101
|
Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E. Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 2005; 48:217-29. [PMID: 15390120 PMCID: PMC2586889 DOI: 10.1002/glia.20071] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes express gap junction proteins and multiple types of P2Y receptors (P2YRs) that contribute to the propagation of intercellular Ca(2+) waves (ICW). To gain access to the role played by gap junctional communication in ICW propagation generated by P2YR activation, we selectively expressed P2Y(1,2,4)R subtypes and Cx43 in the human 1321N1 astrocytoma cell line, which lacks endogenous P2 receptors. Fluorescence recovery after photobleaching revealed that 1321N1 cells are poorly dye-coupled and do not propagate ICW. Forced expression of Cx43 in 1321N1 cells (which did not show functional hemichannels) increased dye coupling and allowed short-range ICW transmission that was mainly mediated by intercellular diffusion of Ca(2+) generated in the stimulated cells. Astrocytoma clones expressing each of the P2YR subtypes were also able to propagate ICWs that were likely dependent on IP(3) generation. These waves exhibited properties particular to each P2YR subtype. Co-expression of eGFP-hCx43 and P2Y(1)R modified the properties of P2Y(1)R-generated ICW to those characteristics of P2Y(2)R. Increased coupling in P2Y(4)R clones induced by expression of eGFP-hCx43 abolished the ICWs observed in uncoupled P2Y(4)R clones. No changes in the behavior of ICWs generated in P2Y(2)R clones were observed after forced expression of Cx43. These data indicate that in 1321N1 cells gap junctional communication provides intercellular integration of Ca(2+) signals generated by P2YR activation, thus coordinating the propagation of intercellular calcium waves.
Collapse
Affiliation(s)
- S O Suadicani
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
102
|
Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC. Structural Changes in the Carboxyl Terminus of the Gap Junction Protein Connexin43 Indicates Signaling between Binding Domains for c-Src and Zonula Occludens-1. J Biol Chem 2004; 279:54695-701. [PMID: 15492000 DOI: 10.1074/jbc.m409552200] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Regulation of cell-cell communication by the gap junction protein connexin43 can be modulated by a variety of connexin-associating proteins. In particular, c-Src can disrupt the connexin43 (Cx43)-zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. The binding sites for ZO-1 and c-Src correspond to widely separated Cx43 domains (approximately 100 residues apart); however, little is known about the structural modifications that may allow information to be transferred over this distance. Here, we have characterized the structure of the connexin43 carboxyl-terminal domain (Cx43CT) to assess its ability to interact with domains from ZO-1 and c-Src. NMR data indicate that the Cx43CT exists primarily as an elongated random coil, with two regions of alpha-helical structure. NMR titration experiments determined that the ZO-1 PDZ-2 domain affected the last 19 Cx43CT residues, a region larger than that reported to be required for Cx43CT-ZO-1 binding. The c-Src SH3 domain affected Cx43CT residues Lys-264-Lys-287, Ser-306-Glu-316, His-331-Phe-337, Leu-356-Val-359, and Ala-367-Ser-372. Only region Lys-264-Lys-287 contains the residues previously reported to act as an SH3 binding domain. The specificity of these interactions was verified by peptide competition experiments. Finally, we demonstrated that the SH3 domain could partially displace the Cx43CT-PDZ-2 complex. These studies represent the first structural characterization of a connexin domain when integrated in a multimolecular complex. Furthermore, we demonstrate that the structural characteristics of a disordered Cx43CT are advantageous for signaling between different binding partners that may be important in describing the mechanism of channel closure or internalization in response to pathophysiological stimuli.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Abstract
Connexins form gap junction channels that provide a hydrophilic path between cell interiors. Some connexins, particularly the lens connexins, Cx46 and Cx50 and their orthologs, can form functional hemichannels in nonjunctional membranes. These hemichannels are a nonselective conduit to the extracellular medium and may jeopardize cell survival. The physiological function of hemichannels has remained elusive, but it has been postulated that hemichannels are involved in ATP-release caused by mechanical stimulation. Here we show with single-channel and whole cell electrophysiological studies that Cx46 hemichannels are mechanosensitive, like other families of ion channels and membrane-bound enzymes. The hemichannel response to mechanical stress is bipolar. At negative potentials stress opens the channel, and at positive potentials stress closes it. Physiologically, Cx46 hemichannels may assist accommodation of the ocular lens by providing a transient path for volume flow as the lens changes shape.
Collapse
Affiliation(s)
- Li Bao
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
104
|
Perc M, Marhl M. Local dissipation and coupling properties of cellular oscillators: a case study on calcium oscillations. Bioelectrochemistry 2004; 62:1-10. [PMID: 14990320 DOI: 10.1016/j.bioelechem.2003.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 07/09/2003] [Accepted: 07/28/2003] [Indexed: 10/26/2022]
Abstract
Synchronised signal transduction between cells is crucial, since it assures fast and immutable information processing, which is vital for flawless functioning of living organisms. The question arises how to recognise the ability of a cell to be easily coupled with other cells. In the present paper, we investigate the system properties that determine best coupling abilities and assure the most efficient signal transduction between cells. A case study is done for intercellular calcium oscillations. For a particular diffusion-like coupled system of cellular oscillators, we determined the minimal gap-junctional permeability that is necessary for synchronisation of initially asynchronous oscillators. Our results show that dissipation is a crucial system property that determines the coupling ability of cellular oscillators. We found that low dissipation assures synchronisation of coupled cells already at very low gap-junctional permeability, whereas highly dissipative oscillators require much higher gap-junctional permeability in order to synchronise. The results are discussed in the sense of their biological importance for systems where the synchronous responses of cells were recognised to be indispensable for appropriate physiological functioning of the tissue.
Collapse
Affiliation(s)
- Matjaz Perc
- Faculty of Education, Department of Physics, University of Maribor, Koroska cesta 160, SI-2000 Maribor, Slovenia
| | | |
Collapse
|
105
|
Bao L, Locovei S, Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 2004; 572:65-8. [PMID: 15304325 DOI: 10.1016/j.febslet.2004.07.009] [Citation(s) in RCA: 638] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 12/12/2022]
Abstract
Intercellular calcium wave propagation initiated by mechanical stress is a phenomenon found in nearly all cell types. The waves utilize two pathways: transfer of InsP3 directly from cell to cell through gap junction channels and release of ATP onto extracellular purinergic receptors. The conduit for ATP has remained elusive and both a vesicular and a channel mediated release have been considered. Here, we describe the properties of single pannexin 1 channels. They have a wide expression spectrum, they are of large conductance and permeant for ATP, and they are mechanosensitive. Hence, pannexins are candidates for the release of ATP to the extracellular space upon mechanical stress.
Collapse
Affiliation(s)
- Li Bao
- Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
| | | | | |
Collapse
|
106
|
Fortes FSA, Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MBM, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho ACC, Goldenberg RCS. Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. J Cell Sci 2004; 117:4717-4726. [PMID: 15331634 DOI: 10.1242/jcs.01345] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gap junctions are connexin-formed channels that play an important role in intercellular communication in most cell types. In the immune system, specifically in macrophages, the expression of connexins and the establishment of functional gap junctions are still controversial issues. Macrophages express P2X(7) receptors that, once activated by the binding of extracellular ATP, lead to the opening of transmembrane pores permeable to molecules of up to 900 Da. There is evidence suggesting an interplay between gap junctions and P2 receptors in different cell systems. Thus, we used ATP-sensitive and -insensitive J774.G8 macrophage cell lines to investigate this interplay. To study junctional communication in J774-macrophage-like cells, we assessed cell-to-cell communication by microinjecting Lucifer Yellow. Confluent cultures of ATP-sensitive J774 cells (ATP-s cells) are coupled, whereas ATP-insensitive J774 cells (ATP-i cells), derived by overexposing J774 cells to extracellular ATP until they do not display the phenomenon of ATP-induced permeabilization, are essentially uncoupled. Western-blot and reverse-transcription polymerase chain reaction assays revealed that ATP-s and ATP-i cells express connexin43 (Cx43), whereas only ATP-s cells express the P2X(7) receptor. Accordingly, ATP-i cells did not display any detectable ATP-induced current under whole-cell patch-clamp recordings. Using immunofluorescence microscopy, Cx43 reactivity was found at the cell surface and in regions of cell-cell contact of ATP-s cells, whereas, in ATP-i cells, Cx43 immunoreactivity was only present in cytosolic compartments. Using confocal microscopy, it is shown here that, in ATP-s cells as well as in peritoneal macrophages, Cx43 and P2X(7) receptors are co-localized to the membrane of ATP-s cells and peritoneal macrophages.
Collapse
Affiliation(s)
- Fabio S A Fortes
- Institute of Biophysics Carlos Chagas Filho, UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Iacobas DA, Scemes E, Spray DC. Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int 2004; 45:243-50. [PMID: 15145539 DOI: 10.1016/j.neuint.2003.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Connexin43 (Cx43) is the principal gap junction protein between astrocytes in the neonatal brain and also interconnects neural precursor cells during CNS development. In an attempt to understand global effects of expression of the Cx43 gap junction gene on development and function of the nervous system, we have compared gene expression patterns in cultured astrocytes and brains from wildtype mice with those in which Cx43 is deleted as well as in spinal cords of experimental autoimmune encepahlomyelitis (EAE) mice. One surprising result obtained from high densitity mouse cDNA studies was the large number of genes that were statistically altered in mice with decreased expression of Cx43. These altered genes encode proteins with a wide range of functions within cells, and thus deletion of normal gap junction expression appears to result in globally altered glial functions in addition to disruption of intercellular communication. Here we discuss those results in the context of the strategies and data analysis paradigms that we are using in such studies.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Room 915C, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | |
Collapse
|
108
|
Furuya K, Akita K, Sokabe M. [Extracellular ATP mediated mechano-signaling in mammary glands]. Nihon Yakurigaku Zasshi 2004; 123:397-402. [PMID: 15170079 DOI: 10.1254/fpj.123.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ATP, an important and ubiquitous extracellular signaling molecule, is often released by mechanical stimuli and plays an essential role in mechano-signaling. In lactating mammary glands, secretory epithelial (SE) cells form alveoli in which milk is held, and myoepithelial (ME) cells surrounding the alveoli contract in response to oxytocin to expel milk. Previously we found that the contraction of ME cells worked as a mechanical stress to SE cells and caused ATP-release in cultured mammary epithelial cells. The released ATP activated P2Y2 in surrounding SE cells and P2Y1 in ME cells. We already reported that ATP synergistically enhanced oxytocin response in ME cells. These findings mean that ME and SE cells interact mutually via released ATP to enhance the milk ejection. Recently, we found that cell-stretch also induced Ca(2+)-increases and ATP-release. The stretching of alveoli should occur by milk filling. So, only the milk-filled alveoli (but not empty alveoli) are surrounded by ATP. The ATP lowers the threshold of the oxytocin receptors and enables the milk-filled alveoli to contract in response to oxytocin at a concentration in the blood. Slight but apparent constitutive-ATP-release was observed in non-stimulated cells and the release was enhanced in Ca(2+)-free solution. The pathway of ATP-release is not yet clear, but pharmacologically, there seems to be two or more pathways.
Collapse
|
109
|
Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 2004; 10:821-7. [PMID: 15258577 DOI: 10.1038/nm1082] [Citation(s) in RCA: 410] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/25/2004] [Indexed: 01/29/2023]
Abstract
Secondary injury exacerbates the extent of spinal cord insults, yet the mechanistic basis of this phenomenon has largely been unexplored. Here we report that broad regions of the peritraumatic zone are characterized by a sustained process of pathologic, high ATP release. Spinal cord neurons expressed P2X7 purine receptors (P2X7R), and exposure to ATP led to high-frequency spiking, irreversible increases in cytosolic calcium and cell death. To assess the potential effect of P2X7R blockade in ameliorating acute spinal cord injury (SCI), we delivered P2X7R antagonists OxATP or PPADS to rats after acute impact injury. We found that both OxATP and PPADS significantly improved functional recovery and diminished cell death in the peritraumatic zone. These observations demonstrate that SCI is associated with prolonged purinergic receptor activation, which results in excitotoxicity-based neuronal degeneration. P2X7R antagonists inhibit this process, reducing both the histological extent and functional sequelae of acute SCI.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of Neurosurgery, Center for Aging and Developmental Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Fonseca PC, Nihei OK, Urban-Maldonado M, Abreu S, de Carvalho ACC, Spray DC, Savino W, Alves LA. Characterization of connexin 30.3 and 43 in thymocytes. Immunol Lett 2004; 94:65-75. [PMID: 15234537 DOI: 10.1016/j.imlet.2004.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 03/22/2004] [Accepted: 03/23/2004] [Indexed: 02/05/2023]
Abstract
During maturation, thymocytes interact directly and indirectly with different cell types of the thymic microenvironment. Such a cellular communication has been basically ascribed to soluble factors and surface receptors. However, little attention has been given to cellular communication mediated by gap junctions. The existence of these intercellular channels in the immune system remained a controversial issue since the 1970s until recently, when a growing body of evidence has indicated their presence and physiological roles in the immune system. In this work, we investigated whether thymocytes express gap junction-forming proteins (connexins, Cx) and are capable of forming functional intercellular channels. Using RT-PCR, we demonstrated that thymocytes express the mRNA for two Cx isoforms: Cx30.3 and Cx43, but not for Cx26, Cx30, Cx31, Cx31.1, Cx32, Cx33, Cx36, Cx37, Cx40, Cx45, Cx46, and Cx50. In addition, the presence of Cx30.3 and Cx43 was confirmed using different techniques (RNase protection assay, western blot and immunofluorescence). However, despite the expression of these two Cxs, we did not detect functional homocellular coupling between thymocytes or between EL-4 cells (a Cx43 expressing thymic lymphoma-derived cell line) or heterocellular coupling between thymocytes and thymic epithelial cells (TEC) or between EL-4 and TEC in unstimulated conditions. Concluding, in this study, we described for the first time the expression of connexins in thymocytes, which may constitute a new molecule having a functional role in thymocytes maturation.
Collapse
Affiliation(s)
- Paula Candida Fonseca
- Laboratório de Pesquisas sobre o Timo, Departamento de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brasil, Av. Brasil, 4365 Manguinhos, 21045-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Vandamme W, Braet K, Cabooter L, Leybaert L. Tumour necrosis factor alpha inhibits purinergic calcium signalling in blood-brain barrier endothelial cells. J Neurochem 2003; 88:411-21. [PMID: 14690529 DOI: 10.1046/j.1471-4159.2003.02163.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The breaching of the blood-brain barrier is an essential aspect in the pathogenesis of neuroinflammatory diseases, in which tumour necrosis factor alpha (TNF-alpha) as well as endothelial calcium ions play a key role. We investigated whether TNF-alpha could influence the communication of calcium signals between brain endothelial cells (GP8 and RBE4). Intercellular calcium waves triggered by mechanical stimulation or photoliberation of InsP3 in single cells were significantly reduced in size after TNF-alpha exposure (1000 U/mL, 2 and 24 h). Calcium signals are communicated between cells by means of gap junctional and paracrine purinergic signalling. TNF-alpha significantly inhibited gap junctional coupling, stimulated the basal release of ATP, and dose-dependently blocked the triggered component of ATP release. The cytokine displayed similar effects on the uptake of a fluorescent reporter dye into the cells. Previous work with connexin mimetic peptides demonstrated that the triggered ATP release in these cells is connexin-related; these peptides did, however, not influence the elevated basal ATP release caused by TNF-alpha. We conclude that TNF-alpha depresses calcium signal communication in blood-brain barrier endothelial cells, by reducing gap junctional coupling and by inhibiting triggered ATP release. The cytokine thus inhibits connexin-related communication pathways like gap junctions and connexin hemichannels.
Collapse
Affiliation(s)
- Wouter Vandamme
- Department of Physiology and Pathophysiology, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
112
|
Scemes E, Duval N, Meda P. Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 2003; 23:11444-52. [PMID: 14673009 PMCID: PMC1226323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Glial calcium signals play important roles during CNS development. Calcium transients induced by ATP, acting on purinergic receptors, stimulate DNA synthesis, increase astrocytic and neural stem cell proliferation, and are prominent during the differentiation of radial glia. We have shown previously that expression of P2Y receptors in astrocytes is altered when connexin43 (Cx43) is downregulated. To evaluate the consequences of Cx43 deletion on calcium signaling during neural progenitor development, studies were performed on neurospheres derived from embryonic striatum. After adhesion, cells migrating from wild-type (WT) and Cx43-null neurospheres displayed spontaneous calcium oscillations. Such activity was blunted by apyrase, 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate (MRS-2179), and suramin, suggesting that ATP released by neural cells acts on purinergic receptors to induce calcium oscillations. The amplitudes of Ca2+ transients induced by P2Y but not P2X receptor agonists were larger in WT than in Cx43-null progenitors, suggesting that these two cell populations express different P2 receptors. Suramin, a nonselective P2 receptor antagonist, and MRS-2179, a P2Y1 receptor-selective antagonist, reduced the proliferation rate and the migration of WT progenitor cells to levels similar to those of Cx43-null cells. Conversely, exogenous expression of P2Y1 receptors in Cx43-null cells restored their migration pattern to levels seen in WT progenitors. However, treatment with P2 receptor antagonists did not alter the ratio of nestin to GFAP expression in WT neural progenitors. These data show that altered autocrine-paracrine communication attributable to reduced levels of P2Y1 receptors in neural progenitor cells lacking Cx43 affects proliferation and migration but not cell differentiation during early CNS development.
Collapse
Affiliation(s)
- Eliana Scemes
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
113
|
Wink MR, Braganhol E, Tamajusuku ASK, Casali EA, Karl J, Barreto-Chaves ML, Sarkis JJF, Battastini AMO. Extracellular adenine nucleotides metabolism in astrocyte cultures from different brain regions. Neurochem Int 2003; 43:621-8. [PMID: 12892649 DOI: 10.1016/s0197-0186(03)00094-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Primary astrocyte cultures from hippocampus, cortex and cerebellum presented different extracellular pattern of adenine nucleotide hydrolysis. The ATP/ADP hydrolysis ratio was 8:1 for hippocampal and cortical astrocytes and 5:1 for cerebellar astrocytes. The AMP hydrolysis in cerebellar astrocytes was seven-fold higher than in cortical or hippocampal cells. No accumulation of extracellular adenosine in all structures studied was observed. Dipyridamol increased significantly inosine levels in the extracellular medium of hippocampal and cortical, but not in cerebellar astrocytes medium. A higher expression of ecto-5'-nucleotidase was identified by RT-PCR in cerebellum. The differences observed may indicate functional heterogeneity of nucleotides in the brain.
Collapse
Affiliation(s)
- Márcia R Wink
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Iacobas DA, Urban-Maldonado M, Iacobas S, Scemes E, Spray DC. Array analysis of gene expression in connexin-43 null astrocytes. Physiol Genomics 2003; 15:177-90. [PMID: 12928503 PMCID: PMC2651830 DOI: 10.1152/physiolgenomics.00062.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connexin-43 (Cx43) is the most abundant gap junction protein in brain, where it is found primarily between astrocytes. Although the morphology of astrocytes from Cx43-null (knockout, KO) mice is similar to that of wild-type (WT) astrocytes, KO astrocytes exhibit reduced growth rate in culture. To evaluate the impact of deletion of Cx43 on other genes, including those encoding cell cycle proteins, we used DNA arrays to determine expression patterns in cultured astrocytes from sibling Cx43-null and WT mice. RNA samples extracted from astrocytes cultured from WT and Cx43-null neonatal mice were dye labeled and individually cohybridized with a reference of labeled cDNAs pooled from a variety of tissues on 8 gene arrays containing 8,975 mouse DNA sequences. Normal variability in expression of each gene was evaluated and incorporated into "expression scores" to statistically compare expression levels between WT and KO samples. In Cx43-null astrocytes, 4.1% of the 4,998 adequately quantifiable spots were found to have significantly (P < 0.05) decreased hybridization compared with controls, and 9.4% of the spots showed significantly higher hybridization. The significantly different spots corresponded to RNAs encoding 252 known proteins, many not previously linked to gap junctions, including transcription factors, channels and transporters, cell growth and death signals, enzymes and cell adhesion molecules. These data indicate a surprisingly high degree of impact of deletion of Cx43 on other astrocyte genes, implying that gap junction gene expression alters numerous processes in addition to intercellular communication.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Neuroscience, Albert Einstein College of Medicine, New York 10461, USA.
| | | | | | | | | |
Collapse
|
115
|
Nihei OK, Campos de Carvalho AC, Spray DC, Savino W, Alves LA. A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am J Physiol Cell Physiol 2003; 285:C1304-C1313. [PMID: 12878492 DOI: 10.1152/ajpcell.00568.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We here describe intercellular calcium waves as a novel form of cellular communication among thymic epithelial cells. We first characterized the mechanical induction of intercellular calcium waves in different thymic epithelial cell preparations: cortical 1-4C18 and medullary 3-10 thymic epithelial cell lines and primary cultures of thymic "nurse" cells. All thymic epithelial preparations responded with intercellular calcium wave propagation after mechanical stimulation. In general, the propagation efficacy of intercellular calcium waves in these cells was high, reaching 80-100% of the cells within a given confocal microscopic field, with a mean velocity of 6-10 microm/s and mean amplitude of 1.4- to 1.7-fold the basal calcium level. As evaluated by heptanol and suramin treatment, our results suggest the participation of both gap junctions and P2 receptors in the propagation of intercellular calcium waves in thymic nurse cells and the more prominent participation of gap junctions in thymic epithelial cell lines. Finally, in cocultures, the transmission of intercellular calcium wave was not observed between the mechanically stimulated thymic epithelial cell and adherent thymocytes, suggesting that intercellular calcium wave propagation is limited to thymic epithelial cells and does not affect the neighboring thymocytes. In conclusion, these data describe for the first time intercellular calcium waves in thymic epithelial cells and the participation of both gap junctions and P2 receptors in their propagation.
Collapse
Affiliation(s)
- O K Nihei
- Laboratory on Thymus Research, Department of Immunology, Institute Oswaldo Cruz, The Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
116
|
Lazarowski ER, Boucher RC, Harden TK. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 2003; 64:785-95. [PMID: 14500734 DOI: 10.1124/mol.64.4.785] [Citation(s) in RCA: 441] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eduardo R Lazarowski
- Department of Pharmacology, University of North Carolina School of Medicine, CB#7365, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
117
|
Sung YJ, Sung Z, Ho CL, Lin MT, Wang JS, Yang SC, Chen YJ, Lin CH. Intercellular calcium waves mediate preferential cell growth toward the wound edge in polarized hepatic cells. Exp Cell Res 2003; 287:209-18. [PMID: 12837277 DOI: 10.1016/s0014-4827(03)00160-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During liver regeneration, hepatocytes sense the damage and initiate proliferation of the quiescent cells through poorly understood mechanisms. Here, we have used cultured hepatic cells to study the roles played by intercellular calcium in mediating wound-healing processes. Well-differentiated and polarized Hep-G2 cells repaired an experimentally induced wound by induction of cell divisions. The resulting cellular growth did not occur evenly across the healing cell lawn; instead, proliferations were three times more active within 150-200 microm from the wound edge than further away; this periwound preferential cell growth was not observed in the poorly differentiated and/or nonpolarized cells. We have provided experimental evidence demonstrating that the wounding procedure itself could elicit a propagating calcium wave, and interestingly, blocking this injury-associated intercellular calcium communication could effectively inhibit the biased cell growth along the margin of the wound. A photolithography-based patterned cell culture system was employed to help delineate the mechanisms underlying this type of calcium signaling. In conclusion, our results suggested that intercellular communications via propagating calcium waves coordinate regenerative cell proliferations in response to hepatic tissue losses.
Collapse
Affiliation(s)
- Yen-Jen Sung
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Joseph SM, Buchakjian MR, Dubyak GR. Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 2003; 278:23331-42. [PMID: 12684505 DOI: 10.1074/jbc.m302680200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular ATP and other nucleotides function as autocrine and paracrine signaling factors in many tissues. Recent studies suggest that P2 nucleotide receptors and ecto-nucleotidases compete for a limited pool of endogenously released nucleotides within cell surface microenvironments that are functionally segregated from the bulk extracellular compartment. To test this hypothesis, we have used luciferase-based methods to continuously record extracellular ATP levels in monolayers of human 1321N1 astrocytoma cells under resting conditions, during stimulation of Ca2+-mobilizing receptors for thrombin or acetylcholine, and during mechanical stimulation by hypotonic stress. Soluble luciferase was utilized as an indicator of ATP levels within the bulk extracellular compartment, whereas a chimeric protein A-luciferase, adsorbed to antibodies against a glycosylphosphatidylinositol-anchored plasma membrane protein, was used as a spatially localized probe of ATP levels at the immediate extracellular surface. Significant accumulation of ATP in the bulk extracellular compartment, under either resting (1-2 nm ATP) or stimulated (10-80 nm ATP) conditions, was observed only when endogenous ecto-ATPase activity was pharmacologically inhibited by the poorly metabolizable analog, betagamma-methylene ATP. In contrast, accumulation of submicromolar ATP in the cell surface microenvironment was readily measured even in the absence of ecto-ATPase inhibition suggesting that the spatially colocalized luciferase could effectively compete with endogenous ecto-ATPases for released ATP. Other experiments revealed a critical role for elevated cytosolic [Ca2+] in the ATP release mechanism triggered by thrombin or muscarinic receptors but not in basal ATP release or release stimulated by hypotonic stress. These observations suggest that ATP release sites are colocalized with ecto-ATPases at the astrocyte cell surface. This colocalization may act to spatially restrict the actions of released ATP as a paracrine or autocrine mediator of cell-to-cell signaling.
Collapse
Affiliation(s)
- Sheldon M Joseph
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
119
|
Wirkner K, Köles L, Fürst S, Illes P. Modulation of voltage- and ligand-gated ion channels by neuronal P2Y receptors. Drug Dev Res 2003. [DOI: 10.1002/ddr.10171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
120
|
Faustmann PM, Haase CG, Romberg S, Hinkerohe D, Szlachta D, Smikalla D, Krause D, Dermietzel R. Microglia activation influences dye coupling and Cx43 expression of the astrocytic network. Glia 2003; 42:101-8. [PMID: 12655594 DOI: 10.1002/glia.10141] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Under inflammatory conditions, activated microglia are capable of producing proinflammatory cytokines that are reported to influence cell-to-cell communication. The present study was performed to evaluate the influence of microglial activation on the coupling efficiency of the astroglial network. Primary astrocyte cultures of newborn rats were cocultured with either 5% (M5) or 30% (M30) microglia. Microglial activation (rounded phagocytotic phenotype) was investigated using the monoclonal anti-ED1 antibody, and immunofluorescence with a polyclonal anti-Cx43 antibody was used to study astroglial Cx43 expression and distribution. Functional coupling of astrocytes was evaluated by monitoring the transfer of microinjected Lucifer yellow into neighboring cells. The data obtained can be summarized as follows: astroglia/M30 cocultures contained significantly fewer resting microglia and significantly more activated microglia than the M5 cocultures; significantly reduced astroglial Cx43 staining was found in M30 cocultures concurrently with a reduced number of dye coupled astrocytes; and the positive correlation of percent activated microglia with reduced astroglial Cx43 expression was highly significant, indicating that the degree of intercellular communication in the astroglial network may be modulated by the activation of microglia under in vitro conditions.
Collapse
Affiliation(s)
- Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Suadicani SO, De Pina-Benabou MH, Urban-Maldonado M, Spray DC, Scemes E. Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 2003; 42:160-71. [PMID: 12655600 PMCID: PMC2586891 DOI: 10.1002/glia.10197] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Propagation of intercellular calcium waves (ICW) between astrocytes depends on the diffusion of signaling molecules through gap junction channels and diffusion through the extracellular space of neuroactive substances acting on plasmalemmal receptors. The relative contributions of these two pathways vary in different brain regions and under certain pathological conditions. We have previously shown that in wild-type spinal cord astrocytes, ICW are primarily gap junction-dependent, but that deletion of the main gap junction protein (Cx43) by homologous recombination results in a switch in mode of ICW propagation to a purinoceptor-dependent mechanism. Such a compensatory mechanism for ICW propagation was related to changes in the pharmacological profile of P2Y receptors, from an adenine-sensitive P2Y(1), in wild-type, to a uridine-sensitive P2U receptor subtype, in Cx43 knockout (KO) astrocytes. Using oligonucleotide antisense to Cx43 mRNA for acute downregulation of connexin43 expression levels, we provide evidence for the molecular nature of such compensatory mechanism. Pharmacological studies and Western blot analysis indicate that there is a reciprocal regulation of P2Y(1) and P2Y(4) expression levels, such that downregulation of Cx43 leads to decreased expression of the adenine-sensitive P2Y(1) receptor and increased expression of the uridine-sensitive P2Y(4) receptor. This change in functional expression of the P2Y receptor subtype population in acutely downregulated Cx43 was paralleled by changes in the mode of ICW propagation, similar to that previously observed for Cx43 KO spinal cord astrocytes. On the basis of these results, we propose that Cx43 regulates both modes of ICW by altering P2Y receptor subtype expression in addition to providing intercellular coupling.
Collapse
Affiliation(s)
- Sylvia O Suadicani
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
122
|
Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA. ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 2003; 89:1870-7. [PMID: 12686569 DOI: 10.1152/jn.00510.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATP release from astrocytes contributes to calcium ([Ca(2+)]) wave propagation and may modulate neuronal excitability. In epithelial cells and hepatocytes, cell swelling causes ATP release, which leads to the activation of a volume-sensitive Cl(-) current (I(Cl,swell)) through an autocrine pathway involving purinergic receptors. Astrocyte swelling is counterbalanced by a regulatory volume decrease, involving efflux of metabolites and activation of I(Cl,swell) and K(+) currents. We used whole cell patch-clamp recordings in cultured astrocytes to investigate the autocrine role of ATP in the activation of I(Cl,swell) by hypo-osmotic solution (HOS). Apyrase, an ATP/ADP nucleotidase, inhibited HOS-activated I(Cl,swell), whereas ATP and the P2Y agonists, ADPbetaS and ADP, induced Cl(-) currents similar to I(Cl,swell). Neither the P2U agonist, UTP nor the P2X agonist, alpha,beta-methylene ATP, were effective. BzATP was less effective than ATP, suggesting that P2X7 receptors were not involved. P2 purinergic antagonists, suramin, RB2, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) reversibly inhibited activation of I(Cl,swell), suggesting that ATP-activated P2Y1 receptors. Thus ATP release mediates I(Cl,swell) in astrocytes through the activation of P2Y1-like receptors. The multidrug resistance protein (MRP) transport inhibitors probenicid, indomethacin, and MK-571 all potently inhibited I(Cl.swell). ATP release from astrocytes in HOS was observed directly using luciferin-luciferase and MK-571 reversibly depressed this HOS-induced ATP efflux. We conclude that ATP release via MRP and subsequent autocrine activation of purinergic receptors contributes to the activation of I(Cl,swell) in astrocytes by HOS-induced swelling.
Collapse
Affiliation(s)
- Mark Darby
- Neuroscience Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
123
|
Abstract
Gap junctions consist of intercellular channels that connect the cytoplasm of adjacent cells directly and allow the exchange of small molecules. These channels are unique in that they span two plasma membranes--the more orthodox ion or ligand-gated channels span only one. Each cell contributes half of the intercellular channel, and each half is known as a connexon or hemichannel. Recent studies indicate that connexons are also active in single plasma membranes and that they might be essential in intercellular signalling beyond their incorporation into gap junctions.
Collapse
|
124
|
Abstract
Intracellular signaling induced by peptide growth factors can stimulate secretion of these molecules into the extracellular medium. In autocrine and paracrine networks, this can establish a positive feedback loop between ligand binding and ligand release. When coupled to intercellular communication by autocrine ligands, this positive feedback can generate constant-speed traveling waves. To demonstrate that, we propose a mechanistic model of autocrine relay systems. The model is relevant to the physiology of epithelial layers and to a number of in vitro experimental formats. Using asymptotic and numerical tools, we find that traveling waves in autocrine relays exist and have a number of unusual properties, such as an optimal ligand binding strength necessary for the maximal speed of propagation. We compare our results to recent observations of autocrine and paracrine systems and discuss the steps toward experimental tests of our predictions.
Collapse
Affiliation(s)
- Michal Pribyl
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
125
|
Lin JHC, Yang J, Liu S, Takano T, Wang X, Gao Q, Willecke K, Nedergaard M. Connexin mediates gap junction-independent resistance to cellular injury. J Neurosci 2003; 23:430-41. [PMID: 12533603 PMCID: PMC6741863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 10/02/2002] [Accepted: 10/10/2002] [Indexed: 02/28/2023] Open
Abstract
Although gap junctions regulate essential processes during development and differentiation, the role of gap junctions in cell death is poorly understood. We demonstrate here that the forced expression of connexin 43 (Cx43), the main constituent of astrocytic gap junctions, protected against cell injury with a potency that was comparable with that from the expression of the proto-oncogene bcl2. The expression of two other members of the Cx family, Cx32 and Cx40, also increased the resistance to injury from exposures to calcium overload, oxidative stress, metabolic inhibition, tamoxifen, and UV irradiation, but not against staurosporine- and dexamethasone-mediated death. Surprisingly, the anti-death activity of connexin proteins was independent of gap junction channel function, because physical isolation or the pharmacological inhibition of coupling did not significantly increase cell death. Moreover, cells expressing nonfunctional mutant connexins also acquired a high resistance to injury. These observations identify Cx proteins as active players in cell survival.
Collapse
Affiliation(s)
- Jane H-C Lin
- Department of Pathology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Decoding calcium wave signaling. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
127
|
|
128
|
Hussy N. Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. PROGRESS IN BRAIN RESEARCH 2002; 139:95-112. [PMID: 12436929 DOI: 10.1016/s0079-6123(02)39010-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Nicolas Hussy
- CNRS-UMR 5101, CCIPE, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
129
|
Abstract
Astrocytes play an important role in chemical signalling, acting as receptive as well as secretory elements. They can express receptors for essentially all classical neurotransmitter substances and for a large variety of peptides. Recent evidence indicates that astrocytes are involved in the information processing within the nervous system. Astrocytes respond to various neurotransmitters with elevations in intracellular calcium which can either be long-duration Ca(2+) spikes or oscillations in Ca(2+) levels. Astrocytic excitation can be propagated to adjacent astrocytes in the form of Ca(2+) waves. Due to their intimate spatial relationship with synaptic contacts, astrocytes can directly respond to synaptically released messengers and communicate, via signalling substances, with neurons in a reciprocal manner. Cultured astrocytes and astroglioma cells express synaptic vesicle proteins and members of the synaptic SNARE complex. Astrocytes can release a variety of messenger substances via receptor-mediated mechanisms implicating their potential for regulated exocytosis and the participation of proteins of the SNARE complex.
Collapse
Affiliation(s)
- Walter Volknandt
- Department of Neurochemistry, Zoological Institute, Biocenter, J.W. Goethe-University, Marie-Curie Street 9, D-60439, Frankfurt am Main, Germany.
| |
Collapse
|
130
|
Abstract
Gap junctions are transcellular pathways that enable a dynamic metabolic coupling and a selective exchange of biological signaling mediators. Throughout the course of the brain development these intercellular channels are assembled into regionally and temporally defined patterns. The present review summarizes the possibilities of heterocellular gap junctional pairing in the brain parenchyma, involving glial cells, neurons and neural precursors as well as it highlights on the meaningfulness of these coupled arrays to the concept of brain functional compartments.
Collapse
Affiliation(s)
- M M Fróes
- Laboratório de Neuroanatomia Celular, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, Brazil.
| | | |
Collapse
|
131
|
Höfer T, Venance L, Giaume C. Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 2002; 22:4850-9. [PMID: 12077182 PMCID: PMC6757753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Intercellular Ca2+ waves in astrocytes are thought to serve as a pathway of long-range signaling. The waves can propagate by the diffusion of molecules through gap junctions and across the extracellular space. In rat striatal astrocytes, the gap-junctional route was shown to be dominant. To analyze the interplay of the processes involved in wave propagation, a mathematical model of this system has been developed. The kinetic description of Ca2+ signaling within a single cell accounts for inositol 1,4,5-trisphosphate (IP3) generation, including its activation by cytoplasmic Ca2+, IP3-induced Ca2+ liberation from intracellular stores and various other Ca2+ transports, and cytoplasmic diffusion of IP3 and Ca2+. When cells are coupled by gap junction channels in a two-dimensional array, IP3 generation in one cell triggers Ca2+ waves propagating across some tens of cells. The spatial range of wave propagation is limited, yet depends sensitively on the Ca2+-mediated regeneration of the IP3 signal. Accordingly, the term "limited regenerative signaling" is proposed. The gap-junctional permeability for IP3 is the crucial permissive factor for wave propagation, and heterogeneity of gap-junctional coupling yields preferential pathways of wave propagation. Processes involved in both signal initiation (activation of IP3 production caused by receptor agonist) and regeneration (activation of IP3 production by Ca2+, loading of the Ca2+ stores) are found to exert the main control on the wave range. The refractory period of signaling strongly depends on the refilling kinetics of the Ca2+ stores. Thus the model identifies multiple steps that may be involved in the regulation of this intercellular signaling pathway.
Collapse
Affiliation(s)
- Thomas Höfer
- Theoretische Biophysik, Institut für Biologie, Humboldt-Universität Berlin, 10115 Berlin, Germany.
| | | | | |
Collapse
|
132
|
Abstract
Functional magnetic resonance imaging (fMRI) allows noninvasive localization of cerebral activation with relatively high spatial and temporal resolution. The considerable potential for the elucidation of the mechanisms of brain function has made it a useful tool to investigate the neural substrate of motor, sensory and cognitive functions. Understanding derived from these basic cognitive neuroscience investigations is beginning to be applied to clinically relevant problems. In this article, applications to multiple sclerosis (MS) are reviewed, which address the challenging notion that adaptive cerebral plasticity may have an important influence on the relationship between MS pathology and its clinical expression.
Collapse
Affiliation(s)
- A Cifelli
- Department of Clinical Neurology, Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, UK
| | | |
Collapse
|
133
|
Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev 2002; 61:414-24. [PMID: 11835587 DOI: 10.1002/mrd.10102] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sofie Tanghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
134
|
Kawai H, Arata N, Nakayasu H. Three-dimensional distribution of astrocytes in zebrafish spinal cord. Glia 2001; 36:406-13. [PMID: 11746776 DOI: 10.1002/glia.1126] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We prepared a monoclonal antibody (A-22) that recognizes a 60-kDa protein in the zebrafish brain. The antigen is distributed throughout the brain but is not found outside it. The antibody recognizes star-shaped cells with long processes in the spinal cord. All A-22-positive cells are also GFAP-immunopositive, but there are GFAP-positive cells that are A-22-negative. The cells are connected to small veins and to the surface of the spinal cord. Immunopositive cells are generally homogeneous in size and shape and are found not only in the spinal cord but also in several areas of the brain. These results indicate that the stained cell is an astrocyte. Most of these cells (88%) are distributed in the gray matter of the spinal cord; the remainder (12%) are found in the white matter. Most of the cells in the gray matter are found in the ventral and dorsal horns, but some are also present in the central area along the ventricle. Glial cell bodies form an array along the longitudinal axis and are connected to each other by thick projections. The cellular array is not visible in coronal sections. In contrast, thin processes from the cells extend to the surfaces of veins, to neurons, and to the periphery of the spinal cord. We estimate that there are about 13,500 A-22-positive astrocytes in the spinal cord; however, this represents only 26% of the total number of astrocytes in the spinal cord (approximately 52,000).
Collapse
Affiliation(s)
- H Kawai
- Department of Biology, Faculty of Science, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
135
|
James G, Butt AM. P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 2001; 30:251-9. [PMID: 11587549 DOI: 10.1054/ceca.2001.0232] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is known that ATP acts as an extracellular messenger mediating Ca2+ signalling in glial cells. Here, the mechanisms involved in the ATP-evoked increase in glial [Ca2+]i were studied in situ, in the acutely isolated rat optic nerve. ATP and agonists for P2X (a,b-metATP) and P2Y (2MeSATP) purinoreceptors triggered raised glial [Ca2+]i, and there was no significant difference between cells identified morphologically as astrocytes and oligodendrocytes. Dose-response curves indicated that P2Y receptors were activated at nanomolar concentrations, whereas P2X purinoreceptors were only activated above 10 microM. The rank order of potency for several agonists indicated optic nerve glia expressed heterogeneous purinoreceptors, with P2Y1< or = P2Y2/4< or = P2X. The ATP evoked increase in [Ca2+]i was reversibly blocked by the P2X/Y purinoreceptor antagonist suramin (100 microM) and markedly reduced by thapsigargin (10 microM), which blocks IP3-dependent release of Ca2+ from intracellular stores. Removal of extracellular Ca2+ reduced the ATP evoked increase in [Ca2+]i and completely blocked its recovery, indicating that refilling of intracellular stores was ultimately dependent on Ca2+ influx from the extracellular milieu. The results implicate ATP as an important signal in CNS white matter astrocytes and oligodendrocytes in situ, and indicate that metabotropic P2Y purinoreceptors mobilize intracellular Ca2+ at physiological concentrations of ATP, whereas ionotropic P2X purinoreceptors induce Ca2+ influx across the plasmalemma only at high concentrations of ATP, such as occur following CNS injury.
Collapse
Affiliation(s)
- G James
- Neural Damage & Repair Research Group, Centre for Neuroscience Research, King's College London, London, London, UK
| | | |
Collapse
|
136
|
Rouach N, Giaume C. Connexins and gap junctional communication in astrocytes are targets for neuroglial interaction. PROGRESS IN BRAIN RESEARCH 2001; 132:203-14. [PMID: 11544989 DOI: 10.1016/s0079-6123(01)32077-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- N Rouach
- INSERM U114, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France
| | | |
Collapse
|
137
|
Hertz L, Hansson E, Rönnbäck L. Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 2001; 39:227-52. [PMID: 11434981 DOI: 10.1016/s0197-0186(01)00017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Holger Hydén demonstrated almost 40 years ago that learning changes the base composition of nuclear RNA, i.e. induces an alteration in gene expression. An equally revolutionary observation at that time was that a base change occurred in both neurons and glia. From these findings, Holger Hydén concluded that establishment of memory is correlated with protein synthesis, and he demonstrated de novo synthesis of several high-molecular protein species after learning. Moreover, the protein, S-100, which is mainly found in glial cells, was increased during learning, and antibodies towards this protein inhibited memory consolidation. S-100 belongs to a family of Ca(2+)-binding proteins, and Holger Hydén at an early point realized the huge importance of Ca(2+) in brain function. He established that glial cells show more marked and earlier changes in RNA composition in Parkinson's disease than neurons. Holger Hydén also had the vision and courage to suggest that "mental diseases could as well be thought to depend upon a disturbance of processes in glia cells as in the nerve cells", and he showed that antidepressant drugs cause profound changes in glial RNA. The importance of Holger Hydén's findings and visions can only now be fully appreciated. His visionary concepts of the involvement of glia in neurological and mental illness, of learning being associated with changes in gene expression, and of the functional importance of Ca(2+)-binding proteins and Ca(2+) are presently being confirmed and expanded by others. This review briefly summarizes highlights of Holger Hydén's work in these areas, followed by a discussion of recent research, confirming his findings and expanding his visions. This includes strong evidence that glial dysfunction is involved in the development of Parkinson's disease, that drugs effective in mood disorders alter gene expression and exert profound effects on astrocytes, and that neuronal-astrocytic interactions in glutamate signaling, NO synthesis, Ca(2+) signaling, beta-adrenergic activity, second messenger production, protein kinase activities, and transcription factor phosphorylation control the highly programmed events that carry the memory trace through the initial, signal-mediated short-term and intermediate memory stages to protein synthesis-dependent long-term memory.
Collapse
Affiliation(s)
- L Hertz
- Hong Kong DNA Chips Ltd., Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
138
|
De Pina-Benabou MH, Srinivas M, Spray DC, Scemes E. Calmodulin kinase pathway mediates the K+-induced increase in Gap junctional communication between mouse spinal cord astrocytes. J Neurosci 2001; 21:6635-43. [PMID: 11517253 PMCID: PMC1513544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Astrocytes are coupled to one another by gap junction channels that allow the diffusion of ions and small molecules throughout the interconnected syncytium. In astrocytes, gap junctions are believed to participate in spatial buffering removing the focal excess of potassium resultant from intense neuronal activity by current loops through the syncytium and are also implicated in the propagation of astrocytic calcium waves, a form of extraneuronal signaling. Gap junctions can be modulated by several factors, including elevation of extracellular potassium concentration. Because K(+) elevation is a component of spinal cord injury, we evaluated the extent to which cultured spinal cord astrocytes is affected by K(+) levels and obtained evidence suggesting that a Ca(2+)-calmodulin (CaM) protein kinase is involved in the K(+)-induced increased coupling. Exposure of astrocytes to high K(+) solutions induced a dose-dependent increase in dye coupling; such increased coupling was greatly attenuated by reducing extracellular Ca(2+) concentration, prevented by nifedipine, and potentiated by Bay-K-8644. These results indicate that K(+)-induced increased coupling is mediated by a signaling pathway that is dependent on the influx of Ca(2+) through L-type Ca(2+) channels. Evidence supporting the participation of the CaM kinase pathway on K(+)-induced increased coupling was obtained in experiments showing that calmidazolium and KN-93 totally prevented the increase in dye and electrical coupling induced by high K(+) solutions. Because no changes in connexin43 expression levels or distribution were observed in astrocytes exposed to high K(+) solutions, we propose that the increased junctional communication is related to an increased number of active channels within gap junction plaques.
Collapse
Affiliation(s)
- M H De Pina-Benabou
- Department of Physiology, Bioscience Institute, University of Sao Paulo, Sao Paulo, CP-11461, Brazil
| | | | | | | |
Collapse
|
139
|
Fauquier T, Guérineau NC, McKinney RA, Bauer K, Mollard P. Folliculostellate cell network: a route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci U S A 2001; 98:8891-6. [PMID: 11438713 PMCID: PMC37531 DOI: 10.1073/pnas.151339598] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All higher life forms critically depend on hormones being rhythmically released by the anterior pituitary. The proper functioning of this master gland is dynamically controlled by a complex set of regulatory mechanisms that ultimately determine the fine tuning of the excitable endocrine cells, all of them heterogeneously distributed throughout the gland. Here, we provide evidence for an intrapituitary communication system by which information is transferred via the network of nonendocrine folliculostellate (FS) cells. Local electrical stimulation of FS cells in acute pituitary slices triggered cytosolic calcium waves, which propagated to other FS cells by signaling through gap junctions. Calcium wave initiation was because of the membrane excitability of FS cells, hitherto classified as silent cells. FS cell coupling could relay information between opposite regions of the gland. Because FS cells respond to central and peripheral stimuli and dialogue with endocrine cells, the form of large-scale intrapituitary communication described here may provide an efficient mechanism that orchestrates anterior pituitary functioning in response to physiological needs.
Collapse
Affiliation(s)
- T Fauquier
- Institut National de la Santé et de la Recherche Médicale Unité 469, Centre National de la Recherche Scientifique-INSERM de Pharmacologie-Endocrinologie, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
140
|
Abstract
Astrocytes, a sub-type of glia in the central nervous system, are dynamic signaling elements that integrate neuronal inputs, exhibit calcium excitability, and can modulate neighboring neurons. Neuronal activity can lead to neurotransmitter-evoked activation of astrocytic receptors, which mobilizes their internal calcium. Elevations in astrocytic calcium in turn trigger the release of chemical transmitters from astrocytes, which can cause sustained modulatory actions on neighboring neurons. Astrocytes, and perisynaptic Schwann cells, by virtue of their intimate association with synapses, are strategically positioned to regulate synaptic transmission. This capability, that has now been demonstrated in several studies, raises the untested possibility that astrocytes are an integral element of the circuitry for synaptic plasticity. Because the highest ratio of glia-to-neurons is found at the top of the phylogenetic tree in the human brain, these recent demonstrations of dynamic bi-directional signaling between astrocytes and neurons leave us with the question as to whether astrocytes are key regulatory elements of higher cortical functions.
Collapse
Affiliation(s)
- A Araque
- Instituto Cajal, CSIC, Doctor Arce 37, Madrid 28002, Spain.
| | | | | |
Collapse
|
141
|
John GR, Simpson JE, Woodroofe MN, Lee SC, Brosnan CF. Extracellular nucleotides differentially regulate interleukin-1beta signaling in primary human astrocytes: implications for inflammatory gene expression. J Neurosci 2001; 21:4134-42. [PMID: 11404398 PMCID: PMC6762769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
The cytokine interleukin-1beta (IL-1beta) is a potent activator of human astrocytes, inducing or modulating expression of multiple proinflammatory genes via activation of the transcription factors nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). In this study, we examined whether IL-1beta signaling is regulated in these cells by extracellular nucleotides that are released at high concentrations under inflammatory conditions and act as ligands for members of the P2 receptor family. Using reporter constructs and electromobility shift assays, we found that cotreatment of astrocyte cultures with ATP (1-100 microm) significantly potentiated IL-1beta-mediated activation of NF-kappaB and AP-1 and that ATP alone activated AP-1. These effects were blocked by the P2 receptor antagonists XAMR 0721, periodate-oxidized ATP, and suramin. A role for ATP in modulating IL-1beta-mediated inflammatory gene expression was supported further by the observation that ATP potentiated the IL-1beta-induced expression of IL-8 mRNA and protein but strongly downregulated IP-10 expression. Reverse transcription-PCR and cloning demonstrated expression of the ATP-responsive P2 receptor subtypes P2Y(1), P2Y(2), and P2X(7), as well as the ATP-insensitive receptor P2Y(4). ADP, a selective agonist for P2Y(1), produced results similar to or greater than those obtained using ATP, whereas 2'-3'-O-(4-benzoyl-benzoyl)-ATP, a selective agonist for P2X(7), was less effective than ATP. In contrast, UTP, a selective agonist for P2Y(2) and P2Y(4), was ineffective. These studies indicate that different P2 receptor subtypes play distinct roles in the modulation of IL-1beta-mediated signal transduction in human astrocytes, and that signaling via P2 receptors may fine-tune the transcription of genes involved in inflammatory responses in the human CNS.
Collapse
Affiliation(s)
- G R John
- Departments of Pathology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
142
|
Abstract
Glial cells are active partners of neurons in processing information and synaptic integration. They receive coded signals from synapses and elaborate modulatory responses. The active properties of glia, including long-range signalling and regulated transmitter release, are beginning to be elucidated. Recent insights suggest that the active brain should no longer be regarded as a circuitry of neuronal contacts, but as an integrated network of interactive neurons and glia.
Collapse
Affiliation(s)
- P Bezzi
- Department of Pharmacological Sciences, Centre of Excellence for Neurodegenerative Disorders, University of Milan, Via Balzaretti 9,20133, Milan, Italy.
| | | |
Collapse
|
143
|
Brosnan CF, Scemes E, Spray DC. Cytokine regulation of gap junction connectivity: an open-and-shut case or changing partners at the Nexus? THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1565-9. [PMID: 11337352 PMCID: PMC1891932 DOI: 10.1016/s0002-9440(10)64110-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- C F Brosnan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | |
Collapse
|
144
|
Newman EA. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 2001; 21:2215-23. [PMID: 11264297 PMCID: PMC2409971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Intercellular Ca(2+) waves are believed to propagate through networks of glial cells in culture in one of two ways: by diffusion of IP(3) between cells through gap junctions or by release of ATP, which functions as an extracellular messenger. Experiments were conducted to determine the mechanism of Ca(2+) wave propagation between glial cells in an intact CNS tissue. Calcium waves were imaged in the acutely isolated rat retina with the Ca(2+) indicator dye fluo-4. Mechanical stimulation of astrocyte somata evoked Ca(2+) waves that propagated through both astrocytes and Müller cells. Octanol (0.5 mm), which blocks coupling between astrocytes and Müller cells, did not reduce propagation into Müller cells. Purinergic receptor antagonists suramin (100 microm), PPADS (20-50 microm), and apyrase (80 U/ml), in contrast, substantially reduced wave propagation into Müller cells (wave radii reduced to 16-61% of control). Suramin also reduced wave propagation from Müller cell to Müller cell (51% of control). Purinergic antagonists reduced wave propagation through astrocytes to a lesser extent (64-81% of control). Mechanical stimulation evoked the release of ATP, imaged with the luciferin-luciferase bioluminescence assay. Peak ATP concentration at the surface of the retina averaged 78 microm at the stimulation site and 6.8 microm at a distance of 100 microm. ATP release propagated outward from the stimulation site with a velocity of 41 microm/sec, somewhat faster than the 28 microm/sec velocity of Ca(2+) waves. Ejection of 3 microm ATP onto the retinal surface evoked propagated glial Ca(2+) waves. Together, these results indicate that Ca(2+) waves are propagated through retinal glial cells by two mechanisms. Waves are propagated through astrocytes principally by diffusion of an internal messenger, whereas waves are propagated from astrocytes to Müller cells and from Müller cells to other Müller cells primarily by the release of ATP.
Collapse
Affiliation(s)
- E A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
145
|
Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001; 21:1975-82. [PMID: 11245682 PMCID: PMC6762617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
The initial microglial responses that occur after brain injury and in various neurological diseases are characterized by microglial accumulation in the affected sites of brain that results from the migration and proliferation of these cells. The early-phase signal responsible for this accumulation is likely to be transduced by rapidly diffusible factors. In this study, the possibility of ATP released from injured neurons and nerve terminals affecting cell motility was determined in rat primary cultured microglia. Extracellular ATP and ADP induced membrane ruffling and markedly enhanced chemokinesis in Boyden chamber assay. Further analyses using the Dunn chemotaxis chamber assay, which allows direct observation of cell movement, revealed that both ATP and ADP induced chemotaxis of microglia. The elimination of extracellular calcium or treatment with pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, suramin, or adenosine-3'-phosphate-5'-phosphosulfate did not inhibit ATP- or ADP-induced membrane ruffling, whereas AR-C69931MX or pertussis toxin treatments clearly did so. As an intracellular signaling molecule underlying these phenomena, the small G-protein Rac was activated by ATP and ADP stimulation, and its activation was also inhibited by pretreatment with pertussis toxin. These results strongly suggest that membrane ruffling and chemotaxis of microglia induced by ATP or ADP are mediated by G(i/o)-coupled P2Y receptors.
Collapse
Affiliation(s)
- S Honda
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Glial cells are emerging from the background to become more prominent in our thinking about integration in the nervous system. Given that glial cells associated with synapses integrate neuronal inputs and can release transmitters that modulate synaptic activity, it is time to rethink our understanding of the wiring diagram of the nervous system. It is no longer appropriate to consider solely neuron-neuron connections; we also need to develop a view of the intricate web of active connections among glial cells, and between glia and neurons. Without such a view, it might be impossible to decode the language of the brain.
Collapse
Affiliation(s)
- P G Haydon
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
147
|
Morley GE, Vaidya D. Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology. Microsc Res Tech 2001; 52:241-50. [PMID: 11180617 DOI: 10.1002/1097-0029(20010201)52:3<241::aid-jemt1010>3.0.co;2-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conduction of electrical impulses in the heart depends on the ability to efficiently transfer excitatory current between individual myocytes. Several recent studies have focused on the use of optical mapping techniques to determine the electrophysiological consequences and the proarrhythmic effects of reducing intercellular coupling in newly developed connexin knockout mice. This work has begun to unravel important questions regarding the role of connexins in intercellular coupling and propagation of electrical impulses in the heart. The purpose of this review is to discuss the techniques and unique issues involved in imaging electrical wave propagation in the heart. In addition, we will review recent experimental studies that address the role of intercellular communication in the development of cardiac arrhythmias.
Collapse
Affiliation(s)
- G E Morley
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | |
Collapse
|
148
|
Braet K, Paemeleire K, D'herde K, Sanderson MJ, Leybaert L. Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci 2001. [DOI: 10.1111/j.1460-9568.2001.01372.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
149
|
Braun N, Sévigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01342.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Suadicani SO, Vink MJ, Spray DC. Slow intercellular Ca(2+) signaling in wild-type and Cx43-null neonatal mouse cardiac myocytes. Am J Physiol Heart Circ Physiol 2000; 279:H3076-88. [PMID: 11087266 DOI: 10.1152/ajpheart.2000.279.6.h3076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.
Collapse
Affiliation(s)
- S O Suadicani
- Department of Neuroscience, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|