101
|
Ragonnet-Cronin M, Aris-Brosou S, Joanisse I, Merks H, Vallée D, Caminiti K, Rekart M, Krajden M, Cook D, Kim J, Malloch L, Sandstrom P, Brooks J. Genetic Diversity as a Marker for Timing Infection in HIV-Infected Patients: Evaluation of a 6-Month Window and Comparison With BED. J Infect Dis 2012; 206:756-64. [DOI: 10.1093/infdis/jis411] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
102
|
Endogenous origins of HIV-1 G-to-A hypermutation and restriction in the nonpermissive T cell line CEM2n. PLoS Pathog 2012; 8:e1002800. [PMID: 22807680 PMCID: PMC3395617 DOI: 10.1371/journal.ppat.1002800] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022] Open
Abstract
The DNA deaminase APOBEC3G converts cytosines to uracils in retroviral cDNA, which are immortalized as genomic strand G-to-A hypermutations by reverse transcription. A single round of APOBEC3G-dependent mutagenesis can be catastrophic, but evidence suggests that sublethal levels contribute to viral genetic diversity and the associated problems of drug resistance and immune escape. APOBEC3G exhibits an intrinsic preference for the second cytosine in a 5'CC dinucleotide motif leading to 5'GG-to-AG mutations. However, an additional hypermutation signature is commonly observed in proviral sequences from HIV-1 infected patients, 5'GA-to-AA, and it has been attributed controversially to one or more of the six other APOBEC3 deaminases. An unambiguous resolution of this problem has been difficult to achieve, in part due to dominant effects of protein over-expression. Here, we employ gene targeting to dissect the endogenous APOBEC3 contribution to Vif-deficient HIV-1 restriction and hypermutation in a nonpermissive T cell line CEM2n. We report that APOBEC3G-null cells, as predicted from previous studies, lose the capacity to inflict 5'GG-to-AG mutations. In contrast, APOBEC3F-null cells produced viruses with near-normal mutational patterns. Systematic knockdown of other APOBEC3 genes in an APOBEC3F-null background revealed a significant contribution from APOBEC3D in promoting 5'GA-to-AA hypermutations. Furthermore, Vif-deficient HIV-1 restriction was strong in parental CEM2n and APOBEC3D-knockdown cells, partially alleviated in APOBEC3G- or APOBEC3F-null cells, further alleviated in APOBEC3F-null/APOBEC3D-knockdown cells, and alleviated to the greatest extent in APOBEC3F-null/APOBEC3G-knockdown cells revealing clear redundancy in the HIV-1 restriction mechanism. We conclude that endogenous levels of APOBEC3D, APOBEC3F, and APOBEC3G combine to restrict Vif-deficient HIV-1 and cause the hallmark dinucleotide hypermutation patterns in CEM2n. Primary T lymphocytes express a similar set of APOBEC3 genes suggesting that the same repertoire may be important in vivo.
Collapse
|
103
|
Mota TM, Murray JM, Center RJ, Purcell DFJ, McCaw JM. Application of a case-control study design to investigate genotypic signatures of HIV-1 transmission. Retrovirology 2012; 9:54. [PMID: 22731404 PMCID: PMC3419081 DOI: 10.1186/1742-4690-9-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/25/2012] [Indexed: 12/03/2022] Open
Abstract
Background The characterization of HIV-1 transmission strains may inform the design of an effective vaccine. Shorter variable loops with fewer predicted glycosites have been suggested as signatures enriched in envelope sequences derived during acute HIV-1 infection. Specifically, a transmission-linked lack of glycosites within the V1 and V2 loops of gp120 provides greater access to an α4β7 binding motif, which promotes the establishment of infection. Also, a histidine at position 12 in the leader sequence of Env has been described as a transmission signature that is selected against during chronic infection. The purpose of this study is to measure the association of the presence of an α4β7 binding motif, the number of N-linked glycosites, the length of the variable loops, and the prevalence of histidine at position 12 with HIV-1 transmission. A case–control study design was used to measure the prevalence of these variables between subtype B and C transmission sequences and frequency-matched randomly-selected sequences derived from chronically infected controls. Results Subtype B transmission strains had shorter V3 regions than chronic strains (p = 0.031); subtype C transmission strains had shorter V1 loops than chronic strains (p = 0.047); subtype B transmission strains had more V3 loop glycosites (p = 0.024) than chronic strains. Further investigation showed that these statistically significant results were unlikely to be biologically meaningful. Also, there was no difference observed in the prevalence of a histidine at position 12 among transmission strains and controls of either subtype. Conclusions Although a genetic bottleneck is observed after HIV-1 transmission, our results indicate that summary characteristics of Env hypothesised to be important in transmission are not divergent between transmission and chronic strains of either subtype. The success of a transmission strain to initiate infection may be a random event from the divergent pool of donor viral sequences. The characteristics explored through this study are important, but may not function as genotypic signatures of transmission as previously described.
Collapse
Affiliation(s)
- Talia M Mota
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
104
|
Abstract
The complex interplay between the host immune response and HIV has been the subject of intense research over the last 25 years. HIV and simian immunodeficiency virus (SIV) CD8 T cells have been of particular interest since they were demonstrated to be temporally associated with reduction in virus load shortly following transmission. Here, we briefly review the phenotypic and functional properties of HIV-specific and SIV-specific CD8 T-cell subsets during HIV infection and consider the influence of viral variation with specific responses that are associated with disease progression or control. The development of an effective HIV/AIDS vaccine combined with existing successful prevention and treatment strategies is essential for preventing new infections. In the context of previous clinical HIV/AIDS vaccine trials, we consider the challenges faced by therapeutic and vaccine strategies designed to elicit effective HIV-specific CD8 T cells.
Collapse
|
105
|
Abstract
HIV type 1 (HIV-1) displays a greater degree of genetic and antigenic variability than any other virus studied. This diversity reflects a high mutation rate during viral replication with a large turnover of virus, and a high tolerance of variation while maintaining reproductive capacity. Generation of diversity is a common property of lentiviruses such as HIV. Differences in virulence and in transmissibility are seen between different HIV-1 strains which may have clinical implications. The great degree of HIV diversity presents challenges to maintaining sensitivity to antiretroviral therapy and to the development of preventive strategies such as microbicides and vaccines.
Collapse
|
106
|
Interplay between HIV-1 and Host Genetic Variation: A Snapshot into Its Impact on AIDS and Therapy Response. Adv Virol 2012; 2012:508967. [PMID: 22666249 PMCID: PMC3361994 DOI: 10.1155/2012/508967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/26/2012] [Accepted: 03/11/2012] [Indexed: 11/18/2022] Open
Abstract
As of February 2012, 50 circulating recombinant forms (CRFs) have been reported for HIV-1 while one CRF for HIV-2. Also according to HIV sequence compendium 2011, the HIV sequence database is replete with 414,398 sequences. The fact that there are CRFs, which are an amalgamation of sequences derived from six or more subtypes (CRF27_cpx (cpx refers to complex) is a mosaic with sequences from 6 different subtypes besides an unclassified fragment), serves as a testimony to the continual divergent evolution of the virus with its approximate 1% per year rate of evolution, and this phenomena per se poses tremendous challenge for vaccine development against HIV/AIDS, a devastating disease that has killed 1.8 million patients in 2010. Here, we explore the interaction between HIV-1 and host genetic variation in the context of HIV/AIDS and antiretroviral therapy response.
Collapse
|
107
|
De Maio FA, Rocco CA, Aulicino PC, Bologna R, Mangano A, Sen L. APOBEC3-mediated editing in HIV type 1 from pediatric patients and its association with APOBEC3G/CUL5 polymorphisms and Vif variability. AIDS Res Hum Retroviruses 2012; 28:619-27. [PMID: 22145963 DOI: 10.1089/aid.2011.0291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The APOBEC3 proteins are cytidine deaminases that can introduce G→A mutations in the HIV-1 plus DNA strand. This editing process may inhibit virus replication through lethal mutagenesis (hypermutation), but could also contribute to viral diversification leading to the emergence of escape forms. The HIV-1 Vif protein has the capacity to counteract APOBEC3 factors by recruiting a CUL5-based ubiquitin ligase complex that determines their proteasomal degradation. In this work, we analyzed the APOBEC3-mediated editing in proviral HIV-1 from perinatally infected children (n=93) in order to explore its association with polymorphisms of APOBEC3G and CUL5 genes (APOBEC3G H186R, APOBEC3G C40693T, and CUL5 SNP6), the Vif protein variability, and also the time to AIDS development. To calculate the level of editing, we have developed an index exploiting the properties of a region within the HIV-1 pol gene that includes the central polypurine tract (cPPT). We detected a reduced editing associated with the CUL5 SNP6 minor allele and also with certain Vif variants (mutations at sites 46, 122, and 160), although we found no evidence supporting an impact of APOBEC3 activity on disease progression. Thus, our findings suggest that APOBEC3-mediated editing of HIV-1 could be modulated by host and virus genetic characteristics in the context of pediatric infection.
Collapse
Affiliation(s)
- Federico A. De Maio
- Laboratorio de Biología Celular y Retrovirus–CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Ciudad de Buenos Aires, Argentina
| | - Carlos A. Rocco
- Laboratorio de Biología Celular y Retrovirus–CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Ciudad de Buenos Aires, Argentina
| | - Paula C. Aulicino
- Laboratorio de Biología Celular y Retrovirus–CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Ciudad de Buenos Aires, Argentina
| | - Rosa Bologna
- Servicio de Epidemiología e Infectología, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Ciudad de Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratorio de Biología Celular y Retrovirus–CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Ciudad de Buenos Aires, Argentina
| | - Luisa Sen
- Laboratorio de Biología Celular y Retrovirus–CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Ciudad de Buenos Aires, Argentina
| |
Collapse
|
108
|
Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, Bonsignori M, Chen X, Hwang KK, Montefiori DC, Liao HX, Hraber P, Fischer W, Li H, Wang S, Sterrett S, Keele BF, Ganusov VV, Perelson AS, Korber BT, Georgiev I, McLellan JS, Pavlicek JW, Gao F, Haynes BF, Hahn BH, Kwong PD, Shaw GM. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog 2012; 8:e1002721. [PMID: 22693447 PMCID: PMC3364956 DOI: 10.1371/journal.ppat.1002721] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50)) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one.
Collapse
Affiliation(s)
- Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chun-yen Tsao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shilpa S. Iyer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie M. Decker
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mattia Bonsignori
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xi Chen
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kwan-Ki Hwang
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - William Fischer
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuyi Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah Sterrett
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon F. Keele
- SAIC-Frederick Inc, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vitaly V. Ganusov
- University of Tennessee, Knoxville, Tennessee, United States of America
| | - Alan S. Perelson
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ivelin Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason S. McLellan
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey W. Pavlicek
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Beatrice H. Hahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
109
|
Qidwai T, Jamal F, Khan MY. DNA Sequence Variation and Regulation of Genes Involved in Pathogenesis of Pulmonary Tuberculosis. Scand J Immunol 2012; 75:568-87. [DOI: 10.1111/j.1365-3083.2012.02696.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
110
|
Rossenkhan R, Novitsky V, Sebunya TK, Musonda R, Gashe BA, Essex M. Viral diversity and diversification of major non-structural genes vif, vpr, vpu, tat exon 1 and rev exon 1 during primary HIV-1 subtype C infection. PLoS One 2012; 7:e35491. [PMID: 22590503 PMCID: PMC3348911 DOI: 10.1371/journal.pone.0035491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/16/2012] [Indexed: 01/12/2023] Open
Abstract
To assess the level of intra-patient diversity and evolution of HIV-1C non-structural genes in primary infection, viral quasispecies obtained by single genome amplification (SGA) at multiple sampling timepoints up to 500 days post-seroconversion (p/s) were analyzed. The mean intra-patient diversity was 0.11% (95% CI; 0.02 to 0.20) for vif, 0.23% (95% CI; 0.08 to 0.38) for vpr, 0.35% (95% CI; −0.05 to 0.75) for vpu, 0.18% (95% CI; 0.01 to 0.35) for tat exon 1 and 0.30% (95% CI; 0.02 to 0.58) for rev exon 1 during the time period 0 to 90 days p/s. The intra-patient diversity increased gradually in all non-structural genes over the first year of HIV-1 infection, which was evident from the vif mean intra-patient diversity of 0.46% (95% CI; 0.28 to 0.64), vpr 0.44% (95% CI; 0.24 to 0.64), vpu 0.84% (95% CI; 0.55 to 1.13), tat exon 1 0.35% (95% CI; 0.14 to 0.56 ) and rev exon 1 0.42% (95% CI; 0.18 to 0.66) during the time period of 181 to 500 days p/s. There was a statistically significant increase in viral diversity for vif (p = 0.013) and vpu (p = 0.002). No associations between levels of viral diversity within the non-structural genes and HIV-1 RNA load during primary infection were found. The study details the dynamics of the non-structural viral genes during the early stages of HIV-1C infection.
Collapse
Affiliation(s)
- Raabya Rossenkhan
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vladimir Novitsky
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Theresa K. Sebunya
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Rosemary Musonda
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Berhanu A. Gashe
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - M. Essex
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
111
|
Abstract
Retroviruses have long been a fertile model for discovering host-pathogen interactions and their associated biological principles and processes. These advances have not only informed fundamental concepts of viral replication and pathogenesis but have also provided novel insights into host cell biology. This is illustrated by the recent descriptions of host-encoded restriction factors that can serve as effective inhibitors of retroviral replication. Here, we review our understanding of the three restriction factors that have been widely shown to be potent inhibitors of HIV-1: namely, APOBEC3G, TRIM5α, and tetherin. In each case, we discuss how these unrelated proteins were identified, the mechanisms by which they inhibit replication, the means used by HIV-1 to evade their action, and their potential contributions to viral pathogenesis as well as inter- and intraspecies transmission.
Collapse
Affiliation(s)
- Michael H Malim
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom.
| | | |
Collapse
|
112
|
De Crignis E, Guglietta S, Foley BT, Negroni M, Di Narzo AF, Waelti Da Costa V, Cavassini M, Bart PA, Pantaleo G, Graziosi C. Nonrandom distribution of cryptic repeating triplets of purines and pyrimidines (RNY)(n) in gp120 of HIV Type1. AIDS Res Hum Retroviruses 2012; 28:493-504. [PMID: 21902591 DOI: 10.1089/aid.2011.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have analyzed purine (R) and pyrimidine (Y) codon patterns in variable and constant regions of HIV-1 gp120 in seven patients infected with different HIV-1 subtypes and naive to antiretroviral therapy. We have calculated the relative frequency of each in-frame codon RNY, YNR, RNR, and YNY (N=any nucleotide) in variable and constant regions of gp120, in the sequence within indels and at indels' flanking sites. Our data show that hypervariable regions V1, V2, V4, and V5 are characterized by the presence of long stretches of RNY codons constituting the majority of the sequence portion within insertions/deletions. In full-length gp120 and within inserted/deleted fragments the number of AVT (V=A, C, G) codons did not exceed 50% of the total RNY codons. RNY strings in variable regions spanned up to 21 codons and were always in frame. In contrast, RNY strings in constant regions were mostly out of frame and their length was limited to five codons. The frequency of the codon RNY was found to be significantly higher in variable regions (p<0.0001; t-test), within indels, and at indels' flanking sites (p<0.0001; χ(2) test). Analysis of the distribution of RNY strings equal to or longer than five codons in the full genome of HXB2 also shows that these sequences are mostly out of frame, unless they contain a potential N-glycosylation site or an asparagine. These data suggest that cryptic repeats of RNY may play a role in the genesis of multiple base insertions and deletions in hypervariable regions of gp120.
Collapse
Affiliation(s)
- Elisa De Crignis
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, CHUV, Lausanne, Switzerland
| | - Silvia Guglietta
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, CHUV, Lausanne, Switzerland
| | - Brian T. Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratories, Los Alamos, New Mexico
| | - Matteo Negroni
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | | | - Matthias Cavassini
- Division of Infectious Diseases, Department of Medicine, CHUV, Lausanne, Switzerland
| | - Pierre-Alexandre Bart
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, CHUV, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, CHUV, Lausanne, Switzerland
| | - Cecilia Graziosi
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, CHUV, Lausanne, Switzerland
| |
Collapse
|
113
|
Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology 2012; 9:35. [PMID: 22546055 PMCID: PMC3416701 DOI: 10.1186/1742-4690-9-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022] Open
Abstract
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada
| | - Claire F Woodworth
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Jessica Benkaroun
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Michael Grant
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| |
Collapse
|
114
|
Anastassopoulou CG, Ketas TJ, Sanders RW, Klasse PJ, Moore JP. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance. Virology 2012; 428:86-97. [PMID: 22520838 DOI: 10.1016/j.virol.2012.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 11/26/2022]
Abstract
A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.
Collapse
Affiliation(s)
- Cleo G Anastassopoulou
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
115
|
The biased nucleotide composition of HIV-1 triggers type I interferon response and correlates with subtype D increased pathogenicity. PLoS One 2012; 7:e33502. [PMID: 22529893 PMCID: PMC3329495 DOI: 10.1371/journal.pone.0033502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
The genome of human immunodeficiency virus (HIV) has an average nucleotide composition strongly biased as compared to the human genome. The consequence of such nucleotide composition on HIV pathogenicity has not been investigated yet. To address this question, we analyzed the role of nucleotide bias of HIV-derived nucleic acids in stimulating type-I interferon response in vitro. We found that the biased nucleotide composition of HIV is detected in human cells as compared to humanized sequences, and triggers a strong innate immune response, suggesting the existence of cellular immune mechanisms able to discriminate RNA sequences according to their nucleotide composition or to detect specific secondary structures or linear motifs within biased RNA sequences. We then extended our analysis to the entire genome scale by testing more than 1300 HIV-1 complete genomes to look for an association between nucleotide composition of HIV-1 group M subtypes and their pathogenicity. We found that subtype D, which has an increased pathogenicity compared to the other subtypes, has the most divergent nucleotide composition relative to the human genome. These data support the hypothesis that the biased nucleotide composition of HIV-1 may be related to its pathogenicity.
Collapse
|
116
|
Armitage AE, Deforche K, Chang CH, Wee E, Kramer B, Welch JJ, Gerstoft J, Fugger L, McMichael A, Rambaut A, Iversen AKN. APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete "all or nothing" phenomenon. PLoS Genet 2012; 8:e1002550. [PMID: 22457633 PMCID: PMC3310730 DOI: 10.1371/journal.pgen.1002550] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/07/2012] [Indexed: 11/18/2022] Open
Abstract
The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host-pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete "all or nothing" phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host.
Collapse
Affiliation(s)
- Andrew E. Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Koen Deforche
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chih-hao Chang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Edmund Wee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Beatrice Kramer
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Copenhagen, Denmark
| | - Lars Fugger
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Andrew McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AKNI); (AR)
| | - Astrid K. N. Iversen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- * E-mail: (AKNI); (AR)
| |
Collapse
|
117
|
Dalmau J, Codoñer FM, Erkizia I, Pino M, Pou C, Paredes R, Clotet B, Martinez-Picado J, Prado JG. In-depth characterization of viral isolates from plasma and cells compared with plasma circulating quasispecies in early HIV-1 infection. PLoS One 2012; 7:e32714. [PMID: 22393441 PMCID: PMC3290612 DOI: 10.1371/journal.pone.0032714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/30/2012] [Indexed: 11/20/2022] Open
Abstract
Background The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies. Methodology/Principal Findings We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered between sample types with conservation of major variants. In addition, no differences in intra- and inter-population encoded protein variability were found between the different types of isolates or when these were compared to plasma viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative capacity and co-receptor usage between viral isolates and plasma viral RNA. Conclusion This study is the first in-depth comparison and characterization of viral isolates from different sources and plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates regardless of their plasma or cellular origin to define genetic variability and biological traits of circulating HIV-1 quasispecies.
Collapse
Affiliation(s)
- Judith Dalmau
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Francisco M. Codoñer
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lifesequencing SL, Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Maria Pino
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Christian Pou
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Roger Paredes
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Fundació Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Fundació Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (JMP); (JGP)
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- * E-mail: (JMP); (JGP)
| |
Collapse
|
118
|
Abstract
Tumour necrosis factor (TNF), an important proinflammatory cytokine, plays a role in the regulation of cell differentiation, proliferation and death, as well as in inflammation, innate and adaptive immune responses, and also implicated in a wide variety of human diseases. The presence of DNA sequence variations in regulatory region might interfere with transcription of TNF gene, influencing the circulating level of TNF and thus increases the susceptibility to human diseases (infectious, cancer, autoimmune, neurodegenerative and other diseases). In this review, we have comprehensively analysed various published case-control studies of different types of human diseases, in which TNF gene polymorphism played a role, and computationally predicted several single nucleotide polymorphisms (SNPs) lie in transcription factor-binding sites (TFBS) of transcription factors (TFs). It has been observed that TNF enhancer polymorphism is implicated in several diseases, and TNF rs1800629 and rs361525 SNPs are the most important in human disease susceptibility as these might influence the transcription of TNF gene. Thirty-two SNPs lies in TFBS of 20 TFs have been detected in the TNF upstream region. It has been found that TNF enhancer polymorphism influences the serum level of TNF in different human diseases and thus affects the susceptibility to diseases. The presence of DNA sequence variation in TNF gene causes the modification of transcriptional regulation and thus responsible for association of susceptibility/resistance with human diseases.
Collapse
Affiliation(s)
- T Qidwai
- Metabolic and Structural Biology Department, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
119
|
Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J Virol 2011; 86:2715-28. [PMID: 22190722 DOI: 10.1128/jvi.06157-11] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome sequences of transmitted/founder (T/F) HIV-1 have been inferred by analyzing single genome amplicons of acute infection plasma viral RNA in the context of a mathematical model of random virus evolution; however, few of these T/F sequences have been molecularly cloned and biologically characterized. Here, we describe the derivation and biological analysis of ten infectious molecular clones, each representing a T/F genome responsible for productive HIV-1 clade B clinical infection. Each of the T/F viruses primarily utilized the CCR5 coreceptor for entry and replicated efficiently in primary human CD4(+) T lymphocytes. This result supports the conclusion that single genome amplification-derived sequences from acute infection allow for the inference of T/F viral genomes that are consistently replication competent. Studies with monocyte-derived macrophages (MDM) demonstrated various levels of replication among the T/F viruses. Although all T/F viruses replicated in MDM, the overall replication efficiency was significantly lower compared to prototypic "highly macrophage-tropic" virus strains. This phenotype was transferable by expressing the env genes in an isogenic proviral DNA backbone, indicating that T/F virus macrophage tropism mapped to Env. Furthermore, significantly higher concentrations of soluble CD4 were required to inhibit T/F virus infection compared to prototypic macrophage-tropic virus strains. Our findings suggest that the acquisition of clinical HIV-1 subtype B infection occurs by mucosal exposure to virus that is not highly macrophage tropic and that the generation and initial biological characterization of 10 clade B T/F infectious molecular clones provides new opportunities to probe virus-host interactions involved in HIV-1 transmission.
Collapse
|
120
|
Wolf C, Linden DEJ. Biological pathways to adaptability - interactions between genome, epigenome, nervous system and environment for adaptive behavior. GENES BRAIN AND BEHAVIOR 2011; 11:3-28. [DOI: 10.1111/j.1601-183x.2011.00752.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
121
|
Currier JR, Robb ML, Michael NL, Marovich MA. Defining epitope coverage requirements for T cell-based HIV vaccines: theoretical considerations and practical applications. J Transl Med 2011; 9:212. [PMID: 22152192 PMCID: PMC3284408 DOI: 10.1186/1479-5876-9-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important metrics such as the minimum epitope count required to reach a desired level of coverage can be easily calculated. We propose that such analyses can be applied early in the planning stages and during the execution phase of a vaccine trial to explore theoretical and empirical suitability of a vaccine product to a particular epidemic setting.
Collapse
|
122
|
Boonchawalit S, Jullaksorn D, Uttiyoung J, Yowang A, Krathong N, Chautrakul S, Yamashita A, Ikuta K, Roobsoong A, Kanitvittaya S, Sawanpanyalert P, Kameoka M. Molecular evolution of HIV-1 CRF01_AE Env in Thai patients. PLoS One 2011; 6:e27098. [PMID: 22073263 PMCID: PMC3206936 DOI: 10.1371/journal.pone.0027098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/10/2011] [Indexed: 12/03/2022] Open
Abstract
Background The envelope glycoproteins (Env), gp120 and gp41, are the most variable proteins of human immunodeficiency virus type 1 (HIV-1), and are the major targets of humoral immune responses against HIV-1. A circulating recombinant form of HIV-1, CRF01_AE, is prevalent throughout Southeast Asia; however, only limited information regarding the immunological characteristics of CRF01_AE Env is currently available. In this study, we attempted to examine the evolutionary pattern of CRF01_AE Env under the selection pressure of host immune responses. Methodology/Principal Findings Peripheral blood samples were collected periodically over 3 years from 15 HIV-1-infected individuals residing in northern Thailand, and amplified env genes from the samples were subjected to computational analysis. The V5 region of gp120 showed highest variability in several samples over 3 years, whereas the V1/V2 and/or V4 regions of gp120 also showed high variability in many samples. In addition, the N-terminal part of the C3 region of gp120 showed highest amino acid diversity among the conserved regions of gp120. Chronological changes in the numbers of amino acid residues in gp120 variable regions and potential N-linked glycosylation (PNLG) sites are involved in increasing the variability of Env gp120. Furthermore, the C3 region contained several amino acid residues potentially under positive selection, and APOBEC3 family protein-mediated G to A mutations were frequently detected in such residues. Conclusions/Significance Several factors, including amino acid substitutions particularly in gp120 C3 and V5 regions as well as changes in the number of PNLG sites and in the length of gp120 variable regions, were revealed to be involved in the molecular evolution of CRF01_AE Env. In addition, a similar tendency was observed between CRF01_AE and subtype C Env with regard to the amino acid variation of gp120 V3 and C3 regions. These results may provide important information for understanding the immunological characteristics of CRF01_AE Env.
Collapse
Affiliation(s)
- Samatchaya Boonchawalit
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Duangrat Jullaksorn
- National Institute of Health, Department of Medical Sciences (DMSc), Ministry of Public Health (MOPH), Nonthaburi, Thailand
| | - Jiraporn Uttiyoung
- Regional Medical Science Center Chiangrai, DMSc, MOPH, Chiangrai, Thailand
| | - Amara Yowang
- Regional Medical Science Center Chiangrai, DMSc, MOPH, Chiangrai, Thailand
| | | | | | | | - Kazuyoshi Ikuta
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Pathom Sawanpanyalert
- National Institute of Health, Department of Medical Sciences (DMSc), Ministry of Public Health (MOPH), Nonthaburi, Thailand
| | - Masanori Kameoka
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
123
|
Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, Lapedes AS, Shen T, Gaschen B, Krishnamoorthy M, Li H, Decker JM, Salazar-Gonzalez JF, Wang S, Jiang C, Gao F, Swanstrom R, Anderson JA, Ping LH, Cohen MS, Markowitz M, Goepfert PA, Saag MS, Eron JJ, Hicks CB, Blattner WA, Tomaras GD, Asmal M, Letvin NL, Gilbert PB, DeCamp AC, Magaret CA, Schief WR, Ban YEA, Zhang M, Soderberg KA, Sodroski JG, Haynes BF, Shaw GM, Hahn BH, Korber B. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. PLoS Pathog 2011; 7:e1002209. [PMID: 21980282 PMCID: PMC3182927 DOI: 10.1371/journal.ppat.1002209] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 06/26/2011] [Indexed: 12/15/2022] Open
Abstract
Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.
Collapse
Affiliation(s)
- S. Gnanakaran
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Marcus Daniels
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brandon F. Keele
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter T. Hraber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Lapedes
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tongye Shen
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Molecular Biophysics and Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Brian Gaschen
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mohan Krishnamoorthy
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hui Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jesus F. Salazar-Gonzalez
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shuyi Wang
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chunlai Jiang
- National Engineering Laboratory of AIDS Vaccine School of Life Science, Jilin University, Changchun, China
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey A. Anderson
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Li-Hua Ping
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Myron S. Cohen
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, an affiliate of the Rockefeller University, New York, New York, United States of America
| | - Paul A. Goepfert
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael S. Saag
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joseph J. Eron
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles B. Hicks
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - William A. Blattner
- Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Georgia D. Tomaras
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mohammed Asmal
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Norman L. Letvin
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Viral Pathogenesis, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter B. Gilbert
- Vaccine Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - Allan C. DeCamp
- Vaccine Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - Craig A. Magaret
- Vaccine Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - William R. Schief
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Yih-En Andrew Ban
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Arzeda Corporation, Seattle, Washington, United States of America
| | - Ming Zhang
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, United States of America
| | - Kelly A. Soderberg
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Joseph G. Sodroski
- Dana-Farber Cancer Institute, Department of Cancer Immunology and AIDS, Boston, Massachusetts, United States of America
| | - Barton F. Haynes
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bette Korber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
124
|
Mussil B, Sauermann U, Motzkus D, Stahl-Hennig C, Sopper S. Increased APOBEC3G and APOBEC3F expression is associated with low viral load and prolonged survival in simian immunodeficiency virus infected rhesus monkeys. Retrovirology 2011; 8:77. [PMID: 21955401 PMCID: PMC3192745 DOI: 10.1186/1742-4690-8-77] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/28/2011] [Indexed: 01/12/2023] Open
Abstract
Background The cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) are innate cellular factors that inhibit replication of a number of viruses, including HIV-1. Since antiviral activity of APOBEC3 has been mainly confirmed by in vitro data, we examined their role for disease progression in the SIV/macaque model for AIDS. Results We quantified A3G and A3F mRNA in PBMC and leukocyte subsets of uninfected and SIVmac-infected rhesus macaques. Compared with uninfected animals, we found increased A3G and A3F mRNA levels in PBMC, purified CD4+ T-cells and CD14+ monocytes as well as lymph node cells from asymptomatic SIV-infected macaques. APOBEC3 mRNA levels correlated negatively with plasma viral load, and highest amounts of APOBEC3 mRNA were detected in long term non-progressors (LTNPs). During acute viremia, A3G mRNA increased in parallel with MxA, a prototype interferon-stimulated gene indicating a common regulation by the initial interferon response. This association disappeared during the asymptomatic stage. Conclusion Our findings suggest a protective effect of APOBEC3 for HIV and SIV in vivo and indicate regulation of APOBEC3 by interferon during early infection and by contribution of other, hitherto undefined factors at later disease stages. Elucidating the regulatory mechanisms leading to increased APOBEC3 mRNA levels in LTNPs could help to develop new therapies against HIV.
Collapse
Affiliation(s)
- Bianka Mussil
- Unit of Infection Biology, German Primate Centre, Goettingen, Germany
| | | | | | | | | |
Collapse
|
125
|
Herbeck JT, Rolland M, Liu Y, McLaughlin S, McNevin J, Zhao H, Wong K, Stoddard JN, Raugi D, Sorensen S, Genowati I, Birditt B, McKay A, Diem K, Maust BS, Deng W, Collier AC, Stekler JD, McElrath MJ, Mullins JI. Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes. J Virol 2011; 85:7523-34. [PMID: 21593162 PMCID: PMC3147913 DOI: 10.1128/jvi.02697-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/11/2011] [Indexed: 12/12/2022] Open
Abstract
HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for vaccine design.
Collapse
Affiliation(s)
| | | | - Yi Liu
- Departments of Microbiology
| | | | - John McNevin
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | - Ann C. Collier
- Medicine, University of Washington School of Medicine, Seattle, Washington 98195-8070
| | - Joanne D. Stekler
- Medicine, University of Washington School of Medicine, Seattle, Washington 98195-8070
| | | | - James I. Mullins
- Departments of Microbiology
- Laboratory Medicine
- Medicine, University of Washington School of Medicine, Seattle, Washington 98195-8070
| |
Collapse
|
126
|
Coming of age: reconstruction of heterosexual HIV-1 transmission in human ex vivo organ culture systems. Mucosal Immunol 2011; 4:383-96. [PMID: 21430654 DOI: 10.1038/mi.2011.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterosexual transmission of human immunodeficiency virus-1 (HIV-1), from men to women, involves exposure to infectious HIV-1 in semen. Therefore, the cellular and molecular processes that underlie HIV-1 transmission are closely interconnected with fundamental principles of human reproductive biology. Human ex vivo organ culture systems allow experimental reconstruction of HIV-1 transmission, using human semen and premenopausal cervicovaginal mucosal tissue, with specific emphasis on the progression from exposure to development of primary HIV-1 infection. Clearly, an isolated piece of human tissue cannot duplicate the full complexity of events in natural infections, but with correct observation of conventional medical and ethical standards, there is no opportunity to study HIV-1 exposure and primary infection in young women. Human mucosal organ cultures allow direct study of HIV-1 infection in a reproducible format while retaining major elements of complexity and variability that typify community-based HIV-1 transmission. Experimental manipulation of human mucosal tissue both allows and requires acquisition of new insights into basic processes of human mucosal immunology. Expanding from the current foundations, we believe that human organ cultures will become increasingly prominent in experimental studies of HIV-1 transmission and continuing efforts to prevent HIV-1 infection at human mucosal surfaces.
Collapse
|
127
|
Lever RA, Lever AML. Intracellular defenses against HIV, viral evasion and novel therapeutic approaches. J Formos Med Assoc 2011; 110:350-62. [PMID: 21741003 DOI: 10.1016/s0929-6646(11)60053-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus (HIV), the causative agent of AIDS, is a retrovirus. It is estimated that, while in the cell, it interacts with almost 10% of cellular proteins. Several of these have evolved to protect the cell from infection with retroviruses and are known as "restriction factors". Restriction factors tell us much about how the virus functions and open up new paradigms for exploring novel antiviral therapeutics. This article gives an update on the three best studied restriction factors, their putative mechanisms of action and how the virus has overcome their effects, together with an indication of novel therapeutic approaches based on this knowledge.
Collapse
Affiliation(s)
- Robert A Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
128
|
Heger E, Thielen A, Gilles R, Obermeier M, Lengauer T, Kaiser R, Trapp S. APOBEC3G/F as one possible driving force for co-receptor switch of the human immunodeficiency virus-1. Med Microbiol Immunol 2011; 201:7-16. [PMID: 21573951 DOI: 10.1007/s00430-011-0199-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus-1 tropism highly correlates with the amino acid (aa) composition of the third hypervariable region (V3) of gp120. A shift towards more positively charged aa is seen when binding to CXCR4 compared with CCR5 (X4 vs. R5 strains), especially positions 11 and 25 (11/25-rule) predicting X4 viruses in the presence of positively charged residues. At nucleotide levels, negatively or uncharged aa, e.g., aspartic and glutamic acid and glycine, which are encoded by the triplets GAN (guanine-adenosine-any nucleotide) or GGN are found more often in R5 strains. Positively charged aa such as arginine and lysine encoded by AAR or AGR (CGN) (R means A or G) are seen more frequently in X4 strains suggesting our hypothesis that a switch from R5 to X4 strains occurs via a G-to-A mutation. 1527 V3 sequences from three independent data sets of X4 and R5 strains were analysed with respect to their triplet composition. A higher number of G-containing triplets was found in R5 viruses, whereas X4 strains displayed a higher content of A-comprising triplets. These findings also support our hypothesis that G-to-A mutations are leading to the co-receptor switch from R5 to X4 strains. Causative agents for G-to-A mutations are the deaminases APOBEC3F and APOBEC3G. We therefore hypothesize that these proteins are one driving force facilitating the appearance of X4 variants. G-to-A mutations can lead to a switch from negatively to positively charged aa and a respective alteration of the net charge of gp120 resulting in a change of co-receptor usage.
Collapse
Affiliation(s)
- Eva Heger
- University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
129
|
De Maio FA, Rocco CA, Aulicino PC, Bologna R, Mangano A, Sen L. Effect of HIV-1 Vif variability on progression to pediatric AIDS and its association with APOBEC3G and CUL5 polymorphisms. INFECTION GENETICS AND EVOLUTION 2011; 11:1256-62. [PMID: 21571098 DOI: 10.1016/j.meegid.2011.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/31/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
The APOBEC3G protein is a restriction factor that can inhibit the replication of HIV-1. The virus has the capacity to counteract this antiviral activity through the expression of the Vif accessory protein, which recruits a CUL5-based ubiquitin ligase complex that determines APOBEC3G proteasomal degradation. In this work we evaluated in a large pediatric cohort (i) whether single nucleotide polymorphisms of APOBEC3G and CUL5 genes (APOBEC3G H186R, APOBEC3G C40693T and CUL5 SNP6) can alter the risk of HIV-1 vertical transmission and/or the rate of progression to AIDS, (ii) the effect of HIV-1 Vif variants on the clinical course of disease, and (iii) whether the patient genotype for the studied polymorphisms could have an impact on Vif characteristics. We found no effect of the studied APOBEC3G or CUL5 genetic variants on vertical transmission or progression to pediatric AIDS. However, we detected an association of certain Vif alterations (a one amino acid insertion at position 61 and the substitutions A62D/N/S and Q136P) with an accelerated AIDS outcome. Additionally, we observed that the APOBEC3G C40693T and CUL5 SNP6 minor alleles were correlated with substitutions in Vif motifs that are involved in the interaction with APOBEC3G and CUL5 proteins, respectively. Our results suggest that Vif alterations may contribute to a rapid AIDS onset and that Vif variability could be influenced by APOBEC3G and CUL5 polymorphisms in children.
Collapse
Affiliation(s)
- Federico A De Maio
- Laboratorio de Biología Celular y Retrovirus - CONICET, Hospital de Pediatría Juan P. Garrahan, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
130
|
Antibody-dependent cell-mediated viral inhibition emerges after simian immunodeficiency virus SIVmac251 infection of rhesus monkeys coincident with gp140-binding antibodies and is effective against neutralization-resistant viruses. J Virol 2011; 85:5465-75. [PMID: 21450829 DOI: 10.1128/jvi.00313-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI.
Collapse
|
131
|
Shiri T, Welte A. Modelling the impact of acute infection dynamics on the accumulation of HIV-1 mutations. J Theor Biol 2011; 279:44-54. [PMID: 21420419 DOI: 10.1016/j.jtbi.2011.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/19/2011] [Accepted: 03/13/2011] [Indexed: 11/15/2022]
Abstract
Events over the past year have brought hope and have re-energized the interest in targeting pre-infection or early infection period with preventative or therapeutic interventions such as vaccines and pre-exposure prophylaxis (PrEP). In breakthrough infections, the incidence, long term prognosis and clinical significance of early infection events is not well understood but it is possible that these early events may be crucial in determining the subsequent course of disease. We use a branching process model in a deterministically varying environment to explore how the dynamics of early infection affects the accumulation of mutations which lay the seeds for long term evolution of drug resistance and immune system evasion. We relate this exploration to regimes of impact, on diversity, of tropical interventions strategies such as PrEP and vaccines. As a metric of diversity we compute the probability of existence of particular genomes which potentially arise. Using several model scenarios, we demonstrate various regimes of 'response' of evolution to 'intervention'. Transient effects of therapeutic interventions early in infection that impose a fitness cost on early viruses can significantly reduce the probability of diversity later during the chronic state of infection. This stands in contrast to the concern that early selective pressure may increase the probability of later existence of drug resistance mutations, for example. The branching process paradigm offers the ability to efficiently compute important indicators of viral diversity, in a framework with a modest number of simplifying assumptions, without simulating the full range of individual level scenarios. These models may be useful to illustrate the impact of vaccines and PrEP on viral evolution in the case of breakthrough infection. They also suggest that new measures of viral diversity which correlate to prognosis should be sought in trials for PrEP and vaccines.
Collapse
Affiliation(s)
- Tinevimbo Shiri
- School of Computational and Applied Mathematics (CAM), University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
132
|
Cavrois M, Neidleman J, Galloway N, Derdeyn CA, Hunter E, Greene WC. Measuring HIV fusion mediated by envelopes from primary viral isolates. Methods 2011; 53:34-8. [PMID: 20554044 PMCID: PMC3563671 DOI: 10.1016/j.ymeth.2010.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
Over the course of infection, the human immunodeficiency virus type 1 (HIV-1) continuously adapts in part to evade the host's neutralizing antibody response. Antibodies often target the HIV envelope proteins that mediate HIV fusion to its cellular targets. HIV virions pseudotyped with primary envelopes have often been used to explore the fusogenic properties of these envelopes. Unfortunately, these pseudotyped virions fuse with greatly reduced efficiency to primary cells. Here, we describe a relatively simple strategy to clone primary envelopes into a provirus and increase the sensitivity of the virion-based fusion assay.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Curlin ME, Zioni R, Hawes SE, Liu Y, Deng W, Gottlieb GS, Zhu T, Mullins JI. HIV-1 envelope subregion length variation during disease progression. PLoS Pathog 2010; 6:e1001228. [PMID: 21187897 PMCID: PMC3002983 DOI: 10.1371/journal.ppat.1001228] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/11/2010] [Indexed: 01/29/2023] Open
Abstract
The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B). Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS) counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic. The HIV envelope gene (env) encodes viral surface proteins (Env) that are vital to the basic processes used by the virus to infect and cause disease in humans. Adaptations in env determine which cells the virus can infect, and permit the virus to avoid elimination by the immune system. Env is one of the most variable genes known, and it can change dramatically over time in a single individual. However, Env-host cell interactions are complex and incompletely understood, and changes in this viral protein during infection have not yet been systematically described. We examined a large number of env sequences from 154 individuals at various stages of HIV infection but who had never received antiretroviral treatment. We found that the env V1V2 region lengthens during chronic infection and becomes more heavily glycosylated. However, these changes partially reverse during late-stage illness, possibly in response to a weakening host immune system. V1V2 lengths are also increasing over time in the epidemic at large, possibly related to the epidemiology of HIV transmission within the subtype B epidemic. These results provide fundamental insights into the biology of HIV.
Collapse
Affiliation(s)
- Marcel E Curlin
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Giorgi EE, Funkhouser B, Athreya G, Perelson AS, Korber BT, Bhattacharya T. Estimating time since infection in early homogeneous HIV-1 samples using a poisson model. BMC Bioinformatics 2010; 11:532. [PMID: 20973976 PMCID: PMC2975664 DOI: 10.1186/1471-2105-11-532] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/25/2010] [Indexed: 01/03/2023] Open
Abstract
Background The occurrence of a genetic bottleneck in HIV sexual or mother-to-infant transmission has been well documented. This results in a majority of new infections being homogeneous, i.e., initiated by a single genetic strain. Early after infection, prior to the onset of the host immune response, the viral population grows exponentially. In this simple setting, an approach for estimating evolutionary and demographic parameters based on comparison of diversity measures is a feasible alternative to the existing Bayesian methods (e.g., BEAST), which are instead based on the simulation of genealogies. Results We have devised a web tool that analyzes genetic diversity in acutely infected HIV-1 patients by comparing it to a model of neutral growth. More specifically, we consider a homogeneous infection (i.e., initiated by a unique genetic strain) prior to the onset of host-induced selection, where we can assume a random accumulation of mutations. Previously, we have shown that such a model successfully describes about 80% of sexual HIV-1 transmissions provided the samples are drawn early enough in the infection. Violation of the model is an indicator of either heterogeneous infections or the initiation of selection. Conclusions When the underlying assumptions of our model (homogeneous infection prior to selection and fast exponential growth) are met, we are under a very particular scenario for which we can use a forward approach (instead of backwards in time as provided by coalescent methods). This allows for more computationally efficient methods to derive the time since the most recent common ancestor. Furthermore, the tool performs statistical tests on the Hamming distance frequency distribution, and outputs summary statistics (mean of the best fitting Poisson distribution, goodness of fit p-value, etc). The tool runs within minutes and can readily accommodate the tens of thousands of sequences generated through new ultradeep pyrosequencing technologies. The tool is available on the LANL website.
Collapse
Affiliation(s)
- Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Kim EY, Bhattacharya T, Kunstman K, Swantek P, Koning FA, Malim MH, Wolinsky SM. Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J Virol 2010; 84:10402-5. [PMID: 20660203 PMCID: PMC2937764 DOI: 10.1128/jvi.01223-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/09/2010] [Indexed: 01/21/2023] Open
Abstract
Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hereinafter referred to as A3G) is an innate virus restriction factor that inhibits human immunodeficiency virus type 1 (HIV-1) replication and induces excessive deamination of cytidine residues in nascent reverse transcripts. To test the hypothesis that this enzyme can also help generate viral sequence diversification and the evolution of beneficial viral variants, we have examined the impact of A3G on the acquisition of (-)2',3'-dideoxy-3'-thiacytidine (3TC) resistance in vitro. That characteristic resistance mutations are rapidly fixed in the presence of A3G and 3TC suggests that A3G-mediated editing can be an important source of genetic variation on which natural selection acts to shape the structure of HIV-1 populations.
Collapse
Affiliation(s)
- Eun-Young Kim
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Tanmoy Bhattacharya
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Kevin Kunstman
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Peter Swantek
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Fransje A. Koning
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Michael H. Malim
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Steven M. Wolinsky
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Santa Fe Institute, Santa Fe, New Mexico 87501, Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| |
Collapse
|
136
|
Arnott A, Jardine D, Wilson K, Gorry PR, Merlin K, Grey P, Law MG, Dax EM, Kelleher AD, Smith DE, McPhee DA, and the Pulse Study Team. High viral fitness during acute HIV-1 infection. PLoS One 2010; 5. [PMID: 20844589 PMCID: PMC2936565 DOI: 10.1371/journal.pone.0012631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/07/2010] [Indexed: 11/26/2022] Open
Abstract
Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection.
Collapse
Affiliation(s)
- Alicia Arnott
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Darren Jardine
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Kim Wilson
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Paul R. Gorry
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kate Merlin
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Patricia Grey
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew G. Law
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth M. Dax
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D. Kelleher
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Don E. Smith
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Dale A. McPhee
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | | |
Collapse
|
137
|
Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T, Han CS, Gleasner CD, Green L, Lo CC, Nag A, Wallstrom TC, Wang S, McMichael AJ, Haynes BF, Hahn BH, Perelson AS, Borrow P, Shaw GM, Bhattacharya T, Korber BT. Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing. PLoS One 2010; 5:e12303. [PMID: 20808830 PMCID: PMC2924888 DOI: 10.1371/journal.pone.0012303] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/10/2010] [Indexed: 01/10/2023] Open
Abstract
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses--using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.
Collapse
Affiliation(s)
- Will Fischer
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Vitaly V. Ganusov
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Elena E. Giorgi
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Peter T. Hraber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brandon F. Keele
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Thomas Leitner
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cliff S. Han
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cheryl D. Gleasner
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lance Green
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Chien-Chi Lo
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ambarish Nag
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Timothy C. Wallstrom
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shuyi Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew J. McMichael
- Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Barton F. Haynes
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alan S. Perelson
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - George M. Shaw
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Bette T. Korber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
138
|
Abstract
This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems.
Collapse
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
139
|
Remarkable lethal G-to-A mutations in vif-proficient HIV-1 provirus by individual APOBEC3 proteins in humanized mice. J Virol 2010; 84:9546-56. [PMID: 20610708 DOI: 10.1128/jvi.00823-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic hypermutation of RNA viruses, including human immunodeficiency virus type 1 (HIV-1), can be provoked by intrinsic and extrinsic pressures, which lead to the inhibition of viral replication and/or the progression of viral diversity. Human APOBEC3G was identified as an HIV-1 restriction factor, which edits nascent HIV-1 DNA by inducing G-to-A hypermutations and debilitates the infectivity of vif-deficient HIV-1. On the other hand, HIV-1 Vif protein has the robust potential to degrade APOBEC3G protein. Although subsequent investigations have revealed that lines of APOBEC3 family proteins have the capacity to mutate HIV-1 DNA, it remains unclear whether these endogenous APOBEC3s, including APOBEC3G, contribute to mutations of vif-proficient HIV-1 provirus in vivo and, if so, what is the significance of these mutations. In this study, we use a human hematopoietic stem cell-transplanted humanized mouse (NOG-hCD34 mouse) model and demonstrate the predominant accumulation of G-to-A mutations in vif-proficient HIV-1 provirus displaying characteristics of APOBEC3-mediated mutagenesis. Notably, the APOBEC3-associated G-to-A mutation of HIV-1 DNA that leads to the termination of translation was significantly observed. We further provide a novel insight suggesting that HIV-1 G-to-A hypermutation is independently induced by individual APOBEC3 proteins. In contrast to the prominent mutation in intracellular proviral DNA, viral RNA in plasma possessed fewer G-to-A mutations. Taken together, these results provide the evidence indicating that endogenous APOBEC3s are associated with G-to-A mutation of HIV-1 provirus in vivo, which can result in the abrogation of HIV-1 infection.
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW Improvements in sequencing approaches and robust mathematical modeling have dramatically increased information on viral genetics during acute infection with HIV and simian immunodeficiency virus, providing unprecedented insight into viral transmission and viral/immune interactions. RECENT FINDINGS Overall viral genetic diversity is reduced significantly during mucosal transmission. Remarkably, in the vast majority of sexual transmissions, this diversity is reduced to a single viral variant that establishes the initial productive clinical infection. By identifying and enumerating transmitted/founder viruses, researchers can begin to define the characteristics that are necessary and sufficient for successful viral replication within a new host. SUMMARY Acute HIV infection is a critical window of opportunity for vaccine and therapeutic intervention. New sequencing technologies and mathematical modeling of transmission and early evolution have provided a clearer understanding of the number of founder viruses that establish infection, the rapid generation of diversity in these viruses and the subsequent evasion of host immunity. The information gained by identifying transmitted viruses, monitoring the initial host responses to these viruses and then identifying mechanisms of viral escape could provide better strategies for vaccine development, preexposure prophylaxis, microbicides, or other therapeutic interventions.
Collapse
Affiliation(s)
- Brandon F Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| |
Collapse
|
141
|
Li H, Bar KJ, Wang S, Decker JM, Chen Y, Sun C, Salazar-Gonzalez JF, Salazar MG, Learn GH, Morgan CJ, Schumacher JE, Hraber P, Giorgi EE, Bhattacharya T, Korber BT, Perelson AS, Eron JJ, Cohen MS, Hicks CB, Haynes BF, Markowitz M, Keele BF, Hahn BH, Shaw GM. High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men. PLoS Pathog 2010; 6:e1000890. [PMID: 20485520 PMCID: PMC2869329 DOI: 10.1371/journal.ppat.1000890] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA) and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX) cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38%) versus 34 of 175 subjects (19%); Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5′ and 3′ half genome or env-only sequences from plasma viral RNA (vRNA) and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3–6 days before symptom onset and 14–17 days before peak plasma viremia (47,600,000 vRNA molecules/ml). All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1 vaccines than previously recognized. Understanding the biology of sexual transmission of HIV-1 could contribute importantly to the development of effective prevention measures. However, different routes of virus transmission (vaginal, rectal, penile or oral) and inaccessibility of tissues at or near the time of virus transmission make this goal elusive. Here, we apply single genome amplification and sequencing of plasma HIV-1 and a model of random virus evolution to a cohort of acutely infected men who have sex with men (MSM) and find that MSM are twice as likely as heterosexuals to become infected by multiple viruses as opposed to a single virus. Some MSM subjects were infected by as many as 7 to 10 or more genetically distinct viruses as a consequence of a single exposure event. We go on to molecularly clone the first full-length transmitted/founder subtype B HIV-1 virus and show that it is highly replicative in human CD4+ T-cells but not macrophages. Our study provides the first comparative, quantitative analysis of the multiplicity of HIV-1 infection in the two primary risk groups—MSM and heterosexuals—driving the global pandemic, and we discuss the implications of the findings to HIV-1 vaccine development and prevention research.
Collapse
Affiliation(s)
- Hui Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Katharine J. Bar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shuyi Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yalu Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chuanxi Sun
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jesus F. Salazar-Gonzalez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maria G. Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gerald H. Learn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Charity J. Morgan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joseph E. Schumacher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter Hraber
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Tanmoy Bhattacharya
- Nuclear and Particle Physics, Astrophysics and Cosmology (T-2), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Bette T. Korber
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Myron S. Cohen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles B. Hicks
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
- Rockefeller University, New York, New York, United States of America
| | - Brandon F. Keele
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - George M. Shaw
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW Methodological and analytical advances in obtaining genetic information during acute HIV infection have provided an unprecedented view into viral transmission and early immune evasion. The findings suggest that a better understanding of the restricted viral diversity that follows mucosal transmission could lead to novel strategies for vaccine, microbicide or other therapeutic interventions. RECENT FINDINGS During sexual transmission of HIV-1, viral diversity is reduced presumably due to obstacles an infectious virion must overcome to establish infection within a new host. Recently, single-genome amplification followed by direct sequencing from samples obtained during acute infection has been utilized to quantify the actual number of infecting variants. Overall, the vast majority (over 75%) of new infections were initiated by a single genetic variant. Transmission of multiple variants from a single donor (between two and five) was also observed and is associated with factors that compromise the genital mucosa. These analyses included over 200 patients representing subtypes A, B, C, D and have been reproduced in nonhuman primate model systems. SUMMARY During acute infection, there is limited viral diversity in most patients, which provides a window of opportunity for vaccines or therapies to inhibit or prevent infection. Identifying the common genetic and antigenic properties of newly transmitted viruses will be necessary to advance vaccine design.
Collapse
|
143
|
Long sequence duplications, repeats, and palindromes in HIV-1 gp120: length variation in V4 as the product of misalignment mechanism. Virology 2010; 399:167-175. [PMID: 20106497 DOI: 10.1016/j.virol.2009.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/14/2009] [Accepted: 12/19/2009] [Indexed: 11/22/2022]
Abstract
We have shown that indels in gp120 V4 are associated to the presence of duplicated and palindromic sequences, suggesting that they may be produced by strand-slippage misalignment mechanism. Indels in V4 involved region-specific duplications 9 to 15 bp long, and repeats of various lengths, associated to trinucleotides AAT. No duplications were found in V3 and C3. The frequency of palindromic sequences in individual genes was found to be significantly higher in gp120 (p < or = 3.00E-7), and significantly lower in Tat (p < or = 9.00E-7) than the average frequency calculated over the full genome. The finding of elements of misalignment in association with indels in V4 suggests that these mutations may occur in proviral DNA after integration of HIV into the host genome. It also implies that occurrence of large indels in gp120 is not random but is directed by the presence and distribution of elements of misalignment in the HIV genome.
Collapse
|
144
|
Mukherjee R, Plesa G, Sherrill-Mix S, Richardson MW, Riley JL, Bushman FD. HIV sequence variation associated with env antisense adoptive T-cell therapy in the hNSG mouse model. Mol Ther 2010; 18:803-11. [PMID: 20104212 DOI: 10.1038/mt.2009.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The first use of lentiviral vectors in humans involved transduction of mature T-cells with an human immunodeficiency virus (HIV)-derived env antisense (envAS) vector to protect cells from HIV infection. In that study, only a minority of the patient T-cell population could be gene-modified, raising the question of whether the altered cells could affect replicating HIV populations. We investigated this using humanized NOD/SCID IL-2Rgamma(null) (hNSG) mice reconstituted with approximately 4-11% envAS-modified human T-cells. Mice were challenged with HIV-1(NL4-3), which has an env perfectly complementary to envAS, or with HIV-1(BaL), which has a divergent env. No differences were seen in viral titer between mice that received envAS-modified cells and control mice that did not. Using 454/Roche pyrosequencing, we analyzed the mutational spectrum in HIV populations in serum-from 33 mice we recovered 84,074 total reads comprising 31,290 unique sequence variants. We found enrichment of A-to-G transitions and deletions in envAS-treated mice, paralleling a previous tissue culture study where most target cells contained envAS, even though minority of cells were envAS-modified here. Unexpectedly, this enrichment was only detected after the challenge with HIV-1(BaL), where the viral genome would form an imperfect duplex with envAS, and not HIV-1(NL4-3), where a perfectly matched duplex would form.
Collapse
Affiliation(s)
- Rithun Mukherjee
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
145
|
Albin JS, Harris RS. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 2010; 12:e4. [PMID: 20096141 PMCID: PMC2860793 DOI: 10.1017/s1462399409001343] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.
Collapse
Affiliation(s)
- John S. Albin
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| |
Collapse
|
146
|
Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 2009; 206:1273-89. [PMID: 19487424 PMCID: PMC2715054 DOI: 10.1084/jem.20090378] [Citation(s) in RCA: 625] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/01/2009] [Indexed: 01/09/2023] Open
Abstract
Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4(+) T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12-20 mo, viruses exhibited concentrated mutations at 17-34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.
Collapse
Affiliation(s)
| | | | | | | | - Elena E. Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545
- University of Massachusetts, Amherst, MA 01002
| | - Hui Li
- University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Shuyi Wang
- University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joshua Baalwa
- University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | - M. Brad Guffey
- University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Katie L. Davis
- University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - John C. Kappes
- University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Myron S. Cohen
- The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | | | | | - Martin Markowitz
- Aaron Diamond AIDS Research Center, New York, NY 10016
- The Rockefeller University, New York, NY 10065
| | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Tanmoy Bhattacharya
- Los Alamos National Laboratory, Los Alamos, NM 87545
- Santa Fe Institute, Santa Fe, NM 87501
| | | | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545
- Santa Fe Institute, Santa Fe, NM 87501
| | | | - George M. Shaw
- University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|