101
|
Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, Bunge MB. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials 2018; 177:176-185. [PMID: 29929081 PMCID: PMC6034707 DOI: 10.1016/j.biomaterials.2018.05.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Abstract
Schwann cell (SC) transplantation has been comprehensively studied as a strategy for spinal cord injury (SCI) repair. SCs are neuroprotective and promote axon regeneration and myelination. Nonetheless, substantial SC death occurs post-implantation, which limits therapeutic efficacy. The use of extracellular matrix (ECM)-derived matrices, such as Matrigel, supports transplanted SC survival and axon growth, resulting in improved motor function. Because appropriate matrices are needed for clinical translation, we test here the use of an acellular injectable peripheral nerve (iPN) matrix. Implantation of SCs in iPN into a contusion lesion did not alter immune cell infiltration compared to injury only controls. iPN implants were larger and contained twice as many SC-myelinated axons as Matrigel grafts. SC/iPN animals performed as well as the SC/Matrigel group in the BBB locomotor test, and made fewer errors on the grid walk at 4 weeks, equalizing at 8 weeks. The fact that this clinically relevant iPN matrix is immunologically tolerated and supports SC survival and axon growth within the graft offers a highly translational possibility for improving efficacy of SC treatment after SCI. To our knowledge, it is the first time that an injectable PN matrix is being evaluated to improve the efficacy of SC transplantation in SCI repair.
Collapse
Affiliation(s)
- Susana R Cerqueira
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Yee-Shuan Lee
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Robert C Cornelison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Michaela W Mertz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
102
|
Future Research Directions in the Design of Versatile Extracellular Matrix in Tissue Engineering. Int Neurourol J 2018; 22:S66-75. [PMID: 30068068 PMCID: PMC6077942 DOI: 10.5213/inj.1836154.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Native and artificial extracellular matrices (ECMs) have been widely applied in biomedical fields as one of the most effective components in tissue regeneration. In particular, ECM-based drugs are expected to be applied to treat diseases in organs relevant to urology, because tissue regeneration is particularly important for preventing the recurrence of these diseases. Native ECMs provide a complex in vivo architecture and native physical and mechanical properties that support high biocompatibility. However, the applications of native ECMs are limited due to their tissue-specificity and chemical complexity. Artificial ECMs have been fabricated in an attempt to create a broadly applicable scaffold by using controllable components and a uniform formulation. On the other hands, artificial ECMs fail to mimic the properties of a native ECM; consequently, their applications in tissues are also limited. For that reason, the design of a versatile, hybrid ECM that can be universally applied to various tissues is an emerging area of interest in the biomedical field.
Collapse
|
103
|
Choudhury D, Tun HW, Wang T, Naing MW. Organ-Derived Decellularized Extracellular Matrix: A Game Changer for Bioink Manufacturing? Trends Biotechnol 2018; 36:787-805. [DOI: 10.1016/j.tibtech.2018.03.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
|
104
|
Wang F, Maeda Y, Zachar V, Ansari T, Emmersen J. Regeneration of the oesophageal muscle layer from oesophagus acellular matrix scaffold using adipose-derived stem cells. Biochem Biophys Res Commun 2018; 503:271-277. [PMID: 29890132 DOI: 10.1016/j.bbrc.2018.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023]
Abstract
This study explored the feasibility of constructing a tissue engineered muscle layer in the oesophagus using oesophageal acellular matrix (OAM) scaffolds and human aortic smooth muscle cells (hASMCs) or human adipose-derived stem cells (hASCs). The second objective was to investigate the effect of hypoxic preconditioning of seeding cells on cell viability and migration depth. Our results demonstrated that hASMCs and hASCs could attach and adhere to the decellularized OAM scaffold and survive and proliferate for at least 7 days depending on the growth conditions. This indicates adipose-derived stem cells (ASCs) have the potential to substitute for smooth muscle cells (SMCs) in the construction of tissue engineered oesophageal muscle layers.
Collapse
Affiliation(s)
- Fang Wang
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| | - Yasuko Maeda
- Sir Alan Parks Physiology Unit, St. Mark's Hospital, Northwick Park, Watford Road, Harrow, HA1 3UJ, United Kingdom.
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| | - Tahera Ansari
- Northwick Park Institute for Medical Research (NPIMR), Block Y, Level 3, Northwick Park, Watford Road, Harrow, HA1 3UJ, United Kingdom.
| | - Jeppe Emmersen
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| |
Collapse
|
105
|
Gao S, Chen M, Wang P, Li Y, Yuan Z, Guo W, Zhang Z, Zhang X, Jing X, Li X, Liu S, Sui X, Xi T, Guo Q. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater 2018; 73:127-140. [PMID: 29654991 DOI: 10.1016/j.actbio.2018.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
Low vascularization in meniscus limits its regeneration ability after injury, and tissue engineering is the most promising method to achieve meniscus regeneration. In this study, we fabricated a kind of composite scaffold by decellularized meniscus extracellular matrix/polycaprolactone (DMECM/PCL) electrospinning fibers and porous DMECM, in which DMECM/PCL fibers were used as reinforcing component. The tensile modulus of the composite scaffold in longitudinal and crosswise directions were 8.5 ± 1.9 and 2.3 ± 0.3 MPa, respectively. Besides that, the DMECM/PCL electrospinning fibers enhanced suture resistance of the composite scaffold more than 5 times than DMECM scaffold effectively. In vitro cytocompatibility showed that the porous structure provided by DMECM component facilitated meniscus cells' proliferation. DMECM was also the main component to regulate cell behaviors, which promoted meniscus cells expressing extracellular matrix related genes such as COL I, COL II, SOX9 and AGG. Rabbits with total meniscectomy were used as animal model to evaluated the composited scaffolds performance in vivo at 3 and 6 months. Results showed that rabbits with scaffold implanting could regenerate neo-menisci in both time points. The neo-menisci had similar histology structure and biochemical content with native menisci. Although neo-menisci had inferior tensile modulus than native ones, its modulus was improved with implanting time prolonging. MRI imaging showed the signal of neo-meniscus in the body is clear, and X-ray imaging of knee joints demonstrated the implantation of scaffolds could relief joint space narrowing. Moreover, rabbits with neo-menisci had better cartilage condition in femoral condyle and tibial plateau compared than meniscectomy group. STATEMENT OF SIGNIFICANCE We fabricated the meniscus scaffold by combining porous decellularized meniscus extracellular matrix (DMECM) and DMECM/PCL electrospinning fibers together, which used the porous structure of DMECM, and the good tensile property of electrospinning fibers. We believe single material cannot satisfy increasing needs of scaffold. Therefore, we combined not only materials but also fabrication methods together to develop scaffold to make good use of each part. DMECM in electrospinning fibers also made these two components possible to be integrated through crosslinking. Compared to existing meniscus scaffold, the composite scaffold had (1) soft structure and extrusion would not happen after implantation, (2) ability to be trimmed to suitable shape during surgery, and (3) good resistance to suture.
Collapse
Affiliation(s)
- Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingxue Chen
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Pei Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xueliang Zhang
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Li
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Tingfei Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Shenzhen Institute, Peking University, Shenzhen 518057, China.
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
106
|
Karimi F, O'Connor AJ, Qiao GG, Heath DE. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Adv Healthc Mater 2018; 7:e1701324. [PMID: 29577678 DOI: 10.1002/adhm.201701324] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Indexed: 01/17/2023]
Abstract
Material systems that exhibit tailored interactions with cells are a cornerstone of biomaterial and tissue engineering technologies. One method of achieving these tailored interactions is to biofunctionalize materials with peptide ligands that bind integrin receptors present on the cell surface. However, cell biology research has illustrated that both integrin binding and integrin clustering are required to achieve a full adhesion response. This biophysical knowledge has motivated researchers to develop material systems biofunctionalized with nanoscale clusters of ligands that promote both integrin occupancy and clustering of the receptors. These materials have improved a wide variety of biological interactions in vitro including cell adhesion, proliferation, migration speed, gene expression, and stem cell differentiation; and improved in vivo outcomes including increased angiogenesis, tissue healing, and biomedical device integration. This review first introduces the techniques that enable the fabrication of these nanopatterned materials, describes the improved biological effects that have been achieved, and lastly discusses the current limitations of the technology and where future advances may occur. Although this technology is still in its nascency, it will undoubtedly play an important role in the future development of biomaterials and tissue engineering scaffolds for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Andrea J. O'Connor
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Greg G. Qiao
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Daniel E. Heath
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| |
Collapse
|
107
|
Joddar B, Kumar SA, Kumar A. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochem Biophys 2018; 76:187-195. [PMID: 28942575 PMCID: PMC5866207 DOI: 10.1007/s12013-017-0828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500W University Avenue, El Paso, TX, 79968, USA.
| | - Shweta Anil Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Alok Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
108
|
Ketabat F, Khorshidi S, Karkhaneh A. Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering. POLYM INT 2018. [DOI: 10.1002/pi.5599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Farinaz Ketabat
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Sajedeh Khorshidi
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
109
|
Noh YK, Du P, Dos Santos Da Costa A, Park K. Induction of chondrogenesis of human placenta-derived mesenchymal stem cells via heparin-grafted human fibroblast derived matrix. Biomater Res 2018; 22:12. [PMID: 29760942 PMCID: PMC5941790 DOI: 10.1186/s40824-018-0121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023] Open
Abstract
Background Formation of mature and functional articular cartilage is still challenging in cartilage tissue engineering. This study investigates the potential of using heparin-grafted decellularized extracellular matrix (ECM) as a novel growth factor delivery platform towards human placenta-derived mesenchymal stem cells (hPMSCs) chondrogenic differentiation. Human fibroblast-derived extracellular matrix (hFDM) is naturally obtained from in vitro-cultured human lung fibroblasts via a mild decellularization process. hFDM was then conjugated with heparin via N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) chemistry and subject to transforming growth factor (TGF)-β1 immobilization. Once heparin grafted-hFDM (hFDM-hep) and hPMSCs were co-embedded into collagen gel, they were examined for in vitro and in vivo chondrogenesis of hPMSCs for 4 weeks. Results We identified heparin moieties on hFDM via toluidine blue O assay and Fourier transform infrared spectroscopy, respectively. We found out that collagen spheroids containing hFDM-hep and TGF-β1 exhibited a sustained release of growth factor for 28 days in vitro. Chondrogenesis of hPMSCs in vitro was supported by accumulated glycosaminoglycan (GAG) content and upregulated chondrogenic specific markers (collagen II, aggrecan, Sox9). Meanwhile, PKH26 - labeled hPMSCs incorporated collagen with either hFDM or hFDM-hep was pre-conditioned in a chondrogenic media for 3 days and subcutaneously implanted in the back of nude mice for 4 weeks. The implanted collagen spheroids containing both hPMSCs and hFDM-hep retained more viable hPMSCs and showed higher level of chondrogenic differentiation, based on immunostaining of collagen type II over collagen alone or Col/hFDM group. In addition, histological examination showed more positive signals of GAG via Safranin-O staining. Conclusion TGF-β1-immobilized hFDM-hep can provide an appropriate microenvironment for chondrogenic differentiation of hPMSCs in 3D collagen spheroid. Electronic supplementary material The online version of this article (10.1186/s40824-018-0121-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Kwan Noh
- 1Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792 South Korea.,2Department of Biotechnology, Korea University, Seoul, 02841 South Korea
| | - Ping Du
- 1Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792 South Korea
| | - Avelino Dos Santos Da Costa
- 1Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792 South Korea.,3Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Kwideok Park
- 1Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792 South Korea.,3Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792 South Korea
| |
Collapse
|
110
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
111
|
Assessment of static and perfusion methods for decellularization of PCL membrane-supported periodontal ligament cell sheet constructs. Arch Oral Biol 2018; 88:67-76. [DOI: 10.1016/j.archoralbio.2018.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 11/21/2022]
|
112
|
Rodenhizer D, Dean T, D'Arcangelo E, McGuigan AP. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery? Adv Healthc Mater 2018; 7:e1701174. [PMID: 29350495 DOI: 10.1002/adhm.201701174] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Cancer prognosis remains a lottery dependent on cancer type, disease stage at diagnosis, and personal genetics. While investment in research is at an all-time high, new drugs are more likely to fail in clinical trials today than in the 1970s. In this review, a summary of current survival statistics in North America is provided, followed by an overview of the modern drug discovery process, classes of models used throughout different stages, and challenges associated with drug development efficiency are highlighted. Then, an overview of the cancer hallmarks that drive clinical progression is provided, and the range of available clinical therapies within the context of these hallmarks is categorized. Specifically, it is found that historically, the development of therapies is limited to a subset of possible targets. This provides evidence for the opportunities offered by novel disease-relevant in vitro models that enable identification of novel targets that facilitate interactions between the tumor cells and their surrounding microenvironment. Next, an overview of the models currently reported in literature is provided, and the cancer biology they have been used to explore is highlighted. Finally, four priority areas are suggested for the field to accelerate adoption of in vitro tumour models for cancer drug discovery.
Collapse
Affiliation(s)
- Darren Rodenhizer
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Teresa Dean
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry & Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| |
Collapse
|
113
|
Jeon J, Lee MS, Yang HS. Differentiated osteoblasts derived decellularized extracellular matrix to promote osteogenic differentiation. Biomater Res 2018; 22:4. [PMID: 29484201 PMCID: PMC5824473 DOI: 10.1186/s40824-018-0115-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/14/2018] [Indexed: 01/08/2023] Open
Abstract
Background The extracellular matrix (ECM) can directly or indirectly influence on regulation of cell functions such as cell adhesion, migration, proliferation and differentiation. The cell derived ECM (CD-ECM) is a useful in vitro model for studying the comprehensive functions of CD-ECM because it maintains a native-like structure and composition. In this study, the CD-ECM is obtained and a test is carried out to determine the effectiveness of several combinations of decellularized methods. These methods were used to regulate the optimal ECM compositions to be induced by osteogenic differentiation using primary isolated osteoblasts. Result We investigated the effect of osteoblasts re-seeded onto normal osteoblast ECM under the growth medium (GM-ECM) and the osteogenic differentiation medium (OD-ECM). The osteoblasts were then cultured statically for 1, 2, and 4 weeks in a growth medium or differentiation medium. Before osteoblast culture, we performed immunostaining with filamentous actin and nuclei, and then performed DNA quantification. After each culture period, the osteogenic differentiation of the osteoblasts re-seeded on the OD-ECMs was enhanced osteogenic differentiation which confirmed by alkaline phosphatase staining and quantification, Alizarin Red S staining and quantification, and von Kossa staining. The OD-ECM-4 W group showed more effective osteogenic differentiation than GM-ECM and OD-ECM-2 W. Conclusions The OD-ECM-4 W has a better capacity in a microenvironment that supports osteogenic differentiation on the GM-ECM and OD-ECM-2 W. The ECM substrate has a wide range of applications as cell culture system or direct differentiation of stem cell and excellent potential as cell-based tissue repair in orthopedic tissue engineering.
Collapse
Affiliation(s)
- Jin Jeon
- 1Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714 Republic of Korea
| | - Min Suk Lee
- 1Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714 Republic of Korea
| | - Hee Seok Yang
- 1Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714 Republic of Korea.,2Department of Pharmaceutical Engineering, Dankook University, Cheonan, 330-714 Republic of Korea
| |
Collapse
|
114
|
Liaw CY, Ji S, Guvendiren M. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Adv Healthc Mater 2018; 7. [PMID: 29345429 DOI: 10.1002/adhm.201701165] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 01/17/2023]
Abstract
There is a growing interest in engineering hydrogels for 3D tissue and disease models. The major motivation is to better mimic the physiological microenvironment of the disease and human condition. 3D tissue models derived from patients' own cells can potentially revolutionize the way treatment and diagnostic alternatives are developed. This requires development of tissue mimetic hydrogels with user defined and tunable properties. In this review article, a recent summary of 3D hydrogel platforms for in vitro tissue and disease modeling is given. Hydrogel design considerations and available hydrogel systems are summarized, followed by the types of currently available hydrogel models, such as bulk hydrogels, porous scaffolds, fibrous scaffolds, hydrogel microspheres, hydrogel sandwich systems, microwells, and 3D bioprinted constructs. Although hydrogels are utilized for a wide range of tissue models, this article focuses on liver and cancer models. This article also provides a detailed section on current challenges and future perspectives of hydrogel-based tissue models.
Collapse
Affiliation(s)
- Chya-Yan Liaw
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Shen Ji
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| |
Collapse
|
115
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
116
|
Abstract
Decellularization technology promises to overcome some of the significant limitations in the regenerative medicine field by providing functional biocompatible grafts. The technique involves removal of the cells from the biological tissues or organs for further use in tissue engineering and clinical interventions. There are significant differences between decellularization protocols due to the intrinsic properties of different tissue types and purpose of use. This multistep, chemical-solution-based protocol is optimized for the preparation of decellularized bovine small intestinal submucosa (SIS).
Collapse
Affiliation(s)
- Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Biovalda Health Technologies, Inc., Ankara, Turkey.
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey.
| |
Collapse
|
117
|
Chen G, Kawazoe N. Biomimetic Extracellular Matrices and Scaffolds Prepared from Cultured Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:465-474. [DOI: 10.1007/978-981-13-0950-2_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
118
|
Abstract
Pericytes have crucial roles in blood-brain barrier function, blood vessel function/stability, angiogenesis, endothelial cell proliferation/differentiation, wound healing, and hematopoietic stem cells maintenance. They can be isolated from fetal and adult tissues and have multipotential differentiation capacity as mesenchymal stem cells (MSCs). All of these properties make pericytes as preferred cells in the field of tissue engineering. Current developments have shown that tissue-engineered three-dimensional (3D) systems including multiple cell layers (or types) and a supporting biological matrix represent the in vivo environment better than those monolayers on plastic dishes. Tissue-engineered models are also more ethical and cheaper systems than animal models. This chapter describes the role of pericytes in tissue engineering for regenerative medicine.
Collapse
Affiliation(s)
- Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
119
|
Hoshiba T, Kawazoe N, Chen G. Preparation of Cell-Derived Decellularized Matrices Mimicking Native ECM During the Osteogenesis and Adipogenesis of Mesenchymal Stem Cells. Methods Mol Biol 2018; 1577:71-86. [PMID: 28795365 DOI: 10.1007/7651_2017_62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The extracellular matrix (ECM) is an important extracellular microenvironmental factor that regulates stem cell differentiation. The ECM is remodeled according to stem cell differentiation progression to precisely regulate the differentiation. Thus, it is expected that the matrices mimicking native ECM surrounding differentiating cells at each differentiation stage provide a favorable microenvironment to promote stem cell differentiation. However, it is difficult to prepare matrices mimicking native ECM using chemical methods because the ECM has a complicated composition. The decellularization technique is useful to prepare such matrices. In this chapter, we described the protocol to prepare matrices mimicking native ECM surrounding cells that are differentiating from mesenchymal stem cells to either osteoblasts or adipocytes via stem cell differentiation culture and a detergent- and nuclease-based decellularization technique.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
- Innovative Flex Course for Frontier Organic Materials Systems, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
120
|
Motta SE, Lintas V, Fioretta ES, Hoerstrup SP, Emmert MY. Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions. Expert Rev Med Devices 2017; 15:35-45. [PMID: 29257706 DOI: 10.1080/17434440.2018.1419865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) is continuously evolving and is expected to surpass surgical valve implantation in the near future. Combining durable valve substitutes with minimally invasive implantation techniques might increase the clinical relevance of this therapeutic option for younger patient populations. Tissue engineering offers the possibility to create tissue engineered heart valves (TEHVs) with regenerative and self-repair capacities which may overcome the pitfalls of current TAVR prostheses. AREAS COVERED This review focuses on off-the-shelf TEHVs which rely on a clinically-relevant in situ tissue engineering approach and which have already advanced into preclinical or first-in-human investigation. EXPERT COMMENTARY Among the off-the-shelf in situ TEHVs reported in literature, the vast majority covers pulmonary valve substitutes, and only few are combined with transcatheter implantation technologies. Hence, further innovations should include the development of transcatheter tissue engineered aortic valve substitutes, which would considerably increase the clinical relevance of such prostheses.
Collapse
Affiliation(s)
- Sarah E Motta
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Valentina Lintas
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Emanuela S Fioretta
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Simon P Hoerstrup
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland.,b Wyss Translational Center Zurich , University and ETH Zurich , Zurich , Switzerland
| | - Maximilian Y Emmert
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland.,b Wyss Translational Center Zurich , University and ETH Zurich , Zurich , Switzerland.,c Heart Center Zurich , University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|
121
|
Wang B, Patnaik SS, Brazile B, Butler JR, Claude A, Zhang G, Guan J, Hong Y, Liao J. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs. Crit Rev Biomed Eng 2017; 43:455-71. [PMID: 27480586 DOI: 10.1615/critrevbiomedeng.2016016066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi; Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Sourav S Patnaik
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - Bryn Brazile
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - J Ryan Butler
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - Andrew Claude
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Ohio
| | - Jianjun Guan
- Department of Material Science and Technology, Ohio State University, Columbus, Ohio
| | - Yi Hong
- Department of Biomedical Engineering, Alabama State University, Montgomery, Alabama
| | - Jun Liao
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| |
Collapse
|
122
|
Kim B, Ventura R, Lee BT. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. J Tissue Eng Regen Med 2017; 12:e1256-e1267. [PMID: 28752541 DOI: 10.1002/term.2529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The potential of decellularized cell-derived extracellular matrix (ECM) deposited on biphasic calcium phosphate (BCP) scaffold for bone tissue engineering was investigated. Rat derived bone marrow mesenchymal stem cells were cultured on porous BCP scaffolds for 3 weeks and decellularized with two different methods (freeze-thaw [F/T] or sodium dodecyl sulfate [SDS]). The decellularized ECM deposited scaffolds (dECM-BCP) were characterized through scanning electron microscopy, energy dispersive X-ray spectrometer, and confocal microscopy. The efficiency of decellularization was evaluated by quantifying remaining DNA, sulfated glycosaminoglycans, and collagens. Results revealed that F/T method was more effective procedure for removing cellular components of cultured cells (95.21% DNA reduction) than SDS treatment (92.49%). Although significant loss of collagen was observed after decellularization with both F/T (56.68%) and SDS (70.87%) methods, F/T treated sample showed higher retaining amount of sulfated glycosaminoglycans content (75.64%) than SDS (33.28%). In addition, we investigated the cell biocompatibility and osteogenic effect of dECM-BCP scaffolds using preosteoblasts (MC3T3-E1). Compared to bare BCP scaffolds, dECM-BCP_F/T scaffolds showed improved cell attachment and proliferation based on immunofluorescence staining and water soluble tetrazolium salts assay (p < .001). Moreover, dECM-BCP scaffolds showed increased osteoblastic differentiation of newly seeded preosteoblasts by up-regulating three types of osteoblastic genes (osteopontin, alkaline phosphatase, and bone morphogenic protein-2). This study demonstrated that functionalization of BCP scaffold using cell-derived ECM could be useful for improving the bioactivity of materials and providing suitable microenvironment, especially for osteogenesis. Further study is needed to determine the potential of dECM-BCP scaffold for bone formation and regeneration in vivo.
Collapse
Affiliation(s)
- Boram Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Reiza Ventura
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea.,Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
123
|
Monibi FA, Bozynski CC, Kuroki K, Stoker AM, Pfeiffer FM, Sherman SL, Cook JL. Development of a Micronized Meniscus Extracellular Matrix Scaffold for Potential Augmentation of Meniscal Repair and Regeneration. Tissue Eng Part C Methods 2017; 22:1059-1070. [PMID: 27824291 DOI: 10.1089/ten.tec.2016.0276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decellularized scaffolds composed of extracellular matrix (ECM) hold promise for repair and regeneration of the meniscus, given the potential for ECM-based biomaterials to aid in stem cell recruitment, infiltration, and differentiation. The objectives of this study were to decellularize canine menisci to fabricate a micronized, ECM-derived scaffold and to determine the cytocompatibility and repair potential of the scaffold ex vivo. Menisci were decellularized with a combination of physical agitation and chemical treatments. For scaffold fabrication, decellularized menisci were cryoground into a powder and the size and morphology of the ECM particles were evaluated using scanning electron microscopy. Histologic and biochemical analyses of the scaffold confirmed effective decellularization with loss of proteoglycan from the tissue but no significant reduction in collagen content. When washed effectively, the decellularized scaffold was cytocompatible to meniscal fibrochondrocytes, synoviocytes, and whole meniscal tissue based on the resazurin reduction assay and histologic evaluation. In an ex vivo model for meniscal repair, radial tears were augmented with the scaffold delivered with platelet-rich plasma as a carrier, and compared to nonaugmented (standard-of-care) suture techniques. Histologically, there was no evidence of cellular migration or proliferation noted in any of the untreated or standard-of-care treatment groups after 40 days of culture. Conversely, cellular infiltration and proliferation were noted in scaffold-augmented repairs. These data suggest the potential for the scaffold to promote cellular survival, migration, and proliferation ex vivo. Further investigations are necessary to examine the potential for the scaffold to induce cellular differentiation and functional meniscal fibrochondrogenesis.
Collapse
Affiliation(s)
- Farrah A Monibi
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Chantelle C Bozynski
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Keiichi Kuroki
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri
| | - Aaron M Stoker
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Ferris M Pfeiffer
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri.,3 Department of Bioengineering, University of Missouri , Columbia, Missouri
| | - Seth L Sherman
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - James L Cook
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| |
Collapse
|
124
|
Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, Modaresi S, Berkland C, Paul A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev 2017; 120:50-70. [PMID: 28734899 PMCID: PMC5705585 DOI: 10.1016/j.addr.2017.07.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023]
Abstract
A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration. Another effective way to regulate stem cell activity is to leverage the inherent chemotactic properties of extracellular matrix (ECM)-based materials to build versatile cell-instructive platforms. This review introduces the concept of endogenous stem cell recruitment, and provides a comprehensive overview of the strategies available to achieve effective cardiovascular and bone tissue regeneration.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Sayantani Basu
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Jonathan Whitlow
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Aparna Chakravarti
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Francisca Acosta
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
125
|
Kim BS, Kim H, Gao G, Jang J, Cho DW. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication 2017; 9:034104. [DOI: 10.1088/1758-5090/aa7e98] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
126
|
Mansour A, Mezour MA, Badran Z, Tamimi F. * Extracellular Matrices for Bone Regeneration: A Literature Review. Tissue Eng Part A 2017; 23:1436-1451. [PMID: 28562183 DOI: 10.1089/ten.tea.2017.0026] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gold standard material for bone regeneration is still autologous bone, a mesenchymal tissue that consists mainly of extracellular matrix (ECM) (90% v/v) and little cellular content (10% v/v). However, the fact that decellularized allogenic bone grafts often present a clinical performance comparable to autologous bone grafts demonstrates the crucial role of ECM in bone regeneration. For long, the mechanism by which bone allografts function was not clear, but recent research has unveiled many unique characteristics of ECM that seem to play a key role in tissue regeneration. This is further confirmed by the fact that synthetic biomaterials with composition and properties resembling bone ECM present excellent bone regeneration properties. In this context, ECM molecules such as glycosaminoglycans (GAGs) and self-assembly peptides (SAPs) can improve the performance of bone regeneration biomaterials. Moreover, decellularized ECM derived either from native tissues such as bone, cartilage, skin, and tooth germs or from cells such as osteoblasts, chondrocytes, and stem cells has shown promising results in bone regeneration applications. Understanding the role of ECM in bone regeneration is crucial for the development of the next generation of biomaterials for bone tissue engineering. In this sense, this review addresses the state-of-the-art on this subject matter.
Collapse
Affiliation(s)
- Alaa Mansour
- 1 Faculty of Dentistry, McGill University , Montreal, Canada
| | | | - Zahi Badran
- 1 Faculty of Dentistry, McGill University , Montreal, Canada .,2 Department of Periodontology (CHU/UIC 11, INSERM UMR 1229-RMeS), Faculty of Dental Surgery, University of Nantes , Nantes, France
| | - Faleh Tamimi
- 1 Faculty of Dentistry, McGill University , Montreal, Canada
| |
Collapse
|
127
|
Shakouri-Motlagh A, Khanabdali R, Heath DE, Kalionis B. The application of decellularized human term fetal membranes in tissue engineering and regenerative medicine (TERM). Placenta 2017; 59:124-130. [PMID: 28693892 DOI: 10.1016/j.placenta.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022]
Abstract
Tissue engineering and regenerative medicine (TERM) is a field that applies biology and engineering principles to "restore, maintain or repair a tissue after injury". Besides the potential to treat various diseases, these endeavours increase our understanding of fundamental cell biology. Although TERM has progressed rapidly, engineering a whole organ is still beyond our skills, primarily due to the complexity of tissues. Material science and current manufacturing methods are not capable of mimicking this complexity. Therefore, many researchers explore the use of naturally derived materials that maintain important biochemical, structural and mechanical properties of tissues. Consequently, employing non-cellular components of tissues, particularly the extracellular matrix, has emerged as an alternative to synthetic materials. Because of their complexity, decellularized tissues are not as well defined as synthetic materials but they provide cells with a microenvironment that resembles their natural niche. Decellularized tissues are produced from a variety of sources, among which the fetal membranes are excellent candidates since their supply is virtually unlimited, they are readily accessible with minimum ethical concerns and are often discarded as a biological waste. In this review, we will discuss various applications of decellularized fetal membranes as substrates for the expansion of stem cells, their use as two and three-dimensional scaffolds for tissue regeneration, and their use as cell delivery systems. We conclude that fetal membranes have great potential for use in TERM.
Collapse
Affiliation(s)
- Aida Shakouri-Motlagh
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Ramin Khanabdali
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia.
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
128
|
Mao Y, Hoffman T, Wu A, Goyal R, Kohn J. Cell type-specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:100. [PMID: 28534283 PMCID: PMC5440495 DOI: 10.1007/s10856-017-5912-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
The tissue microenvironment has profound effects on tissue-specific regeneration. The 3-dimensional extracellular matrix (ECM) niche influences the linage-specific differentiation of stem cells in tissue. To understand how ECM guides tissue-specific regeneration, we established a series of 3D composite scaffolds containing ECMs derived from different primary cells isolated from a single animal species and assessed their impact on the differentiation of human mesenchymal stem cells (hMSCs). Synthetic microfiber scaffolds (fiber mats) were fabricated by electrospinning tyrosine-derived polycarbonates (pDTEC). The bovine primary fibroblasts, chondrocytes and osteoblasts cultured on the fiber mats produced and assembled their ECMs, infiltrating the pores of the fibrous scaffold. The composite scaffolds were decellularized to remove cellular components, preserve ECM and minimally affect polymer integrity. Characterization of the ECMs derived from different primary cells in the composite scaffolds showed overlapping but distinct compositions. The chondrogenic and osteogenic differentiation of hMSCs on the different composite scaffolds were compared. Our results showed that ECM derived from chondrocytes cultured in synthetic fiber mats promoted the chondrogenic differentiation of hMSC in the presence or absence of soluble inducing factors. ECM derived from co-culture of osteoblasts and chondrocytes promoted osteogenic differentiation in hMSCs better than ECM derived from chondrocytes. This study demonstrated that decellularized ECMs derived from different cell types formed within synthetic fiber scaffolds guide the tissue-specific differentiation of hMSCs. These composite scaffolds may be developed into models to study the mechanisms of ECM-induced tissue regeneration.
Collapse
Affiliation(s)
- Yong Mao
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Tyler Hoffman
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Amy Wu
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
129
|
Goyal R, Vega ME, Pastino AK, Singh S, Guvendiren M, Kohn J, Murthy NS, Schwarzbauer JE. Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers. J Biomed Mater Res A 2017; 105:2162-2170. [PMID: 28371271 DOI: 10.1002/jbm.a.36078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022]
Abstract
A major challenge of tissue engineering is to generate materials that combine bioactivity with stability in a form that captures the robust nature of native tissues. Here we describe a procedure to fabricate a novel hybrid extracellular matrix (ECM)-synthetic scaffold biomaterial by cell-mediated deposition of ECM within an electrospun fiber mat. Synthetic polymer fiber mats were fabricated using poly(desamino tyrosyl-tyrosine carbonate) (PDTEC) co-spun with poly(ethylene glycol) (PEG) used as a sacrificial polymer. PEG removal increased the overall mat porosity and produced a mat with a layered structure that could be peeled into separate sheets of about 50 μm in thickness. Individual layers had pore sizes and wettability that facilitated cell infiltration over the depth of the scaffold. Confocal microscopy showed the formation of a highly interpenetrated network of cells, fibronectin fibrils, and synthetic fibers mimicking a complex ECM as observed within tissues. Decellularization did not perturb the structure of the matrix or the fiber mat. The resulting hybrid ECM-scaffold promoted cell adhesion and spreading and stimulated new ECM assembly by stem cells and tumor cells. These results identify a new technique for fabricating highly porous synthetic fibrous scaffolds and an approach to supplement them with natural biomimetic cues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2162-2170, 2017.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, New Jersey, 08854-8009
| | - Maria E Vega
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544-1014
| | - Alexandra K Pastino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544-1014
| | - Shivani Singh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544-1014
| | - Murat Guvendiren
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, New Jersey, 08854-8009.,Otto H. York Dept. of Chemical, Biological and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, New Jersey, 08854-8009
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, New Jersey, 08854-8009
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544-1014
| |
Collapse
|
130
|
Jahnavi S, Arthi N, Pallavi S, Selvaraju C, Bhuvaneshwar GS, Kumary TV, Verma RS. Nanosecond laser ablation enhances cellular infiltration in a hybrid tissue scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:190-201. [PMID: 28532021 DOI: 10.1016/j.msec.2017.03.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 01/21/2023]
Abstract
Hybrid tissue engineered (HTE) scaffolds constituting polymeric nanofibers and biological tissues have attractive bio-mechanical properties. However, they suffer from small pore size due to dense overlapping nanofibers resulting in poor cellular infiltration. In this study, using nanosecond (ns) laser, we fabricated micro-scale features on Polycaprolactone (PCL)-Chitosan (CH) nanofiber layered bovine pericardium based Bio-Hybrid scaffold to achieve enhanced cellular adhesion and infiltration. The laser energy parameters such as fluence of 25J/cm2, 0.1mm instep and 15 mark time were optimized to get structured microchannels on the Bio-Hybrid scaffolds. Laser irradiation time of 40μs along with these parameters resulted in microchannel width of ~50μm and spacing of ~35μm between adjacent lines. The biochemical, thermal, hydrophilic and uniaxial mechanical properties of the Bio-Hybrid scaffolds remained comparable after laser ablation reflecting extracellular matrix (ECM) stability. Human umbilical cord mesenchymal stem cells and mouse cardiac fibroblasts seeded on these laser-ablated Bio-Hybrid scaffolds exhibited biocompatibility and increased cellular adhesion in microchannels when compared to non-ablated Bio-Hybrid scaffolds. These findings suggest the feasibility to selectively ablate polymer layer in the HTE scaffolds without affecting their bio-mechanical properties and also describe a new approach to enhance cellular infiltration in the HTE scaffolds.
Collapse
Affiliation(s)
- S Jahnavi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India; Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - N Arthi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - S Pallavi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - C Selvaraju
- National Centre for Ultrafast Processes, Sekkizhar Campus, University of Madras, Taramani, Chennai 600113, India
| | - G S Bhuvaneshwar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - T V Kumary
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012, India
| | - R S Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India.
| |
Collapse
|
131
|
Butler CR, Hynds RE, Crowley C, Gowers KHC, Partington L, Hamilton NJ, Carvalho C, Platé M, Samuel ER, Burns AJ, Urbani L, Birchall MA, Lowdell MW, De Coppi P, Janes SM. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials 2017; 124:95-105. [PMID: 28189871 PMCID: PMC5332556 DOI: 10.1016/j.biomaterials.2017.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Patients with large tracheal lesions unsuitable for conventional endoscopic or open operations may require a tracheal replacement but there is no present consensus of how this may be achieved. Tissue engineering using decellularized or synthetic tracheal scaffolds offers a new avenue for airway reconstruction. Decellularized human donor tracheal scaffolds have been applied in compassionate-use clinical cases but naturally derived extracellular matrix (ECM) scaffolds demand lengthy preparation times. Here, we compare a clinically applied detergent-enzymatic method (DEM) with an accelerated vacuum-assisted decellularization (VAD) protocol. We examined the histological appearance, DNA content and extracellular matrix composition of human donor tracheae decellularized using these techniques. Further, we performed scanning electron microscopy (SEM) and biomechanical testing to analyze decellularization performance. To assess the biocompatibility of scaffolds generated using VAD, we seeded scaffolds with primary human airway epithelial cells in vitro and performed in vivo chick chorioallantoic membrane (CAM) and subcutaneous implantation assays. Both DEM and VAD protocols produced well-decellularized tracheal scaffolds with no adverse mechanical effects and scaffolds retained the capacity for in vitro and in vivo cellular integration. We conclude that the substantial reduction in time required to produce scaffolds using VAD compared to DEM (approximately 9 days vs. 3–8 weeks) does not compromise the quality of human tracheal scaffold generated. These findings might inform clinical decellularization techniques as VAD offers accelerated scaffold production and reduces the associated costs.
Collapse
Affiliation(s)
- Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Claire Crowley
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Leanne Partington
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Nicholas J Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Carla Carvalho
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Manuela Platé
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Edward R Samuel
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Alan J Burns
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK; Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Luca Urbani
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Martin A Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
| | - Mark W Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK.
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
| |
Collapse
|
132
|
KC P, Shah M, Liao J, Zhang G. Prevascularization of Decellularized Porcine Myocardial Slice for Cardiac Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2196-2204. [PMID: 28029762 PMCID: PMC6445257 DOI: 10.1021/acsami.6b15291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Prevacularization strategies have been implemented in tissue engineering to generate microvasculature networks within a scaffold prior to implantation. Prevascularizing scaffolds will shorten the time of functional vascular perfusion with host upon implantation. In this study, we explored key variables affecting the interaction between decellularized porcine myocardium slices (dPMSs) and reseeded stem cells toward the fabrication of prevascularized cardiac tissue. Our results demonstrated that dPMS supports attachment of human mesenchymal stem cells (hMSCs) and rat adipose derived stem cells (rASCs) with high viability. We found that cell seeding efficiency and proliferation are dPMS thickness dependent. Compared to lateral cell seeding, bilateral cell seeding strategy significantly enhanced seeding efficiency, infiltration, and growth in 600 μm dPMS. dPMS induced endothelial differentiation and maturation of hMSCs and rASCs after 1 and 5 days culture, respectively. These results indicate the potential of dPMS as a powerful platform to develop prevascularized scaffolds and fabricate functional cardiac patches.
Collapse
Affiliation(s)
- Pawan KC
- † Department of Biomedical Engineering, The University of Akron,Akron, Ohio 44325, United States
| | - Mickey Shah
- † Department of Biomedical Engineering, The University of Akron,Akron, Ohio 44325, United States
- ‡ Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Jun Liao
- § Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ge Zhang
- † Department of Biomedical Engineering, The University of Akron,Akron, Ohio 44325, United States
| |
Collapse
|
133
|
Padma AM, Tiemann TT, Alshaikh AB, Akouri R, Song MJ, Hellström M. Protocols for Rat Uterus Isolation and Decellularization: Applications for Uterus Tissue Engineering and 3D Cell Culturing. Methods Mol Biol 2017; 1577:161-175. [PMID: 28776178 DOI: 10.1007/7651_2017_60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sophisticated culturing conditions are required to grow cells in a three-dimensional (3D) environment. Cells then require a type of scaffold rich in proteins, growth factors, and signaling molecules that simulates their natural environment. Tissues from all species of animals have an organ-specific extracellular matrix (ECM) structure that plays a key role in cell proliferation and migration. Hence, the scaffold composition plays a significant role for any successful 3D cell culturing system. We developed a whole rat uterus ECM scaffold by the perfusion of detergents and ionic solutions through the vascular system of an isolated normal rat uterus in a process termed "decellularization." The generated rat uterus scaffolds consist of a cell-free ECM structure similar to that of the normal rat uterus, and are thus excellent platforms on to which new cells can be added. Rat uterus 3D cell culturing systems based on these scaffolds could become valuable to decidual differentiation- and embryo implantation studies, or for investigating invasion mechanisms of endometrial cancer cells. They could also be used for the creation of tissue engineered uterine tissue, for partial or whole organogenesis developed for transplantation applications to treat absolute uterine infertility. This is a condition affecting about 1 in 500 women, and is only treatable by a uterus transplantation. This article provides valuable troubleshooting notes and describes in detail how to generate rat uterus scaffolds, including the delicate surgery required to isolate the uterus with an intact vascular tree which facilitates vascular perfusion and re-transplantation.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Tristan Tiemann
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ahmed Baker Alshaikh
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,, Kvinnokliniken, Blå stråket 6, Göteborg, 413 45, Sweden.
| |
Collapse
|
134
|
Arakawa CK, DeForest CA. Polymer Design and Development. BIOLOGY AND ENGINEERING OF STEM CELL NICHES 2017:295-314. [DOI: 10.1016/b978-0-12-802734-9.00019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
135
|
Composite Bioscaffolds Incorporating Decellularized ECM as a Cell-Instructive Component Within Hydrogels as In Vitro Models and Cell Delivery Systems. Methods Mol Biol 2017; 1577:183-208. [PMID: 28493212 DOI: 10.1007/7651_2017_36] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decellularized tissues represent promising biomaterials, which harness the innate capacity of the tissue-specific extracellular matrix (ECM) to direct cell functions including stem cell proliferation and lineage-specific differentiation. However, bioscaffolds derived exclusively from decellularized ECM offer limited versatility in terms of tuning biomechanical properties, as well as cell-cell and cell-ECM interactions that are important mediators of the cellular response. As an alternative approach, in the current chapter we describe methods for incorporating cryo-milled decellularized tissues as a cell-instructive component within a hydrogel carrier designed to crosslink under mild conditions. This composite strategy can enable in situ cell encapsulation with high cell viability, allowing efficient seeding with a homogeneous distribution of cells and ECM. Detailed protocols are provided for the effective decellularization of human adipose tissue and porcine auricular cartilage, as well as the cryo-milling process used to generate the ECM particles. Further, we describe methods for synthesizing methacrylated chondroitin sulphate (MCS) and for performing UV-initiated and thermally induced crosslinking to form hydrogel carriers for adipose and cartilage regeneration. The hydrogel composites offer great flexibility, and the hydrogel phase, ECM source, particle size, cell type(s) and seeding density can be tuned to promote the desired cellular response. Overall, these systems represent promising platforms for the development of tissue-specific 3-D in vitro cell culture models and in vivo cell delivery systems.
Collapse
|
136
|
Gao S, Guo W, Chen M, Yuan Z, Wang M, Zhang Y, Liu S, Xi T, Guo Q. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. J Mater Chem B 2017; 5:2273-2285. [DOI: 10.1039/c6tb03299k] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decellularized meniscus extracellular matrix (DMECM) and polycaprolactone (PCL) were electrospun into nanofibers to make meniscus scaffolds with good mechanical properties.
Collapse
Affiliation(s)
- Shuang Gao
- Center for Biomedical Material and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Weimin Guo
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Mingxue Chen
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Zhiguo Yuan
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Mingjie Wang
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Yu Zhang
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Shuyun Liu
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Tingfei Xi
- Center for Biomedical Material and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Quanyi Guo
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| |
Collapse
|
137
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
138
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|
139
|
Cicco SR, Vona D, Gristina R, Sardella E, Ragni R, Lo Presti M, Farinola GM. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells. Bioengineering (Basel) 2016; 3:E35. [PMID: 28952597 PMCID: PMC5597278 DOI: 10.3390/bioengineering3040035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS) and 3-aminopropyl-triethoxysilane (APTES). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the -SH or -NH₂ were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.
Collapse
Affiliation(s)
- Stefania Roberta Cicco
- Italian National Council for Research-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM)-Bari, Bari 70126, Italy.
| | - Danilo Vona
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | | | | | - Roberta Ragni
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | - Marco Lo Presti
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | | |
Collapse
|
140
|
Chen WCW, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K, Wang Y. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. SCIENCE ADVANCES 2016; 2:e1600844. [PMID: 28138518 PMCID: PMC5262469 DOI: 10.1126/sciadv.1600844] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/20/2016] [Indexed: 05/03/2023]
Abstract
Heart attack is a global health problem that leads to significant morbidity, mortality, and health care burden. Adult human hearts have very limited regenerative capability after injury. However, evolutionarily primitive species generally have higher regenerative capacity than mammals. The extracellular matrix (ECM) may contribute to this difference. Mammalian cardiac ECM may not be optimally inductive for cardiac regeneration because of the fibrotic, instead of regenerative, responses in injured adult mammalian hearts. Given the high regenerative capacity of adult zebrafish hearts, we hypothesize that decellularized zebrafish cardiac ECM (zECM) made from normal or healing hearts can induce mammalian heart regeneration. Using zebrafish and mice as representative species of lower vertebrates and mammals, we show that a single administration of zECM, particularly the healing variety, enables cardiac functional recovery and regeneration of adult mouse heart tissues after acute myocardial infarction. zECM-treated groups exhibit proliferation of the remaining cardiomyocytes and multiple cardiac precursor cell populations and reactivation of ErbB2 expression in cardiomyocytes. Furthermore, zECM exhibits pro-proliferative and chemotactic effects on human cardiac precursor cell populations in vitro. These contribute to the structural preservation and correlate with significantly higher cardiac contractile function, notably less left ventricular dilatation, and substantially more elastic myocardium in zECM-treated hearts than control animals treated with saline or decellularized adult mouse cardiac ECM. Inhibition of ErbB2 activity abrogates beneficial effects of zECM administration, indicating the possible involvement of ErbB2 signaling in zECM-mediated regeneration. This study departs from conventional focuses on mammalian ECM and introduces a new approach for cardiac tissue regeneration.
Collapse
Affiliation(s)
- William C. W. Chen
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhouguang Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Maria Azzurra Missinato
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dae Woo Park
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Daniel Ward Long
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heng-Jui Liu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Nathan A. Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Kang Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yadong Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Corresponding author.
| |
Collapse
|
141
|
Buyukdogan K, Doral MN, Bilge O, Turhan E, Huri G, Sargon MF. Peritoneum and omentum are natural reservoirs for chondrocytes of osteochondral autografts: A comparative animal study. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2016; 50:539-543. [PMID: 27717559 PMCID: PMC6197382 DOI: 10.1016/j.aott.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/02/2022]
Abstract
Objective The purpose of this study was to investigate the effects of the omentum, peritoneum, paratenon and skeletal muscle on the proliferation of the cartilage tissue using rabbit model as an in vivo culture medium. Methods 6 months old forty-five New Zealand rabbits were randomized into omentum, peritoneum, muscle, and Achilles paratenon groups. Standard sized osteochondral grafts were harvested from right knees and immediately placed into the specified tissues. Control group was fresh cartilage at the end of follow-up. After five months, samples were collected and evaluated macroscopically by measuring their dimensions (vertical = D1, horizontal = D2, and depth = D3) and volumes, and histologically by counting the chondrocyte number using camera lucida method. Results Macroscopically, increase in mean values for D1 and D2 dimensions of specimens from paratenon and omentum compared to pretransplant dimensions was statistically significant (p < 0.05). Although, volume measurements were higher in omentum and peritoneum group compared to pretransplant dimensions, increase was not significant (p > 0.05). Histologically, mean chondrocyte count was 14.0 ± 0.6 in fresh articular cartilage. Mean chondrocyte counts were 14.4 ± 0.9 in omentum group, 15.4 ± 1.0 in peritoneum group, 9.7 ± 1.3 in muscle group and 9.2 ± 0.4 in Achilles paratenon group respectively. However, mean chondrocyte counts were higher in samples of omentum and peritoneum group compared to fresh articular cartilage, increase was not statistically significant (p > 0.05). Discussion Transplantation of the cartilage grafts into mesothelium enhanced the chondrocyte counts and volumes compared with the pretransplant measurements. Mesothelium may have the potential to be used as an in vivo culture medium for osteochondral tissue growth.
Collapse
|
142
|
Soffer-Tsur N, Peer D, Dvir T. ECM-based macroporous sponges release essential factors to support the growth of hematopoietic cells. J Control Release 2016; 257:84-90. [PMID: 27671876 DOI: 10.1016/j.jconrel.2016.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 11/28/2022]
Abstract
The success of hematopoietic stem cells (HSCs) transplantation is limited due to the low number of HSCs received from donors. In vivo, HSCs reside within a specialized niche inside the 3D porous spongy bone. The natural environment in the niche is composed of structural proteins, glycosaminoglycans (GAGs) and soluble factors that control cells fate. However, the designed scaffolds for in vitro culture do not fairly recapitulate this microenvironment and cannot efficiently control HSCs fate. Here we report on the development of new omental ECM-based 3D macroporous sponges for hematopoietic cell culture. The scaffolds' structure, porosity and stability were characterized and optimized. Analysis of the biochemical content revealed that they were composed of collagens and GAGs, including sulfated GAGs. This morphology and composition enabled growth factors interaction with the sulfated GAGs, as indicated by the high loading capacity and release profile of three different hematopoietic niche factors. Finally, the ability of the ECM-based scaffolds to efficiently support the growth of hematopoietic cells by releasing stem cell factor (SCF) was demonstrated.
Collapse
Affiliation(s)
- Neta Soffer-Tsur
- Laboratory for Tissue Engineering and Regenerative Medicine, Tel Aviv 69978, Israel; Laboratory for Precision NanoMedicine, School for Molecular Cell Biology and Biotechnology, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory for Precision NanoMedicine, School for Molecular Cell Biology and Biotechnology, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Dvir
- Laboratory for Tissue Engineering and Regenerative Medicine, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
143
|
Hoshiba T, Tanaka M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2749-2757. [PMID: 27558478 DOI: 10.1016/j.bbamcr.2016.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Chemoresistance is a major barrier for tumor chemotherapy. It is well-known that chemoresistance increases with tumor progression. Chemoresistance is altered by both genetic mutations and the alteration of extracellular microenvironment. Particularly, the extracellular matrix (ECM) is remodeled during tumor progression. Therefore, ECM remodeling is expected to cause the acquisition of chemoresistance in highly malignant tumor tissue. Here, we prepared cultured cell-derived decellularized matrices that mimic native ECM in tumor tissues at different stages of malignancy, and 5-fluorouracil (5-FU) resistance was compared among these matrices. 5-FU resistance of colorectal tumor cells increased on the matrices derived from highly malignant tumor HT-29 cells, although the resistance did not increase on the matrices derived from low malignant tumor SW480 cells and normal CCD-841-CoN cells. The resistance on HT-29 cell-derived matrices increased through the activation of Akt and the upregulation of ABCB1 and ABCC1 without cell growth promotion, suggesting that ECM remodeling plays important roles in the acquisition of chemoresistance during tumor progression. It is expected that our decellularized matrices, or "staged tumorigenesis-mimicking matrices", will become preferred cell culture substrates for in vitro analysis of comprehensive ECM roles in chemoresistance and the screening and pharmacokinetic analysis of anti-cancer drugs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
144
|
Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:193-201. [PMID: 27524932 PMCID: PMC4979580 DOI: 10.1016/j.cossms.2016.02.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Decellularized tissues have become a common regenerative medicine platform with multiple materials being researched in academic laboratories, tested in animal studies, and used clinically. Ideally, when a tissue is decellularized the native cell niche is maintained with many of the structural and biochemical cues that naturally interact with the cells of that particular tissue. This makes decellularized tissue materials an excellent platform for providing cells with the signals needed to initiate and maintain differentiation into tissue-specific lineages. The extracellular matrix (ECM) that remains after the decellularization process contains the components of a tissue specific microenvironment that is not possible to create synthetically. The ECM of each tissue has a different composition and structure and therefore has unique properties and potential for affecting cell behavior. This review describes the common methods for preparing decellularized tissue materials and the effects that decellularized materials from different tissues have on cell phenotype.
Collapse
|
145
|
Gupta V, Lyne DV, Laflin AD, Zabel TA, Barragan M, Bunch JT, Pacicca DM, Detamore MS. Microsphere-Based Osteochondral Scaffolds Carrying Opposing Gradients Of Decellularized Cartilage And Demineralized Bone Matrix. ACS Biomater Sci Eng 2016; 3:1955-1963. [PMID: 32793803 DOI: 10.1021/acsbiomaterials.6b00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular matrix (ECM) "raw materials" such as demineralized bone matrix (DBM) and cartilage matrix have emerged as leading scaffolding materials for osteochondral regeneration owing to their capacity to facilitate progenitor/resident cell recruitment, infiltration, and differentiation without adding growth factors. Scaffolds comprising synthetic polymers are sturdy yet generally lack cues for guiding cell differentiation. We hypothesized that opposing gradients of decellularized cartilage (DCC) and DBM in polymeric microsphere-based scaffolds would provide superior regeneration compared to polymer-only scaffolds in vivo. Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds were fabricated, either with opposing gradients of DCC and DBM encapsulated (GRADIENT) or without DCC and DBM (BLANK control), and implanted into rabbit osteochondral defects in medial femoral condyles. After 12 weeks, gross morphological evaluation showed that the repair tissue in about 30% of the implants was either slightly or significantly depressed, hinting toward rapid polymer degradation in scaffolds from both of the groups. Additionally, no differences were observed in gross morphology of the repair tissue between the BLANK and GRADIENT groups. Mechanical testing revealed no significant differences in model parameter values between the two groups. Histological observations demonstrated that the repair tissue in both of the groups was fibrous in nature with the cells demonstrating notable proliferation and matrix deposition activity. No adverse inflammatory response was observed in any of the implants from the two groups. Overall, the results emphasize the need to improve the technology in terms of altering the DBM and DCC concentrations, and tailoring the polymer degradation to these concentrations.
Collapse
Affiliation(s)
- Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States
| | - Dina V Lyne
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States
| | - Amy D Laflin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States
| | - Taylor A Zabel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States
| | - Marilyn Barragan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States
| | - Joshua T Bunch
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Donna M Pacicca
- Division of Orthopaedic Surgery, Children's Mercy Hospital, Kansas City, Missouri, United States.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States
| |
Collapse
|
146
|
Hussein KH, Park KM, Kang KS, Woo HM. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:766-778. [PMID: 27287176 DOI: 10.1016/j.msec.2016.05.068] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022]
Abstract
Biomaterials based on seeding of cells on decellularized scaffolds have gained increasing interest in the last few years and suggested to serve as an alternative approach to bioengineer artificial organs and tissues for transplantation. The reaction of the host toward the decellularized scaffold and transplanted cells depends on the biocompatibility of the construct. Before proceeding to the clinical application step of decellularized scaffolds, it is greatly important to apply a number of biocompatibility tests in vitro and in vivo. This review describes the different methodology involved in cytotoxicity, pathogenicity, immunogenicity and biodegradability testing for evaluating the biocompatibility of various decellularized matrices obtained from human or animals.
Collapse
Affiliation(s)
- Kamal Hany Hussein
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Mee Park
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Institue of Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea
| | - Heung-Myong Woo
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Institue of Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea; Harvard Stem Cell Institute, Renal Division, Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA.
| |
Collapse
|
147
|
Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications. Sci Rep 2016; 6:24429. [PMID: 27080716 PMCID: PMC4832209 DOI: 10.1038/srep24429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/22/2016] [Indexed: 12/05/2022] Open
Abstract
Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response.
Collapse
|
148
|
Pouliot RA, Link PA, Mikhaiel NS, Schneck MB, Valentine MS, Kamga Gninzeko FJ, Herbert JA, Sakagami M, Heise RL. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J Biomed Mater Res A 2016; 104:1922-35. [PMID: 27012815 DOI: 10.1002/jbm.a.35726] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/10/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023]
Abstract
The complexity and rapid clearance mechanisms of lung tissue make it difficult to develop effective treatments for many chronic pathologies. We are investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system. The main objectives of this study include effective decellularization of porcine lung tissue, development of a hydrogel from the porcine ECM, and characterization of the material's composition, mechanical properties, and ability to support cellular growth. Our evaluation of the decellularized tissue indicated successful removal of cellular material and immunogenic remnants in the ECM. The self-assembly of the lung ECM hydrogel was rapid, reaching maximum modulus values within 3 min at 37°C. Rheological characterization showed the lung ECM hydrogel to have a concentration dependent storage modulus between 15 and 60 Pa. The purpose of this study was to evaluate our novel ECM derived hydrogel and measure its ability to support 3D culture of MSCs in vitro and in vivo delivery of MSCs. Our in vitro experiments using human mesenchymal stem cells demonstrated our novel ECM hydrogel's ability to enhance cellular attachment and viability. Our in vivo experiments demonstrated that rat MSC delivery in pre-gel solution significantly increased cell retention in the lung over 24 h in an emphysema rat model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1922-1935, 2016.
Collapse
Affiliation(s)
- Robert A Pouliot
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Patrick A Link
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Nabil S Mikhaiel
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew B Schneck
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Michael S Valentine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | | | - Joseph A Herbert
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Masahiro Sakagami
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
149
|
Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:7231567. [PMID: 26981135 PMCID: PMC4769778 DOI: 10.1155/2016/7231567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/13/2015] [Accepted: 01/05/2016] [Indexed: 12/04/2022] Open
Abstract
The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion.
Collapse
|
150
|
Kanninen LK, Porola P, Niklander J, Malinen MM, Corlu A, Guguen-Guillouzo C, Urtti A, Yliperttula ML, Lou YR. Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 2016; 341:207-17. [PMID: 26854693 DOI: 10.1016/j.yexcr.2016.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/18/2022]
Abstract
Human hepatocytes are extensively needed in drug discovery and development. Stem cell-derived hepatocytes are expected to be an improved and continuous model of human liver to study drug candidates. Generation of endoderm-derived hepatocytes from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, is a complex, challenging process requiring specific signals from soluble factors and insoluble matrices at each developmental stage. In this study, we used human liver progenitor HepaRG-derived acellular matrix (ACM) as a hepatic progenitor-specific matrix to induce hepatic commitment of hPSC-derived definitive endoderm (DE) cells. The DE cells showed much better attachment to the HepaRG ACM than other matrices tested and then differentiated towards hepatic cells, which expressed hepatocyte-specific makers. We demonstrate that Matrigel overlay induced hepatocyte phenotype and inhibited biliary epithelial differentiation in two hPSC lines studied. In conclusion, our study demonstrates that the HepaRG ACM, a hepatic progenitor-specific matrix, plays an important role in the hepatic differentiation of hPSCs.
Collapse
Affiliation(s)
- Liisa K Kanninen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Pauliina Porola
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Johanna Niklander
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Melina M Malinen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Anne Corlu
- Inserm UMR991, Liver Metabolisms and Cancer, Université de Rennes 1, F-35043 Rennes, France
| | | | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Marjo L Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Yan-Ru Lou
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|