 24:102346. [PMID: 33870140 PMCID: PMC8047173 DOI: 10.1016/j.isci.2021.102346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
High expression levels of mitochondria-associated hexokinase-II (HKII) represent a hallmark of metabolically highly active cells such as fast proliferating cancer cells. Typically, the enzyme provides a crucial metabolic switch towards aerobic glycolysis. By imaging metabolic activities on the single-cell level with genetically encoded fluorescent biosensors, we here demonstrate that HKII activity requires intracellular K+. The K+ dependency of glycolysis in cells expressing HKII was confirmed in cell populations using extracellular flux analysis and nuclear magnetic resonance-based metabolomics. Reductions of intracellular K+ by gramicidin acutely disrupted HKII-dependent glycolysis and triggered energy stress pathways, while K+ re-addition promptly restored glycolysis-dependent adenosine-5'-triphosphate generation. Moreover, expression and activation of KV1.3, a voltage-gated K+ channel, lowered cellular K+ content and the glycolytic activity of HEK293 cells. Our findings unveil K+ as an essential cofactor of HKII and provide a mechanistic link between activities of distinct K+ channels and cell metabolism.
Collapse
Affiliation(s)
- Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Anna Springer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Thomas Rauter
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Olaf A. Bachkönig
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
114
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
115
|
Abstract
Lactate, the product of aerobic glycolysis, plays a dual role as fuel and intercellular signal in inflammation, immune evasion, and tumor progression. The production of lactate by macrophages has been associated with their polarization and function. Here we describe imaging protocols to characterize the metabolism of cultured human macrophages using a genetically encoded fluorescent sensor-specific for lactate. By superfusing cultures with increasing lactate concentrations and pharmacological inhibitors, it is possible to estimate the kinetic parameters of monocarboxylate transporter 4 (MCT4) and lactate production. Practical advice is given regarding sensor expression, imaging, and data analysis. The spatiotemporal resolution of this technique is amenable to the study of fast events at the single-cell level in different immune and other cell types.
Collapse
|
116
|
D'Adamo P, Horvat A, Gurgone A, Mignogna ML, Bianchi V, Masetti M, Ripamonti M, Taverna S, Velebit J, Malnar M, Muhič M, Fink K, Bachi A, Restuccia U, Belloli S, Moresco RM, Mercalli A, Piemonti L, Potokar M, Bobnar ST, Kreft M, Chowdhury HH, Stenovec M, Vardjan N, Zorec R. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism 2021; 116:154463. [PMID: 33309713 PMCID: PMC7871014 DOI: 10.1016/j.metabol.2020.154463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.
Collapse
Affiliation(s)
- Patrizia D'Adamo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| | - Anemari Horvat
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Antonia Gurgone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Veronica Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Masetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Ripamonti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jelena Velebit
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Maja Malnar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Marko Muhič
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Katja Fink
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Belloli
- Institute of Bioimaging and Physiology, CNR, Segrate (MI), Italy; Experimental Imaging Center (EIC), San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Maria Moresco
- Experimental Imaging Center (EIC), San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano-Bicocca, Monza (MB), Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Maja Potokar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Marko Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Helena H Chowdhury
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Matjaž Stenovec
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Nina Vardjan
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| |
Collapse
|
117
|
Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021; 15:645691. [PMID: 33716677 PMCID: PMC7947346 DOI: 10.3389/fncel.2021.645691] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Noradrenaline is a major neuromodulator in the central nervous system (CNS). It is released from varicosities on neuronal efferents, which originate principally from the main noradrenergic nuclei of the brain - the locus coeruleus - and spread throughout the parenchyma. Noradrenaline is released in response to various stimuli and has complex physiological effects, in large part due to the wide diversity of noradrenergic receptors expressed in the brain, which trigger diverse signaling pathways. In general, however, its main effect on CNS function appears to be to increase arousal state. Although the effects of noradrenaline have been researched extensively, the majority of studies have assumed that noradrenaline exerts its effects by acting directly on neurons. However, neurons are not the only cells in the CNS expressing noradrenaline receptors. Astrocytes are responsive to a range of neuromodulators - including noradrenaline. In fact, noradrenaline evokes robust calcium transients in astrocytes across brain regions, through activation of α1-adrenoreceptors. Crucially, astrocytes ensheath neurons at synapses and are known to modulate synaptic activity. Hence, astrocytes are in a key position to relay, or amplify, the effects of noradrenaline on neurons, most notably by modulating inhibitory transmission. Based on a critical appraisal of the current literature, we use this review to argue that a better understanding of astrocyte-mediated noradrenaline signaling is therefore essential, if we are ever to fully understand CNS function. We discuss the emerging concept of astrocyte heterogeneity and speculate on how this might impact the noradrenergic modulation of neuronal circuits. Finally, we outline possible experimental strategies to clearly delineate the role(s) of astrocytes in noradrenergic signaling, and neuromodulation in general, highlighting the urgent need for more specific and flexible experimental tools.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
118
|
Horvat A, Muhič M, Smolič T, Begić E, Zorec R, Kreft M, Vardjan N. Ca 2+ as the prime trigger of aerobic glycolysis in astrocytes. Cell Calcium 2021; 95:102368. [PMID: 33621899 DOI: 10.1016/j.ceca.2021.102368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Astroglial aerobic glycolysis, a process during which d-glucose is converted to l-lactate, a brain fuel and signal, is regulated by the plasmalemmal receptors, including adrenergic receptors (ARs) and purinergic receptors (PRs), modulating intracellular Ca2+ and cAMP signals. However, the extent to which the two signals regulate astroglial aerobic glycolysis is poorly understood. By using agonists to stimulate intracellular α1-/β-AR-mediated Ca2+/cAMP signals, β-AR-mediated cAMP and P2R-mediated Ca2+ signals and genetically encoded fluorescence resonance energy transfer-based glucose and lactate nanosensors in combination with real-time microscopy, we show that intracellular Ca2+, but not cAMP, initiates a robust increase in the concentration of intracellular free d-glucose ([glc]i) and l-lactate ([lac]i), both depending on extracellular d-glucose, suggesting Ca2+-triggered glucose uptake and aerobic glycolysis in astrocytes. When the glycogen shunt, a process of glycogen remodelling, was inhibited, the α1-/β-AR-mediated increases in [glc]i and [lac]i were reduced by ∼65 % and ∼30 %, respectively, indicating that at least ∼30 % of the utilization of d-glucose is linked to glycogen remodelling and aerobic glycolysis. Additional activation of β-AR/cAMP signals aided to α1-/β-AR-triggered [lac]i increase, whereas the [glc]i increase was unaltered. Taken together, an increase in intracellular Ca2+ is the prime mechanism of augmented aerobic glycolysis in astrocytes, while cAMP has only a moderate role. The results provide novel information on the signals regulating brain metabolism and open new avenues to explore whether astroglial Ca2+ signals are dysregulated and contribute to neuropathologies with impaired brain metabolism.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Marko Muhič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Smolič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ena Begić
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|
119
|
Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife 2021; 10:e64821. [PMID: 33555254 PMCID: PMC7870136 DOI: 10.7554/elife.64821] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
Collapse
Affiliation(s)
| | - Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
120
|
Fink K, Velebit J, Vardjan N, Zorec R, Kreft M. Noradrenaline-induced l-lactate production requires d-glucose entry and transit through the glycogen shunt in single-cultured rat astrocytes. J Neurosci Res 2021; 99:1084-1098. [PMID: 33491223 DOI: 10.1002/jnr.24783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
During cognitive efforts mediated by local neuronal networks, approximately 20% of additional energy is required; this is mediated by chemical messengers such as noradrenaline (NA). NA targets astroglial aerobic glycolysis, the hallmark of which is the end product l-lactate, a fuel for neurons. Biochemical studies have revealed that astrocytes exhibit a prominent glycogen shunt, in which a portion of d-glucose molecules entering the cytoplasm is transiently incorporated into glycogen, a buffer and source of d-glucose during increased energy demand. Here, we studied single astrocytes by measuring cytosolic L-lactate ([lac]i ) with the FRET nanosensor Laconic. We examined whether NA-induced increase in [lac]i is influenced by: (a) 2-deoxy-d-glucose (2-DG, 3 mM), a molecule that enters the cytosol and inhibits the glycolytic pathway; (b) 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, 300 µM), a potent inhibitor of glycogen phosphorylase and glycogen degradation; and (c) 3-nitropropionic acid (3-NPA, 1 mM), an inhibitor of the Krebs cycle. The results of these pharmacological experiments revealed that d-glucose uptake is essential for the NA-induced increase in [lac]i , and that this exclusively arises from glycogen degradation, indicating that most, if not all, d-glucose molecules in NA-stimulated cells transit the glycogen shunt during glycolysis. Moreover, under the defined transmembrane d-glucose gradient, the glycolytic intermediates were not only used to produce l-lactate, but also to significantly support oxidative phosphorylation, as demonstrated by an elevation in [lac]i when Krebs cycle was inhibited. We conclude that l-lactate production via aerobic glycolysis is an essential energy pathway in NA-stimulated astrocytes; however, oxidative metabolism is important at rest.
Collapse
Affiliation(s)
- Katja Fink
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Jelena Velebit
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
121
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
122
|
CDK2 limits the highly energetic secretory program of mature β cells by restricting PEP cycle-dependent K ATP channel closure. Cell Rep 2021; 34:108690. [PMID: 33503433 PMCID: PMC7882066 DOI: 10.1016/j.celrep.2021.108690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Hallmarks of mature β cells are restricted proliferation and a highly energetic secretory state. Paradoxically, cyclin-dependent kinase 2 (CDK2) is synthesized throughout adulthood, its cytosolic localization raising the likelihood of cell cycle-independent functions. In the absence of any changes in β cell mass, maturity, or proliferation, genetic deletion of Cdk2 in adult β cells enhanced insulin secretion from isolated islets and improved glucose tolerance in vivo. At the single β cell level, CDK2 restricts insulin secretion by increasing KATP conductance, raising the set point for membrane depolarization in response to activation of the phosphoenolpyruvate (PEP) cycle with mitochondrial fuels. In parallel with reduced β cell recruitment, CDK2 restricts oxidative glucose metabolism while promoting glucose-dependent amplification of insulin secretion. This study provides evidence of essential, non-canonical functions of CDK2 in the secretory pathways of quiescent β cells. Despite loss of proliferative capacity with age, mature β cells continually synthesize CDK2. Sdao et al. demonstrate that CDK2 depletion in adult β cells improves glucose tolerance in vivo. By augmenting PEP cycle-dependent KATP channel closure, CDK2 inactivation lowers the set point for membrane depolarization, augmenting oxidative metabolism and insulin secretion.
Collapse
|
123
|
Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Int J Mol Sci 2020; 22:E148. [PMID: 33375682 PMCID: PMC7794770 DOI: 10.3390/ijms22010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.
Collapse
Affiliation(s)
- Ekaterina S. Potekhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dina Y. Bass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
| | - Alexander V. Ivanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
124
|
Yan J, Tan YL, Lin MJ, Xing H, Jiang JH. A DNA-mediated crosslinking strategy to enhance cellular delivery and sensor performance of protein spherical nucleic acids. Chem Sci 2020; 12:1803-1809. [PMID: 34163943 PMCID: PMC8179099 DOI: 10.1039/d0sc04977h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular delivery of enzymes is essential for protein-based diagnostic and therapeutic applications. Protein-spherical nucleic acids (ProSNAs) defined by protein core and dense shell of oligonucleotides have been demonstrated as a promising vehicle-free enzyme delivery platform. In this work, we reported a crosslinking strategy to vastly improve both delivery efficiency and intracellular sensor performance of ProSNA. By assembling individual ProSNA with lactate oxidase (LOX) core into a nanoscale particle, termed as crosslinked SNA (X-SNA), the enzyme delivery efficiency increased up to 5-6 times higher. The LOX X-SNA was later demonstrated as a ratiometric probe for quantitative detection of lactate in living cells. More importantly, X-SNA probe showed significantly improved sensor performance with signal-to-noise ratio 4 times as high as ProSNA when detecting intracellular lactate.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Ya-Ling Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Min-Jie Lin
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
125
|
Morris O, Deng H, Tam C, Jasper H. Warburg-like Metabolic Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia. Cell Rep 2020; 33:108423. [PMID: 33238124 PMCID: PMC8011352 DOI: 10.1016/j.celrep.2020.108423] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
In many tissues, stem cell (SC) proliferation is dynamically adjusted to regenerative needs. How SCs adapt their metabolism to meet the demands of proliferation and how changes in such adaptive mechanisms contribute to age-related dysfunction remain poorly understood. Here, we identify mitochondrial Ca2+ uptake as a central coordinator of SC metabolism. Live imaging of genetically encoded metabolite sensors in intestinal SCs (ISCs) of Drosophila reveals that mitochondrial Ca2+ uptake transiently adapts electron transport chain flux to match energetic demand upon proliferative activation. This tight metabolic adaptation is lost in ISCs of old flies, as declines in mitochondrial Ca2+ uptake promote a "Warburg-like" metabolic reprogramming toward aerobic glycolysis. This switch mimics metabolic reprogramming by the oncogene RasV12 and enhances ISC hyperplasia. Our data identify a critical mechanism for metabolic adaptation of tissue SCs and reveal how its decline sets aging SCs on a metabolic trajectory reminiscent of that seen upon oncogenic transformation.
Collapse
Affiliation(s)
- Otto Morris
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 20092, China; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
126
|
Powell CL, Davidson AR, Brown AM. Universal Glia to Neurone Lactate Transfer in the Nervous System: Physiological Functions and Pathological Consequences. BIOSENSORS-BASEL 2020; 10:bios10110183. [PMID: 33228235 PMCID: PMC7699491 DOI: 10.3390/bios10110183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Whilst it is universally accepted that the energy support of the brain is glucose, the form in which the glucose is taken up by neurones is the topic of intense debate. In the last few decades, the concept of lactate shuttling between glial elements and neural elements has emerged in which the glial cells glycolytically metabolise glucose/glycogen to lactate, which is shuttled to the neural elements via the extracellular fluid. The process occurs during periods of compromised glucose availability where glycogen stored in astrocytes provides lactate to the neurones, and is an integral part of the formation of learning and memory where the energy intensive process of learning requires neuronal lactate uptake provided by astrocytes. More recently sleep, myelination and motor end plate integrity have been shown to involve lactate shuttling. The sequential aspect of lactate production in the astrocyte followed by transport to the neurones is vulnerable to interruption and it is reported that such disparate pathological conditions as Alzheimer's disease, amyotrophic lateral sclerosis, depression and schizophrenia show disrupted lactate signalling between glial cells and neurones.
Collapse
Affiliation(s)
- Carolyn L. Powell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Anna R. Davidson
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Angus M. Brown
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
- Correspondence:
| |
Collapse
|
127
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
128
|
Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol 2020; 18:e3000943. [PMID: 33196637 PMCID: PMC7704050 DOI: 10.1371/journal.pbio.3000943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/30/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022] Open
Abstract
In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia. Optic nerves from Plpnull/y mice exhibited lower and more variable basal axonal ATP levels and reduced compound action potential (CAP) amplitudes, providing a missing link between axonal pathology and a role of oligodendrocytes in brain energy metabolism. Surprisingly, when Plpnull/y optic nerves are challenged with transient glucose deprivation, both ATP levels and CAP decline slower, but recover faster upon reperfusion of glucose. Structurally, myelin sheaths display an increased frequency of cytosolic channels comprising glucose and monocarboxylate transporters, possibly facilitating accessibility of energy substrates to the axon. These data imply that complex metabolic alterations of the axon–myelin unit contribute to the phenotype of Plpnull/y mice. Imaging of ATP dynamics in the optic nerve axons of mice lacking the major myelin protein PLP (a model of spastic paraplegia) reveals complex alterations in the metabolic interaction between oligodendrocytes and axons, associated with structural deficits of myelin.
Collapse
|
129
|
Green fluorescent protein-based lactate and pyruvate indicators suitable for biochemical assays and live cell imaging. Sci Rep 2020; 10:19562. [PMID: 33177605 PMCID: PMC7659002 DOI: 10.1038/s41598-020-76440-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022] Open
Abstract
Glycolysis is the metabolic pathway that converts glucose into pyruvate, whereas fermentation can then produce lactate from pyruvate. Here, we developed single fluorescent protein (FP)-based lactate and pyruvate indicators with low EC50 for trace detection of metabolic molecules and live cell imaging and named them “Green Lindoblum” and “Green Pegassos,” respectively. Green Lindoblum (EC50 of 30 µM for lactate) and Green Pegassos (EC50 of 70 µM for pyruvate) produced a 5.2- and 3.3-fold change in fluorescence intensity in response to lactate and pyruvate, respectively. Green Lindoblum measured lactate levels in mouse plasma, and Green Pegassos in combination with D-serine dehydratase successfully estimated D-serine levels released from mouse primary cultured neurons and astrocytes by measuring pyruvate level. Furthermore, live cell imaging analysis revealed their utility for dual-colour imaging, and the interplay between lactate, pyruvate, and Ca2+ in human induced pluripotent stem cell-derived cardiomyocytes. Therefore, Green Lindoblum and Green Pegassos will be useful tools that detect specific molecules in clinical use and monitor the interplay of metabolites and other related molecules in diverse cell types.
Collapse
|
130
|
Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020; 32:767-785.e7. [PMID: 32941799 PMCID: PMC7642184 DOI: 10.1016/j.cmet.2020.08.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
Collapse
|
131
|
Lewandowski SL, Cardone RL, Foster HR, Ho T, Potapenko E, Poudel C, VanDeusen HR, Sdao SM, Alves TC, Zhao X, Capozzi ME, de Souza AH, Jahan I, Thomas CJ, Nunemaker CS, Davis DB, Campbell JE, Kibbey RG, Merrins MJ. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metab 2020; 32:736-750.e5. [PMID: 33147484 PMCID: PMC7685238 DOI: 10.1016/j.cmet.2020.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic β cells couple nutrient metabolism with appropriate insulin secretion. Here, we show that pyruvate kinase (PK), which converts ADP and phosphoenolpyruvate (PEP) into ATP and pyruvate, underlies β cell sensing of both glycolytic and mitochondrial fuels. Plasma membrane-localized PK is sufficient to close KATP channels and initiate calcium influx. Small-molecule PK activators increase the frequency of ATP/ADP and calcium oscillations and potently amplify insulin secretion. PK restricts respiration by cyclically depriving mitochondria of ADP, which accelerates PEP cycling until membrane depolarization restores ADP and oxidative phosphorylation. Our findings support a compartmentalized model of β cell metabolism in which PK locally generates the ATP/ADP required for insulin secretion. Oscillatory PK activity allows mitochondria to perform synthetic and oxidative functions without any net impact on glucose oxidation. These findings suggest a potential therapeutic route for diabetes based on PK activation that would not be predicted by the current consensus single-state model of β cell function.
Collapse
Affiliation(s)
- Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca L Cardone
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Hannah R Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chetan Poudel
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Halena R VanDeusen
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sophia M Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tiago C Alves
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Xiaojian Zhao
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Arnaldo H de Souza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ishrat Jahan
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| | - Craig J Thomas
- National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
132
|
Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020; 14:589582. [PMID: 33132853 PMCID: PMC7550678 DOI: 10.3389/fncel.2020.589582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Research over the last couple of decades has provided novel insights into lactate neurobiology and the implications of lactate transport-driven neuroenergetics in health and diseases of peripheral nerve and the brain. The expression pattern of lactate transporters in glia and neurons has now been described, though notable controversies and discrepancies remain. Importantly, down- and up-regulation experiments are underway to better understand the function of these transporters in different systems. Lactate transporters in peripheral nerves are important for maintenance of axon and myelin integrity, motor end-plate integrity, the development of diabetic peripheral neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain energy metabolism and functions ranging from development to synaptic plasticity to axonal integrity are also dependent on lactate transport primarily between glia and neurons. This review is focused on critically analysing the expression pattern and the functions of lactate transporters in peripheral nerves and the brain and highlighting their role in glia-neuron metabolic crosstalk in physiological and pathological conditions.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
133
|
Martens MD, Field JT, Seshadri N, Day C, Chapman D, Keijzer R, Doucette CA, Hatch GM, West AR, Ivanco TL, Gordon JW. Misoprostol attenuates neonatal cardiomyocyte proliferation through Bnip3, perinuclear calcium signaling, and inhibition of glycolysis. J Mol Cell Cardiol 2020; 146:19-31. [DOI: 10.1016/j.yjmcc.2020.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/27/2020] [Indexed: 02/02/2023]
|
134
|
Koveal D, Díaz-García CM, Yellen G. Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation. Curr Opin Neurobiol 2020; 63:111-121. [PMID: 32559637 PMCID: PMC7646541 DOI: 10.1016/j.conb.2020.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
Over the past decade, genetically encoded fluorescent biosensors that report metabolic changes have become valuable tools for understanding brain metabolism. These sensors have been targeted to specific brain regions and cell types in different organisms to track multiple metabolic processes at single cell (and subcellular) resolution. Here, we review genetically encoded biosensors used to study metabolism in the brain. We particularly focus on the principles needed to use these sensors quantitatively while avoiding false inferences from variations in sensor fluorescence that arise from differences in expression level or environmental influences such as pH or temperature.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
135
|
Zaborska KE, Dadi PK, Dickerson MT, Nakhe AY, Thorson AS, Schaub CM, Graff SM, Stanley JE, Kondapavuluru RS, Denton JS, Jacobson DA. Lactate activation of α-cell K ATP channels inhibits glucagon secretion by hyperpolarizing the membrane potential and reducing Ca 2+ entry. Mol Metab 2020; 42:101056. [PMID: 32736089 PMCID: PMC7479281 DOI: 10.1016/j.molmet.2020.101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Elevations in pancreatic α-cell intracellular Ca2+ ([Ca2+]i) lead to glucagon (GCG) secretion. Although glucose inhibits GCG secretion, how lactate and pyruvate control α-cell Ca2+ handling is unknown. Lactate enters cells through monocarboxylate transporters (MCTs) and is also produced during glycolysis by lactate dehydrogenase A (LDHA), an enzyme expressed in α-cells. As lactate activates ATP-sensitive K+ (KATP) channels in cardiomyocytes, lactate may also modulate α-cell KATP. Therefore, this study investigated how lactate signaling controls α-cell Ca2+ handling and GCG secretion. Methods Mouse and human islets were used in combination with confocal microscopy, electrophysiology, GCG immunoassays, and fluorescent thallium flux assays to assess α-cell Ca2+ handling, Vm, KATP currents, and GCG secretion. Results Lactate-inhibited mouse (75 ± 25%) and human (47 ± 9%) α-cell [Ca2+]i fluctuations only under low-glucose conditions (1 mM) but had no effect on β- or δ-cells [Ca2+]i. Glyburide inhibition of KATP channels restored α-cell [Ca2+]i fluctuations in the presence of lactate. Lactate transport into α-cells via MCTs hyperpolarized mouse (14 ± 1 mV) and human (12 ± 1 mV) α-cell Vm and activated KATP channels. Interestingly, pyruvate showed a similar KATP activation profile and α-cell [Ca2+]i inhibition as lactate. Lactate-induced inhibition of α-cell [Ca2+]i influx resulted in reduced GCG secretion in mouse (62 ± 6%) and human (43 ± 13%) islets. Conclusions These data demonstrate for the first time that lactate entry into α-cells through MCTs results in KATP activation, Vm hyperpolarization, reduced [Ca2+]i, and inhibition of GCG secretion. Thus, taken together, these data indicate that lactate either within α-cells and/or elevated in serum could serve as important modulators of α-cell function. Lactate reduces islet α-cell Ca2+ entry under low glucose conditions. Lactate does not alter β- or δ-cell Ca2+ handling under low glucose conditions. Lactate enters islet α-cells through monocarboxylate transporters. Lactate hyperpolarizes islet α-cell membrane potential by activating KATP channels. Lactate reduces mouse and human islet glucagon secretion.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Charles M Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jade E Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Roy S Kondapavuluru
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
136
|
Galaz A, Cortés-Molina F, Arce-Molina R, Romero-Gómez I, Mardones GA, Felipe Barros L, San Martín A. Imaging of the Lactate/Pyruvate Ratio Using a Genetically Encoded Förster Resonance Energy Transfer Indicator. Anal Chem 2020; 92:10643-10650. [PMID: 32600029 DOI: 10.1021/acs.analchem.0c01741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ratio between the cytosolic concentrations of lactate and pyruvate is a direct readout of the balance between glycolysis and mitochondrial oxidative metabolism. Current approaches do not allow detection of the lactate/pyruvate ratio in a single readout with high spatial/temporal resolution in living systems. Using a Förster resonance energy transfer (FRET)-based screening strategy, we found that the orphan transcriptional factor LutR from Bacillus licheniformis is an endogenous sensor of the lactate/pyruvate ratio, suitable for use as a binding moiety to develop a lactate/pyruvate ratio FRET-based genetically encoded indicator, Lapronic. The sensitivity of the indicator to lactate and pyruvate was characterized through changes in the fluorescence FRET ratio and validated with isothermal titration calorimetry. Lapronic was insensitive to physiological pH and temperature and did not respond to structurally related molecules acetate and β-hydroxybutyrate or cofactors NAD+ and NADH. Lapronic was expressed in HEK 293 cells showing a homogeneous cytosolic localization and was also targeted to the mitochondrial matrix. A calibration protocol was designed to quantitatively assess the lactate/pyruvate ratio in intact mammalian cells. Purified protein from Escherichia coli showed robust stability over time and was found suitable for lactate/pyruvate ratio detection in biological samples. We envision that Lapronic will be of practical interest for basic and applied research.
Collapse
Affiliation(s)
- Alex Galaz
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | | | - Robinson Arce-Molina
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | - Ignacio Romero-Gómez
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | - Gonzalo Antonio Mardones
- Instituto de Fisiologı́a, Facultad de Medicina, Universidad Austral de Chile (UACh), Isla Teja s/n, Valdivia 5110566, Chile
| | - L Felipe Barros
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | - Alejandro San Martín
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| |
Collapse
|
137
|
Zhang Z, Cheng X, Zhao Y, Yang Y. Lighting Up Live-Cell and In Vivo Central Carbon Metabolism with Genetically Encoded Fluorescent Sensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:293-314. [PMID: 32119572 DOI: 10.1146/annurev-anchem-091619-091306] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As the core component of cell metabolism, central carbon metabolism, consisting of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle converts nutrients into metabolic precursors for biomass and energy to sustain the life of virtually all extant species. The metabolite levels or distributions in central carbon metabolism often change dynamically with cell fates, development, and disease progression. However, traditional biochemical methods require cell lysis, making it challenging to obtain spatiotemporal information about metabolites in living cells and in vivo. Genetically encoded fluorescent sensors allow the rapid, sensitive, specific, and real-time readout of metabolite dynamics in living organisms, thereby offering the potential to fill the gap in current techniques. In this review, we introduce recent progress made in the development of genetically encoded fluorescent sensors for central carbon metabolism and discuss their advantages, disadvantages, and applications. Moreover, several future directions of metabolite sensors are also proposed.
Collapse
Affiliation(s)
- Zhuo Zhang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Research Unit of Chinese Academy of Medical Sciences, East China University of Science and Technology, Shanghai 200237, China; ,
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiawei Cheng
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Research Unit of Chinese Academy of Medical Sciences, East China University of Science and Technology, Shanghai 200237, China; ,
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Research Unit of Chinese Academy of Medical Sciences, East China University of Science and Technology, Shanghai 200237, China; ,
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Research Unit of Chinese Academy of Medical Sciences, East China University of Science and Technology, Shanghai 200237, China; ,
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
138
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
139
|
Zhang L, Zhang M, Bellve K, Fogarty KE, Castro MA, Brauchi S, Kobertz WR. Wheat germ agglutinin-conjugated fluorescent pH sensors for visualizing proton fluxes. J Gen Physiol 2020; 152:133652. [PMID: 31978216 PMCID: PMC7266149 DOI: 10.1085/jgp.201912498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/03/2020] [Indexed: 12/04/2022] Open
Abstract
Small-molecule fluorescent wheat germ agglutinin (WGA) conjugates are routinely used to demarcate mammalian plasma membranes, because they bind to the cell’s glycocalyx. Here, we describe the derivatization of WGA with a pH-sensitive rhodamine fluorophore (pHRho; pKa = 7) to detect proton channel fluxes and extracellular proton accumulation and depletion from primary cells. We found that WGA-pHRho labeling was uniform and did not appreciably alter the voltage gating of glycosylated ion channels, and the extracellular changes in pH correlated with proton channel activity. Using single-plane illumination techniques, WGA-pHRho was used to detect spatiotemporal differences in proton accumulation and depletion over the extracellular surface of cardiomyocytes, astrocytes, and neurons. Because WGA can be derivatized with any small-molecule fluorescent ion sensor, WGA conjugates should prove useful to visualize most electrogenic and nonelectrogenic events on the extracellular side of the plasma membrane.
Collapse
Affiliation(s)
- Lejie Zhang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Mei Zhang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Karl Bellve
- Biomedical Imaging Group, Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Kevin E Fogarty
- Biomedical Imaging Group, Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Maite A Castro
- Department of Biochemistry and Microbiology, Universidad Austral de Chile, Campus Isla Teja, Los Rios, Chile.,Center for the Interdisciplinary Studies on Nervous System, Universidad Austral de Chile, Campus Isla Teja, Los Rios, Chile.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Sebastian Brauchi
- Department of Physiology, Universidad Austral de Chile, Campus Isla Teja, Los Rios, Chile.,Center for the Interdisciplinary Studies on Nervous System, Universidad Austral de Chile, Campus Isla Teja, Los Rios, Chile.,Universidad Austral de Chile, Campus Isla Teja, Los Rios, Chile.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA.,Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
140
|
Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D, Studd C, Mokochinski JB, Kramer HB, Plaçais PY, Preat T, Miguel-Aliaga I. Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell 2020; 178:901-918.e16. [PMID: 31398343 PMCID: PMC6700282 DOI: 10.1016/j.cell.2019.07.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized. Intestinal carbohydrate metabolism is male-biased and region-specific Testes masculinize gut sugar handling by promoting enterocyte JAK-STAT signaling The male intestine secretes citrate to the adjacent testes Gut-derived citrate promotes food intake and sperm maturation
Collapse
Affiliation(s)
- Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; Université Côte d'Azur, CNRS, INSERM, iBV, France.
| | - Eva de Goeij
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Joao B Mokochinski
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
141
|
Wu J, Han X, Zhai H, Yang T, Lin Y. Evidence for rate-dependent filtering of global extrinsic noise by biochemical reactions in mammalian cells. Mol Syst Biol 2020; 16:e9335. [PMID: 32407587 PMCID: PMC7224485 DOI: 10.15252/msb.20199335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies have revealed that global extrinsic noise arising from stochasticity in the intracellular biochemical environment plays a critical role in heterogeneous cell physiologies. However, it remains largely unclear how such extrinsic noise dynamically influences downstream reactions and whether it could be neutralized by cellular reactions. Here, using fluorescent protein (FP) maturation as a model biochemical reaction, we explored how cellular reactions might combat global extrinsic noise in mammalian cells. We developed a novel single-cell assay to systematically quantify the maturation rate and the associated noise for over a dozen FPs. By exploiting the variation in the maturation rate for different FPs, we inferred that global extrinsic noise could be temporally filtered by maturation reactions, and as a result, the noise levels for slow-maturing FPs are lower compared to fast-maturing FPs. This mechanism is validated by directly perturbing the maturation rates of specific FPs and measuring the resulting noise levels. Together, our results revealed a potentially general principle governing extrinsic noise propagation, where timescale separation allows cellular reactions to cope with dynamic global extrinsic noise.
Collapse
Affiliation(s)
- Jiegen Wu
- Center for Quantitative Biology and Peking‐Tsinghua Joint Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- The MOE Key Laboratory of Cell Proliferation and DifferentiationSchool of Life SciencesPeking UniversityBeijingChina
- Tsinghua‐Peking Joint Center for Life SciencesTsinghua UniversityBeijingChina
| | - Xu Han
- Center for Quantitative Biology and Peking‐Tsinghua Joint Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- The MOE Key Laboratory of Cell Proliferation and DifferentiationSchool of Life SciencesPeking UniversityBeijingChina
| | - Haotian Zhai
- Center for Quantitative Biology and Peking‐Tsinghua Joint Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Tingyu Yang
- Center for Quantitative Biology and Peking‐Tsinghua Joint Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Yihan Lin
- Center for Quantitative Biology and Peking‐Tsinghua Joint Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- The MOE Key Laboratory of Cell Proliferation and DifferentiationSchool of Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
142
|
Velebit J, Horvat A, Smolič T, Prpar Mihevc S, Rogelj B, Zorec R, Vardjan N. Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca 2+ signaling and dysregulated cell metabolism. Sci Rep 2020; 10:6003. [PMID: 32265469 PMCID: PMC7138839 DOI: 10.1038/s41598-020-62864-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons and non-neuronal cells, including astrocytes, which metabolically support neurons with nutrients. Neuronal metabolism largely depends on the activation of the noradrenergic system releasing noradrenaline. Activation of astroglial adrenergic receptors with noradrenaline triggers cAMP and Ca2+ signaling and augments aerobic glycolysis with production of lactate, an important neuronal energy fuel. Astrocytes with cytoplasmic TDP-43 inclusions can cause motor neuron death, however, whether astroglial metabolism and metabolic support of neurons is altered in astrocytes with TDP-43 inclusions, is unclear. We measured lipid droplet and glucose metabolisms in astrocytes expressing the inclusion-forming C-terminal fragment of TDP-43 or the wild-type TDP-43 using fluorescent dyes or genetically encoded nanosensors. Astrocytes with TDP-43 inclusions exhibited a 3-fold increase in the accumulation of lipid droplets versus astrocytes expressing wild-type TDP-43, indicating altered lipid droplet metabolism. In these cells the noradrenaline-triggered increases in intracellular cAMP and Ca2+ levels were reduced by 35% and 31%, respectively, likely due to the downregulation of β2-adrenergic receptors. Although noradrenaline triggered a similar increase in intracellular lactate levels in astrocytes with and without TDP-43 inclusions, the probability of activating aerobic glycolysis was facilitated by 1.6-fold in astrocytes with TDP-43 inclusions and lactate MCT1 transporters were downregulated. Thus, while in astrocytes with TDP-43 inclusions noradrenergic signaling is reduced, aerobic glycolysis and lipid droplet accumulation are facilitated, suggesting dysregulated astroglial metabolism and metabolic support of neurons in TDP-43-associated ALS and FTD.
Collapse
Affiliation(s)
- Jelena Velebit
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tina Smolič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.,Biomedical Research Institute BRIS, 1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
143
|
Arce-Molina R, Cortés-Molina F, Sandoval PY, Galaz A, Alegría K, Schirmeier S, Barros LF, San Martín A. A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. eLife 2020; 9:53917. [PMID: 32142409 PMCID: PMC7077990 DOI: 10.7554/elife.53917] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
Mitochondria generate ATP and building blocks for cell growth and regeneration, using pyruvate as the main substrate. Here we introduce PyronicSF, a user-friendly GFP-based sensor of improved dynamic range that enables real-time subcellular quantitation of mitochondrial pyruvate transport, concentration and flux. We report that cultured mouse astrocytes maintain mitochondrial pyruvate in the low micromolar range, below cytosolic pyruvate, which means that the mitochondrial pyruvate carrier MPC is poised to exert ultrasensitive control on the balance between respiration and anaplerosis/gluconeogenesis. The functionality of the sensor in living tissue is demonstrated in the brain of Drosophila melanogaster larvae. Mitochondrial subpopulations are known to coexist within a given cell, which differ in their morphology, mobility, membrane potential, and vicinity to other organelles. The present tool can be used to investigate how mitochondrial diversity relates to metabolism, to study the role of MPC in disease, and to screen for small-molecule MPC modulators.
Collapse
Affiliation(s)
- Robinson Arce-Molina
- Centro de Estudios Científicos-CECs, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Alex Galaz
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Karin Alegría
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, University of Münster, Münster, Germany
| | | | | |
Collapse
|
144
|
Impairment of Glycolysis-Derived l-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer's Disease. Cell Metab 2020; 31:503-517.e8. [PMID: 32130882 DOI: 10.1016/j.cmet.2020.02.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Alteration of brain aerobic glycolysis is often observed early in the course of Alzheimer's disease (AD). Whether and how such metabolic dysregulation contributes to both synaptic plasticity and behavioral deficits in AD is not known. Here, we show that the astrocytic l-serine biosynthesis pathway, which branches from glycolysis, is impaired in young AD mice and in AD patients. l-serine is the precursor of d-serine, a co-agonist of synaptic NMDA receptors (NMDARs) required for synaptic plasticity. Accordingly, AD mice display a lower occupancy of the NMDAR co-agonist site as well as synaptic and behavioral deficits. Similar deficits are observed following inactivation of the l-serine synthetic pathway in hippocampal astrocytes, supporting the key role of astrocytic l-serine. Supplementation with l-serine in the diet prevents both synaptic and behavioral deficits in AD mice. Our findings reveal that astrocytic glycolysis controls cognitive functions and suggest oral l-serine as a ready-to-use therapy for AD.
Collapse
|
145
|
Zuend M, Saab AS, Wyss MT, Ferrari KD, Hösli L, Looser ZJ, Stobart JL, Duran J, Guinovart JJ, Barros LF, Weber B. Arousal-induced cortical activity triggers lactate release from astrocytes. Nat Metab 2020; 2:179-191. [PMID: 32694692 DOI: 10.1038/s42255-020-0170-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
It has been suggested that, in states of arousal, release of noradrenaline and β-adrenergic signalling affect long-term memory formation by stimulating astrocytic lactate production from glycogen. However, the temporal relationship between cortical activity and cellular lactate fluctuations upon changes in arousal remains to be fully established. Also, the role of β-adrenergic signalling and brain glycogen metabolism on neural lactate dynamics in vivo is still unknown. Here, we show that an arousal-induced increase in cortical activity triggers lactate release into the extracellular space, and this correlates with a fast and prominent lactate dip in astrocytes. The immediate drop in astrocytic lactate concentration and the parallel increase in extracellular lactate levels underline an activity-dependent lactate release from astrocytes. Moreover, when β-adrenergic signalling is blocked or the brain is depleted of glycogen, the arousal-evoked cellular lactate surges are significantly reduced. We provide in vivo evidence that cortical activation upon arousal triggers lactate release from astrocytes, a rise in intracellular lactate levels mediated by β-adrenergic signalling and the mobilization of lactate from glycogen stores.
Collapse
Affiliation(s)
- Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Matthias T Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jordi Duran
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | | | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
146
|
Coomer CA, Carlon-Andres I, Iliopoulou M, Dustin ML, Compeer EB, Compton AA, Padilla-Parra S. Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathog 2020; 16:e1008359. [PMID: 32084246 PMCID: PMC7055913 DOI: 10.1371/journal.ppat.1008359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically-encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabolic processes on the success rate of virus entry in single cells. We found that cells with a lower ATP:ADP ratio prior to virus addition were less permissive to virus fusion and infection. These results indicated a relationship between host metabolic state and the likelihood for virus-cell fusion to occur. SVT revealed that HIV-1 virions were arrested at hemifusion in glycolytically-inactive cells. Interestingly, cells acutely treated with glycolysis inhibitor 2-deoxyglucose (2-DG) become resistant to virus infection and also display less surface membrane cholesterol. Addition of cholesterol in these in glycolytically-inactive cells rescued the virus entry block at hemifusion and enabled completion of HIV-1 fusion. Further investigation with FRET-based membrane tension and membrane order reporters revealed a link between host cell glycolytic activity and host membrane order and tension. Indeed, cells treated with 2-DG possessed lower plasma membrane lipid order and higher tension values, respectively. Our novel imaging approach that combines lifetime imaging (FLIM) and SVT revealed not only changes in plasma membrane tension at the point of viral fusion, but also that HIV is less likely to enter cells at areas of higher membrane tension. We therefore have identified a connection between host cell glycolytic activity and membrane tension that influences HIV-1 fusion in real-time at the single-virus fusion level in live cells.
Collapse
Affiliation(s)
- Charles A. Coomer
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
- University of Kentucky, College of Medicine, Lexington, Kentucky, United States of America
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| | - Irene Carlon-Andres
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| | - Maro Iliopoulou
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ewoud B. Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alex A. Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sergi Padilla-Parra
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
147
|
Reimann TM. Flow Chamber Assay to Image the Response of FRET-Based Nanosensors in Pollen Tubes to Changes in Medium Composition. Methods Mol Biol 2020; 2160:257-273. [PMID: 32529443 DOI: 10.1007/978-1-0716-0672-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pollen tubes growing in the transmitting tract are presented with an extracellular matrix rich in a variety of substances. The expression of a multitude of genes for transport proteins in the pollen tube indicates that pollen tubes take up at least some of the components provided by the transmitting tract, for example nutrients, ions, or signaling molecules. FRET (Förster resonance energy transfer)-based nanosensors are perfectly suited to study the uptake of these molecules into pollen tubes. They are genetically encoded and can easily be expressed in Arabidopsis pollen tubes. Furthermore, the method is noninvasive and nanosensors for a wide range of substances are available. This chapter will describe the design of plasmids required to generate stable Arabidopsis lines with a pollen tube-specific expression of nanosensor constructs. We also present a method to germinate Arabidopsis pollen tubes in a flow chamber slide that allows the perfusion of the pollen tubes with liquid medium supplemented with the substrate of the nanosensor. Simultaneous evaluation of the FRET efficiency of the nanosensor by confocal microscopy reveals whether the substance is taken up by the pollen tubes. Together with the great number of available nanosensors this method can generate a detailed picture of the substances that are taken up during pollen tubes growth.
Collapse
Affiliation(s)
- Theresa Maria Reimann
- Department of Biology, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
| |
Collapse
|
148
|
Anderlei T, Keebler MV, Cairó JJ, Lecina M. HEK293 Cell-Based Bioprocess Development at Bench Scale by Means of Online Monitoring in Shake Flasks (RAMOS and SFR). Methods Mol Biol 2020; 2095:83-103. [PMID: 31858464 DOI: 10.1007/978-1-0716-0191-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The platforms for bioprocess development have been developed in parallel to the needs of the manufacturing industry of biopharmaceuticals, aiming to ensure the quality and safety of their products. In this sense, Quality by Design (QbD) and Process Analytical Technology (PAT) have become the pillars for quality control and quality assurance.A new combination of Shake Flask Reader (SFR) and Respiration Activity Monitoring System for online determination of OTR and CTR (RAMOS) allows online monitoring of main culture parameters needed for bioprocess development (pH, pO2, OTR, CTR, and QR) as presented below. Eventually, a case study of the application of the combination of SFR-RAMOS system is presented. The case study discloses the optimization of HEK293 cells cultures through the manipulation of their metabolic behavior.
Collapse
Affiliation(s)
| | | | - Jordi Joan Cairó
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Martí Lecina
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
- Bioengineering Department, IQS, Universitat Ramon Llull, Barcelona, Spain.
| |
Collapse
|
149
|
Gándara L, Durrieu L, Behrensen C, Wappner P. A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Sci Rep 2019; 9:19945. [PMID: 31882718 PMCID: PMC6934733 DOI: 10.1038/s41598-019-56446-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Regulation of the energetic metabolism occurs fundamentally at the cellular level, so analytical strategies must aim to attain single cell resolution to fully embrace its inherent complexity. We have developed methods to utilize a toolset of metabolic FRET sensors for assessing lactate, pyruvate and 2-oxoglutarate levels of Drosophila tissues in vivo by imaging techniques. We show here how the energetic metabolism is altered by hypoxia: While some larval tissues respond to low oxygen levels by executing a metabolic switch towards lactic fermentation, the fat body and salivary glands do not alter their energetic metabolism. Analysis of tumor metabolism revealed that depending on the genetic background, some tumors undergo a lactogenic switch typical of the Warburg effect, while other tumors do not. This toolset allows for developmental and physiologic studies in genetically manipulated Drosophila individuals in vivo.
Collapse
Affiliation(s)
- L Gándara
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - L Durrieu
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - C Behrensen
- Instituto Leloir, Ciudad de Buenos Aires, Argentina
| | - P Wappner
- Instituto Leloir, Ciudad de Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
150
|
González-Gutiérrez A, Ibacache A, Esparza A, Barros LF, Sierralta J. Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila. Glia 2019; 68:1213-1227. [PMID: 31876077 DOI: 10.1002/glia.23772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high-energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described. Here, we use Drosophila expressing genetically encoded FRET sensors to provide an ex vivo characterization of the transport of monocarboxylates in motor neurons and glial cells from the larval ventral nerve cord. We show that lactate/pyruvate transport in glial cells is coupled to protons and is more efficient than in neurons. Glial cells maintain higher levels of intracellular lactate generating a positive gradient toward neurons. Interestingly, during high neuronal activity, raised lactate in motor neurons is dependent on transfer from glial cells mediated in part by the previously described monocarboxylate transporter Chaski, providing support for in vivo glia-to-neuron lactate shuttling during neuronal activity.
Collapse
Affiliation(s)
- Andrés González-Gutiérrez
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Ibacache
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Esparza
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|