101
|
Dulla C, Tani H, Okumoto S, Frommer WB, Reimer RJ, Huguenard JR. Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods 2008; 168:306-19. [PMID: 18160134 PMCID: PMC2267481 DOI: 10.1016/j.jneumeth.2007.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/24/2022]
Abstract
The neurotransmitter glutamate is the mediator of excitatory neurotransmission in the brain. Release of this signaling molecule is carefully controlled by multiple mechanisms, yet the methods available to measure released glutamate have been limited in spatial and/or temporal domains. We have developed a novel technique to visualize glutamate release in brain slices using three purified fluorescence (Forster) energy resonance transfer (FRET)-based glutamate sensor proteins. Using a simple loading protocol, the FRET sensor proteins diffuse deeply into the extracellular space and remain functional for many tens of minutes. This allows imaging of glutamate release in brain slices with simultaneous electrophysiological recordings and provides temporal and spatial resolution not previously possible. Using this glutamate FRET sensor loading and imaging protocol, we show that changes in network excitability and glutamate re-uptake alter evoked glutamate transients and produce correlated changes in evoked-cortical field potentials. Given the sophisticated advantages of brain slices for electrophysiological and imaging protocols, the ability to perform real-time imaging of glutamate in slices should lead to key insights in brain function relevant to plasticity, development and pathology. This technique also provides a unique assay of network activity that compliments alternative techniques such as voltage-sensitive dyes and multi-electrode arrays.
Collapse
Affiliation(s)
- Chris Dulla
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room M016, Stanford, CA 94305-5122, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 2008; 105:4411-6. [PMID: 18332427 DOI: 10.1073/pnas.0712008105] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded sensors of glutamate concentration are based on FRET between cyan and yellow fluorescent proteins bracketing a bacterial glutamate-binding protein. Such sensors have yet to find quantitative applications in neurons, because of poor response amplitude in physiological buffers or when expressed on the neuronal cell surface. We have improved our glutamate-sensing fluorescent reporter (GluSnFR) by systematic optimization of linker sequences and glutamate affinities. Using SuperGluSnFR, which exhibits a 6.2-fold increase in response magnitude over the original GluSnFR, we demonstrate quantitative optical measurements of the time course of synaptic glutamate release, spillover, and reuptake in cultured hippocampal neurons with centisecond temporal and spine-sized spatial resolution. During burst firing, functionally significant spillover persists for hundreds of milliseconds. These glutamate levels appear sufficient to prime NMDA receptors, potentially affecting dendritic spike initiation and computation. Stimulation frequency-dependent modulation of spillover suggests a mechanism for nonsynaptic neuronal communication.
Collapse
|
103
|
Eid T, Williamson A, Lee TSW, Petroff OA, De Lanerolle NC. Glutamate and astrocytes-Key players in human mesial temporal lobe epilepsy? Epilepsia 2008; 49 Suppl 2:42-52. [DOI: 10.1111/j.1528-1167.2008.01492.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Abstract
Currently the clinical needs for pain and headache management are not met. Despite the numerous and exciting recent advances in understanding the molecular and cellular mechanisms that originate pain, we cannot yet fully explain the mechanism underlying the biology of chronic pain. Pain is a natural mechanism preserving our species survival; however, when the protective quality is lost, physiologic changes to the peripheral and central nervous systems result in the formation of chronic pain states. Once we understand how this chronic pain state is created, either through genetic, environmental, therapeutic, or other triggers we may be able to enhance our species existence, limiting maladaptive pain and suffering. The future therapeutic targets will need to address the genetics, neurophysiologic changes of the neurons and brain as well as help control immune systems including the glia. The key to successful headache and pain therapy is research aimed at prevention and minimizing the plastic changes triggering chronic pain.
Collapse
|
105
|
Tian L, Looger LL. Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:27-35. [PMID: 19461949 PMCID: PMC2651031 DOI: 10.1016/j.ddmod.2008.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neurons and glia are functionally organized into circuits and higher-order structures via synaptic connectivity, well-orchestrated molecular signaling, and activity-dependent refinement. Such organization allows the precise information processing required for complex behaviors. Disruption of nervous systems by genetic deficiency or events such as trauma or environmental exposure may produce a diseased state in which certain aspects of inter-neuron signaling are impaired. Optical imaging techniques allow the direct visualization of individual neurons in a circuit environment. Imaging probes specific for given biomolecules may help elucidate their contribution to proper circuit function. Genetically encoded sensors can visualize trafficking of particular molecules in defined neuronal populations, non-invasively in intact brain or reduced preparations. Sensor analysis in healthy and diseased brains may reveal important differences and shed light on the development and progression of nervous system disorders. We review the field of genetically encoded sensors for molecules and cellular events, and their potential applicability to the study of nervous system disease.
Collapse
Affiliation(s)
- Lin Tian
- Howard Hughes Medical Institute Janelia Farm Research Campus, 19700 Helix Dr. Ashburn, VA, 20194, USA
| | | |
Collapse
|
106
|
Abstract
Astrocytes can release the excitatory transmitter glutamate which is capable of modulating activity in nearby neurons. This astrocytic glutamate release can occur through six known mechanisms: (i) reversal of uptake by glutamate transporters (ii) anion channel opening induced by cell swelling, (iii) Ca2+-dependent exocytosis, (iv) glutamate exchange via the cystine-glutamate antiporter, (v) release through ionotropic purinergic receptors and (vi) functional unpaired connexons, "hemichannels", on the cell surface. Although these various pathways have been defined, it is not clear how often and to what extent astrocytes employ different mechanisms. It will be necessary to determine whether the same glutamate release mechanisms that operate under physiological conditions operate during pathological conditions or whether there are specific release mechanisms that operate under particular conditions.
Collapse
Affiliation(s)
| | - Vladimir Parpura
- Departments of Physics & Astronomy, Centers for Glial-Neuronal Interactions and Nanoscale Science & Engineering, University of California, Riverside, CA 92521
| |
Collapse
|
107
|
Rao SP, Sikdar SK. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication. Glia 2007; 55:1680-9. [PMID: 17886293 DOI: 10.1002/glia.20564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control.
Collapse
Affiliation(s)
- Shilpa P Rao
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
108
|
Syed N, Martens CA, Hsu WH. Arginine vasopressin increases glutamate release and intracellular Ca2+ concentration in hippocampal and cortical astrocytes through two distinct receptors. J Neurochem 2007; 103:229-37. [PMID: 17877638 DOI: 10.1111/j.1471-4159.2007.04737.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine vasopressin (AVP), released from the CNS, plays an important role in regulating several aspects of CNS functions including aggression, anxiety, and cognition. In this study, we report a novel finding that AVP induces glutamate release from astrocytes isolated from the cerebral cortex and hippocampus. We also investigated the types of AVP receptors involved in the AVP-induced increase in glutamate release from astrocytes isolated from the hippocampus and cortex of neonatal rats. We showed that the AVP (0.1-1000 nmol/L) induced increase in glutamate release and [Ca(2+)](i) is brought about by two distinct subtypes of V(1) receptors (V(1a) and V(1b)). Our results suggested that V(1b) receptors are predominantly expressed in astrocytes isolated from the hippocampus and V(1a) receptors are solely expressed in astrocytes isolated from the cerebral cortex of neonatal rats. The results of the western blot analyses confirmed these pharmacological data. In addition, the AVP-induced increase in glutamate did not contribute to an increase in [Ca(2+)](i), as blockade of metabotropic glutamate receptors did not alter the AVP-induced increase in [Ca(2+)](i). In addition, the administration of a phospholipase A(2) inhibitor failed to alter AVP-induced [Ca(2+)](i) increase suggesting the lack of involvement of this enzyme.
Collapse
Affiliation(s)
- Nasser Syed
- Department of Biomedical Sciences and Interdepartmental Program of Toxicology, Iowa State University, Ames, Iowa, USA
| | | | | |
Collapse
|
109
|
Majumder P, Trujillo CA, Lopes CG, Resende RR, Gomes KN, Yuahasi KK, Britto LRG, Ulrich H. New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 2007; 3:317-31. [PMID: 18404445 PMCID: PMC2072925 DOI: 10.1007/s11302-007-9074-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/09/2007] [Indexed: 05/07/2023] Open
Abstract
Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system and participate in the synaptic process particularly associated with acetylcholine, GABA, and glutamate neurotransmission. As a result of activation, the P2 receptors promote the elevation of free intracellular calcium concentration as the main signaling pathway. Purinergic signaling is present in early stages of embryogenesis and is involved in processes of cell proliferation, migration, and differentiation. The use of new techniques such as knockout animals, in vitro models of neuronal differentiation, antisense oligonucleotides to induce downregulation of purinergic receptor gene expression, and the development of selective inhibitors for purinergic receptor subtypes contribute to the comprehension of the role of purinergic signaling during neurogenesis. In this review, we shall discuss the participation of purinergic receptors in developmental processes and in brain physiology, including neuron-glia interactions and pathophysiology.
Collapse
Affiliation(s)
- Paromita Majumder
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Stamatakis M, Mantzaris NV. Astrocyte signaling in the presence of spatial inhomogeneities. CHAOS (WOODBURY, N.Y.) 2007; 17:033123. [PMID: 17903005 DOI: 10.1063/1.2767409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the proposed model can help in the formulation of testable hypotheses to explain the observed abnormal wave propagation in pathological situations.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
111
|
Schipke CG, Heidemann A, Skupin A, Peters O, Falcke M, Kettenmann H. Temperature and nitric oxide control spontaneous calcium transients in astrocytes. Cell Calcium 2007; 43:285-95. [PMID: 17698190 DOI: 10.1016/j.ceca.2007.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 02/02/2023]
Abstract
Transient spontaneous increases in the intracellular Ca2+ concentration have been frequently observed in astrocytes in cell culture and in acutely isolated slices from several brain regions. Recent in vivo experiments, however, reported only a low frequency of spontaneous Ca2+ events in astrocytes. Since the ex vivo experiments were usually performed at temperatures lower than physiological body temperature, we addressed the question whether temperature could influence the spontaneous Ca2+ activity in astrocytes. Indeed, comparing the frequency and spike width of spontaneous Ca2+ transients in astrocytes at temperatures between 20 and 37 degrees C in culture as well as in acute cortical slices from mouse brain, revealed that spontaneous Ca2+ responses occurred frequently at low temperature and became less frequent at higher temperature. Moreover, the single Ca2+ events had a longer duration at low temperature. We found that nitric oxide (NO) mimicked the increase in spontaneous Ca2+ activity and that an NO-synthase inhibitor attenuated the effect of lowering the temperature. Thus, temperature and NO are major determinants of spontaneous astrocytic Ca2+ signalling.
Collapse
Affiliation(s)
- Carola G Schipke
- Charité University Medicine Berlin, Department of Psychiatry and Psychotherapy, CBF, Eschenallee 3, 14050 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
112
|
Lee KH, Kristic K, van Hoff R, Hitti FL, Blaha C, Harris B, Roberts DW, Leiter JC. High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Brain Res 2007; 1162:121-9. [PMID: 17618941 DOI: 10.1016/j.brainres.2007.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/30/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for Parkinson's disease; however, the mechanism whereby DBS ameliorates the symptoms of Parkinson's disease remains an area of intense research. In the present study, we investigated the hypothesis that the neurotransmitter glutamate is released within the STN during high-frequency stimulation (HFS) of the STN. Direct measurements of extracellular glutamate concentration in the STN were made using a dual enzyme-based electrochemical sensor. The studies were carried out in ketamine/xylazine anesthetized rats placed in a Kopf stereotaxic head frame. Various electrical stimulations (100-micros cathodic pulses; 100-3000 microA; 10- to 1000-Hz frequency; 5-s to 60-min stimulus durations) using bipolar stimulating electrodes were delivered to the STN. Stimulation of the STN elevated the concentration of glutamate in the STN. The concentration of glutamate rose quickly during HFS, remained elevated for the duration of stimulation, and descended slowly towards baseline upon cessation of stimulation. Elevation of the extracellular concentration of glutamate in the STN may be an important mechanism whereby DBS in the STN improves the symptoms of Parkinson's disease. Furthermore, our data argue against the hypothesis that DBS works primarily by electrotonic inhibition of the stimulated structure.
Collapse
Affiliation(s)
- Kendall H Lee
- Department of Neurosurgery, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55902, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
114
|
Sun S, Cao H, Han M, Li TT, Pan HL, Zhao ZQ, Zhang YQ. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 2007; 129:64-75. [PMID: 17123734 DOI: 10.1016/j.pain.2006.09.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/23/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
Fractalkine, a chemokine binding to only one known receptor CX3CR1, has recently been proposed to be a neuron-to-glia signal in the spinal cord leading to microglial activation and glially dependent pain facilitation. The previous studies explored that blockade of endogenous fractalkine, using anti-CX3CR1 neutralizing antibody, dose-dependently attenuated neuropathic pain. The present study examined the role of endogenous fractalkine in inflammatory pain. Intra-articular injection of complete Freund's adjuvant (CFA)-induced rat ankle joint monoarthritis (MA) model was used. Western blot analysis revealed that CX3CR1 expression in the spinal cord was significantly increased following CFA-induced MA. Intrathecal injection of anti-CX3CR1 neutralizing antibody both delayed the development of mechanical allodynia and thermal hyperalgesia, and reversed established pain facilitation. Furthermore, blockade of CX3CR1 significantly suppressed activation of spinal glia, especially microglia, evoked by MA. These data provided new evidence for the contribution of endogenous fractalkine to the initiation and early maintenance of inflammatory pain facilitation via activating spinal microglia.
Collapse
Affiliation(s)
- Shan Sun
- Institutes of Brain Science, Institute of Neurobiology, Fudan University, 138 Yixueyuan, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
115
|
Tanaka M, Kawahara K, Kosugi T, Yamada T, Mioka T. Changes in the spontaneous calcium oscillations for the development of the preconditioning-induced ischemic tolerance in neuron/astrocyte co-culture. Neurochem Res 2007; 32:988-1001. [PMID: 17401678 DOI: 10.1007/s11064-006-9259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Spontaneous Ca(2+) oscillations are believed to contribute to the regulation of gene expression. Here we investigated whether and how the dynamics of Ca(2+) oscillations changed after sublethal preconditioning (PC) for PC-induced ischemic tolerance in neuron/astrocyte co-cultures. The frequency of spontaneous Ca(2+) oscillations significantly decreased between 4 and 8 h after the end of PC in both neurons and astrocytes. Treatment with 2-APB, an inhibitor of IP3 receptors, decreased the oscillatory frequency, induced ischemic tolerance and a down-regulation of glutamate transporter GLT-1 contributing to the increase in the extracellular glutamate during ischemia. The expression of GLT-1 is known to be up-regulated by PACAP. Treatment with PACAP38 increased the oscillatory frequency, and antagonized both the PC-induced down-regulation of GLT-1 and ischemic tolerance. These results suggested that the PC suppressed the spontaneous Ca(2+) oscillations regulating the gene expressions of various proteins, especially of astrocytic GLT-1, for the development of the PC-induced ischemic tolerance.
Collapse
Affiliation(s)
- Motoki Tanaka
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
116
|
Pangrsic T, Potokar M, Haydon PG, Zorec R, Kreft M. Astrocyte swelling leads to membrane unfolding, not membrane insertion. J Neurochem 2007; 99:514-23. [PMID: 17029603 DOI: 10.1111/j.1471-4159.2006.04042.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms mediating the release of chemical transmitters from astrocytes are the subject of intense research. Recent experiments have shown that hypotonic conditions stimulate the release of glutamate and ATP from astrocytes, but a mechanistic understanding of this process is not available. To determine whether hypotonicity activates the process of regulated exocytosis, we monitored membrane capacitance by the whole-cell patch-clamp technique whilst a hypotonic medium was applied to cultured astrocytes. If exocytosis is triggered under hypotonic conditions, as it is following increases in cytosolic calcium, a net increase in membrane surface area, monitored by measuring the whole-cell membrane capacitance, is expected. Simultaneous measurements of cell size and whole-cell membrane conductance and surface area demonstrated that hypotonic medium (210 mOsm for 200 s) resulted in an increase in membrane conductance and in the swelling of cultured astrocytes by an average of 40%, as monitored by cell cross-sectional area, but without any corresponding change in membrane surface area. As we have demonstrated that capacitance measurements have the sensitivity to detect increases in cell surface area as small as 0.5%, we conclude that cell swelling occurs via an exocytosis-independent mechanism, probably involving the unfolding of the plasma membrane.
Collapse
Affiliation(s)
- Tina Pangrsic
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
117
|
Floyd CL, Lyeth BG. Astroglia: important mediators of traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:61-79. [PMID: 17618970 DOI: 10.1016/s0079-6123(06)61005-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) research to date has focused almost exclusively on the pathophysiology of injured neurons with very little attention paid to non-neuronal cells. However in the past decade, exciting discoveries have challenged this century-old view of passive glial cells and have led to a reinterpretation of the role of glial cells in central nervous system (CNS) biology and pathology. In this chapter we review several lines of evidence, indicating that glial cells, particularly astrocytes, are active partners to neurons in the brain, and summarize recent findings that detail the significance of astrocyte pathology in traumatic brain injury.
Collapse
Affiliation(s)
- Candace L Floyd
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, 547 Spain Rehabilitation Center, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | | |
Collapse
|
118
|
Zhu Z, Zhang Q, Yu Z, Zhang L, Tian D, Zhu S, Bu B, Xie M, Wang W. Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 2007; 55:546-58. [PMID: 17243097 DOI: 10.1002/glia.20476] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Astrogliosis occurs in a variety of neuropathological disorders and injuries, and excessive astrogliosis can be devastating to the recovery of neuronal function. In this study, we asked whether reactive astrogliosis can be suppressed in the lesion area by cell cycle inhibition and thus have therapeutic benefits. Reactive astrogliosis induced in either cultured astrocytes by hypoxia or scratch injury, or in a middle cerebral artery occlusion (MCAO) ischemia model were combined to address this issue. In the cultured astrocytes, hypoxia induced a cell cycle activation that was associated with upregulation of the proliferating cell nuclear marker (PCNA). Significantly, the cell cycle inhibitor, olomoucine, inhibited hypoxia-induced cell cycle activation by arresting the cells at G1/S and G2/M in a dose-dependent manner and also reversed hypoxia-induced upregulation of PCNA. Also in the cultured astrocytes, scratch injury induced reactive astrogliosis, such as hypertrophy and an increase in BrdU(+) astrocytes, both of which were ameliorated by olomoucine. In the MCAO ischemia mouse model, dense reactive glial fibrillary acidic protein and PCNA immunoreactivity were evident at the boundary zone of focal cerebral ischemia at days 7 and 30 after MCAO. We found that intraperitoneal olomoucine administration significantly inhibited these astrogliosis-associated changes. To demonstrate further that cell cycle regulation impacts on astrogliosis, cyclin D1 gene knockout mice (cyclin D1(-/-)) were subjected to ischemia, and we found that the percentage of Ki67-positive astrocytes in these mice was markedly reduced in the boundary zone. The number of apoptotic neurons and the lesion volume in cyclin D1(-/-) mice also decreased as compared to cyclin D1(+/+) and cyclin D1(+/-) mice at days 3, 7, and 30 after local cerebral ischemia. Together, these in vitro and in vivo results strongly suggest that astrogliosis can be significantly affected by cell cycle inhibition, which therefore emerges as a promising intervention to attenuate reactive glia-related damage to neuronal function in brain pathology.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
YAN HU, SHIGA HATSUKI, ITO ETSURO, TSUJII KAORU. CELL CULTURES ON A SUPER WATER-REPELLENT ALKYLKETENE DIMER SURFACE. INTERNATIONAL JOURNAL OF NANOSCIENCE 2006. [DOI: 10.1142/s0219581x06005297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fractal alkylketene dimer (AKD) surface is an artificial super water-repellent one with a high contact angle of 174°, therefore, may provide special surface circumstances for studies of biological cells such as cell cultures. The experimental results indicated that the distribution of F-actin in the astrocytes cultured on the fractal AKD-coated dishes showed the stellate shape, while that in the astrocytes cultured on the poly-L-lysine-coated coverslips showed the formation of long alignment. The morphological change of astrocytes is induced by the fractal AKD surface, and the result suggests that astrocyte differentiation is stimulated by the fractal AKD surface.
Collapse
Affiliation(s)
- HU YAN
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - HATSUKI SHIGA
- Division of Biological Sciences, Graduate School of Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - ETSURO ITO
- Division of Biological Sciences, Graduate School of Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - KAORU TSUJII
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
120
|
Fiacco TA, McCarthy KD. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 2006; 54:676-690. [PMID: 17006896 DOI: 10.1002/glia.20396] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The possibility that astrocytes are involved in brain signaling began to emerge in the late 1970s, when it was first shown that astroglia in vitro possess numerous receptors for neurotransmitters. It was later demonstrated that cultured astroglia and astrocytes in situ respond to neurotransmitters with increases in intracellular second messengers, including cyclic AMP and calcium. Astrocyte calcium responses have since been extensively studied both in culture and in intact tissue. We continue to gather information regarding the various compounds able to trigger astrocyte calcium increases, as well as the mechanisms involved in their initiation, propagation as a calcium wave within and between astrocytes, and effects on signaling within the brain. This review will focus on each of these aspects of astrocyte calcium regulation, and attempt to sort out which effects are more likely to occur in developmental, pathological, and physiological conditions. While we have come far in our understanding of the properties or potential of astrocytes' ability to signal to neurons using our array of pharmacological tools, we still understand very little regarding the level of involvement of astrocyte signaling in normal brain physiology.
Collapse
Affiliation(s)
- Todd A Fiacco
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ken D McCarthy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
121
|
Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V. Vesicular transmitter release from astrocytes. Glia 2006; 54:700-715. [PMID: 17006898 DOI: 10.1002/glia.20367] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes can release a variety of transmitters, including glutamate and ATP, in response to stimuli that induce increases in intracellular Ca(2+) levels. This release occurs via a regulated, exocytotic pathway. As evidence of this, astrocytes express protein components of the vesicular secretory apparatus, including synaptobrevin 2, syntaxin, and SNAP-23. Additionally, astrocytes possess vesicular organelles, the essential morphological elements required for regulated Ca(2+)-dependent transmitter release. The location of specific exocytotic sites on these cells, however, remains to be unequivocally determined.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Erik B Malarkey
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Claudia Verderio
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Michela Matteoli
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Vladimir Parpura
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| |
Collapse
|
122
|
Shiga H, Murakami J, Nagao T, Tanaka M, Kawahara K, Matsuoka I, Ito E. Glutamate release from astrocytes is stimulated via the appearance of exocytosis during cyclic AMP-induced morphologic changes. J Neurosci Res 2006; 84:338-47. [PMID: 16683228 DOI: 10.1002/jnr.20885] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies have shown that astrocytes release various transmitters including glutamate and thus directly affect synaptic neurotransmission. The mechanisms involved in the release of glutamate from astrocytes remain unclear, however. In the present study, we examined differences in 1) the amount of glutamate released, 2) the appearance of exocytosis, and 3) the expression of SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor) proteins between cyclic AMP-treated and non-treated astrocytes in culture. Extracellular glutamate was detected in the recording solution of cyclic AMP-treated astrocytes after stimulation with ATP by high-performance liquid chromatography and NADH imaging. Exocytosis, which was observed by FM1-43 imaging, appeared in cyclic AMP-treated astrocytes in a punctiform fashion, but not in non-treated cells, after stimulation with ATP and glutamate. Immunocytochemistry and Western blotting showed that the amount of SNARE proteins increased during cAMP-induced morphologic changes, and in particular, a v-SNARE, synaptobrevin, appeared as punctiform staining in the cytosol of cyclic AMP-treated astrocytes. These findings show that astrocytes acquire SNARE proteins during cyclic AMP-induced differentiation, and suggest that glutamate is released by exocytosis in cyclic AMP-treated astrocytes in response to ATP released from neighboring neurons and astrocytes.
Collapse
Affiliation(s)
- Hatsuki Shiga
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
From a structural perspective, the predominant glial cell of the central nervous system, the astrocyte, is positioned to regulate synaptic transmission and neurovascular coupling: the processes of one astrocyte contact tens of thousands of synapses, while other processes of the same cell form endfeet on capillaries and arterioles. The application of subcellular imaging of Ca2+ signaling to astrocytes now provides functional data to support this structural notion. Astrocytes express receptors for many neurotransmitters, and their activation leads to oscillations in internal Ca2+. These oscillations induce the accumulation of arachidonic acid and the release of the chemical transmitters glutamate, d-serine, and ATP. Ca2+ oscillations in astrocytic endfeet can control cerebral microcirculation through the arachidonic acid metabolites prostaglandin E2 and epoxyeicosatrienoic acids that induce arteriole dilation, and 20-HETE that induces arteriole constriction. In addition to actions on the vasculature, the release of chemical transmitters from astrocytes regulates neuronal function. Astrocyte-derived glutamate, which preferentially acts on extrasynaptic receptors, can promote neuronal synchrony, enhance neuronal excitability, and modulate synaptic transmission. Astrocyte-derived d-serine, by acting on the glycine-binding site of the N-methyl-d-aspartate receptor, can modulate synaptic plasticity. Astrocyte-derived ATP, which is hydrolyzed to adenosine in the extracellular space, has inhibitory actions and mediates synaptic cross-talk underlying heterosynaptic depression. Now that we appreciate this range of actions of astrocytic signaling, some of the immediate challenges are to determine how the astrocyte regulates neuronal integration and how both excitatory (glutamate) and inhibitory signals (adenosine) provided by the same glial cell act in concert to regulate neuronal function.
Collapse
Affiliation(s)
- Philip G Haydon
- Silvio Conte Center for Integration at the Tripartite Synapse, Department of Neuroscience, University of Pennsylvania School of Medicine, PA 19104, USA.
| | | |
Collapse
|
124
|
Yamada T, Kawahara K, Kosugi T, Tanaka M. Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem Res 2006; 31:49-56. [PMID: 16474996 DOI: 10.1007/s11064-005-9077-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
In the brain, prior sublethal ischemia (preconditioning, PC) produces tolerance of neurons to subsequent lethal ischemia. This study aims at elucidating whether and how nitric oxide (NO) produced during PC is involved in the PC-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures. The rise in the extracellular concentration of glutamate during ischemia caused by the reversed uptake of glutamate (Glu) by the astrocytic Glu transporter GLT-1 was markedly suppressed by the prior PC treatment, but the suppression was reversed by treatment with an inhibitor of nitric oxide synthase (NOS) during PC. Immunocytochemical and Western blot analyses demonstrated that the expression of GLT-1 was down-regulated after the PC insult, and this down-regulation was also antagonized by treatment with NOS inhibitors during PC. Here we show that nNOS-derived NO produced during PC was crucial for the down-regulation of astrocytic GLT-1, and this down-regulation coincided with an increased survival rate of neurons.
Collapse
Affiliation(s)
- Takeshi Yamada
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | | | | | | |
Collapse
|
125
|
Kosugi T, Kawahara K. Reversed Actrocytic GLT-1 during Ischemia is Crucial to Excitotoxic Death of Neurons, but Contributes to the Survival of Astrocytes themselves. Neurochem Res 2006; 31:933-43. [PMID: 16830212 DOI: 10.1007/s11064-006-9099-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
During ischemia, the operation of astrocytic/neuronal glutamate transporters is reversed and glutamate and Na(+) are co-transported to the extracellular space. This study aims to investigate whether this reversed operation of glutamate transporters has any functional meanings for astrocytes themselves. Oxygen/glucose deprivation (OGD) of neuron/astrocyte co-cultures resulted in the massive death of neurons, and the cell death was significantly reduced by treatment with either AP5 or DHK. In cultured astrocytes with little GLT-1 expression, OGD produced Na(+) overload, resulting in the reversal of astrocytic Na(+)/Ca(2+)-exchanger (NCX). The reversed NCX then caused Ca(2+) overload leading to the damage of astrocytes. In contrast, the OGD-induced Na(+) overload and astrocytic damage were significantly attenuated in PACAP-treated astrocytes with increased GLT-1 expression, and the attenuation was antagonized by treatment with DHK. These results suggested that the OGD-induced reversal of GLT-1 contributed to the survival of astrocytes themselves by releasing Na(+) with glutamate via reversed GLT-1.
Collapse
Affiliation(s)
- Tatsuro Kosugi
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | | |
Collapse
|
126
|
Rao SP, Sikdar SK. Astrocytes in 17beta-estradiol treated mixed hippocampal cultures show attenuated calcium response to neuronal activity. Glia 2006; 53:817-26. [PMID: 16565986 DOI: 10.1002/glia.20341] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glial cells in the brain are capable of responding to hormonal signals. The ovarian steroid hormone 17beta-estradiol, in addition to its actions on neurons, can directly affect glial cells. Estrogen receptors have been described on both neurons and astrocytes, suggesting a complex interplay between these two in mediating the effects of the hormone. Astrocytes sense and respond to neuronal activity with a rise in intracellular calcium concentration ([Ca(2+)](i)). Using simultaneous electrophysiology and calcium imaging techniques, we monitored neuronal activity evoked astrocyte ([Ca(2+)](i)) changes in mixed hippocampal cultures loaded with fluo-3 AM. Action potential firing in neurons, elicited by injecting depolarizing current pulses, was associated with ([Ca(2+)](i)) elevations in astrocytes, which could be blocked by 200 microM MCPG and also 1 microM TTX. We compared astrocytic ([Ca(2+)](i)) transients in control and 24-hour estradiol treated cultures. The amplitude of the ([Ca(2+)](i)) transient, the number of responsive astrocytes, and the ([Ca(2+)](i)) wave velocity were all significantly reduced in estradiol treated cultures. ([Ca(2+)](i)) rise in astrocytes in response to local application of the metabotropic glutamate receptor (mGluR) agonist t-ACPD was attenuated in estradiol treated cultures, suggesting functional changes in the astrocyte mGluR following 24-h treatment with estradiol. Since astrocytes can modulate synaptic transmission by release of glutamate, the attenuated ([Ca(2+)](i)) response seen following estradiol treatment could have functional consequences on astrocyte-neuron signaling.
Collapse
Affiliation(s)
- Shilpa P Rao
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
127
|
Abstract
Activity-dependent release of ATP from synapses, axons and glia activates purinergic membrane receptors that modulate intracellular calcium and cyclic AMP. This enables glia to detect neural activity and communicate among other glial cells by releasing ATP through membrane channels and vesicles. Through purinergic signalling, impulse activity regulates glial proliferation, motility, survival, differentiation and myelination, and facilitates interactions between neurons, and vascular and immune system cells. Interactions among purinergic, growth factor and cytokine signalling regulate synaptic strength, development and responses to injury. We review the involvement of ATP and adenosine receptors in neuron-glia signalling, including the release and hydrolysis of ATP, how the receptors signal, the pharmacological tools used to study them, and their functional significance.
Collapse
Affiliation(s)
- R Douglas Fields
- National Institute of Child Health and Human Development, National Institutes of Health, Building 35, Room 2A211, MSC 3713, 35 Lincoln Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
128
|
González A, Granados MP, Pariente JA, Salido GM. H2O2 mobilizes Ca2+ from agonist- and thapsigargin-sensitive and insensitive intracellular stores and stimulates glutamate secretion in rat hippocampal astrocytes. Neurochem Res 2006; 31:741-750. [PMID: 16794860 DOI: 10.1007/s11064-006-9078-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2006] [Indexed: 11/26/2022]
Abstract
The effect of hydrogen peroxide (H2O2) on cytosolic free calcium concentration ([Ca2+]c) as well as its effect on glutamate secretion in rat hippocampal astrocytes have been the aim of the present research. Our results show that 100 microM H2O2 induces an increase in [Ca2+]c, that remains at an elevated level while the oxidant is present in the perfusion medium, due to its release from intracellular stores as it was observed in the absence of extracellular Ca2+, followed by a significant increase in glutamate secretion. Ca2+-mobilization in response to the oxidant could only be reduced by thapsigargin plus FCCP, indicating that the Ca2+-mobilizable pool by H2O2 includes both endoplasmic reticulum and mitochondria. We conclude that ROS in hippocampal astrocytes might contribute to an elevation of resting [Ca2+]c which, in turn, could lead to a maintained secretion of the excitatory neurotransmitter glutamate, which has been considered a situation potentially leading to neurotoxicity in the hippocampus.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology, University of Extremadura, Avenida Universidad s/n, E-10071 Cáceres, Spain.
| | | | | | | |
Collapse
|
129
|
Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 2006; 187:321-7. [PMID: 16734769 DOI: 10.1111/j.1748-1716.2006.01568.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An injury often starts with acute physiological pain, which becomes inflammatory or neuropathic, and may sometimes become chronic. It has been proposed recently that activated glial cells, astrocytes and microglia within the central nervous system could maintain the pain sensation even after the original injury or inflammation has healed, and convert it into chronic by altering neuronal excitability. Glial cell activation has also been proposed to be involved in the phenomenon of spread of pain sensation ipsilaterally or to the contralateral side (i.e. mirror image pain). Substance P and calcitonin gene-related peptide, released due to an inflammatory process, interact with the endothelial cells of the blood-spinal cord and blood-brain barriers. The barriers open partially and substances may influence adjacent glial cells. Such substances are also released from neurones carrying the 'pain message' all the way from the injury to the cerebral cortex. Pro-inflammatory cytokines may be released from the microglial cells, and astroglial Ca2+-transients or oscillations may spread within the astroglial networks. One theory is that Ca2+-oscillations could facilitate the formation of new synapses. These new synapses could establish neuronal contacts for maintaining and spreading the pain sensation. If this theory holds true, it is possible that Ca2+ waves, production of cytokines and growth factors could be modified by selective anti-inflammatory drugs to achieve a balance in the activities of the different intercellular and intracellular processes. This paper reviews current knowledge about glial mechanisms underlying the phenomena of chronic pain and spread of the pain sensation.
Collapse
Affiliation(s)
- E Hansson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| |
Collapse
|
130
|
Stamatakis M, Mantzaris NV. Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 2006; 241:649-68. [PMID: 16460762 DOI: 10.1016/j.jtbi.2006.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/12/2005] [Accepted: 01/03/2006] [Indexed: 11/17/2022]
Abstract
Astrocytes, a special type of glial cells, were considered to have supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by neurotransmitters and use a form of signaling, in which ATP acts as an extracellular messenger. Pathological conditions, such as spreading depression, have been linked to abnormal range of wave propagation in astrocytic cellular networks. Nevertheless, the underlying intra- and inter-cellular signaling mechanisms remain unclear. Motivated by the above, we constructed a model to understand the relationship between single-cell signal transduction mechanisms and wave propagation and blocking in astrocytic networks. The model incorporates ATP-mediated IP3 production, the subsequent Ca2+ release from the ER through IP3R channels and ATP release into the extracellular space. For the latter, two hypotheses were tested: Ca2+- or IP3-dependent ATP release. In the first case, single astrocytes can exhibit excitable behavior and frequency-encoded oscillations. Homogeneous, one-dimensional astrocytic networks can propagate waves with infinite range, while in two dimensions, spiral waves can be generated. However, in the IP3-dependent ATP release case, the specific coupling of the driver ATP-IP3 system with the driven Ca2+ subsystem leads to one- and two-dimensional wave patterns with finite range of propagation.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
131
|
Kosugi T, Kawahara K, Yamada T, Nakajima T, Tanaka M. Functional significance of the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem Res 2006; 30:1109-16. [PMID: 16292503 DOI: 10.1007/s11064-005-8219-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
In the brain, prior sublethal ischemia (preconditioning, PC) is known to produce tolerance of neurons to subsequent lethal ischemia. This study aims at elucidating what alterations were induced in neurons and/or astrocytes by PC treatment. The rise in the extracellular concentration of glutamate during ischemia was markedly suppressed by the prior PC treatment. Immunocytochemical and Western blot analyses demonstrated that the expression of the astrocytic glutamate transporter GLT-1 was transiently down-regulated after the PC insult. The PC insult possibly suppressed the neuron-derived factors up-regulating GLT-1. Here we show that PC-induced down-regulation of GLT-1 is crucial for the increased neuronal resistance to subsequent severe ischemic insult.
Collapse
Affiliation(s)
- Tatsuro Kosugi
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, 060-0814, Sapporo, Japan
| | | | | | | | | |
Collapse
|
132
|
Saheki Y, Li ST, Matsushita M, Wu YM, Cai WH, Wei FY, Lu YF, Moriwaki A, Tomizawa K, Matsui H. A new approach to inhibiting astrocytic IP3-induced intracellular calcium increase in an astrocyte-neuron co-culture system. Brain Res 2006; 1055:196-201. [PMID: 16099437 DOI: 10.1016/j.brainres.2005.06.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/15/2005] [Accepted: 06/16/2005] [Indexed: 11/24/2022]
Abstract
Astrocytes exhibit dynamic Ca2+ mobilization, such as Ca2+ wave and Ca2+ oscillation, via an inositol 1,4,5-triphosphate-induced Ca2+ release (IICR)-dependent mechanism. The physiological functions of astrocytic Ca2+ mobilization, however, are poorly understood. To investigate this issue, we created a plasmid encoding an enhanced green fluorescent protein-tagged inositol 1,4,5-triphosphate absorbent protein and expressed it in cultured astrocytes. Expression of this protein inhibited both IICR and the Ca2+ wave in cultured astrocytes. By combining this method to the single cell electroporation technique, we were able to inhibit IICR specifically in astrocytes in an astrocyte-neuron co-culture system. Our approach provides a useful tool for direct examination of the physiological role of astrocytic Ca2+ signaling on neuronal function.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Physiology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
HIRANO A. Development of Biosensing Methods for Extracellular Neuronal Messengers and Their Application to In Situ Detection in Acute Brain Slices. BUNSEKI KAGAKU 2006. [DOI: 10.2116/bunsekikagaku.55.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ayumi HIRANO
- Division of Neurophysiology, National Institute for Medical Research
| |
Collapse
|
134
|
Abstract
According to the astrocyte-neurone-lactate shuttle (ANLS) hypothesis, activated neurones use lactate released by astrocytes as their energy substrate. The hypothesis, based largely on in vitro experiments, postulates that lactate is derived from the uptake by astrocytes of synaptically released glutamate. The time course of changes in lactate, derived from in vivo experiments, is incompatible with the ANLS model. Neuronal activation leads to a delayed rise in lactate followed by a slow decay, which greatly outlasts the period of neuronal activation. The present review proposes that the uptake of stimulated glutamate release from astrocytes, rather than synaptically released glutamate, is the source of lactate released following neuronal activation. This rise in lactate occurs too late to provide energy for neuronal activity. Furthermore, there is no evidence that lactate undergoes local oxidative phosphorylation. In conclusion, under physiological conditions, there is no evidence that lactate is a significant source of energy for activated neurones.
Collapse
Affiliation(s)
- Marianne Fillenz
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
135
|
Fillenz M. In vivo neurochemical monitoring and the study of behaviour. Neurosci Biobehav Rev 2005; 29:949-62. [PMID: 15963566 DOI: 10.1016/j.neubiorev.2005.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 12/31/2022]
Abstract
In vivo neurochemical monitoring techniques measure changes in the extracellular compartment of selected brain regions. These changes reflect the release of chemical messengers and intermediates of brain energy metabolism resulting from the activity of neuronal assemblies. The two principal techniques used in neurochemical monitoring are microdialysis and voltammetry. The presence of glutamate in the extracellular compartment and its pharmacological characteristics suggest that it is released from astrocytes and acts as neuromodulator rather than a neurotransmitter. The changes in extracellular noradrenaline and dopamine reflect their role in the control of behaviour. Changes in glucose and oxygen, the latter a measure of local cerebral blood flow, reflect synaptic processing in the underlying neuronal networks rather than a measure of efferent output from the brain region. In vivo neurochemical monitoring provides information about the intermediate processing that intervenes between the application of the stimulus and the resulting behaviour but does not reflect the final efferent output that leads to behaviour.
Collapse
Affiliation(s)
- Marianne Fillenz
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
136
|
de Lanerolle NC, Lee TS. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 2005; 7:190-203. [PMID: 16098816 DOI: 10.1016/j.yebeh.2005.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/01/2005] [Indexed: 11/27/2022]
Abstract
This review summarizes the salient features of the anatomical and molecular neuropathology of the hippocampus from patients with intractable temporal lobe epilepsy (TLE). It argues that sclerotic hippocampus is essential for seizure expression and that sclerosis is not a consequence of seizures, but is related to the epileptogenicity of the seizure focus. While neurons in sclerotic hippocampus may contribute to hippocampal hyperexcitability, this role is perhaps less important than that of the astrocytes. The astrocytes in sclerotic hippocampus may directly influence excitability through altered water homeostasis and K+ buffering by redistribution of AQP4 transporters on their plasma membrane. It is proposed that they contribute to a high extracellular glutamate level through reduced glutamine synthetase, and activation through pro-inflammatory factors that release chemokines and cytokines, which enhance calcium-dependent glutamate release. Such a focal pool of glutamate may diffuse to surrounding neuron-rich areas to generate seizure activity in TLE.
Collapse
Affiliation(s)
- Nihal C de Lanerolle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
137
|
Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6:626-40. [PMID: 16025096 DOI: 10.1038/nrn1722] [Citation(s) in RCA: 1268] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For decades, astrocytes have been considered to be non-excitable support cells of the brain. However, this view has changed radically during the past twenty years. The recent recognition that they are organized in separate territories and possess active properties--notably a competence for the regulated release of 'gliotransmitters', including glutamate--has enabled us to develop an understanding of previously unknown functions for astrocytes. Today, astrocytes are seen as local communication elements of the brain that can generate various regulatory signals and bridge structures (from neuronal to vascular) and networks that are otherwise disconnected from each other. Examples of their specific and essential roles in normal physiological processes have begun to accumulate, and the number of diseases known to involve defective astrocytes is increasing.
Collapse
Affiliation(s)
- Andrea Volterra
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | |
Collapse
|
138
|
Franke H, Illes P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 2005; 109:297-324. [PMID: 16102837 DOI: 10.1016/j.pharmthera.2005.06.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/06/2005] [Indexed: 12/12/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) has been recognized as a ubiquitous, unstable signalling molecule, acting as a fast neurotransmitter and modulator of transmitter release and neuronal excitability. Recent findings have demonstrated that ATP is a growth factor participating in differentiation, cell proliferation, and survival, as well as a toxic agent that mediates cellular degeneration and death. Potential sources of extracellular purines in the nervous system include neurons, glia, endothelium, and blood. A complex family of ectoenzymes rapidly hydrolyzes or interconverts extracellular nucleotides, thereby either terminating their signalling action or producing an active metabolite of altered purinoceptor selectivity. Most effects are mediated through the 2 main subclasses of specific cell surface receptors, P2X and P2Y. Members of these P2X/Y receptor families are widely expressed in the central nervous system (CNS) and are involved in glia-glia and glia-neuron communications, whereby they play important physiological and pathophysiological roles in a variety of biological processes. After different kinds of "acute" CNS injury (e.g., ischemia, hypoxia, mechanical stress, axotomy), extracellular ATP can reach high concentrations, up to the millimolar range, flowing out from cells into the extracellular space, exocytotically, via transmembrane transport, or as a result of cell damage. In this review, P2 receptor activation as a cause or a consequence of neuronal cell activation or death and/or glial activation is described. The involvement of P2 receptors is also described under different "chronic" pathological conditions, such as pain, epilepsia, toxic influence of ethanol or amphetamine, retinal diseases, Alzheimer's disease (AD), and possibly, Parkinson's disease. The relationship between changes in P2 receptor expression and the specific response of different cell types to injury is extremely complex and can be related to detrimental and/or beneficial effects. The present review therefore considers ATP acting via P2 receptors as a potent regulator of normal physiological and pathological processes in the brain, with a focus on pathophysiological implications of P2 receptor functions.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany.
| | | |
Collapse
|
139
|
Zur Nieden R, Deitmer JW. The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. ACTA ACUST UNITED AC 2005; 16:676-87. [PMID: 16079243 DOI: 10.1093/cercor/bhj013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ca2+ oscillations are part of the intra- and intercellular signalling in many cell types. We have studied Ca2+ oscillations in astrocytes in acute brain slices of the hippocampus of juvenile rats (postnatal 8-14 days old), using confocal laser scanning microscopy and bulk-loading of the Ca2+ -sensitive dye Fluo-4. Astrocytes were identified morphologically in the stratum radiatum, and by their Ca2+ response in the absence of external K+. Thirty-five per cent of astrocytes (43 slices) showed spontaneous Ca2+ oscillations, with a frequency of 1.26 +/- 0.11 transients/min (n = 366). These Ca2+ signals were unaffected by tetrodotoxin (0.5 microM) and Ni2+ (2 mM), but were sensitive to interference with the phospholipase C-mediated Ca2+ release from intracellular stores. Spontaneous Ca2+ oscillations were reduced or suppressed by antagonists of metabotropic glutamate receptors (mGluRs) of groups I and II, but not affected by antagonists of group III. Glutamate (1-100 microM) and specific agonists of mGluR groups I and II evoked concentration-dependent Ca2+ signals, which were oscillatory at intermediate concentrations (e.g. at 10 microM glutamate). Our results indicate that mGluRs of both groups I and II are involved in mediating Ca2+ oscillations in astrocytes, which might be glial responses to micromolar changes of glutamate in the extracellular spaces.
Collapse
Affiliation(s)
- Robin Zur Nieden
- Abteilung für Allgemeine Zoologie, FB Biologie, Technische Universität, Postfach 3049, D-67653 Kaiserslautern, Germany
| | | |
Collapse
|
140
|
|
141
|
Haas B, Schipke CG, Peters O, Söhl G, Willecke K, Kettenmann H. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. ACTA ACUST UNITED AC 2005; 16:237-46. [PMID: 15930372 DOI: 10.1093/cercor/bhi101] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin43, the calcium wave did not propagate. In contrast, in the corpus callosum and hippocampus of these mice, the wave propagated as in control animals. In addition to calcium wave propagation in astrocytes, ATP-release was recorded as a calcium signal from 'sniffer cells', a cell line expressing high-affinity purinergic receptors placed on the surface of the slice. The astrocyte calcium wave in the neocortex was accompanied by calcium signals in the 'sniffer cell' population. In the connexin43-deficient mice we recorded calcium signals from sniffer cells also in the absence of an astrocytic calcium wave. Our findings indicate that astrocytes propagate calcium signals by two separate mechanisms depending on the brain region and that ATP release can propagate within the neocortex independent from calcium waves.
Collapse
Affiliation(s)
- Brigitte Haas
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, and Institute of Genetics, Division of Molecular Genetics, University of Bonn, 53117 Bonn, Germany Eschenallee 3, 14050 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
142
|
Rose C, Kresse W, Kettenmann H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem 2005; 280:20937-44. [PMID: 15802262 DOI: 10.1074/jbc.m412448200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.
Collapse
Affiliation(s)
- Christopher Rose
- Max-Delbrück Center for Molecular Medicine, Cellular Neuroscience, 10 Robert-Rössle Strasse, D-13092 Berlin, Germany
| | | | | |
Collapse
|
143
|
Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 2005; 102:5606-11. [PMID: 15800046 PMCID: PMC556243 DOI: 10.1073/pnas.0408483102] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gliotransmitter D-serine is released upon (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and metabotropic glutamate receptor stimulation, but the mechanisms involved are unknown. Here, by using a highly sensitive bioassay to continuously monitor extracellular D-serine levels, we have investigated the pathways used in its release. We reveal that D-serine release is inhibited by removal of extracellular calcium and augmented by increasing extracellular calcium or after treatment with the Ca(2+) ionophore A23187. Furthermore, release of the amino acid is considerably reduced after depletion of thapsigargin-sensitive intracellular Ca(2+) stores or chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester. Interestingly, D-serine release also was markedly reduced by concanamycin A, a vacuolar-type H(+)-ATPase inhibitor, indicating a role for the vesicular proton gradient in the transmitter storage/release. In addition, agonist-evoked D-serine release was sensitive to tetanus neurotoxin. Finally, immunocytochemical and sucrose density gradient analysis revealed that a large fraction of D-serine colocalized with synaptobrevin/VAMP2, suggesting that it is stored in VAMP2-bearing vesicles. In summary, our study reveals the cellular mechanisms subserving D-serine release and highlights the importance of the glial cell exocytotic pathway in influencing CNS levels of extracellular D-serine.
Collapse
Affiliation(s)
- Jean-Pierre Mothet
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 9040, Institut Fédératif de Neurobiologie Alfred Fessard, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
144
|
Shinozaki Y, Koizumi S, Ishida S, Sawada JI, Ohno Y, Inoue K. Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors. Glia 2005; 49:288-300. [PMID: 15494980 DOI: 10.1002/glia.20118] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxidative stress is the main cause of neuronal damage in traumatic brain injury, hypoxia/reperfusion injury, and neurodegenerative disorders. Although extracellular nucleosides, especially adenosine, are well known to protect against neuronal damage in such pathological conditions, the effects of these nucleosides or nucleotides on glial cell damage remain largely unknown. We report that ATP but not adenosine protects against the cell death of cultured astrocytes induced by hydrogen peroxide (H2O2). ATP ameliorated the H2O2-induced decrease in cell viability of astrocytes in an incubation time- and concentration-dependent fashion. Protection by ATP was inhibited by P2 receptor antagonists and was mimicked by P2Y1 receptor agonists but not by adenosine. The expressions of P2Y1 mRNAs and functional P2Y1 receptors in astrocytes were confirmed. Thus, ATP, acting on P2Y1 receptors in astrocytes, showed a protective action against H2O2. The astrocytic protection by the P2Y1 receptor agonist 2-methylthio-ADP was inhibited by an intracellular Ca2+ chelator and a blocker of phospholipase C, indicating the involvement of intracellular signals mediated by Gq/11-coupled P2Y1 receptors. The ATP-induced protection was inhibited by cycloheximide, a protein synthesis inhibitor, and it took more than 12 h for the onset of the protective action. In the DNA microarray analysis, ATP induced a dramatic upregulation of various oxidoreductase genes. Taken together, ATP acts on P2Y1 receptors coupled to Gq/11, resulting in the upregulation of oxidoreductase genes, leading to the protection of astrocytes against H2O2.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Division of Biosignaling, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Kawahara K, Kosugi T, Tanaka M, Nakajima T, Yamada T. Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures. Glia 2005; 49:349-59. [PMID: 15538756 DOI: 10.1002/glia.20114] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sublethal ischemia leads to increased tolerance against subsequent prolonged cerebral ischemia in vivo. In the present study, we investigated the roles of the astrocytic glutamate (Glu) transporter GLT-1 in preconditioning (PC)-induced neuronal ischemic tolerance in cortical neuron/astrocyte co-cultures. Ischemia in vitro was simulated by subjecting cultures to both oxygen and glucose deprivation (OGD). A sublethal OGD (PC) increased the survival rate of neurons significantly when cultures were exposed to a lethal OGD 24 h later. The extracellular concentration of Glu increased significantly during PC, and treatment with an inhibitor of N-methyl-D-actetate (NMDA) receptors significantly reversed the PC-induced ischemic tolerance of neurons, suggesting that the increase in extracellular concentration of Glu during PC was critical to the development of PC-induced neuronal ischemic tolerance via the activation of NMDA receptors. Treatment with a GLT-1 blocker during PC suppressed this increase in Glu significantly, and antagonized the PC-induced neuronal ischemic tolerance. This study suggested that the reversed operation of GLT-1 was crucial to the development of neuronal ischemic tolerance.
Collapse
Affiliation(s)
- Koichi Kawahara
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
| | | | | | | | | |
Collapse
|
146
|
Pakhotin P, Verkhratsky A. Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices. Mol Cell Neurosci 2005; 28:79-84. [PMID: 15607943 DOI: 10.1016/j.mcn.2004.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/10/2004] [Accepted: 08/30/2004] [Indexed: 11/27/2022] Open
Abstract
In the present study, we directly demonstrated electrical coupling between Bergmann glial cells (BG) and Purkinje neurones (PN) in acutely isolated cerebellar slices, prepared from 15 to 30 days old Sprague-Dawley rats. Electrical coupling between these two cells was identified by dual whole-cell voltage clamp, which allowed direct recording of junctional current. Whole-cell recordings from PN-PN, PN-BG and BG-BG pairs were made using Nomarski optics and infrared visualisation, which allowed precise morphological identification of cells. Junctional currents were recorded by applying hyper/and depolarising voltage sequences ranging from -120 to +40 mV (voltage step 10 mV) to one of the cells in the pair, while ion currents were measured from both cells. As has been shown before, junctional currents were frequently observed in BG-BG pairs: we found electrical coupling in 27 out of 34 pairs analysed. When the similar protocol was applied to the PN-BG pairs, junctional currents were found in 61 out of 87 pairs analysed. The electrical coupling was bi-directional as similar junctional currents were observed in PN when voltage step protocol was applied to BG. No electrical coupling was observed in PN-PN pairs (n = 21). To correlate the appearance of these currents with gap junctions we treated slices with octanol (200 microM) or halothane (500 microM)-known inhibitors of gap junction conductance. Both agents applied for 5 min resulted in a complete inhibition of junctional currents in PN-BG pair. The washout (15 min) led to a complete recovery of junctional currents after treatment with octanol; the action of halothane was irreversible. Finally, we found that filling the BG by Alexa Fluor 488 results in staining of adjacent PN (in 11 out of 23 pairs tested). We conclude therefore that cerebellar neurones and glial cells are directly connected via gap junctions.
Collapse
Affiliation(s)
- Pavel Pakhotin
- The University of Manchester, School of Biological Sciences, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
147
|
Abstract
Neurons of the central nervous system (CNS) are endowed with ATP-sensitive receptors belonging to the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. Whereas a number of P2X receptors mediate fast synaptic responses to the transmitter ATP, P2Y receptors mediate either slow changes of the membrane potential in response to non-synaptically released ATP or the interaction with receptors for other transmitters. To date seven P2X and seven P2Y receptors of human origin have been molecularly identified and functionally characterized. P2X subunits may occur as homooligomers or as heterooligomeric assemblies of more than one subunit. P2X(7) subunits do not form heterooligomeric assemblies and are unique in mediating apoptosis and necrosis of glial cells and possibly also of neurons. The P2X(2), P2X(4), P2X(4)/P2X(6) and P2Y(1) receptors appear to be the predominant neuronal types. The localisation of these receptors may be at the somato-dendritic region (postsynaptic) or at the nerve terminals (presynaptic). Postsynaptic P2 receptors appear to be mostly excitatory, while presynaptic P2 receptors may be either excitatory (P2X) or inhibitory (P2Y). Since in the CNS the stimulation of a single neuron may activate multiple networks, a concomitant stimulation of facilitatory and inhibitory circuits as a result of ATP release is also possible. Finally, the enzymatic degradation of ATP may lead to the local generation of adenosine which can modulate via A(1) or A(2A) receptor-activation the ATP effect.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institute of Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | | |
Collapse
|
148
|
Fellin T, Carmignoto G. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 2004; 559:3-15. [PMID: 15218071 PMCID: PMC1665073 DOI: 10.1113/jphysiol.2004.063214] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Astrocytes can respond to neurotransmitters released at the synapse by generating elevations in intracellular Ca(2+) concentration ([Ca(2+)](i)) and releasing glutamate that signals back to neurones. This discovery opens new perspectives for the possible participation of these glial cells in actual information processing by the brain and raises the hypothesis that astrocyte activation by neuronal signals plays a key role in distinct, functional events. Depending on the level of neuronal activity, the [Ca(2+)](i) response that is activated by neurotransmitters can either remain restricted to an astrocytic process or it can propagate as an intracellular [Ca(2+)](i) wave to other astrocytic processes in contact with different neurones, astrocytes, microglia or endothelial cells of cerebral arterioles. Glutamate release triggered by the [Ca(2+)](i) rise at the astrocytic process represents a feedback, short-distance signal that affects synaptic transmission locally. The release of glutamate as well as of other compounds far away from the site of initial activation represents a feedforward, long-distance signal that can be involved in the regulation of distinct processes. For instance, through the release of vasoactive molecules from the astrocytic processes in contact with cerebral arterioles, the neurone-astrocyte-endothelial cell signalling pathway plays a pivotal role in the neuronal control of vascular tone. In this article we will review recent results that should persuade us to reshape our current thinking on the roles of astroglial cells in the brain. We propose that neurones and astrocytes represent an integral unit that has a distinctive role in different fundamental events in brain function. Furthermore, while recent findings provide important evidences for the vesicular hypothesis of glutamate release, we discuss also the proposals for a possible physiological role of hemichannels and purinergic P2X(7) receptors in glutamate release from astrocytes. A full clarification of the functional significance of the bidirectional communication that astrocytes establish with neurones as well as with other brain cells represents one of the most intriguing challenges in neurobiological research at the moment and should fuel stimulating debates in years to come.
Collapse
Affiliation(s)
- Tommaso Fellin
- Istituto CNR di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | |
Collapse
|
149
|
Recknor JBJB, Recknor JCJC, Sakaguchi DSDS, Mallapragada SKSK. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 2004; 25:2753-67. [PMID: 14962554 DOI: 10.1016/j.biomaterials.2003.11.045] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 11/24/2003] [Indexed: 10/26/2022]
Abstract
In an effort to develop a permissive environment for neural stem cell differentiation, directional growth of astrocytes has been achieved on polymer substrates in vitro. Manipulating a combination of physical and chemical cues, astrocyte adhesion and alignment in vitro were examined. To provide physical guidance, micropatterned polymer substrates of polystyrene (PS) were fabricated. Laminin was selectively adsorbed onto the grooves of the patterned surface. Rat type-1 astrocytes were seeded onto the micropatterned PS substrates, and the effects of substrate topography and the adsorption of laminin to the PS substrates on the behavior and morphology of the astrocytes were explored. The astrocytes were found to align parallel to the micropatterned grooves at initial seeding densities of approximately 7500, 13,000, and 20,000 cells/cm(2) due to the effects of the physical and chemical guidance mechanisms. Adsorbing laminin in the microgrooves of the micropatterned PS substrates improved cell adhesion and spreading of cytoskeletal filaments significantly. At these initial seeding densities, over 85% astrocyte alignment in the direction of the grooves was achieved on the micropatterned PS substrates with laminin adsorbed in the grooves. This combination of guidance cues has the potential to provide a permissive substrate for in vivo regeneration within the central nervous system.
Collapse
Affiliation(s)
- J B Jennifer B Recknor
- Department of Chemical Engineering, Iowa State University, 1035 Sweeney Hall, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
150
|
Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V. C(a2+)-dependent glutamate release involves two classes of endoplasmic reticulum Ca(2+) stores in astrocytes. J Neurosci Res 2004; 76:86-97. [PMID: 15048932 DOI: 10.1002/jnr.20061] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Astrocytes can modulate synaptic transmission by releasing glutamate in a Ca(2+)-dependent manner. Although the internal Ca(2+) stores have been implicated as the predominant source of Ca(2+) necessary for this glutamate release, the contribution of different classes of these stores is still not well defined. To address this issue, we cultured purified solitary cortical astrocytes and monitored changes in their internal Ca(2+) levels and glutamate release into the extracellular space. Ca(2+) levels were monitored by using the Ca(2+) indicator fluo-3 and quantitative fluorescence microscopy. Glutamate release was monitored by an L-glutamate dehydrogenase-linked detection system. Astrocytes were mechanically stimulated with a glass pipette, which reliably caused an increase in internal Ca(2+) levels and glutamate release into the extracellular space. Although we find that the presence of extracellular Cd(2+), a Ca(2+) channel blocker, significantly reduces mechanically induced glutamate release from astrocytes, we confirm that internal Ca(2+) stores are the predominant source of Ca(2+) necessary for this glutamate release. To test the involvement of different classes of internal Ca(2+) stores, we used a pharmacological approach. We found that diphenylboric acid 2-aminoethyl ester, a cell-permeable inositol 1,4,5-trisphosphate (IP(3)) receptor antagonist, greatly reduced mechanically induced glutamate release. Additionally, the preincubation of astrocytes with caffeine or ryanodine also reduced glutamate release. Taken together, our data are consistent with dual IP(3)- and caffeine/ryanodine-sensitive Ca(2+) stores functioning in the control of glutamate release from astrocytes.
Collapse
Affiliation(s)
- Xue Hua
- Department of Cell Biology and Neuroscience, and Center for Nanoscale Science and Engineering, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|