101
|
Insights into the microbiome of farmed Asian sea bass (Lates calcarifer) with symptoms of tenacibaculosis and description of Tenacibaculum singaporense sp. nov. Antonie van Leeuwenhoek 2020; 113:737-752. [PMID: 32080799 DOI: 10.1007/s10482-020-01391-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Outbreaks of diseases in farmed fish remain a recurring problem despite the development of vaccines and improved hygiene standards on aquaculture farms. One commonly observed bacterial disease in tropical aquaculture of the South-East Asian region is tenacibaculosis, which is attributed to members of the genus Tenacibaculum (family Flavobacteriaceae, phylum Bacteroidetes), most notably Tenacibaculum maritimum. The impact of tenacibaculosis on the fish microbiota remains poorly understood. In this study, we analysed the microbiota of different tissues of commercially reared Asian seabass (Lates calcarifer) that showed symptoms of tenacibaculosis and compared the microbial communities to those of healthy and experimentally infected fish that were exposed to diseased farmed fish. The relative abundance of Tenacibaculum species in experimentally infected fish was significantly lower than in commercially reared diseased fish and revealed a higher prevalence of different Tenacibaculum species. One isolated strain, TLL-A2T, shares 98.7% 16S rRNA gene identity with Tenacibaculum mesophilum DSM 13764T. The genome of strain TLL-A2T was sequenced and compared to that of T. mesophilum DSM 13764T. Analysis of average nucleotide identity and comparative genome analysis revealed only 92% identity between T. mesophilum DSM 13764T and strain TLL-A2T and differences between the two strains in predicted carbohydrate activating enzymes respectively. Phenotypic comparison between strain TLL-A2T and T. mesophilum DSM 13764T indicated additional differences, such as growth response at different salt concentrations. Based on molecular and phenotypic differences, strain TLL-A2T (=DSM 106434T, KCTC 62393T) is proposed as the type strain of Tenacibaculum singaporense sp. nov.
Collapse
|
102
|
Wang R, Deng Y, Deng Q, Sun D, Fang Z, Sun L, Wang Y, Gooneratne R. Vibrio parahaemolyticus Infection in Mice Reduces Protective Gut Microbiota, Augmenting Disease Pathways. Front Microbiol 2020; 11:73. [PMID: 32082289 PMCID: PMC7002474 DOI: 10.3389/fmicb.2020.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Vibrio parahaemolyticus (Vp), a major food-borne pathogen, is responsible for severe infections such as gastroenteritis and septicemia, which may be accompanied by life-threatening complications. While studies have evaluated factors that affect the virulence of the pathogen, none have investigated the interaction of Vp with gut microbiota. To address this knowledge gap, we compared the effect of Vp on gut bacterial community structure, immunity, liver and kidney function, in pseudo germ-free (PGF) mice and normal (control) mice. Significant damage to the ileum was observed in normal mice compared with the PGF mice. The inflammatory factors IL-1β, IL-6, and TNF-α in normal mice were ∼2.5-fold higher than in the PGF mice, and liver (ALT, AST, ALP) and kidney (BUN) function indices were ∼1.6-fold higher. The Vp infection substantially reduced species composition and richness of the gut microbial communities. In particular, there was a shift in keystone taxa, from protective species of genera Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia in the gut of control mice to opportunistic pathogens Enterobacteriaceae, Proteus, Prevotella, and Sutterella in Vp-infected mice, thus affecting microbiota-related biological functions in the mice. Specifically, pathways involved in infectious diseases and ion channels were significantly augmented in infected mice, while the pathways involved in metabolism, digestion and cell growth declined. We propose that the normal mice are more prone to Vp infection because of the alteration in gut-microbe-mediated functions. All these effects reduce intestinal resistance, with marked damage to the gut lining and pathogen leakage into the blood culminating in liver and kidney damage. These findings greatly advance our understanding of the mechanisms underlying interactions between Vp, the gut microbiota and the infected host.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China.,School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, China
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Dongfang Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
103
|
Oliveira RA, Ng KM, Correia MB, Cabral V, Shi H, Sonnenburg JL, Huang KC, Xavier KB. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat Microbiol 2020; 5:630-641. [PMID: 31959968 DOI: 10.1038/s41564-019-0658-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Intestinal microbiotas contain beneficial microorganisms that protect against pathogen colonization; treatment with antibiotics disrupts the microbiota and compromises colonization resistance. Here, we determine the impact of exchanging microorganisms between hosts on resilience to the colonization of invaders after antibiotic-induced dysbiosis. We assess the functional consequences of dysbiosis using a mouse model of colonization resistance against Escherichia coli. Antibiotics caused stochastic loss of members of the microbiota, but the microbiotas of co-housed mice remained more similar to each other compared with the microbiotas among singly housed animals. Strikingly, co-housed mice maintained colonization resistance after treatment with antibiotics, whereas most singly housed mice were susceptible to E. coli. The ability to retain or share the commensal Klebsiella michiganensis, a member of the Enterobacteriaceae family, was sufficient for colonization resistance after treatment with antibiotics. K. michiganensis generally outcompeted E. coli in vitro, but in vivo administration of galactitol-a nutrient that supports the growth of only E. coli-to bi-colonized gnotobiotic mice abolished the colonization-resistance capacity of K. michiganensis against E. coli, supporting the idea that nutrient competition is the primary interaction mechanism. K. michiganensis also hampered colonization of the pathogen Salmonella, prolonging host survival. Our results address functional consequences of the stochastic effects of microbiota perturbations, whereby microbial transmission through host interactions can facilitate reacquisition of beneficial commensals, minimizing the negative impact of antibiotics.
Collapse
Affiliation(s)
| | - Katharine M Ng
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Vitor Cabral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Handuo Shi
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | |
Collapse
|
104
|
Eberl C, Ring D, Münch PC, Beutler M, Basic M, Slack EC, Schwarzer M, Srutkova D, Lange A, Frick JS, Bleich A, Stecher B. Reproducible Colonization of Germ-Free Mice With the Oligo-Mouse-Microbiota in Different Animal Facilities. Front Microbiol 2020; 10:2999. [PMID: 31998276 PMCID: PMC6965490 DOI: 10.3389/fmicb.2019.02999] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
The Oligo-Mouse-Microbiota (OMM12) is a recently developed synthetic bacterial community for functional microbiome research in mouse models (Brugiroux et al., 2016). To date, the OMM12 model has been established in several germ-free mouse facilities world-wide and is employed to address a growing variety of research questions related to infection biology, mucosal immunology, microbial ecology and host-microbiome metabolic cross-talk. The OMM12 consists of 12 sequenced and publically available strains isolated from mice, representing five bacterial phyla that are naturally abundant in the murine gastrointestinal tract (Lagkouvardos et al., 2016). Under germ-free conditions, the OMM12 colonizes mice stably over multiple generations. Here, we investigated whether stably colonized OMM12 mouse lines could be reproducibly established in different animal facilities. Germ-free C57Bl/6J mice were inoculated with a frozen mixture of the OMM12 strains. Within 2 weeks after application, the OMM12 community reached the same stable composition in all facilities, as determined by fecal microbiome analysis. We show that a second application of the OMM12 strains after 72 h leads to a more stable community composition than a single application. The availability of such protocols for reliable de novo generation of gnotobiotic rodents will certainly contribute to increasing experimental reproducibility in biomedical research.
Collapse
Affiliation(s)
- Claudia Eberl
- Max von Pettenkofer-Institute, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer-Institute, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), LMU Munich, Munich, Germany
| | - Philipp C Münch
- Max von Pettenkofer-Institute, LMU Munich, Munich, Germany.,Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany
| | - Markus Beutler
- Max von Pettenkofer-Institute, LMU Munich, Munich, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | | | - Martin Schwarzer
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Srutkova
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Tübingen, Germany
| | - Julia S Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Tübingen, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), LMU Munich, Munich, Germany
| |
Collapse
|
105
|
Wilson KM, Rodrigues DR, Briggs WN, Duff AF, Chasser KM, Bielke LR. Evaluation of the impact of in ovo administered bacteria on microbiome of chicks through 10 days of age. Poult Sci 2020; 98:5949-5960. [PMID: 31298298 DOI: 10.3382/ps/pez388] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
Initial inoculation and colonization of the chicken gastrointestinal tract (GIT) by microbiota have been suggested to have a major influence on the growth performance and health of birds. Commercial practices in chicken production may alter or delay microbial colonization by pioneer colonizing bacteria that can have an impact on the development and maturation of the GIT and intestinal microflora. The objective of this study was to compare the impact of apathogenic Gram-negative isolates or lactic acid bacteria (LAB) as pioneer colonizers on the microbiome at the day of hatch (DOH) and evaluate the influence through 10 D of age on ceca. At 18 embryonic days (E), the amnion of embryos was inoculated with either saline (S), approximately 102 CFU of LAB (L), Citrobacter freundii (C), or Citrobacter species (C2). Once DNA was isolated from mucosal and digesta contents, samples underwent 2 × 300 paired-end Illumina MiSeq library preparation for microbiome analysis. An increased abundance of Lactobacillaceae family and Lactobacillus genus was observed in the L group at DOH (P < 0.05), whereas the abundance of Enterococcaceae and Enterococcus was numerically decreased. While Lactobacillus salivarius was one of the pioneer colonizers in the L group at 18E, the population decreased by 10 D (39.59 to 0.09%) and replaced with a population of undefined Lactobacillus (10.36%) and Lactobacillus reuteri (3.63%). Results suggest that L treatment may have accelerated a mature microbiota. Enterobacteriaceae was the dominant family (57.44%) in C group at DOH (P < 0.05). The C2 group only showed some abundance of the C2 species (7.92%) at DOH but had the highest overall abundance of undefined Lactobacillus in the ceca by 10 D (25.28%). Taken together, different isolates provided in ovo can have an impact on the initial microbiome of the GIT, and some of these differences in ceca remain notable at 10 D.
Collapse
Affiliation(s)
- K M Wilson
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - D R Rodrigues
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - W N Briggs
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - A F Duff
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - K M Chasser
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - L R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| |
Collapse
|
106
|
Tangestani H, Emamat H, Ghalandari H, Shab-Bidar S. Whole Grains, Dietary Fibers and the Human Gut Microbiota: A Systematic Review of Existing Literature. Recent Pat Food Nutr Agric 2020; 11:235-248. [PMID: 32178621 DOI: 10.2174/2212798411666200316152252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The health benefits of dietary fibers have been proved for a long time. The importance of microbiota has been identified in human health and there is a growing interest to study the factors affecting it. OBJECTIVE This systematic review aimed to investigate the impact of fiber and whole grains (WGs) on human gut microbiota in a patent-based review. METHODS All related clinical trials were systematically searched on PubMed and Scopus search engines from inception up to Feb 2020. Interventional human studies reporting changes in microbiota by using any type of grains/fibers were included. The following information was extracted: date of the publication, location and design of the study, sample size, study population, demographic characteristics, the amount of dietary WGs/fiber, the duration of intervention, the types of grains or fibers, and changes in the composition of the microbiota. RESULTS Of 138 studies which were verified, 35 studies with an overall population of 1080 participants, met the inclusion criteria and entered the systematic review. The results of interventional trials included in this review suggest some beneficial effects of consuming different amounts and types of WGs and fibers on the composition of intestinal microbiota. Most included studies showed that the intake of WGs and fibers increases bifidobacteria and lactobacilli and reduces the pathogenic bacteria, such as Escherichia coli and clostridia in the human gut. CONCLUSION The consumption of WGs/fibers may modify the intestinal microbiota and promote the growth of bifidobacteria and lactobacilli. Nevertheless, further research is warranted in different populations and pathological conditions.
Collapse
Affiliation(s)
- Hadith Tangestani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadi Emamat
- Student Research Committee, Department and Faculty of Nutrition Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghalandari
- Nutritionist, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
107
|
Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, Liu TF, Li Y, Luo CL. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci 2019; 98:4449-4456. [PMID: 31162611 DOI: 10.3382/ps/pez279] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/05/2019] [Indexed: 01/06/2023] Open
Abstract
Butyric acid is a beneficial feed additive used in animal production, including poultry production. However, there are few reports on butyric acid as a prophylactic treatment against intestinal inflammation in broilers. The current study explored the effect of sodium butyrate (SB) as a prophylactic treatment on the intestinal health and gut microbiota of broilers with intestinal inflammation induced by dextran sulfate sodium (DSS) by monitoring changes in intestinal histopathology, gut leakiness indicators, inflammatory cytokines, and gut microbiota composition. Sodium butyrate supplementation prior to DSS administration significantly reduced the lesion scores of intestinal bleeding (P < 0.05) and increased villus height and the total mucosa of the ileum (P < 0.05). Regardless of intestinal inflammation, supplementation with SB at 300 mg/kg significantly decreased the levels of D (-)-lactate (P < 0.05), interleukin-6, and interleukin-1β (P < 0.05) but increased the level of interleukin-10 (P < 0.05). The SB treatment did not affect the alpha diversity of intestinal microbiota during intestinal inflammation progression but altered their composition, and the microbial community structure of treated broilers was similar to that of control broilers. Taken together, our results reveal the importance of SB in improving intestinal development, inducing an anti-inflammatory effect during intestinal inflammation progression, and modulating the microbial community in broilers. Sodium butyrate seems to be optimized for anti-inflammatory effects at higher doses (300 mg/kg SB).
Collapse
Affiliation(s)
- X Zou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - J Ji
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - H Qu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - J Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - D M Shu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - Y Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - T F Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - Y Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - C L Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| |
Collapse
|
108
|
Van Daele E, Knol J, Belzer C. Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Crit Rev Microbiol 2019; 45:613-648. [DOI: 10.1080/1040841x.2019.1680601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Emmy Van Daele
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Gut Biology and Microbiology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
109
|
Piperata BA, Lee S, Mayta Apaza AC, Cary A, Vilchez S, Oruganti P, Garabed R, Wilson W, Lee J. Characterization of the gut microbiota of Nicaraguan children in a water insecure context. Am J Hum Biol 2019; 32:e23371. [PMID: 31859435 DOI: 10.1002/ajhb.23371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The gut microbiota varies across human populations. The first years of life are a critical period in its development. While delivery mode and diet contribute to observed variation, the additional contribution of specific environmental factors remains poorly understood. One factor is waterborne enteric pathogen exposure. In this pilot study, we explore the relationship between household water security and the gut microbiota of children. METHODS From Nicaraguan households (n = 39), we collected drinking water samples, as well as fecal samples from children aged one month to 5.99 years (n = 53). We tested water samples for total coliforms (CFU/mL) and the presence of common enteric pathogens. Composition and diversity of the gut microbiota were characterized by 16S rRNA sequencing. Households were classified as having drinking water that was "low" (<29 CFU/mL) or "high" (≥29 CFU/mL) in coliforms. We used permutational analyses of variance and Mann-Whitney U-tests to identify differences in the composition and diversity of the gut microbiota of children living in these two home types. RESULTS Insecure access led households to store drinking water and 85% tested positive for coliforms. High concentrations of Salmonella and Campylobacter were found in water and fecal samples. Controlling for age, the gut microbiota of children from high coliform homes were compositionally different and less diverse than those from low coliform homes. CONCLUSIONS Results indicate that research exploring the ways water insecurity affects human biology should consider the gut microbiome and that investigations of inter-population variation in the gut microbial community of children should consider pathogen exposure and infection.
Collapse
Affiliation(s)
| | - Seungjun Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio
| | - Alba C Mayta Apaza
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Adelaide Cary
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Samuel Vilchez
- Department of Microbiology, National Autonomous University of Nicaragua, León, Nicaragua
| | - Pallavi Oruganti
- College of Veterinary Medicine, Department of Preventative Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Rebecca Garabed
- College of Veterinary Medicine, Department of Preventative Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Warren Wilson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Jiyoung Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio.,Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
110
|
Hellweger FL, Vick C, Rückbeil F, Bucci V. Fresh Ideas Bloom in Gut Healthcare to Cross-Fertilize Lake Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14099-14112. [PMID: 31647664 DOI: 10.1021/acs.est.9b04218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Harmful bacteria may be the most significant threat to human gut and lake ecosystem health, and they are often managed using similar tools, like poisoning with antibiotics or algicides. Out-of-the-box thinking in human microbiome engineering is leading to novel methods, like engineering bacteria to kill pathogens, "persuade" them not to produce toxins, or "mop up" their toxins. The bacterial agent can be given a competitive edge via an exclusive nutrient, and they can be engineered to commit suicide once their work is done. Viruses can kill pathogens with specific DNA sequences or knock out their antibiotic resistance genes using CRISPR technology. Some of these ideas may work for lakes. We critically review novel methods for managing harmful bacteria in the gut from the perspective of managing toxic cyanobacteria in lakes, and discuss practical aspects such as modifying bacteria using genetic engineering or directed evolution, mass culturing and controlling the agents. A key knowledge gap is in the ecology of strains, like toxigenic vs nontoxigenic Microcystis, including allelopathic and Black Queen interactions. Some of the "gut methods" may have future potential for lakes, but there presently is no substitute for established management approaches, including reducing N and P nutrient inputs, and mitigating climate change.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Water Quality Engineering , Technical University of Berlin , Berlin 10623 , Germany
| | - Carsten Vick
- Water Quality Engineering , Technical University of Berlin , Berlin 10623 , Germany
| | - Fiona Rückbeil
- Water Quality Engineering , Technical University of Berlin , Berlin 10623 , Germany
| | - Vanni Bucci
- Department of Bioengineering , University of Massachusetts Dartmouth , North Dartmouth , Massachusetts 02747 , United States
| |
Collapse
|
111
|
Fehlbaum S, Chassard C, Schwab C, Voolaid M, Fourmestraux C, Derrien M, Lacroix C. In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota. Front Nutr 2019; 6:184. [PMID: 31921877 PMCID: PMC6914822 DOI: 10.3389/fnut.2019.00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Consumption of probiotic bacteria can result in a transient colonization of the human gut and thereby in potential interactions with the commensal microbiota. In this study, we used novel PolyFermS continuous fermentation models to investigate interactions of the candidate probiotic strain Lactobacillus paracasei CNCM I-1518 (L. paracasei) with colonic microbiota from healthy elderly subjects using 16S rRNA gene amplicon sequencing and metatranscriptomics, or with microbiota in vitro-colonized with Clostridioides difficile (C. difficile NCTC 13307 and C. difficile DSM 1296)—an enteropathogen prevalent in the elderly population. Small changes in microbiota composition were detected upon daily addition of L. paracasei, including increased abundances of closely related genera Lactobacillus and Enterococcus, and of the butyrate producer Faecalibacterium. Microbiota gene expression was also modulated by L. paracasei with distinct response of the Faecalibacterium transcriptome and an increase in carbohydrate utilization. However, no inhibitory effect of L. paracasei was observed on C. difficile colonization in the intestinal models under the tested conditions. Our data suggest that, in the in vitro experimental conditions tested and independent of the host, L. paracasei has modulatory effects on both the composition and function of elderly gut microbiota without affecting C. difficile growth and toxin production.
Collapse
Affiliation(s)
- Sophie Fehlbaum
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Maarja Voolaid
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
112
|
Leoni C, Ceci O, Manzari C, Fosso B, Volpicella M, Ferrari A, Fiorella P, Pesole G, Cicinelli E, Ceci LR. Human Endometrial Microbiota at Term of Normal Pregnancies. Genes (Basel) 2019; 10:genes10120971. [PMID: 31779234 PMCID: PMC6947671 DOI: 10.3390/genes10120971] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
The endometrium is a challenging site for metagenomic analysis due to difficulties in obtaining uncontaminated samples and the limited abundance of the bacterial population. Indeed, solid correlations between endometrial physio-pathologic conditions and bacteria compositions have not yet been firmly established. Nevertheless, the study of the endometrial microbiota is of great interest due to the close correlations between microbiota profiles, women’s health, and successful pregnancies. In this study, we decided to tackle the study of the endometrial microbiota through analysis of bacterial population in women subjected to elective caesarean delivery. As a pilot study, a cohort of 19 Caucasian women at full term of normal pregnancy and with a prospection of elective caesarean delivery was enrolled for endometrium sampling at the time of caesarean section. Sampling was carried out by endometrial biopsy soon after the delivery of the newborn and the discharge of the placenta and fetal membranes from the uterus. Bacterial composition was established by a deep metabarcoding next generation sequencing (NGS) procedure addressing the V5–V6 hypervariable region of the 16S rRNA gene. Amplicon sequences were analysed by bioinformatic procedures for denoising and taxonomic classification. The RDP database was used as 16S rRNA reference collection. Metabarcoding analysis showed the presence of a common bacterial composition, including six genera classifiable within the human microbiota (Cutibacterium, Escherichia, Staphylococcus, Acinetobacter, Streptococcus, Corynebacterium), that could be part of the core endometrial microbiota under the specific conditions examined. These results can provide useful information for future studies on the correlations between bacteria and successful pregnancies.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy; (C.L.); (M.V.); (G.P.)
| | - Oronzo Ceci
- 2nd Unit of Obstetrics and Gynecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (O.C.); (A.F.); (P.F.)
| | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (C.M.); (B.F.)
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (C.M.); (B.F.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy; (C.L.); (M.V.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (C.M.); (B.F.)
| | - Alessandra Ferrari
- 2nd Unit of Obstetrics and Gynecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (O.C.); (A.F.); (P.F.)
| | - Paola Fiorella
- 2nd Unit of Obstetrics and Gynecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (O.C.); (A.F.); (P.F.)
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy; (C.L.); (M.V.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (C.M.); (B.F.)
| | - Ettore Cicinelli
- 2nd Unit of Obstetrics and Gynecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (O.C.); (A.F.); (P.F.)
- Correspondence: (E.C.); (L.R.C.)
| | - Luigi Ruggiero Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (C.M.); (B.F.)
- Correspondence: (E.C.); (L.R.C.)
| |
Collapse
|
113
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2677] [Impact Index Per Article: 446.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
114
|
Diaz Carrasco JM, Casanova NA, Fernández Miyakawa ME. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019; 7:microorganisms7100374. [PMID: 31547108 PMCID: PMC6843312 DOI: 10.3390/microorganisms7100374] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023] Open
Abstract
Gut microbiota and its relationship to animal health and productivity in commercial broiler chickens has been difficult to establish due to high variability between flocks, which derives from plenty of environmental, nutritional, and host factors that influence the load of commensal and pathogenic microbes surrounding birds during their growth cycle in the farms. Chicken gut microbiota plays a key role in the maintenance of intestinal health through its ability to modulate host physiological functions required to maintain intestinal homeostasis, mainly through competitive exclusion of detrimental microorganisms and pathogens, preventing colonization and therefore decreasing the expense of energy that birds normally invest in keeping the immune system active against these pathogens. Therefore, a “healthy” intestinal microbiota implies energy saving for the host which translates into an improvement in productive performance of the birds. This review compiles information about the main factors that shape the process of gut microbiota acquisition and maturation, their interactions with chicken immune homeostasis, and the outcome of these interactions on intestinal health and productivity.
Collapse
Affiliation(s)
- Juan M Diaz Carrasco
- Instituto de Patobiología Veterinaria, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.
| | - Natalia A Casanova
- Instituto de Patobiología Veterinaria, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina.
| | - Mariano E Fernández Miyakawa
- Instituto de Patobiología Veterinaria, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
115
|
Yu Z, Liu C, Fu Q, Lu G, Han S, Wang L, Song L. The differences of bacterial communities in the tissues between healthy and diseased Yesso scallop (Patinopecten yessoensis). AMB Express 2019; 9:148. [PMID: 31522290 PMCID: PMC6745042 DOI: 10.1186/s13568-019-0870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023] Open
Abstract
The tissues of marine invertebrates are colonized by species-rich microbial communities. The dysbiosis of host's microbiota is tightly associated with the invertebrate diseases. Yesso scallop (Patinopecten yessoensis), one of the most important maricultured scallops in northern China, has recently suffered massive summer mortalities, which causes huge production losses. The knowledge about the interactions between the Yesso scallop and its microbiota is important to develop the strategy for the disease prevention and control. In the present study, the bacterial communities in hemolymph, intestine, mantle and adductor muscle were compared between the healthy and diseased Yesso scallop based on the high-throughput sequencing of 16S rRNA gene. The results indicated obvious difference of the composition rather than the diversity of the bacterial communities between the healthy and diseased Yesso scallop. Vibrio, Francisella and Photobacterium were found to overgrow and dominate in the mantle, adductor muscle and intestine of the diseased scallops, respectively. The prediction of bacterial community metagenomes and the variations of KEGG pathways revealed that the proportions of the pathways related with neurodegenerative diseases and carbohydrate metabolism both increased significantly in the mantle and hemolymph of the diseased scallops. The abundance of the metabolism pathways including carbohydrate metabolism, lipid metabolism and amino acid metabolism decreased significantly in the intestine of diseased scallops. The results suggested that the changes of bacterial communities might be closely associated with the Yesso scallop's disease, which was helpful for further investigation of the pathogenesis as well as prevention and control of the disease in Yesso scallop.
Collapse
|
116
|
Midani FS, Weil AA, Chowdhury F, Begum YA, Khan AI, Debela MD, Durand HK, Reese AT, Nimmagadda SN, Silverman JD, Ellis CN, Ryan ET, Calderwood SB, Harris JB, Qadri F, David LA, LaRocque RC. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection. J Infect Dis 2019; 218:645-653. [PMID: 29659916 DOI: 10.1093/infdis/jiy192] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Cholera is a public health problem worldwide, and the risk factors for infection are only partially understood. Methods We prospectively studied household contacts of patients with cholera to compare those who were infected to those who were not. We constructed predictive machine learning models of susceptibility, using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. Results We found that machine learning models based on gut microbiota, as well as models based on known clinical and epidemiological risk factors, predicted V. cholerae infection. A predictive gut microbiota of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. Conclusion These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.
Collapse
Affiliation(s)
- Firas S Midani
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Ana A Weil
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Fahima Chowdhury
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Yasmin A Begum
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Ashraful I Khan
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Meti D Debela
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Aspen T Reese
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina.,Department of Biology, Duke University, Durham, North Carolina
| | - Sai N Nimmagadda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Justin D Silverman
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina.,Medical Scientist Training Program, Duke University, Durham, North Carolina
| | - Crystal N Ellis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Massachusetts College of Pharmacy and Health Sciences University, Boston
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Firdausi Qadri
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Lawrence A David
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
117
|
Tretola M, Luciano A, Ottoboni M, Baldi A, Pinotti L. Influence of Traditional vs Alternative Dietary Carbohydrates Sources on the Large Intestinal Microbiota in Post-Weaning Piglets. Animals (Basel) 2019; 9:ani9080516. [PMID: 31374923 PMCID: PMC6719221 DOI: 10.3390/ani9080516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Nutritional and environmental changes result in significant physiological changes in pigs at the weaning stage. The post-weaning period is mainly characterized by low feed intake and feed efficiency, together with intestinal disturbances. Maximizing the energy intake is known to be critical for promoting growth in weaned piglets, and it is essential to formulate diets with highly digestible and absorbable nutrients/ingredients, as the degree of intestinal maturation is limited. The current challenge is to find new sustainable, effective, and simple carbohydrate sources to satisfy these conditions without producing detrimental effects on the gut ecosystem. In this research, processed and ready-to-eat food products that are no longer suitable for humans were tested, which have high potential as an alternative energy source for pig nutrition. The results demonstrated that replacing conventional ingredients with highly digestible and simple carbohydrate-rich ingredients in the diets of post-weaning piglets did not affect their growth. However, both the abundance and composition of the bacterial community in the large intestine changed. Thus, the results should be interpreted with caution, as they are case-specific, and when these alternative feed ingredients are used in the post-weaning period, their inclusion rate and their effect on microbiota must be carefully considered. Abstract In this study, common cereal grains were partially replaced by former foodstuffs products (FFPs) in post-weaning piglets’ diets, to investigate how these alternative ingredients influence the faecal microbiota in the post-weaning period. Twelve post-weaning piglets were housed for 16 days in individual pens and were then fed two diets: a standard wheat-barley-corn meal diet and a diet containing 30% FFPs, thus partially substituting conventional cereals. The growth performance was monitored and faecal microbiota was characterized by the next generation sequencing of the 16S rRNA gene. The results showed no detrimental effects on growth performance when FFPs were used. However, the FFP diet decreased the bacterial richness and evenness in the large intestine, while minor differences were observed in the taxa composition. The core microbiota composition was only slightly affected, and no differences between the two groups in the gut microbiota composition at the phylum level over time were observed. Thus, although these results should be interpreted with caution, as they are case-specific, FFPs can be potentially used as alternative carbohydrate sources in post-weaning piglets, but further investigations are necessary to clarify their impact on gut health when used for a longer period.
Collapse
Affiliation(s)
- Marco Tretola
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Alice Luciano
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, VESPA, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
118
|
Trotta A, Sposato A, Marinaro M, Zizzo N, Passantino G, Parisi A, Buonavoglia D, Corrente M. Neurological symptoms and mortality associated with Streptococcus gallolyticus subsp. pasteurianus in calves. Vet Microbiol 2019; 236:108369. [PMID: 31500733 DOI: 10.1016/j.vetmic.2019.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/24/2022]
Abstract
Suppurative meningitis-meningoencephalitis (M-ME) is a sporadic disease in neonatal ungulates and only a few studies have reported the involvement of Streptococcus bovis/Streptococcus equinus complex (SBSEC) members in bovine neonatal M-ME. The SBSEC taxonomy was recent revised and previous biotype II/2 was reclassified as S. gallolyticus subsp. pasteurianus (SGP). The aim of this study was to describe a case of fatal neonatal neurological syndrome associated with SGP in calves. Ten calves were monitored because of neurological hyperacute symptoms associate with bilateral hypopyon and death. They were not fed with maternal colostrum; two of them died and were subjected to bacteriological, histopathological and biomolecular analysis as well as antibiotic susceptibility test. Both animals presented lesions mostly concentrated to meninges and brain and had bilateral hypopyon. Nine strains isolated in purity from brain, ocular humors and colon were identified as S. bovis group by using the API Strep system and as S. gallolyticus by using the 16S rRNA sequence. Two of these strains where subjected to WGS analysis that confirmed the sub-species identification and the clonality of the two SGP strains. The strains were found resistant to OT, SXT, MTZ and EN and susceptible to AMP, AMC, KZ and CN. We hypothesized that the syndrome observed could be due to the lack of maternal colostrum feeding. A timely and precise diagnosis could have likely prevented the death of the calves and, since the zoonotic potential of SBSECs members is known, accurate and rapid identification is required.
Collapse
Affiliation(s)
- Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy.
| | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nicola Zizzo
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Giuseppe Passantino
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Sezione di Putignano, Contrada San Pietro Piturno, 70017, Putignano, BA, Italy
| | - Domenico Buonavoglia
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| |
Collapse
|
119
|
Enrichment of intestinal Lactobacillus by enhanced secretory IgA coating alters glucose homeostasis in P2rx7 -/- mice. Sci Rep 2019; 9:9315. [PMID: 31249344 PMCID: PMC6597561 DOI: 10.1038/s41598-019-45724-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
The secretory immunoglobulin A (SIgA) in mammalian gut protects the organism from infections and contributes to host physiology by shaping microbiota composition. The mechanisms regulating the adaptive SIgA response towards gut microbes are poorly defined. Deletion of P2rx7, encoding for the ATP-gated ionotropic P2X7 receptor, leads to T follicular helper (Tfh) cells expansion in the Peyer's patches (PPs) of the small intestine, enhanced germinal centre (GC) reaction and IgA secretion; the resulting alterations of the gut microbiota in turn affects host metabolism. Here, we define gut microbiota modifications that correlate with deregulated SIgA secretion and metabolic alterations in P2rx7-/- mice. In particular, Lactobacillus shows enhanced SIgA coating in P2rx7-/- with respect to wild-type (WT) mice. The abundance of SIgA-coated lactobacilli positively correlates with Tfh cells number and body weight, suggesting Lactobacillus-specific SIgA response conditions host metabolism. Accordingly, oral administration of intestinal Lactobacillus isolates from P2rx7-/- mice to WT animals results in altered glucose homeostasis and fat deposition. Thus, enhanced SIgA production by P2X7 insufficiency promotes Lactobacillus colonization that interferes with systemic metabolic homeostasis. These data indicate that P2X7 receptor-mediated regulation of commensals coating by SIgA is important in tuning the selection of bacterial taxa, which condition host metabolism.
Collapse
|
120
|
Targeting gut microbiota as a possible therapy for mastitis. Eur J Clin Microbiol Infect Dis 2019; 38:1409-1423. [PMID: 31079312 DOI: 10.1007/s10096-019-03549-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Mastitis, a disease that affects both dairy herds and humans, is recognized as the most common source of losses in the dairy industry. Antibiotics have been used for years as the primary treatment for mastitis. However, abuse of antibiotics has led to the emergence of resistant strains and the presence of drug residues and has increased the difficulty of curing this disease. In addition, antibiotics kill most of the microbes that are present in the digestive tract, leading to imbalances in the gut microbiome and destruction of the ecosystem that is normally present in the gut. Gut microbiota play an important role in the host's health and could be considered the "second brain" of the body. In recent years, the gut microbiota and their metabolites, including lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs), have been shown to participate in the development of mastitis. LPS is the main component of the cell walls of gram-negative bacteria. Overproduction of rumen-derived LPS injures the rumen epithelium, resulting in the entry of LPS into the blood and damaged liver function; once in the blood, it circulates into the mammary gland, increasing blood-barrier permeability and leading to mammary gland inflammation. SCFAs, which are produced by gut microbiota as fermentation products, have a protective effect on mammary gland inflammatory responses and help maintain the function of the blood-milk barrier. Recently, increasing attention has been focused on the use of probiotics as a promising alternative for the treatment of mastitis. This review summarizes the effects of the gut microbiome and its metabolites on mastitis as well as the current of probiotics in mastitis. This work may provide a valuable theoretical foundation for the development of fresh ideas for the prevention and treatment of mastitis.
Collapse
|
121
|
Yin X, Heeney DD, Srisengfa YT, Chen SY, Slupsky CM, Marco ML. Sucrose metabolism alters Lactobacillus plantarum survival and interactions with the microbiota in the digestive tract. FEMS Microbiol Ecol 2019; 94:4996782. [PMID: 29771345 DOI: 10.1093/femsec/fiy084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
We investigated whether sucrose metabolism by probiotic Lactobacillus plantarum influences the intestinal survival and microbial responses to this organism when administered to mice fed a sucrose-rich, Western diet. A L. plantarum mutant unable to metabolize sucrose was constructed by deleting scrB, coding for beta-fructofuranosidase, in a rifampicin-resistant strain of L. plantarum NCIMB8826. The ScrB deficient mutant survived in 8-fold higher numbers compared to the wild-type strain when measured 24 h after administration on two consecutive days. According to 16S rRNA marker gene sequencing, proportions of Faecalibacterium and Streptococcus were elevated in mice fed the L. plantarum ΔscrB mutant. Metagenome predictions also indicated those mice contained a higher abundance of lactate dehydrogenases. This was further supported by a trend in elevated fecal lactate concentrations among mice fed the ΔscrB mutant. L. plantarum also caused other changes to the fecal metabolomes including higher concentrations of glycerol in mice fed the ΔscrB mutant and increased uracil, acetate and propionate levels among mice fed the wild-type strain. Taken together, these results suggest that sucrose metabolism alters the properties of L. plantarum in the digestive tract and that probiotics can differentially influence intestinal metabolomes via their carbohydrate consumption capabilities.
Collapse
Affiliation(s)
- Xiaochen Yin
- Department of Food Science and Technology, University of California, Davis, USA
| | - Dustin D Heeney
- Department of Food Science and Technology, University of California, Davis, USA
| | - Yanin Tab Srisengfa
- Department of Food Science and Technology, University of California, Davis, USA
| | - Shin-Yu Chen
- Department of Nutrition, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, USA.,Department of Nutrition, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA
| |
Collapse
|
122
|
Xavier R, Mazzei R, Pérez-Losada M, Rosado D, Santos JL, Veríssimo A, Soares MC. A Risky Business? Habitat and Social Behavior Impact Skin and Gut Microbiomes in Caribbean Cleaning Gobies. Front Microbiol 2019; 10:716. [PMID: 31024495 PMCID: PMC6467100 DOI: 10.3389/fmicb.2019.00716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
The broadstripe cleaning goby Elacatinus prochilos has two alternative ecotypes: sponge-dwellers, which live in large groups and feed mainly upon nematode parasites; and coral-dwellers, that live in small groups or in solitude and behave as cleaners. Recent studies focusing on the skin and gut microbiomes of tropical fish showed that microbial communities are influenced mainly by diet and host species. Here, we compare the skin and gut microbiomes of the Caribbean broadstripe cleaning goby E. prochilos alternative ecotypes (cleaners and non-cleaners) from Barbados and predict that different habitat use and behavior (cleaning vs. non-cleaning) will translate in different bacterial profiles between the two ecotypes. We found significant differences in both alpha- and beta-diversity of skin and gut microbiomes belonging to different ecotypes. Importantly, the skin microbiome of obligate cleaners showed greater intra-sample diversity and harbored a significantly higher prevalence of potential fish pathogens. Likewise, potential pathogens were also more prevalent in the gut of obligate cleaners. We suggest that habitat use, diet, but also direct contact with potential diseased clientele during cleaning, could be the cause for these patterns.
Collapse
Affiliation(s)
- Raquel Xavier
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Renata Mazzei
- Laboratoire d’Eco-Ethologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Marcos Pérez-Losada
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
- Computational Biology Institute, Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States
| | - Daniela Rosado
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Joana L. Santos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Marta C. Soares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| |
Collapse
|
123
|
The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiol Mol Biol Rev 2019; 83:83/2/e00054-18. [PMID: 30867232 DOI: 10.1128/mmbr.00054-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal ecosystem is characterized by a complex interplay between different microorganisms and the host. The high variation within the human population further complicates the quest toward an adequate understanding of this complex system that is so relevant to human health and well-being. To study host-microbe interactions, defined synthetic bacterial communities have been introduced in gnotobiotic animals or in sophisticated in vitro cell models. This review reinforces that our limited understanding has often hampered the appropriate design of defined communities that represent the human gut microbiota. On top of this, some communities have been applied to in vivo models that differ appreciably from the human host. In this review, the advantages and disadvantages of using defined microbial communities are outlined, and suggestions for future improvement of host-microbe interaction models are provided. With respect to the host, technological advances, such as the development of a gut-on-a-chip system and intestinal organoids, may contribute to more-accurate in vitro models of the human host. With respect to the microbiota, due to the increasing availability of representative cultured isolates and their genomic sequences, our understanding and controllability of the human gut "core microbiota" are likely to increase. Taken together, these advancements could further unravel the molecular mechanisms underlying the human gut microbiota superorganism. Such a gain of insight would provide a solid basis for the improvement of pre-, pro-, and synbiotics as well as the development of new therapeutic microbes.
Collapse
|
124
|
Thongprayoon C, Kaewput W, Hatch ST, Bathini T, Sharma K, Wijarnpreecha K, Ungprasert P, D'Costa M, Mao MA, Cheungpasitporn W. Effects of Probiotics on Inflammation and Uremic Toxins Among Patients on Dialysis: A Systematic Review and Meta-Analysis. Dig Dis Sci 2019; 64:469-479. [PMID: 30099652 DOI: 10.1007/s10620-018-5243-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES We performed this systematic review and meta-analysis to evaluate effects of probiotics on inflammation, uremic toxins, and gastrointestinal (GI) symptoms in end-stage renal disease (ESRD) patients. METHODS A literature search was conducted utilizing MEDLINE, EMBASE, and Cochrane Database from inception through October 2017. We included studies that assessed assessing effects of probiotics on inflammatory markers, protein-bound uremic toxins (PBUTs), and GI symptoms in ESRD patients on dialysis. Effect estimates from the individual study were extracted and combined utilizing random effect, generic inverse variance method of DerSimonian and Laird. The protocol for this meta-analysis is registered with PROSPERO; No. CRD42017082137. RESULTS Seven clinical trials with 178 ESRD patients were enrolled. There was a significant reduction in serum C-reactive protein (CRP) from baseline to post-probiotic course (≥ 2 months after treatment) with standardized mean difference (SMD) of - 0.42 (95% CI - 0.68 to - 0.16, p = 0.002). When compared to control, patients who received probiotics also had a significant higher degree of reduction in CRP level with SMDs of - 0.37 (95% CI - 0.72 to 0.03, p = 0.04). However, there were no significant changes in serum TNF-alpha or albumin with SMDs of - 0.32 (95% CI - 0.92 to 0.28, p = 0.29) and 0.16 (95% CI - 0.20 to 0.53, p = 0.39), respectively. After probiotic course, there were also significant decrease in PBUTs and improvement in overall GI symptoms (reduction in GI symptom scores) with SMDs of - 0.61 (95% CI - 1.16 to - 0.07, p = 0.03) and - 1.04 (95% CI - 1.70 to - 0.38, p = 0.002), respectively. CONCLUSION Our study demonstrates potential beneficial effects of probiotics on inflammation, uremic toxins, and GI Symptoms in ESRD patients. Future large-scale clinical studies are required to assess its benefits on other important clinical outcomes including patient mortality.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | - Wisit Kaewput
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Spencer T Hatch
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS, 39216, USA
| | - Tarun Bathini
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | - Konika Sharma
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | - Karn Wijarnpreecha
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | - Patompong Ungprasert
- Clinical Epidemiology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew D'Costa
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael A Mao
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS, 39216, USA.
| |
Collapse
|
125
|
Sorbara MT, Pamer EG. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol 2019; 12:1-9. [PMID: 29988120 PMCID: PMC6312114 DOI: 10.1038/s41385-018-0053-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 02/08/2023]
Abstract
The communities of bacteria that reside in the intestinal tract are in constant competition within this dynamic and densely colonized environment. At homeostasis, the equilibrium that exists between these species and strains is shaped by their metabolism and also by pathways of active antagonism, which drive competition with related and unrelated strains. Importantly, these normal activities contribute to colonization resistance by the healthy microbiota, which includes the ability to prevent the expansion of potential pathogens. Disruption of the microbiota, resulting from, for example, inflammation or antibiotic use, can reduce colonization resistance. Pathogens that engraft following disruption of the microbiota are often adapted to expand into newly created niches and compete in an altered gut environment. In this review, we examine both the interbacterial mechanisms of colonization resistance and the strategies of pathogenic strains to exploit gaps in colonization resistance.
Collapse
Affiliation(s)
- Matthew T. Sorbara
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G. Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Center for Microbes, Inflammation and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
126
|
Dunn RR, Reese AT, Eisenhauer N. Biodiversity-ecosystem function relationships on bodies and in buildings. Nat Ecol Evol 2019; 3:7-9. [PMID: 30510175 PMCID: PMC7332339 DOI: 10.1038/s41559-018-0750-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biodiversity underpins the function of ecosystems. Here we discuss how biodiversity–ecosystem function theory could apply to our bodies and buildings, outline practical applications and call for further research.
Collapse
Affiliation(s)
- Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| |
Collapse
|
127
|
Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiol Rev 2018; 42:273-292. [PMID: 29325027 DOI: 10.1093/femsre/fuy003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Even though tremendous progress has been made in the last decades to elucidate the mechanisms of intestinal homeostasis, dysbiosis and disease, we are only at the beginning of understanding the complexity of the gut ecosystem and the underlying interaction networks. We are also only starting to unravel the mechanisms that pathogens have evolved to overcome the barriers imposed by the microbiota and host to exploit the system to their own benefit. Recent work in these domains clearly indicates that the 'traditional Koch's postulates', which state that a given pathogen leads to a distinct disease, are not valid for all 'infectious' diseases, but that a more complete and complex interpretation of Koch's postulates is needed in order to understand and explain them. This review summarises the current understanding of what defines a healthy gut ecosystem and highlights recent progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens. Based on these recent findings, we propose a new interpretation of Koch's postulates that we term 'ecological Koch's postulates'.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Mark Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| |
Collapse
|
128
|
Stromberg ZR, Van Goor A, Redweik GAJ, Wymore Brand MJ, Wannemuehler MJ, Mellata M. Pathogenic and non-pathogenic Escherichia coli colonization and host inflammatory response in a defined microbiota mouse model. Dis Model Mech 2018; 11:dmm035063. [PMID: 30275104 PMCID: PMC6262807 DOI: 10.1242/dmm.035063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Most Escherichia coli strains in the human intestine are harmless. However, enterohemorrhagic Ecoli (EHEC) is a foodborne pathogen that causes intestinal disease in humans. Conventionally reared (CONV) mice are inconsistent models for human infections with EHEC because they are often resistant to Ecoli colonization, in part due to their gastrointestinal (GI) microbiota. Although antibiotic manipulation of the mouse microbiota has been a common means to overcome colonization resistance, these models have limitations. Currently, there are no licensed treatments for clinical EHEC infections and, thus, new tools to study EHEC colonization need to be developed. Here, we used a defined microbiota mouse model, consisting of the altered Schaedler flora (ASF), to characterize intestinal colonization and compare host responses following colonization with EHEC strain 278F2 or non-pathogenic Ecoli strain MG1655. Significantly higher (P<0.05) levels of both strains were found in feces and cecal and colonic contents of C3H/HeN ASF compared to C3H/HeN CONV mice. GI inflammation was significantly elevated (P<0.05) in the cecum of EHEC 278F2-colonized compared to E. coli MG1655-colonized C3H/HeN ASF mice. In addition, EHEC 278F2 differentially modulated inflammatory-associated genes in colonic tissue of C3H/HeN ASF mice compared to E. coli MG1655-colonized mice. This approach allowed for prolonged colonization of the murine GI tract by pathogenic and non-pathogenic Ecoli strains, and for evaluation of host inflammatory processes. Overall, this system can be used as a powerful tool for future studies to assess therapeutics, microbe-microbe interactions, and strategies for preventing EHEC infections.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Meghan J Wymore Brand
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
129
|
Gut Microbial and Metabolic Responses to Salmonella enterica Serovar Typhimurium and Candida albicans. mBio 2018; 9:mBio.02032-18. [PMID: 30401779 PMCID: PMC6222126 DOI: 10.1128/mbio.02032-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gut microbiota is increasingly recognized for playing a critical role in human health and disease, especially in conferring resistance to both virulent pathogens such as Salmonella, which infects 1.2 million people in the United States every year (E. Scallan, R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, et al., Emerg Infect Dis 17:7–15, 2011, https://doi.org/10.3201/eid1701.P11101), and opportunistic pathogens like Candida, which causes an estimated 46,000 cases of invasive candidiasis each year in the United States (Centers for Disease Control and Prevention, Antibiotic Resistance Threats in the United States, 2013, 2013). Using a gnotobiotic mouse model, we investigate potential changes in gut microbial community structure and function during infection using metagenomics and metabolomics. We observe that changes in the community and in biosynthetic gene cluster potential occur within 3 days for the virulent Salmonella enterica serovar Typhimurium, but there are minimal changes with a poorly colonizing Candida albicans. In addition, the metabolome shifts depending on infection status, including changes in glutathione metabolites in response to Salmonella infection, potentially in response to host oxidative stress. The gut microbiota confers resistance to pathogens of the intestinal ecosystem, yet the dynamics of pathogen-microbiome interactions and the metabolites involved in this process remain largely unknown. Here, we use gnotobiotic mice infected with the virulent pathogen Salmonella enterica serovar Typhimurium or the opportunistic pathogen Candida albicans in combination with metagenomics and discovery metabolomics to identify changes in the community and metabolome during infection. To isolate the role of the microbiota in response to pathogens, we compared mice monocolonized with the pathogen, uninfected mice “humanized” with a synthetic human microbiome, or infected humanized mice. In Salmonella-infected mice, by 3 days into infection, microbiome community structure and function changed substantially, with a rise in Enterobacteriaceae strains and a reduction in biosynthetic gene cluster potential. In contrast, Candida-infected mice had few microbiome changes. The LC-MS metabolomic fingerprint of the cecum differed between mice monocolonized with either pathogen and humanized infected mice. Specifically, we identified an increase in glutathione disulfide, glutathione cysteine disulfide, inosine 5’-monophosphate, and hydroxybutyrylcarnitine in mice infected with Salmonella in contrast to uninfected mice and mice monocolonized with Salmonella. These metabolites potentially play a role in pathogen-induced oxidative stress. These results provide insight into how the microbiota community members interact with each other and with pathogens on a metabolic level.
Collapse
|
130
|
Suwal S, Wu Q, Liu W, Liu Q, Sun H, Liang M, Gao J, Zhang B, Kou Y, Liu Z, Wei Y, Wang Y, Zheng K. The Probiotic Effectiveness in Preventing Experimental Colitis Is Correlated With Host Gut Microbiota. Front Microbiol 2018; 9:2675. [PMID: 30443249 PMCID: PMC6223222 DOI: 10.3389/fmicb.2018.02675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Current evidence to support extensive use of probiotics in inflammatory bowel disease is limited and factors that contribute to the inconsistent effectiveness of clinical probiotic therapy are not completely known. Here, we used Bifidobacterium longum JDM 301 as a model probiotic to study potential factors that may influence the effect of probiotics in experimental colitis. We found that the effect of B. longum JDM 301 in tempering experimental colitis varied across individual mice even with the same genetic background. The probiotic efficacy was highly correlated with the host gut microbial community features. Consumption of a diet rich in fat could exacerbate mucosal injury-induced colitis but could not change the host responsiveness to B. longum JDM 301 treatment, suggesting of potential mechanistic differences between regulating colitis pathogenesis, and modulating probiotic efficacies by the gut microbiota. Together, our results suggest that personalized microbiome features may modify the probiotic therapeutic effect and support the idea of personalized probiotic medicine in inflammatory bowel disease.
Collapse
Affiliation(s)
- Sharmila Suwal
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qiong Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qingya Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongxiang Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ming Liang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jing Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
131
|
Wotzka SY, Kreuzer M, Maier L, Zünd M, Schlumberger M, Nguyen B, Fox M, Pohl D, Heinrich H, Rogler G, Biedermann L, Scharl M, Sunagawa S, Hardt WD, Misselwitz B. Microbiota stability in healthy individuals after single-dose lactulose challenge-A randomized controlled study. PLoS One 2018; 13:e0206214. [PMID: 30359438 PMCID: PMC6201941 DOI: 10.1371/journal.pone.0206214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIMS Lactulose is a common food ingredient and widely used as a treatment for constipation or hepatic encephalopathy and a substrate for hydrogen breath tests. Lactulose is fermented by the colon microbiota resulting in the production of hydrogen (H2). H2 is a substrate for enteropathogens including Salmonella Typhimurium (S. Typhimurium) and increased H2 production upon lactulose ingestion might favor the growth of H2-consuming enteropathogens. We aimed to analyze effects of single-dose lactulose ingestion on the growth of intrinsic Escherichia coli (E. coli), which can be efficiently quantified by plating and which share most metabolic requirements with S. Typhimurium. METHODS 32 healthy volunteers (18 females, 14 males) were recruited. Participants were randomized for single-dose ingestion of 50 g lactulose or 50 g sucrose (controls). After ingestion, H2 in expiratory air and symptoms were recorded. Stool samples were acquired at days -1, 1 and 14. We analyzed 16S microbiota composition and abundance and characteristics of E. coli isolates. RESULTS Lactulose ingestion resulted in diarrhea in 14/17 individuals. In 14/17 individuals, H2-levels in expiratory air increased by ≥20 ppm within 3 hours after lactulose challenge. H2-levels correlated with the number of defecations within 6 hours. E. coli was detectable in feces of all subjects (2 x 10(2)-10(9) CFU/g). However, the number of E. coli colony forming units (CFU) on selective media did not differ between any time point before or after challenge with sucrose or lactulose. The microbiota composition also remained stable upon lactulose exposure. CONCLUSION Ingestion of a single dose of 50 g lactulose does not significantly alter E. coli density in stool samples of healthy volunteers. 50 g lactulose therefore seems unlikely to sufficiently alter growth conditions in the intestine for a significant predisposition to infection with H2-consuming enteropathogens such as S. Typhimurium (www.clinicaltrials.gov NCT02397512).
Collapse
Affiliation(s)
- Sandra Y Wotzka
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Markus Kreuzer
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Lisa Maier
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Mirjam Zünd
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | | | - Bidong Nguyen
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Mark Fox
- Abdominal Center, Gastroenterology, St. Claraspital, Basel, Switzerland
| | - Daniel Pohl
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Henriette Heinrich
- Abdominal Center, Gastroenterology, St. Claraspital, Basel, Switzerland.,Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| | | | | | - Benjamin Misselwitz
- Department of Gastroenterology, University Hospital Zurich (USZ), and Zurich University, Zurich, Switzerland
| |
Collapse
|
132
|
Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y. The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Front Immunol 2018; 9:2325. [PMID: 30344525 PMCID: PMC6182051 DOI: 10.3389/fimmu.2018.02325] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The importance of the gut microbiome in central nervous system (CNS) diseases has long been recognized; however, research into this connection is limited, in part, owing to a lack of convincing mechanisms because the brain is a distant target of the gut. Previous studies on the brain revealed that most of the CNS diseases affected by the gut microbiome are closely associated with microglial dysfunction. Microglia, the major CNS-resident macrophages, are crucial for the immune response of the CNS against infection and injury, as well as for brain development and function. However, the current understanding of the mechanisms controlling the maturation and function of microglia is obscure, especially regarding the extrinsic factors affecting microglial function during the developmental process. The gut microflora has been shown to significantly influence microglia from before birth until adulthood, and the metabolites generated by the microbiota regulate the inflammation response mediated by microglia in the CNS; this inspired our hypothesis that microglia act as a critical mediator between the gut microbiome and CNS diseases. Herein, we highlight and discuss current findings that show the influence of host microbiome, as a crucial extrinsic factor, on microglia within the CNS. In addition, we summarize the CNS diseases associated with both the host microbiome and microglia and explore the potential pathways by which the gut bacteria influence the pathogenesis of CNS diseases. Our work is thus a comprehensive theoretical foundation for studies on the gut-microglia connection in the development of CNS diseases; and provides great potential for researchers to target pathways associated with the gut-microglia connection and overcome CNS diseases.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
133
|
Gregory AC, Sullivan MB, Segal LN, Keller BC. Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respir Res 2018; 19:174. [PMID: 30208886 PMCID: PMC6136173 DOI: 10.1186/s12931-018-0878-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The role of commensal viruses in humans is poorly understood, and the impact of the virome on lung health and smoking-related disease is particularly understudied. METHODS Genetic material from acellular bronchoalveolar lavage fluid was sequenced to identify and quantify viral members of the lower respiratory tract which were compared against concurrent bronchoalveolar lavage bacterial, metabolite, cytokine and cellular profiles, and clinical data. Twenty smoker and 10 nonsmoker participants with no significant comorbidities were studied. RESULTS Viruses that infect bacteria (phages) represented the vast majority of viruses in the lung. Though bacterial communities were statistically indistinguishable across smokers and nonsmokers as observed in previous studies, lung viromes and metabolic profiles were significantly different between groups. Statistical analyses revealed that changes in viral communities correlate most with changes in levels of arachidonic acid and IL-8, both potentially relevant for chronic obstructive pulmonary disease (COPD) pathogenesis based on prior studies. CONCLUSIONS Our assessment of human lung DNA viral communities reveals that commensal viruses are present in the lower respiratory tract and differ between smokers and nonsmokers. The associations between viral populations and local immune and metabolic tone suggest a significant role for virome-host interaction in smoking related lung disease.
Collapse
Affiliation(s)
- Ann C. Gregory
- Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Brian C. Keller
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University College of Medicine, 201 Davis Heart & Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
134
|
The use of random forests modelling to detect yeast-mannan sensitive bacterial changes in the broiler cecum. Sci Rep 2018; 8:13270. [PMID: 30185819 PMCID: PMC6125325 DOI: 10.1038/s41598-018-31438-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
In this study, sequencing of the 16S rRNA gene targeting the V4-V6 regions was conducted to assess the cecal microbial alterations in response to dietary supplementation with a yeast derived mannan rich fraction (MRF) in standard commercial broiler production settings across four separate broiler trials. The resulting data was analysed to identify consistent changes in the bacterial community structure of the broiler cecum in response to MRF supplementation. Subsequently, the datasets from each individual trial were pooled and analysed for differences between control and MRF supplemented diets at day 35 posthatch. The results from this analysis showed that Phylum Firmicutes was decreased and Phylum Bacteroidetes was increased across all four trials at day 35 posthatch when compared to the control. An extension of the random forest bioinformatics approach to discover a highly relevant set of microbial operational taxonomic units (OTUs) which are indicative of MRF supplementation in the broiler cecum was then used. This approach has enabled the identification of a novel set of yeast-mannan sensitive bacterial OTUs in the cecal microbiome. This information will be helpful in developing potential future nutritional strategies and will be favourable to the poultry industry.
Collapse
|
135
|
Comparisons of gut microbiota profiles in wild-type and gelatinase B/matrix metalloproteinase-9-deficient mice in acute DSS-induced colitis. NPJ Biofilms Microbiomes 2018; 4:18. [PMID: 30181895 PMCID: PMC6120875 DOI: 10.1038/s41522-018-0059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota help to educate the immune system and a number of involved immune cells were recently characterized. However, specific molecular determinants in these processes are not known, and, reciprocally, little information exists about single host determinants that alter the microbiota. Gelatinase B/matrix metalloproteinase-9 (MMP-9), an innate immune regulator and effector, has been suggested as such a host determinant. In this study, acute colitis was induced in co-housed MMP-9-/- mice (n = 10) and their wild-type (WT) littermates (n = 10) via oral administration of 3% dextran sodium sulfate (DSS) for 7 days followed by 2 days of regular drinking water. Control mice (10 WT and 10 MMP-9-/-) received normal drinking water. Fecal samples were collected at time of sacrifice and immediately frozen at −80 °C. Microbiota analysis was performed using 16S rRNA amplicon sequencing on Illumina MiSeq and taxonomic annotation was performed using the Ribosomal Database Project as reference. Statistical analysis correcting for multiple testing was done using R. No significant differences in clinical or histopathological parameters were found between both genotypes with DSS-induced colitis. Observed microbial richness at genus level and microbiota composition were not significantly influenced by host genotype. In contrast, weight loss, disease activity index, cage, and phenotype did significantly influence the intestinal microbiota composition. After multivariate analysis, cage and phenotype were identified as the sole drivers of microbiota composition variability. In conclusion, changes in fecal microbiota composition were not significantly altered in MMP-9-deficient mice compared to wild-type littermates, but instead were mainly driven by DSS-induced colonic inflammation. A protein that regulates aspects of the immune system has been proposed to influence gut microbial populations implicated in the inflammatory conditions known as colitis, but new evidence suggests the protein has no such effect. Ghislain Opdenakker and colleagues at the Rega Institute for Medical Research in Belgium examined the issue in mice with chemically induced colitis. The gut microbes of normal “wild-type” animals were compared with those in animals lacking the gene for the protein, “gelatinase B/matrix metalloproteinase-9”. The absence of the gene, and therefore of the protein it codes for, caused no significant alteration in the gut microbial population. The presence of colitis, however, did alter the gut microbial population relative to mice with no colitis. The results will assist work to understand the networks of cause and effect linking gut microbes and colitis.
Collapse
|
136
|
Xiong J, Dai W, Qiu Q, Zhu J, Yang W, Li C. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Mol Ecol 2018; 27:3686-3699. [PMID: 30070062 DOI: 10.1111/mec.14822] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
The host-associated microbiota is increasingly recognized to facilitate host fitness, but the understanding of the underlying ecological processes that govern the host-bacterial colonization over development and, particularly, under disease remains scarce. Here, we tracked the gut microbiota of shrimp over developmental stages and in response to disease. The stage-specific gut microbiotas contributed parallel changes to the predicted functions, while shrimp disease decoupled this intimate association. After ruling out the age-discriminatory taxa, we identified key features indicative of shrimp health status. Structural equation modelling revealed that variations in rearing water led to significant changes in bacterioplankton communities, which subsequently affected the shrimp gut microbiota. However, shrimp gut microbiotas are not directly mirrored by the changes in rearing bacterioplankton communities. A neutral model analysis showed that the stochastic processes that govern gut microbiota tended to become more important as healthy shrimp aged, with 37.5% stochasticity in larvae linearly increasing to 60.4% in adults. However, this defined trend was skewed when disease occurred. This departure was attributed to the uncontrolled growth of two candidate pathogens (over-represented taxa). The co-occurrence patterns provided novel clues on how the gut commensals interact with candidate pathogens in sustaining shrimp health. Collectively, these findings offer updated insight into the ecological processes that govern the host-bacterial colonization in shrimp and provide a pathological understanding of polymicrobial infections.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Wenfang Dai
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
137
|
Smith AH, Rehberger TG. Bacteria and fungi in day-old turkeys vary among companies, collection periods, and breeder flocks. Poult Sci 2018; 97:1400-1411. [PMID: 29390100 DOI: 10.3382/ps/pex429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Microbial colonization of the intestinal tract of commercial poultry is highly variable, likely due to the fact that poults and chicks are hatched and raised without exposure to adult birds and their microbiota. In industrial poultry production, it is hypothesized that most of the microbiota is obtained through horizontal transmission from the environment and very little by maternal transmission. The initial gut microbiota will therefore differ between flocks and companies based on environmental conditions at the hatchery. Day-old poults were collected from the hatchery of 2 companies at 3 different time points to monitor the initial colonizing microbiota by sequencing amplicons of marker genes for bacteria, lactic acid bacteria (LAB), fungi, and archaea. Bacterial colonizers were distinct by company (pseudo-F 38.7, P ≤ 0.05) with the predominant bacteria at Company A being clostridia, specifically Clostridium celatum group, C. paraputrificum, and C. tertium. Predominant bacteria at Company B were Enterobacteriaceae, belonging to 2 different groups, one that included Escherichia; Shigella and Salmonella and the other Klebsiella; Enterobacter; and others. The predominant LAB at both companies were Enterococcus faecalis and E. gallinarum, confirmed by sequencing the 16S ribosomal RNA (rRNA) gene of colonies picked from lactobacilli agar plate counts. The predominant fungi were Aspergillus niger and Saccharomyces cerevisiae, with Candida sake or Alterneria sp. in some samples of Company A. Archaeal sequences were detected only in a single poult from Company B. The initial gastrointestinal colonizers of poults vary across company and time, signifying a strong environmental effect on microbiota acquisition. There was an indication of maternal effects in certain breeder flocks from Company B. Further work is necessary to determine how this variability affects microbiota succession and impacts growth and production of the birds.
Collapse
Affiliation(s)
| | - T G Rehberger
- Arm and Hammer Animal Nutrition, W227 N752 Westmound Dr., Waukesha, WI 53186
| |
Collapse
|
138
|
Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, Van Treuren W, Pruss K, Stabler SR, Lugo K, Bouley DM, Vilches-Moure JG, Smith M, Sonnenburg JL, Bhatt AS, Huang KC, Monack D. A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host Microbe 2018; 24:296-307.e7. [PMID: 30057174 PMCID: PMC6223613 DOI: 10.1016/j.chom.2018.07.002] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The intestinal microbiota provides colonization resistance against pathogens, limiting pathogen expansion and transmission. These microbiota-mediated mechanisms were previously identified by observing loss of colonization resistance after antibiotic treatment or dietary changes, which severely disrupt microbiota communities. We identify a microbiota-mediated mechanism of colonization resistance against Salmonella enterica serovar Typhimurium (S. Typhimurium) by comparing high-complexity commensal communities with different levels of colonization resistance. Using inbred mouse strains with different infection dynamics and S. Typhimurium intestinal burdens, we demonstrate that Bacteroides species mediate colonization resistance against S. Typhimurium by producing the short-chain fatty acid propionate. Propionate directly inhibits pathogen growth in vitro by disrupting intracellular pH homeostasis, and chemically increasing intestinal propionate levels protects mice from S. Typhimurium. In addition, administering susceptible mice Bacteroides, but not a propionate-production mutant, confers resistance to S. Typhimurium. This work provides mechanistic understanding into the role of individualized microbial communities in host-to-host variability of pathogen transmission.
Collapse
Affiliation(s)
- Amanda Jacobson
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Lilian Lam
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Fiona Tamburini
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jared Honeycutt
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Trung Pham
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Will Van Treuren
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Kali Pruss
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | | | - Kyler Lugo
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Department of CHEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
139
|
Mooser C, Gomez de Agüero M, Ganal-Vonarburg SC. Standardization in host-microbiota interaction studies: challenges, gnotobiology as a tool, and perspective. Curr Opin Microbiol 2018; 44:50-60. [PMID: 30056329 DOI: 10.1016/j.mib.2018.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Considering the increasing list of diseases linked to the commensal microbiota, experimental studies of host-microbe interactions are of growing interest. Axenic and differently colonized animal models are inalienable tools to study these interactions. Factors, such as host genetics, diet, antibiotics and litter affect microbiota composition and can be confounding factors in many experimental settings. The use of gnotobiotic mice harboring defined microbiotas of different complexity plus additional housing standardization have thus become a gold standard to study the influence of the microbiome on the host. We highlight here the recent advances, challenges and outstanding goals in gnotobiology with the ambition to contribute to the generation of reliable, reproducible and transferrable results, which form the basis for advances in biomedical research.
Collapse
Affiliation(s)
- Catherine Mooser
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
| |
Collapse
|
140
|
Cuperus T, Kraaij MD, Zomer AL, van Dijk A, Haagsman HP. Immunomodulation and effects on microbiota after in ovo administration of chicken cathelicidin-2. PLoS One 2018; 13:e0198188. [PMID: 29870564 PMCID: PMC5988267 DOI: 10.1371/journal.pone.0198188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Host Defense Peptides (HDPs) such as cathelicidins are multifunctional effectors of the innate immune system with both antimicrobial and pleiotropic immunomodulatory functions. Chicken cathelicidin-2 (CATH-2) has multiple immunomodulatory effects in vitro and the D-amino acid analog of this peptide has been shown to partially protect young chicks from a bacterial infection. However, the mechanisms responsible for CATH-2 mediated in vivo protection have not been investigated so far. In this study, D-CATH-2 was administered in ovo and the immune status and microbiota of the chicks were investigated at 7 days posthatch to elucidate the in vivo mechanisms of the peptide. In three consecutive studies, no effects on numbers and functions of immune cells were found and only small changes were seen in gene expression of Peripheral Blood Mononuclear Cells (PBMCs). In two studies, intestinal microbiota composition was determined which was highly variable, suggesting that it was strongly influenced by environmental factors. In both studies, in ovo D-CATH-2 treatment caused significant reduction of Ruminococcaceae and Butyricicoccus in the cecum and Escherichia/Shigella in both ileum and cecum. In conclusion, this study shows that, in the absence of an infectious stimulus, in ovo administration of a CATH-2 analog alters the microbiota composition but does not affect the chicks' immune system posthatch.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marina D. Kraaij
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aldert L. Zomer
- Division Clinical Infectiology, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
141
|
Argüello H, Estellé J, Zaldívar-López S, Jiménez-Marín Á, Carvajal A, López-Bascón MA, Crispie F, O'Sullivan O, Cotter PD, Priego-Capote F, Morera L, Garrido JJ. Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa. Sci Rep 2018; 8:7788. [PMID: 29773876 PMCID: PMC5958136 DOI: 10.1038/s41598-018-26083-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen's ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.
Collapse
Affiliation(s)
- Héctor Argüello
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sara Zaldívar-López
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Mª Asunción López-Bascón
- Departamento de Química Analítica Universidad de Córdoba, Córdoba, CeiA3 Campus de Excelencia Agroalimentaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Fiona Crispie
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Paul D Cotter
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Feliciano Priego-Capote
- Departamento de Química Analítica Universidad de Córdoba, Córdoba, CeiA3 Campus de Excelencia Agroalimentaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Luis Morera
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| |
Collapse
|
142
|
Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. Group Living and Male Dispersal Predict the Core Gut Microbiome in Wild Baboons. Integr Comp Biol 2018; 57:770-785. [PMID: 29048537 DOI: 10.1093/icb/icx046] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian gut microbiome plays a profound role in the physiology, metabolism, and overall health of its host. However, biologists have only a nascent understanding of the forces that drive inter-individual heterogeneity in gut microbial composition, especially the role of host social environment. Here we used 178 samples from 78 wild yellow baboons (Papio cynocephalus) living in two social groups to test how host social context, including group living, social interactions within groups, and transfer between social groups (e.g., dispersal) predict inter-individual variation in gut microbial alpha and beta diversity. We also tested whether social effects differed for prevalent "core" gut microbial taxa, which are thought to provide primary functions to hosts, versus rare "non-core" microbes, which may represent relatively transient environmental acquisitions. Confirming prior studies, we found that each social group harbored a distinct gut microbial community. These differences included both non-core and core gut microbial taxa, suggesting that these effects are not solely driven by recent gut microbial exposures. Within social groups, close grooming partners had more similar core microbiomes, but not non-core microbiomes, than individuals who rarely groomed each other, even controlling for kinship and diet similarity between grooming partners. Finally, in support of the idea that the gut microbiome can be altered by current social context, we found that the longer an immigrant male had lived in a given social group, the more closely his gut microbiome resembled the gut microbiomes of the group's long-term residents. Together, these results reveal the importance of a host's social context in shaping the gut microbiome and shed new light onto the microbiome-related consequences of male dispersal.
Collapse
Affiliation(s)
- Laura E Grieneisen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Josh Livermore
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
143
|
Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018; 557:434-438. [PMID: 29743671 PMCID: PMC6126907 DOI: 10.1038/s41586-018-0092-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/23/2018] [Indexed: 11/09/2022]
Abstract
The dense microbial ecosystem in the gut is intimately connected to numerous facets of human biology, and manipulation of the gut microbiota has broad implications for human health. In the absence of profound perturbation, the bacterial strains that reside within an individual are mostly stable over time 1 . By contrast, the fate of exogenous commensal and probiotic strains applied to an established microbiota is variable, generally unpredictable and greatly influenced by the background microbiota2,3. Therefore, analysis of the factors that govern strain engraftment and abundance is of critical importance to the emerging field of microbiome reprogramming. Here we generate an exclusive metabolic niche in mice via administration of a marine polysaccharide, porphyran, and an exogenous Bacteroides strain harbouring a rare gene cluster for porphyran utilization. Privileged nutrient access enables reliable engraftment of the exogenous strain at predictable abundances in mice harbouring diverse communities of gut microbes. This targeted dietary support is sufficient to overcome priority exclusion by an isogenic strain 4 , and enables strain replacement. We demonstrate transfer of the 60-kb porphyran utilization locus into a naive strain of Bacteroides, and show finely tuned control of strain abundance in the mouse gut across multiple orders of magnitude by varying porphyran dosage. Finally, we show that this system enables the introduction of a new strain into the colonic crypt ecosystem. These data highlight the influence of nutrient availability in shaping microbiota membership, expand the ability to perform a broad spectrum of investigations in the context of a complex microbiota, and have implications for cell-based therapeutic strategies in the gut.
Collapse
Affiliation(s)
- Elizabeth Stanley Shepherd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Novome Biotechnologies, South San Francisco, CA, USA
| | | | - Kali M Pruss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
144
|
Han GG, Lee JY, Jin GD, Park J, Choi YH, Kang SK, Chae BJ, Kim EB, Choi YJ. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. Sci Rep 2018; 8:6012. [PMID: 29662088 PMCID: PMC5902624 DOI: 10.1038/s41598-018-24508-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
The intestinal microbiota affect various physiological traits of host animals such as brain development, obesity, age, and the immune system. In the swine industry, understanding the relationship between intestinal microbiota and growth stage is essential because growth stage is directly related to the feeding system of pigs, thus we studied the intestinal microbiota of 32 healthy pigs across five sows at 10, 21, 63, 93, and 147 d of ages. The intestinal microbiota were altered with growth of pigs and were separated into three distinct clusters. The relative abundance of several phyla and genera were significantly different between growth stages. We observed co-occurrence pattern of the intestinal microbiota at each growth stage. In addition, we predicted the functions of the intestinal microbiota and confirmed that several KEGG pathways were significantly different between growth stages. We also explored the relationship between the intestinal microbiota and innate factors such as the maternal effect and gender. When pigs were young, innate factors affected on construction of intestinal microbiota, however this tendency was disappeared with growth. Our findings broaden the understanding of microbial ecology, and the results will be used as a reference for investigating host-microbe interactions in the swine industry.
Collapse
Affiliation(s)
- Geon Goo Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jun-Yeong Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Gwi-Deuk Jin
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jongbin Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yo Han Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
| | - Byung Jo Chae
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea. .,Division of Applied Animal Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
145
|
Chassaing B, Gewirtz AT. Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency. PLoS One 2018; 13:e0195310. [PMID: 29617463 PMCID: PMC5884553 DOI: 10.1371/journal.pone.0195310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inability to maintain a stable and beneficial microbiota is associated with chronic gut inflammation, which classically manifests as colitis but may more commonly exist as low-grade inflammation that promotes metabolic syndrome. Alterations in microbiota, and associated inflammation, can originate from dysfunction in host proteins that manage the microbiota, such as the flagellin receptor TLR5. That the complete absence of a microbiota (i.e. germfree conditions) eliminates all evidence of inflammation in TLR5-deficient mice demonstrates that this model of gut inflammation is microbiota-dependent. We hypothesize that such microbiota dependency reflects an inability to manage pathobionts, such as Adherent-Invasive E. coli (AIEC). Herein, we examined the extent to which microbiota mismanagement and associated inflammation in TLR5-deficient mice would manifest in a limited and pathobiont-free microbiota. For this purpose, WT and TLR5-deficient mice were generated and maintained with the 8-member consortium of bacteria referred to as "Altered Schaedler Flora" (ASF). Such ASF animals were subsequently inoculated with AIEC reference strain LF82. Feces were assayed for bacterial loads, fecal lipopolysaccharide and flagellin loads, fecal inflammatory marker lipocalin-2 and microbiota composition. RESULTS Relative to similarly maintained WT mice, mice lacking TLR5 (T5KO) did not display low-grade intestinal inflammation nor metabolic syndrome under ASF conditions. Concomitantly, the ASF microbial community was similar between WT and T5KO mice, while inoculation with AIEC strain LF82 resulted in alteration of the ASF community in T5KO mice compared to WT control animals. AIEC LF82 inoculation in ASF T5KO mice resulted in microbiota components having elevated levels of bioactive lipopolysaccharide and flagellin, a modest level of low-grade inflammation and increased adiposity. CONCLUSIONS In a limited-complexity pathobiont-free microbiota, loss of the flagellin receptor TLR5 does not impact microbiota composition nor its ability to promote inflammation. Addition of AIEC to this ecosystem perturbs microbiota composition, increases levels of lipopolysaccharide and flagellin, but only modestly promotes gut inflammation and adiposity, suggesting that the phenotypes previously associated with loss of this innate immune receptor require disruption of complex microbiota.
Collapse
Affiliation(s)
- Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
146
|
Gainza O, Ramírez C, Ramos AS, Romero J. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador. MICROBIAL ECOLOGY 2018; 75:562-568. [PMID: 28929202 DOI: 10.1007/s00248-017-1066-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.
Collapse
Affiliation(s)
- Oreste Gainza
- Doctorado en Acuicultura, Programa Cooperativo, Universidad de Chile, Universidad Católica del Norte y Universidad Católica de Valparaíso, Coquimbo, Chile
| | - Carolina Ramírez
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Avda. El Líbano 5524, Santiago, Chile
| | | | - Jaime Romero
- Laboratorio de Biotecnología, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Avda. El Líbano 5524, Santiago, Chile.
| |
Collapse
|
147
|
Dai W, Yu W, Xuan L, Tao Z, Xiong J. Integrating molecular and ecological approaches to identify potential polymicrobial pathogens over a shrimp disease progression. Appl Microbiol Biotechnol 2018. [PMID: 29516148 DOI: 10.1007/s00253-018-8891-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now recognized that some gut diseases attribute to polymicrobial pathogens infections. Thus, traditional isolation of single pathogen from disease subjects could bias the identification of causal agents. To fill this gap, using Illumina sequencing of the bacterial 16S rRNA gene, we explored the dynamics of gut bacterial communities over a shrimp disease progression. The results showed significant differences in the gut bacterial communities between healthy and diseased shrimp. Potential pathogens were inferred by a local pathogens database, of which two OTUs (affiliated with Vibrio tubiashii and Vibrio harveyi) exhibited significantly higher abundances in diseased shrimp as compared to healthy subjects. The two OTUs cumulatively contributed 64.5% dissimilarity in the gut microbiotas between shrimp health status. Notably, the random Forest model depicted that profiles of the two OTUs contributed 78.5% predicted accuracy of shrimp health status. Removal of the two OTUs from co-occurrence networks led to network fragmentation, suggesting their gatekeeper features. For these evidences, the two OTUs were inferred as candidate pathogens. Three virulence genes (bca, tlpA, and fdeC) that were coded by the two candidate pathogens were inferred by a virulence factor database, which were enriched significantly (P < 0.05 in the three cases, as validated by qPCR) in diseased shrimp as compared to healthy ones. The two candidate pathogens were repressed by Flavobacteriaceae, Garvieae, and Photobacrerium species in healthy shrimp, while these interactions shifted into synergy in disease cohorts. Collectively, our findings offer a frame to identify potential polymicrobial pathogen infections from an ecological perspective.
Collapse
Affiliation(s)
- Wenfang Dai
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Lixia Xuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhen Tao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
148
|
Jahnsen FL, Bækkevold ES, Hov JR, Landsverk OJ. Do Long-Lived Plasma Cells Maintain a Healthy Microbiota in the Gut? Trends Immunol 2018; 39:196-208. [DOI: 10.1016/j.it.2017.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023]
|
149
|
Xiong J, Yu W, Dai W, Zhang J, Qiu Q, Ou C. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota. Appl Microbiol Biotechnol 2018; 102:3315-3326. [PMID: 29497796 DOI: 10.1007/s00253-018-8874-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.
Collapse
Affiliation(s)
- Jinbo Xiong
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China. .,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| | - Weina Yu
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Wenfang Dai
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinjie Zhang
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Changrong Ou
- Faculty of Marine Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
150
|
Thiemann S, Smit N, Roy U, Lesker TR, Gálvez EJC, Helmecke J, Basic M, Bleich A, Goodman AL, Kalinke U, Flavell RA, Erhardt M, Strowig T. Enhancement of IFNγ Production by Distinct Commensals Ameliorates Salmonella-Induced Disease. Cell Host Microbe 2018; 21:682-694.e5. [PMID: 28618267 DOI: 10.1016/j.chom.2017.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/11/2017] [Accepted: 05/22/2017] [Indexed: 01/28/2023]
Abstract
The microbiota contributes to colonization resistance against invading pathogens by competing for metabolites, producing inhibitory substances, and priming protective immune responses. However, the specific commensal bacteria that promote host resistance and immune-mediated protection remain largely elusive. Using isogenic mouse lines with distinct microbiota profiles, we demonstrate that severity of disease induced by enteric Salmonella Typhimurium infection is strongly modulated by microbiota composition in individual lines. Transferring a restricted community of cultivable intestinal commensals from protected into susceptible mice decreases S. Typhimurium tissue colonization and consequently disease severity. This reduced tissue colonization, along with ameliorated weight loss and prolonged survival, depends on microbiota-enhanced IFNγ production, as IFNγ-deficient mice do not exhibit protective effects. Innate cells and CD4+ T cells increase in number and show high levels of IFNγ after transfer of the commensal community. Thus, distinct microbiota members prevent intestinal Salmonella infection by enhancing antibacterial IFNγ responses.
Collapse
Affiliation(s)
- Sophie Thiemann
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Nathiana Smit
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Urmi Roy
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Till Robin Lesker
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Eric J C Gálvez
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julia Helmecke
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Richard A Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Marc Erhardt
- Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|