101
|
A single intracerebroventricular Aβ25–35 infusion leads to prolonged alterations in arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2015; 298:367-79. [DOI: 10.1016/j.neuroscience.2015.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
|
102
|
Agmatine attenuates lipopolysaccharide induced anorexia and sickness behavior in rats. Pharmacol Biochem Behav 2015; 132:108-114. [DOI: 10.1016/j.pbb.2015.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
|
103
|
Agmatine attenuates hyperactivity and weight loss associated with activity-based anorexia in female rats. Pharmacol Biochem Behav 2015; 132:136-141. [DOI: 10.1016/j.pbb.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
|
104
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
105
|
Kotagale NR, Chopde CT, Umekar MJ, Taksande BG. Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice. Eur J Pharmacol 2015; 754:190-8. [PMID: 25744879 DOI: 10.1016/j.ejphar.2015.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/29/2023]
Abstract
Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India
| | - Chandrabhan T Chopde
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
106
|
Quiñones M, Cofre J, Benítez J, García D, Romero N, González A, Carvajal N, García M, López V, Schenk G, Uribe E. Insight on the interaction of an agmatinase-like protein with Mn(2+) activator ions. J Inorg Biochem 2015; 145:65-9. [PMID: 25635913 DOI: 10.1016/j.jinorgbio.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/18/2022]
Abstract
Agmatinase is an enzyme that catalyzes the hydrolysis of agmatine, a compound that is associated with numerous functions in the brain of mammalian organisms such as neurotransmitter, anticonvulsant, antinociceptive, anxiolytic and antidepressant-like actions. To date the only characterized agmatinases with significant enzymatic activity were extracted from bacterial organisms. These agmatinases are closely related to another ureahydrolase, arginase; both have binuclear Mn(2+) centers in their active sites. An agmatinase-like protein (ALP) from rat brain was identified that bears no sequence homology to known agmatinases (E. Uribe, M. Salas, S. Enriquez, M.S. Orellana, N. Carvajal, Arch. Biochem. Biophys. 461(2007) 146-150). Since all known ureahydrolases contain histidines in their binuclear Mn(2+) site each of the five histidine residues in ALP was individually replaced by alanines to identify those that may be involved in metal ion binding. Reactivation assays and thermal stability measurements indicated that His206 is likely to interact with a Mn(2+) bound to a high affinity site. In contrast, His65 and possibly His435 are important for binding of a second Mn(2+) to a lower affinity site. Metal ion binding to that site is not only leading to an increase in reactivity but also enzyme stability. Thus, similar to bacterial agmatinases and some of the antibiotic-degrading, Zn(2+)-dependent metallo-β-lactamases ALP appears to be active in the mono and binuclear form, with binding of the second metal ion increasing both reactivity and stability.
Collapse
Affiliation(s)
- Matías Quiñones
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Jaime Cofre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - José Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - David García
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nicol Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Arlette González
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nelson Carvajal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - María García
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Vasthi López
- Departamento de Ciencias Biomedicas, Universidad Católica del Norte, Coquimbo, Chile
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
107
|
Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice. Behav Pharmacol 2014; 25:158-65. [PMID: 24557322 DOI: 10.1097/fbp.0000000000000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated whether pretreatment with the neurotransmitter/neuromodulator agmatine (decarboxylated L-arginine) affected methamphetamine (METH)-induced hyperlocomotion and stereotypy in male ICR mice. Agmatine pretreatment alone had no effects on locomotion or stereotypy, but it produced a dose-dependent attenuation of locomotion and the total incidence of stereotyped behavior induced by a low dose of METH (5 mg/kg). The stereotypy induced by this dose was predominantly characterized by stereotyped sniffing. By contrast, agmatine did not affect the total incidence of stereotypy induced by a higher dose of METH (10 mg/kg). However, the nature of stereotypy induced by this dose of METH was substantially altered; agmatine pretreatment significantly reduced stereotyped biting but significantly increased stereotyped sniffing and persistent locomotion. Agmatine pretreatment therefore appears to produce a rightward shift in the dose-response curve for METH. Pretreatment of mice with piperazine-1-carboxamidine (a putative agmatinase inhibitor) had no effect on locomotion or stereotypy induced by a low dose of METH, suggesting that endogenous agmatine may not regulate the METH action.
Collapse
|
108
|
Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:583736. [PMID: 25243152 PMCID: PMC4163488 DOI: 10.1155/2014/583736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/08/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.
Collapse
|
109
|
Hong S, Son MR, Yun K, Lee WT, Park KA, Lee JE. Retroviral expression of human arginine decarboxylase reduces oxidative stress injury in mouse cortical astrocytes. BMC Neurosci 2014; 15:99. [PMID: 25156824 PMCID: PMC4150973 DOI: 10.1186/1471-2202-15-99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In physiologic and pathologic conditions of the central nervous system (CNS), astrocytes are a double-edged sword. They not only support neuronal homeostasis but also contribute to increases in neuronal demise. A large body of experimental evidence has shown that impaired astrocytes play crucial roles in the pathologic process of cerebral ischemia; therefore, astrocytes may represent a breakthrough target for neuroprotective therapeutic strategies. Agmatine, an endogenous polyamine catalyzed from L-arginine by arginine decarboxylase (ADC), is a neuromodulator and it protects neurons/glia against various injuries. RESULTS In this investigation, agmatine-producing mouse cortical astrocytes were developed through transduction of the human ADC gene. Cells were exposed to oxygen-glucose deprivation (OGD) and restored to a normoxic glucose-supplied condition. Intracellular levels of agmatine were measured by high performance liquid chromatography. Cell viability was evaluated by Hoechest/propidium iodide nuclear staining and lactate dehydrogenase assay. Expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase s (MMPs) were assessed by a reverse transcription polymerase chain reaction, Western immunoblots, and immunofluorescence. We confirmed that ADC gene-expressed astrocytes produce a great amount of agmatine. These cells were highly resistant to not only OGD but also restoration, which mimicked ischemia-reperfusion injury in vivo. The neuroprotective effects of ADC seemed to be related to its ability to attenuate expression of iNOS and MMPs. CONCLUSION Our findings imply that astrocytes can be reinforced against oxidative stress by endogenous agmatine production through ADC gene transduction. The results of this study provide new insights that may lead to novel therapeutic approaches to reduce cerebral ischemic injuries.
Collapse
Affiliation(s)
- Samin Hong
- />Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ran Son
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Kyungeun Yun
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Won Taek Lee
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Kyung Ah Park
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Jong Eun Lee
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| |
Collapse
|
110
|
Moosavi M, Zarifkar AH, Farbood Y, Dianat M, Sarkaki A, Ghasemi R. Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption. Eur J Pharmacol 2014; 736:107-14. [DOI: 10.1016/j.ejphar.2014.03.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
|
111
|
Effects of acute phencyclidine administration on arginine metabolism in the hippocampus and prefrontal cortex in rats. Neuropharmacology 2014; 81:195-205. [DOI: 10.1016/j.neuropharm.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/03/2014] [Accepted: 02/05/2014] [Indexed: 12/19/2022]
|
112
|
Taksande BG, Kotagale NR, Gawande DY, Bharne AP, Chopde CT, Kokare DM. Neuropeptide Y in the central nucleus of amygdala regulates the anxiolytic effect of agmatine in rats. Eur Neuropsychopharmacol 2014; 24:955-63. [PMID: 24461723 DOI: 10.1016/j.euroneuro.2013.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/15/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
In the present study, modulation of anxiolytic action of agmatine by neuropeptide Y (NPY) in the central nucleus of amygdala (CeA) is evaluated employing Vogel's conflict test (VCT) in rats. The intra-CeA administration of agmatine (0.6 and 1.2µmol/rat), NPY (10 and 20pmol/rat) or NPY Y1/Y5 receptors agonist [Leu(31), Pro(34)]-NPY (30 and 60pmol/rat) significantly increased the number of punished drinking licks following 15min of treatment. Combination treatment of subeffective dose of NPY (5pmol/rat) or [Leu(31), Pro(34)]-NPY (15pmol/rat) and agmatine (0.3µmol/rat) produced synergistic anxiolytic-like effect. However, intra-CeA administration of selective NPY Y1 receptor antagonist, BIBP3226 (0.25 and 0.5mmol/rat) produced anxiogenic effect. In separate set of experiment, pretreatment with BIBP3226 (0.12mmol/rat) reversed the anxiolytic effect of agmatine (0.6µmol/rat). Furthermore, we evaluated the effect of intraperitoneal injection of agmatine (40mg/kg) on NPY-immunoreactivity in the nucleus accumbens shell (AcbSh), lateral part of bed nucleus of stria terminalis (BNSTl) and CeA. While agmatine treatment significantly decreased the fibers density in BNSTl, increase was noticed in AcbSh. In addition, agmatine reduced NPY-immunoreactive cells in the AcbSh and CeA. Immunohistochemical data suggest the enhanced transmission of NPY from the AcbSh and CeA. Taken together, this study suggests that agmatine produced anxiolytic effect which might be regulated via modulation of NPYergic system particularly in the CeA.
Collapse
Affiliation(s)
- Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Dinesh Y Gawande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Ashish P Bharne
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Chandrabhan T Chopde
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
| |
Collapse
|
113
|
Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, Lee WT, Lee KM, Lee JE. Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J 2014; 55:689-699. [PMID: 24719136 PMCID: PMC3990080 DOI: 10.3349/ymj.2014.55.3.689] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. MATERIALS AND METHODS We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 μL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. RESULTS Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. CONCLUSION Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Eun Hur
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Wonsuk Yang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jin Cho
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Min Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
114
|
Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RLM, Abraham WC, Zhang H. Altered arginine metabolism in Alzheimer's disease brains. Neurobiol Aging 2014; 35:1992-2003. [PMID: 24746363 DOI: 10.1016/j.neurobiolaging.2014.03.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022]
Abstract
L-arginine is a semi-essential amino acid with a number of bioactive metabolites. Accumulating evidence suggests the implication of altered arginine metabolism in the pathogenesis of Alzheimer's disease (AD). The present study systematically compared the metabolic profile of L-arginine in the superior frontal gyrus, hippocampus, and cerebellum from AD (mean age 80 years) and normal (mean age 80 or 60 years) cases. The activity and protein expression of nitric oxide synthase and arginase were altered with AD and age in a region-specific manner. There were also AD- and age-related changes in the tissue concentrations of L-arginine and its downstream metabolites (L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate, γ-aminobutyric acid, and glutamine) in a metabolite- or region-specific manner. These findings demonstrate that arginine metabolism is dramatically altered in diverse regions of AD brains, thus meriting further investigation to understand its role in the pathogenesis and/or progression of the disease.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Michael S Fleete
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Nicola D Collie
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Wickliffe C Abraham
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand; School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
115
|
Dixit MP, Thakre PP, Pannase AS, Aglawe MM, Taksande BG, Kotagale NR. Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. Eur J Pharmacol 2014; 732:26-31. [PMID: 24657463 DOI: 10.1016/j.ejphar.2014.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/04/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
Agmatine is a cationic amine formed by decarboxylation of l-arginine by the mitochondrial enzyme arginine decarboxylase and widely distributed in mammalian brain. Although the precise function of endogenous agmatine has been largely remained unclear, its exogenous administration demonstrated beneficial effects in several neurological and psychiatric disorders. This study was planned to examine the role of imidazoline binding sites in the anticompulsive-like effect of agmatine on marble-burying behavior. Agmatine (20 and 40mg/kg, ip), mixed imidazoline I1/α2 agonists clonidine (60µg/kg, ip) and moxonidine (0.25mg/kg, ip), and imidazoline I2 agonist 2- BFI (10mg/kg, ip) showed significant inhibition of marble burying behavior in mice. In combination studies, the anticompulsive-like effect of agmatine (10mg/kg, ip) was significantly potentiated by prior administration of moxonidine (0.25mg/kg, ip) or clonidine (30µg/kg,) or 2-BFI (5mg/kg, ip). Conversely, efaroxan (1mg/kg, ip), an I1 antagonist and idazoxan (0.25mg/kg, ip), an I2 antagonist completely blocked the anticompulsive-like effect of agmatine (10mg/kg, ip). These drugs at doses used here did not influence the basal locomotor activity in experimental animals. These results clearly indicated the involvement of imidazoline binding sites in anti-compulsive-like effect of agmatine. Thus, imidazoline binding sites can be explored further as novel therapeutic target for treatment of anxiety and obsessive compulsive disorders.
Collapse
Affiliation(s)
- Madhura P Dixit
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Prajwal P Thakre
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Akshay S Pannase
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Manish M Aglawe
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
| |
Collapse
|
116
|
Neis VB, Manosso LM, Moretti M, Freitas AE, Daufenbach J, Rodrigues ALS. Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration. Behav Brain Res 2014; 261:336-44. [DOI: 10.1016/j.bbr.2013.12.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/22/2022]
|
117
|
Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. J Mol Cell Cardiol 2014; 68:66-74. [DOI: 10.1016/j.yjmcc.2013.12.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/11/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022]
|
118
|
Cofre J, Montes P, Vallejos A, Benítez J, García D, Martínez-Oyanedel J, Carvajal N, Uribe E. Further insight into the inhibitory action of a LIM/double zinc-finger motif of an agmatinase-like protein. J Inorg Biochem 2014; 132:92-5. [DOI: 10.1016/j.jinorgbio.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
|
119
|
Kotagale NR, Walke S, Shelkar GP, Kokare DM, Umekar MJ, Taksande BG. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system. Behav Brain Res 2014; 262:118-24. [PMID: 24440829 DOI: 10.1016/j.bbr.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to examine the effect of agmatine on nicotine induced conditioned place preference (CPP) in male albino mice. Intra-peritoneal (ip) administration of nicotine (1mg/kg) significantly increased time spent in drug-paired compartment. Agmatine (20 and 40 mg/kg, ip) co-administered with nicotine during the 6 days conditioning sessions completely abolished the acquisition of nicotine-induced CPP in mice. Concomitant administration of neuropeptide Y (NPY) (1 pg/mouse, icv) or [Leu(31), Pro(34)]-NPY (0.1 pg/mouse, icv), selective NPY Y1 receptor agonist potentiated the inhibitory effect of agmatine (10 mg/kg, ip) on nicotine CPP. Conversely, pretreatment with NPY Y1 receptor antagonist, BIBP3226 (0.01 ng/mouse, icv) blocked the effect of agmatine (20 mg/kg, ip) on nicotine induced CPP. In immunohistochemical study, nicotine decreased NPY-immunoreactivity in nucleus accumbens shell (AcbSh), bed nucleus of stria terminalis, lateral part (BNSTl), arcuate nucleus (ARC) and paraventricular nucleus (PVN). Conversely, administration of agmatine prior to the nicotine significantly reversed the effect of nicotine on NPY-immunoreactivity in the above brain nuclei. This data indicate that agmatine attenuate nicotine induced CPP via modulation of NPYergic neurotransmission in brain.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India
| | - Sonali Walke
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India
| | - Gajanan P Shelkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India.
| |
Collapse
|
120
|
El-Awady MS, Suddek GM. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J Pharm Pharmacol 2014; 66:835-43. [PMID: 24393128 DOI: 10.1111/jphp.12204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/30/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. METHODS Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. KEY FINDINGS HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. CONCLUSIONS This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition.
Collapse
Affiliation(s)
- Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
121
|
Gupta S, Sharma B. Pharmacological modulation of I1-imidazoline and α2-adrenoceptors in sub acute brain ischemia induced vascular dementia. Eur J Pharmacol 2014; 723:80-90. [DOI: 10.1016/j.ejphar.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 11/30/2013] [Accepted: 12/04/2013] [Indexed: 12/18/2022]
|
122
|
Song J, Kumar BK, Kang S, Park KA, Lee WT, Lee JE. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors. Exp Neurobiol 2013; 22:268-276. [PMID: 24465142 PMCID: PMC3897688 DOI: 10.5607/en.2013.22.4.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Bokara Kiran Kumar
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Somang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
123
|
Regional variations and age-related changes in arginine metabolism in the rat brain stem and spinal cord. Neuroscience 2013; 252:98-108. [DOI: 10.1016/j.neuroscience.2013.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
|
124
|
Taksande BG, Faldu DS, Dixit MP, Sakaria JN, Aglawe MM, Umekar MJ, Kotagale NR. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur J Pharmacol 2013; 720:115-20. [PMID: 24183973 DOI: 10.1016/j.ejphar.2013.10.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression.
Collapse
Affiliation(s)
- Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
125
|
Ramani D, De Bandt JP, Cynober L. Aliphatic polyamines in physiology and diseases. Clin Nutr 2013; 33:14-22. [PMID: 24144912 DOI: 10.1016/j.clnu.2013.09.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
Aliphatic polyamines are a family of polycationic molecules derived from decarboxylation of the amino acid ornithine that classically comprise three molecules: putrescine, spermidine and spermine. In-cell polyamine homeostasis is tightly controlled at key steps of cell metabolism. Polyamines are involved in an array of cellular functions from DNA stabilization, and regulation of gene expression to ion channel function and, particularly, cell proliferation. As such, aliphatic polyamines play an essential role in rapidly dividing cells such as in the immune system and digestive tract. Because of their role in cell proliferation, polyamines are also involved in carcinogenesis, prompting intensive research into polyamine metabolism as a target in cancer therapy. More recently, another aliphatic polyamine, agmatine, the decarboxylated derivative of arginine, has been identified as a neurotransmitter in mammals, and investigations have focused on its effects in the CNS, notably as a neuroprotector in brain injury.
Collapse
Affiliation(s)
- D Ramani
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France
| | - J P De Bandt
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France.
| | - L Cynober
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France
| |
Collapse
|
126
|
Kotagale NR, Paliwal NP, Aglawe MM, Umekar MJ, Taksande BG. Possible involvement of neuropeptide Y Y1 receptors in antidepressant like effect of agmatine in rats. Peptides 2013; 47:7-11. [PMID: 23816796 DOI: 10.1016/j.peptides.2013.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/21/2022]
Abstract
Agmatine and neuropeptide Y (NPY) are widely distributed in central nervous system and critically involved in modulation of depressive behavior in experimental animals. However their mutual interaction, if any, in regulation of depression remain largely unexplored. In the present study we explored the possible interaction between agmatine and neuropeptide Y in regulation of depression like behavior in forced swim test. We found that acute intracerebroventricular (i.c.v.) administration of agmatine (20-40μg/rat), NPY (5 and 10μg/rat) and NPY Y1 receptor agonist, [Leu(31), Pro(34)]-NPY (0.4 and 0.8ng/rat) dose dependently decreased immobility time in forced swim test indicating their antidepressant like effects. In combination studies, the antidepressant like effect of agmatine (10μg/rat) was significantly potentiated by NPY (1 and 5μg/rat, icv) or [Leu(31), Pro(34)]-NPY (0.2 and 0.4ng/rat, icv) pretreatment. Conversely, pretreatment of animals with NPY Y1 receptor antagonist, BIBP3226 (0.1ng/rat, i.c.v.) completely blocked the antidepressant like effect of agmatine (20-40μg/rat) and its synergistic effect with NPY (1μg/rat, icv) or [Leu(31), Pro(34)]-NPY (0.2ng/rat, icv). The results of the present study showed that, agmatine exerts antidepressant like effects via NPYergic system possibly mediated by the NPY Y1 receptor subtypes and suggest that interaction between agmatine and neuropeptide Y may be relevant to generate the therapeutic strategies for the treatment of depression.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441 002, MS, India
| | | | | | | | | |
Collapse
|
127
|
Altered arginine metabolism in the hippocampus and prefrontal cortex of maternal immune activation rat offspring. Schizophr Res 2013; 148:151-6. [PMID: 23806581 DOI: 10.1016/j.schres.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/12/2013] [Accepted: 06/02/2013] [Indexed: 01/10/2023]
Abstract
Altered arginine metabolism has been implicated in the pathogenesis of schizophrenia. The present study measured the levels of L-arginine and its downstream metabolites in the sub-regions of the hippocampus, prefrontal cortex and cerebellum in adult rats that had been exposed to maternal immune activation (MIA; a risk factor for schizophrenia). MIA significantly increased L-arginine, L-ornithine and putrescine levels and decreased agmatine levels in the hippocampus and prefrontal cortex in a region-specific manner. Correlational analysis revealed a significant neurochemical-behavioural correlation. Cluster analyses showed that L-arginine and its main metabolites formed distinct groups, which changed as a function of MIA. These results demonstrate, for the first time, that MIA leads to altered arginine metabolism in the hippocampus and prefrontal cortex of the adult offspring.
Collapse
|
128
|
Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, Buyukuysal L, Ulusoy G, Kirli S. Increased plasma agmatine levels in patients with schizophrenia. J Psychiatr Res 2013; 47:1054-1060. [PMID: 23664672 DOI: 10.1016/j.jpsychires.2013.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Agmatine is an endogenous substance, synthesized from l-arginine, and it is proposed to be a new neurotransmitter. Preclinical studies indicated that agmatine may have an important role in the pathophysiology of schizophrenia. This study was organized to investigate plasma agmatine in patients with schizophrenia and in healthy controls. Eighteen patients with schizophrenia and 19 healthy individuals constituted the subjects. Agmatine levels in the plasma were measured using the HPLC method. The S100B protein level, which is a peripheral biomarker for brain damage, was also measured using the ELISA method. While plasma levels of agmatine in patients with schizophrenia were significantly increased (p < 0.0001) compared to those of healthy individuals (control), there were no significant changes in the levels of S100B protein (p = 0.660). An ROC (receiver operating characteristic) curve analysis revealed that measuring plasma agmatine levels as a clinical diagnostic test would significantly differentiate between patients with schizophrenia and those in the control group (predictive value: 0.969; p < 0.0001). The predictive value of S100B measurements was not statistically significant (p > 0.05). A multiple regression analysis revealed that the age of the patient and the severity of the illness, as indicated by the PANSS score, significantly contributed the plasma agmatine levels in patients with schizophrenia. These results support the hypothesis that an excess agmatine release is important in the development of schizophrenia. The findings also imply that the plasma agmatine level may be a potential biomarker of schizophrenia.
Collapse
Affiliation(s)
- Tayfun Uzbay
- Uskudar University, Neuropsychopharmacology Application and Research Center, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain? PLoS One 2013; 8:e66735. [PMID: 23840524 PMCID: PMC3686689 DOI: 10.1371/journal.pone.0066735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.
Collapse
|
130
|
Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues ALS, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM. Agmatine: clinical applications after 100 years in translation. Drug Discov Today 2013; 18:880-93. [PMID: 23769988 DOI: 10.1016/j.drudis.2013.05.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/27/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Agmatine (decarboxylated arginine) has been known as a natural product for over 100 years, but its biosynthesis in humans was left unexplored owing to long-standing controversy. Only recently has the demonstration of agmatine biosynthesis in mammals revived research, indicating its exceptional modulatory action at multiple molecular targets, including neurotransmitter systems, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for broad therapeutic applications. This timely review, a concerted effort by 16 independent research groups, draws attention to the substantial preclinical and initial clinical evidence, and highlights challenges and opportunities, for the use of agmatine in treating a spectrum of complex diseases with unmet therapeutic needs, including diabetes mellitus, neurotrauma and neurodegenerative diseases, opioid addiction, mood disorders, cognitive disorders and cancer.
Collapse
Affiliation(s)
- John E Piletz
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Zádori ZS, Fehér Á, Al-Khrasani M, Lackó E, Tóth VE, Brancati SB, Hein L, Mátyus P, Gyires K. Imidazoline versus alpha2-adrenoceptors in the control of gastric motility in mice. Eur J Pharmacol 2013; 705:61-7. [DOI: 10.1016/j.ejphar.2013.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/16/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
132
|
Park YM, Lee WT, Bokara KK, Seo SK, Park SH, Kim JH, Yenari MA, Park KA, Lee JE. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells. PLoS One 2013; 8:e53911. [PMID: 23349763 PMCID: PMC3549976 DOI: 10.1371/journal.pone.0053911] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022] Open
Abstract
Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2) weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Kyoung Seo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Midori A. Yenari
- Department of Neurology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
133
|
Piletz JE, Klenotich S, Lee KS, Zhu QL, Valente E, Collins MA, Jones V, Lee SN, Yangzheng F. Putative agmatinase inhibitor for hypoxic-ischemic new born brain damage. Neurotox Res 2013; 24:176-90. [PMID: 23334804 DOI: 10.1007/s12640-013-9376-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/10/2012] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
Agmatine is an endogenous brain metabolite, decarboxylated arginine, which has neuroprotective properties when injected intraperitoneally (i.p.) into rat pups following hypoxic-ischemia. A previous screen for compounds based on rat brain lysates containing agmatinase with assistance from computational chemistry, led to piperazine-1-carboxamidine as a putative agmatinase inhibitor. Herein, the neuroprotective properties of piperazine-1-carboxamidine are described both in vitro and in vivo. Organotypic entorhinal-hippocampal slices were firstly prepared from 7-day-old rat pups and exposed in vitro to atmospheric oxygen depletion for 3 h. Upon reoxygenation, the slices were treated with piperazine-1-carboxamidine or agmatine (50 μg/ml agents), or saline, and 15 h later propidium iodine was used to stain. Piperazine-1-carboxamidine or agmatine produced substantial in vitro protection compared to post-reoxygenated saline-treated controls. An in vivo model involved surgical right carotid ligation followed by exposure to hypoxic-ischemia (8 % oxygen) for 2.5 h. Piperazine-1-carboxamidine at 50 mg/kg i.p. was given 15 min post-reoxygenation and continued twice daily for 3 days. Cortical agmatine levels were elevated (+28.5 %) following piperazine-1-carboxamidine treatment with no change in arginine or its other major metabolites. Histologic staining with anti-Neun monoclonal antibody also revealed neuroprotection of CA1-3 layers of the hippocampus. Until endpoint at 22 days of age, no adverse events were observed in treated pups' body weights, rectal temperatures, or prompted ambulation. Piperazine-1-carboxamidine therefore appears to be a neuroprotective agent of a new category, agmatinase inhibitor.
Collapse
Affiliation(s)
- John E Piletz
- Department of Psychiatry, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats. Neuroscience 2013; 234:116-24. [PMID: 23318245 DOI: 10.1016/j.neuroscience.2013.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/29/2012] [Accepted: 01/05/2013] [Indexed: 11/22/2022]
Abstract
Increasing evidence suggests that altered arginine metabolism contributes to cognitive decline during ageing. Agmatine, decarboxylated arginine, has a variety of pharmacological effects, including the modulation of behavioural function. A recent study demonstrated the beneficial effects of short-term agmatine treatment in aged rats. The present study investigated how intraperitoneal administration of agmatine (40mg/kg, once daily) over 4-6weeks affected behavioural function and neurochemistry in aged Sprague-Dawley rats. Aged rats treated with saline displayed significantly reduced exploratory activity in the open field, impaired spatial learning and memory in the water maze and object recognition memory relative to young rats. Prolonged agmatine treatment improved animals' performance in the reversal test of the water maze and object recognition memory test, and significantly suppressed age-related elevation in nitric oxide synthase activity in the dentate gyrus of the hippocampus and prefrontal cortex. However, this prolonged supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings further demonstrate that exogenous agmatine selectively improves behavioural function in aged rats.
Collapse
|
135
|
Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behav Brain Res 2012; 235:263-72. [DOI: 10.1016/j.bbr.2012.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 01/04/2023]
|
136
|
Nazaryan NS, Kazaryan SA, Movsesyan NO, Alchudzhyan NK, Movsesyan OA, Airapetyan RL, Barsegyan KA, Gevorkyan GA. The effects of the lithium salt of GABA on the subcellular metabolic profile of L-arginine in the prefrontal cortex and striatum of rats during chronic stress. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
137
|
Ahn SK, Hong S, Park YM, Choi JY, Lee WT, Park KA, Lee JE. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity. Life Sci 2012; 91:1345-50. [PMID: 23123442 DOI: 10.1016/j.lfs.2012.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
AIMS Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. MAIN METHODS For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. KEY FINDINGS Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (p<0.001), as determined by lactate dehydrogenase assay. It suppressed the nitrite production from 16.4±3.14μM to 5.5±1.27μM (p<0.001), as measured using the Griess reaction. Agmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. SIGNIFICANCE Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Soo Kyung Ahn
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
138
|
Rushaidhi M, Jing Y, Zhang H, Liu P. Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study. Neuropharmacology 2012; 65:200-5. [PMID: 23116777 DOI: 10.1016/j.neuropharm.2012.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 01/11/2023]
Abstract
Agmatine, decarboxylated arginine, is widely distributed in mammalian brains and is considered as a novel putative neurotransmitter. Recent research demonstrates spatial learning-induced increases in agmatine in memory-related structures at the tissue and presynaptic terminal levels. By using the in vivo microdialysis technique coupled with highly sensitive liquid chromatography/mass spectrometry assay, we investigated dynamic changes of extracellular agmatine in the rat dorsal hippocampus before, during and after water maze training to find a fixed hidden platform on the first and forth day of testing. It was firstly noted that the basal level of extracellular agmatine was significantly elevated on day 4. While swimming per se had no effect, a rapid rise (2-6 folds) in extracellular agmatine was observed during water maze training regardless of testing day. Such learning-induced rise was found to successively lessen across the multiple blocks of training on day 1. However, this pattern was reversed on day 4 when the platform was removed during the final training trial. The present study, for the first time, demonstrates water maze training-induced increase of extracellular agmatine in the dorsal hippocampus. The results suggest a role of endogenous agmatine in the encoding and retrieval of spatial information.
Collapse
Affiliation(s)
- Madihah Rushaidhi
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | | | | | | |
Collapse
|
139
|
Gupta N, Jing Y, Collie ND, Zhang H, Liu P. Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley rats. Neuroscience 2012; 226:178-96. [PMID: 22989918 DOI: 10.1016/j.neuroscience.2012.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/18/2012] [Accepted: 09/07/2012] [Indexed: 01/29/2023]
Abstract
A growing body of evidence suggests the involvement of L-arginine and its metabolites in the ageing and neurodegenerative processes. The present study assessed behavioural performance in 4- (young), 12- (middle-aged) and 24- (aged) month-old male Sprague-Dawley rats, and investigated age-related changes in the activity of two key arginine metabolic enzymes, nitric oxide synthase (NOS) and arginase, and the levels of L-arginine and its downstream metabolites in a number of memory-related brain structures. Aged rats were less anxious and performed poorly in the water maze task relative to the young and middle-aged rats, and both middle-aged and aged rats displayed reduced exploratory activity relative to the young ones. There were significant age-related changes in NOS and arginase activities, and the levels of L-arginine, L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine and glutamate, but not γ-aminobutyric acid, in the CA1, CA2/3 and dentate gyrus sub-regions of the hippocampus and the prefrontal, entorhinal, perirhinal, postrhinal and temporal (an auditory cortex) cortices in a region-specific manner. Cluster analyses revealed that the nine related neurochemical variables formed distinct groups, which changed as a function of ageing. Multiple regression analyses revealed a number of significant correlations between the neurochemical and behavioural variables. The present study further supports the involvement of arginine metabolism in the ageing process, and provides further evidence of the effects of animals' behavioural experience on arginine metabolism.
Collapse
Affiliation(s)
- N Gupta
- Department of Anatomy, Brain Health Research Centre, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
140
|
Rushaidhi M, Collie N, Zhang H, Liu P. Agmatine selectively improves behavioural function in aged male Sprague–Dawley rats. Neuroscience 2012; 218:206-15. [DOI: 10.1016/j.neuroscience.2012.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/11/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
141
|
Utkan T, Gocmez SS, Regunathan S, Aricioglu F. Agmatine, a metabolite of L-arginine, reverses scopolamine-induced learning and memory impairment in rats. Pharmacol Biochem Behav 2012; 102:578-84. [PMID: 22796489 DOI: 10.1016/j.pbb.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 01/28/2023]
Abstract
Agmatine (l-amino-4-guanidino-butane), a metabolite of L-arginine through the action of arginine decarboxylase, is a novel neurotransmitter. In the present study, effects of agmatine on cognitive functions have been evaluated by using one trial step-down passive avoidance and three panel runway task. Agmatine (20, 40, 80 mg/kg i.p.) was administered either in the presence or absence of a cholinergic antagonist, scopolamine (1 mg/kg i.p.). Scopolamine significantly impaired learning and memory in both passive avoidance and three panel runway test. Agmatine did not affect emotional learning, working and reference memory but significantly improved scopolamine-induced impairment of learning and memory in a dose dependent manner. Our results indicate that agmatine, as an endogenous substance, may have an important role in modulation of learning and memory functions.
Collapse
Affiliation(s)
- Tijen Utkan
- Kocaeli University Medical Faculty, Pharmacology Department and Experimental Medical Research and Application Unit, 41380 Kocaeli, Turkey.
| | | | | | | |
Collapse
|
142
|
|
143
|
Masri AAA, Eter EE. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats. World J Gastroenterol 2012; 18:2188-96. [PMID: 22611311 PMCID: PMC3351768 DOI: 10.3748/wjg.v18.i18.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/04/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury.
METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye.
RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen.
CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K.
Collapse
|
144
|
Rushaidhi M, Jing Y, Kennard J, Collie N, Williams J, Zhang H, Liu P. Aging affects l-arginine and its metabolites in memory-associated brain structures at the tissue and synaptoneurosome levels. Neuroscience 2012; 209:21-31. [DOI: 10.1016/j.neuroscience.2012.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 11/25/2022]
|
145
|
Bhutada P, Mundhada Y, Humane V, Rahigude A, Deshmukh P, Latad S, Jain K. Agmatine, an endogenous ligand of imidazoline receptor protects against memory impairment and biochemical alterations in streptozotocin-induced diabetic rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:96-105. [PMID: 22300747 DOI: 10.1016/j.pnpbp.2012.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/27/2022]
Abstract
Agmatine, a polycationic amine synthesized via decarboxylation of l-arginine by arginine decarboxylase is reported to exhibit anti-hyperglycemic, antioxidant and memory enhancing effects. Therefore, we tested its influence against cognitive dysfunction in streptozotocin-induced diabetic rats using Morris water maze and object recognition paradigm. Lipid peroxidation and glutathione levels as parameters of oxidative stress and choline esterase (ChE) activity as a marker of cholinergic function were assessed in the cerebral cortex and hippocampus. Thirty days after diabetes induction rats showed a severe deficit in learning and memory associated with increased lipid peroxidation, decreased reduced glutathione, and elevated ChE activity. In contrast, chronic treatment with agmatine (5-10mg/kg, i.p. for 30 days) improved cognitive performance, lowered hyperglycemia, oxidative stress, and ChE activity in diabetic rats. Further, memory improving effects of agmatine were independent of adrenal I(2) imidazoline receptors. In a separate set, agmatine treatment for an initial 15 days after diabetes confirmation also significantly reduced memory impairment during training trials after 30 days of diabetes confirmation. Moreover, treatment during training trials (30 days after diabetes) also significantly reduced memory impairment in diabetic rats. In conclusion, the present study demonstrates that treatment with agmatine prevents changes in oxidative stress and ChE activity, and probably consequent memory impairment in diabetic rats.
Collapse
Affiliation(s)
- Pravinkumar Bhutada
- Sinhgad College of Pharmacy, Post-Graduate Research Department, Off Sinhgad road, Vadgaon (Bk), Pune 41, Maharashtra, India.
| | | | | | | | | | | | | |
Collapse
|
146
|
Martir JF, Bozdagi O, Martinelli GP, Friedrich VL, Holstein GR. Imidazoleacetic acid-ribotide in the rodent striatum: a putative neurochemical link between motor and autonomic deficits in Parkinson's disease. ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 1:5-18. [PMID: 22453739 DOI: 10.1556/abiol.63.2012.suppl.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that imidazole-4-acetic acid-ribotide (IAA-RP) is present in the mammalian brain and is an endogenous ligand at imidazoline binding sites. In the present study, we used a polyclonal antiserum to visualize IAA-RP-containing neurons in the rat caudoputamen. We observe IAA-RP-immunostained neurons scattered throughout the dorsal and ventral striatum. Most of these cells co-localize GABA, but none are parvalbumin-immunoreactive. In contrast, approximately 50% of the calbindin D28k-immunopositive striatal neurons co-localize IAA-RP. Electrophysiological studies using corticostriatal slices demonstrated that bath application of IAA-RP reversibly depresses the synaptically mediated component of field potentials recorded in the striatum by stimulation of cortical axons. Addition of competitive glutamate receptor antagonists completely blocks the response, confirming its association with glutamatergic transmission. Using paired-pulse stimuli, IAA-RP was shown to exert, at least in part, a presynaptic effect, but blockade of GABAA receptor-mediated transmission did not alter the response. Lastly, we show that this effect is attributable to imidazoline-1 receptors, and not to α2 adrenergic receptors. Since IAA-RP is an endogenous central regulator of blood pressure, and cardiovascular dysfunction is a common symptom associated with Parkinson's disease (PD), we speculate that IAA-RP-related abnormalities may underlie some of the autonomic dysfunction that occurs in PD.
Collapse
Affiliation(s)
- J F Martir
- Department of Neurology, Functional Morphology Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
147
|
Hong S, Hara H, Shimazawa M, Hyakkoku K, Kim CY, Seong GJ. Retinal protective effects of topically administered agmatine on ischemic ocular injury caused by transient occlusion of the ophthalmic artery. Braz J Med Biol Res 2012; 45:212-5. [PMID: 22331138 PMCID: PMC3854200 DOI: 10.1590/s0100-879x2012007500020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 01/18/2012] [Indexed: 11/22/2022] Open
Abstract
Agmatine, an endogenous polyamine and putative neuromodulator, is known to have neuroprotective effects on various neurons in the central nervous system. We determined whether or not topically administered agmatine could reduce ischemic retinal injury. Transient ocular ischemia was achieved by intraluminal occlusion of the middle cerebral artery of ddY mice (30-35 g) for 2 h, which is known to also induce occlusion of the ophthalmic artery. In the agmatine group (N = 6), a 1.0 mM agmatine-containing ophthalmic solution was administered four times daily for 2 weeks before occlusion. In the control group (N = 6), a 0.1% hyaluronic acid ophthalmic solution was instilled at the same times. At 22 h after reperfusion, the eyeballs were enucleated and the retinal sections were stained by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Transient ocular ischemia induced apoptosis of retinal cells in the entire retinal layer, and topically administered agmatine can significantly reduce this ischemic retinal injury. The proportion of apoptotic cells was definitely decreased (P < 0.001; Kruskal-Wallis test). Overall, we determined that topical agmatine application effectively decreases retinal damage in an in vivo ocular ischemic injury model. This implies that agmatine is a good candidate as a direct neuroprotective agent for eyes with ocular ischemic diseases.
Collapse
Affiliation(s)
- S Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
148
|
Martins YC, Zanini GM, Frangos JA, Carvalho LJM. Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA. PLoS One 2012; 7:e32048. [PMID: 22348145 PMCID: PMC3278462 DOI: 10.1371/journal.pone.0032048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/21/2012] [Indexed: 12/14/2022] Open
Abstract
Background Low nitric oxide (NO) bioavailability plays a role in the pathogenesis of human as well as of experimental cerebral malaria (ECM) caused by Plasmodium berghei ANKA (PbA). ECM is partially prevented by administration of the NO-donor dipropylenetriamine NONOate (DPTA-NO) at high concentration (1 mg/mouse), which also induces major side effects such as a sharp drop in blood pressure. We asked whether alternative strategies to improve NO bioavailability with minor side effects would also be effective in preventing ECM. Methodology/Principal Findings Mice were infected with PbA and prophylactically treated twice a day with bolus injections of L-arginine, Nω-hydroxy-nor-Arginine (nor-NOHA), tetrahydrobiopterin (BH4), separately or combined, sodium nitrite, sildenafil or sildenafil plus DPTA-NO starting on day 0 of infection. L-arginine and BH4 supplementation, with or without arginase inhibition by nor-NOHA, increased plasma nitrite levels but failed to protect against ECM development. Accordingly, prophylactic treatment with continuous delivery of L-arginine using osmotic pumps also did not improve survival. Similar outcomes were observed with sodium nitrite sildenafil (aimed at inhibiting phosphodiesterase-5) or with DPTA-NO. However, sildenafil (0.1 mg/mouse) in combination with a lower dose (0.1 mg/mouse) of DPTA-NO decreased ECM incidence (82±7.4% mortality in the saline group and 38±10.6% in the treated group; p<0.05). The combined prophylactic therapy did not aggravate anemia, had delayed effects in systolic, diastolic and mean arterial blood pressure and induced lower effects in pulse pressure when compared to DPTA-NO 1 mg/mouse. Conclusions/Significance These data show that sildenafil lowers the amount of NO-donor needed to prevent ECM, resulting also in lesser side effects. Prophylactic L-arginine when given in bolus or continuous delivery and bolus BH4 supplementation, with or without arginase inhibition, were able to increase NO bioavailability in PbA-infected mice but failed to decrease ECM incidence in the doses and protocol used.
Collapse
Affiliation(s)
- Yuri C Martins
- Center for Malaria Research, La Jolla Bioengineering Institute, San Diego, California, United States of America.
| | | | | | | |
Collapse
|
149
|
Thorn DA, Winter JC, Li JX. Agmatine attenuates methamphetamine-induced conditioned place preference in rats. Eur J Pharmacol 2012; 680:69-72. [PMID: 22329899 DOI: 10.1016/j.ejphar.2012.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/24/2012] [Accepted: 01/28/2012] [Indexed: 12/15/2022]
Abstract
The polyamine agmatine modulates a variety of behavioral effects including the abuse-related effects of opioids and has been proposed as a potential medication candidate for the treatment of opioid abuse. However, little is known of the effects of agmatine on the abuse-related effects of other drugs of abuse. This study examined the effects of agmatine on the rewarding effects of methamphetamine in rats using a conditioned place preference paradigm. Methamphetamine (0.1-1.0mg/kg) dose-dependently increased the time spent in methamphetamine-paired side (place preference). Agmatine, at doses that did not produce place preference or aversion (10-32mg/kg), significantly decreased the development of methamphetamine-induced place preference when agmatine was administered in combination with methamphetamine during place conditioning. Agmatine also significantly decreased the expression of methamphetamine-induced place preference when an acute injection of agmatine was given immediately before test session. These doses of agmatine do not alter the motor activity in rats, suggesting that the observed attenuation of methamphetamine-induced place preference was not due to general behavioral disruption. Together, these data suggests that agmatine attenuates the rewarding effects of methamphetamine and may be able to modulate the abuse liability of methamphetamine.
Collapse
Affiliation(s)
- David A Thorn
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, 102 Farber Hall, Buffalo, NY14214-3000, USA
| | | | | |
Collapse
|
150
|
Moosavi M, Khales GY, Abbasi L, Zarifkar A, Rastegar K. Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology 2012; 62:2018-23. [PMID: 22248637 DOI: 10.1016/j.neuropharm.2011.12.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 02/08/2023]
Abstract
Cholinergic brain activity plays a significant role in memory. Scopolamine a muscarinic cholinergic antagonist is known to induce impairment in Morris water maze performance, the task which is mainly dependent on the hippocampus. It is suggested that hippocampal ERK and Akt activation play roles in synaptic plasticity and some types of learning and memory. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study was aimed to investigate if agmatine could reverse scopolamine-induced memory impairment and possible hippocampal ERK and Akt activity alteration. Adult male Sprague-Dawley rats weighing 200-250 g were randomly assigned into 5 groups. The animals were trained for 3 days in Morris water maze and in day 4 their memory retention was assessed in probe trial which was consisted of a 60 s trial with no platform. Scopolamine (1 mg/kg/ip) or saline were injected 30 min and agmatine (20 or 40 mg/kg/ip) was administered 60 min before each session. The hippocampi were isolated after behavioral studies and western blotting studies on hippocampal lysates were done to determine the levels of activated ERK and Akt. Scopolamine treatment not only impaired water maze learning and memory, but also decreased the amount of phosphorylated (activated) ERK and Akt. Agmatine pre-treatment prevented both the learning impairment and hippocampal ERK and Akt inactivation induced by scopolamine. It seems that agmatine may act as a candidate substance against amnesia.
Collapse
Affiliation(s)
- Maryam Moosavi
- Shiraz Neuroscience Research Center and department of Physiology, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | | | | | | | | |
Collapse
|