101
|
Liang X, Qin Y, Wu D, Wang Q, Wu H. Pyroptosis: a double-edged sword in lung cancer and other respiratory diseases. Cell Commun Signal 2024; 22:40. [PMID: 38225586 PMCID: PMC10790448 DOI: 10.1186/s12964-023-01458-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Pyroptosis is an active cell death process mediated by gasdermin family proteins including Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. Emerging evidences have shown that pyroptosis contributes to many pulmonary diseases, especially lung cancer, and pneumonia. The exact roles of pyroptosis and gasdermin family proteins are tremendously intricate. Besides, there are evidences that pyroptosis contributes to these respiratory diseases. However, it often plays a dual role in these diseases which is a cause for concern and makes it difficult for clinical translation. This review will focus on the multifaceted roles of pyroptosis in respiratory diseases.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Ya Qin
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Dan Wu
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Qiong Wang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| |
Collapse
|
102
|
Minafò YA, Antonini D, Dellambra E. NAD+ Metabolism-Related Gene Profile Can Be a Relevant Source of Squamous Cell Carcinoma Biomarkers. Cancers (Basel) 2024; 16:309. [PMID: 38254798 PMCID: PMC10814490 DOI: 10.3390/cancers16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Poor survival rates of squamous cell carcinomas (SCCs) are associated with high recurrence, metastasis, and late diagnosis, due in part to a limited number of reliable biomarkers. Thus, the identification of signatures improving the diagnosis of different SCC types is mandatory. Considering the relevant role of NAD+ metabolism in SCC chemoprevention and therapy, the study aimed at identifying new biomarkers based on NAD+ metabolism-related gene (NMRG) expression. Gene expression of 18 NMRGs and clinical-pathological information for patients with head and neck SCC (HNSCC), lung SCC (LuSCC), and cervix SCC (CeSCC) from The Cancer Genome Atlas (TCGA) were analyzed by several bioinformatic tools. We identified a 16-NMRG profile discriminating 3 SCCs from 3 non-correlated tumors. We found several genes for HNSCC, LuSCC, and CeSCC with high diagnostic power. Notably, three NMRGs were SCC-type specific biomarkers. Furthermore, specific signatures displayed high diagnostic power for several clinical-pathological characteristics. Analyzing tumor-infiltrating immune cell profiles and PD-1/PD-L1 levels, we found that NMRG expression was associated with suppressive immune microenvironment mainly in HNSCC. Finally, the evaluation of patient survival identified specific genes for HNSCC, LuSCC, and CeSCC with potential prognostic power. Therefore, our analyses indicate NAD+ metabolism as an important source of SCC biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ylenia Aura Minafò
- Molecular and Cell Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| | - Dario Antonini
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| |
Collapse
|
103
|
Jin M, Huo D, Sun J, Hu J, Liu S, Zhan M, Zhang BZ, Huang JD. Enhancing immune responses of ESC-based TAA cancer vaccines with a novel OMV delivery system. J Nanobiotechnology 2024; 22:15. [PMID: 38166929 PMCID: PMC10763241 DOI: 10.1186/s12951-023-02273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Embryonic stem cell (ESC)-derived epitopes can act as therapeutic tumor vaccines against different types of tumors Jin (Adv Healthc Mater 2023). However, these epitopes have poor immunogenicity and stimulate insufficient CD8+ T cell responses, which motivated us to develop a new method to deliver and enhance their effectiveness. Bacterial outer membrane vesicles (OMVs) can serve as immunoadjuvants and act as a delivery vector for tumor antigens. In the current study, we engineered a new OMV platform for the co-delivery of ESC-derived tumor antigens and immune checkpoint inhibitors (PD-L1 antibody). An engineered Staphylococcal Protein A (SpA) was created to non-specifically bind to anti-PD-L1 antibody. SpyCatcher (SpC) and SpA were fused into the cell outer membrane protein OmpA to capture SpyTag-attached peptides and PD-L1 antibody, respectively. The modified OMV was able to efficiently conjugate with ESC-derived TAAs and PD-L1 antibody (SpC-OMVs + SpT-peptides + anti-PD-L1), increasing the residence time of TAAs in the body. The results showed that the combination therapy of ESC-based TAAs and PD-L1 antibody delivered by OMV had significant inhibitory effects in mouse tumor model. Specifically, it was effective in reducing tumor growth by enhancing IFN-γ-CD8+ T cell responses and increasing the number of CD8+ memory cells and antigen-specific T cells. Overall, the new OMV delivery system is a versatile platform that can enhance the immune responses of ESC-based TAA cancer vaccines.
Collapse
Affiliation(s)
- Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Da Huo
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Shuzhen Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingshuo Zhan
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Bao-Zhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China.
- School of Biomedical Sciences, Faculty of Medicine, Li Ka Shing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
104
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
105
|
Ye L, Liu B, Huang J, Zhao X, Wang Y, Xu Y, Wang S. DCLK1 and its oncogenic functions: A promising therapeutic target for cancers. Life Sci 2024; 336:122294. [PMID: 38007147 DOI: 10.1016/j.lfs.2023.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and β-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Liu Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
106
|
Zheng J, Wang Q, Yan L, Pan Q, Chen X, Chen Q. The Biological Behavior and Clinical Application Prospects of Deoxythymidine Kinase Gene in Tumors. Technol Cancer Res Treat 2024; 23:15330338241265396. [PMID: 39420855 PMCID: PMC11497513 DOI: 10.1177/15330338241265396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant tumors have become a significant risk factor for human mortality. Although there have been notable advancements in the treatment of tumors, patient prognosis remains poor. In recent years, gene diagnosis and gene therapy have brought great benefits to patients. Deoxythymidine kinase (DTYMK) is a highly promising biomarker, has been studied by many scholars, and plays a crucial role in the occurrence and development of various types of cancer. The abnormal expression of DTYMK is involved in tumor occurrence and development, and may also serve as a biomarker for tumor diagnosis, treatment, and prognosis. Several experimental studies have shown that DTYMK can impact tumor progression by regulating mechanisms such as cell cycle, tumor microenvironment, immune infiltration, and signaling pathways. Therefore, this article focuses on clarifying the mechanism of DTYMK in tumors and exploring its clinical application value to help patients prolong their survival cycle and improve their quality of life.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingxin Yan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Pan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxu Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Quanfang Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
107
|
Almonte AA, Cavic G, Carroll CSE, Neeman T, Fahrer AM. Early T Cell Infiltration Correlates with Anti-CTLA4 Treatment Response in Murine Cancer Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1858-1867. [PMID: 37930122 DOI: 10.4049/jimmunol.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Immune checkpoint inhibitor (ICI) Abs are a revolutionary class of cancer treatment, but only ∼30% of patients receive a lasting benefit from therapy. Preclinical studies using animals from the same genetic backgrounds, challenged with the same cancer models, also show nonuniform responses. Most mouse studies that have evaluated tumor-infiltrating leukocytes after ICI therapy cannot directly correlate their findings with treatment outcomes, because terminal methods were used to acquire immune infiltrate data. In the present study, we used fine-needle aspiration (a nonterminal sampling method) to collect multiple aspirates over several days from s.c. implanted P815, CT26, and 4T1 mouse cancer models treated with ICI Abs. These aspirates were then analyzed with flow cytometry to directly correlate tumor-infiltrating leukocyte populations with treatment success. We found that the P815 and CT26 models respond well to anti-CTLA4 therapies. Among P815-challenged animals, mice that regressed following anti-CTLA4 treatment showed significant increases in CD8+ T cells on days 3, 5, and 7 and in CD4+ T cells on days 5 and 7 and a decrease in macrophages and monocytes on days 3, 5, and 7 after treatment. Similar results were obtained in the CT26 model on day 11 posttreatment. Our study is the first, to our knowledge, to directly correlate early tumor infiltration of T cells with anti-CTLA4 treatment success, thus providing a mechanistic clue toward understanding why alloidentical mice challenged with identical tumors do not respond uniformly to ICI therapies.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - George Cavic
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | | | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
108
|
Mejía-Guarnizo LV, Monroy-Camacho PS, Turizo-Smith AD, Rodríguez-García JA. The role of immune checkpoints in antitumor response: a potential antitumor immunotherapy. Front Immunol 2023; 14:1298571. [PMID: 38162657 PMCID: PMC10757365 DOI: 10.3389/fimmu.2023.1298571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy aims to stimulate the immune system to inhibit tumor growth or prevent metastases. Tumor cells primarily employ altered expression of human leukocyte antigen (HLA) as a mechanism to avoid immune recognition and antitumor immune response. The antitumor immune response is primarily mediated by CD8+ cytotoxic T cells (CTLs) and natural killer (NK) cells, which plays a key role in the overall anti-tumor immune response. It is crucial to comprehend the molecular events occurring during the activation and subsequent regulation of these cell populations. The interaction between antigenic peptides presented on HLA-I molecules and the T-cell receptor (TCR) constitutes the initial signal required for T cell activation. Once activated, in physiologic circumstances, immune checkpoint expression by T cells suppress T cell effector functions when the antigen is removed, to ensures the maintenance of self-tolerance, immune homeostasis, and prevention of autoimmunity. However, in cancer, the overexpression of these molecules represents a common method through which tumor cells evade immune surveillance. Numerous therapeutic antibodies have been developed to inhibit immune checkpoints, demonstrating antitumor activity with fewer side effects compared to traditional chemotherapy. Nevertheless, it's worth noting that many immune checkpoint expressions occur after T cell activation and consequently, altered HLA expression on tumor cells could diminish the clinical efficacy of these antibodies. This review provides an in-depth exploration of immune checkpoint molecules, their corresponding blocking antibodies, and their clinical applications.
Collapse
Affiliation(s)
- Lidy Vannessa Mejía-Guarnizo
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Sciences Faculty, Master in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
109
|
Deutsch JS, Lai J, Schenk KM, Soni A, Will EM, Engle LL, Xu H, Ogurtsova A, Madan V, Chong JK, Wang D, Green BF, Nguyen P, Schollenberger MD, Lipson EJ, Taube JM. Immune microenvironment of basal cell carcinoma and tumor regression following combined PD-1/LAG-3 blockade. J Immunother Cancer 2023; 11:e007463. [PMID: 38101862 PMCID: PMC10729066 DOI: 10.1136/jitc-2023-007463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/17/2023] Open
Abstract
Systemic treatment options for patients with locally advanced or metastatic basal cell carcinoma (BCC) are limited, particularly when tumors are refractory to anti-programmed cell death protein-1 (PD-1). A better understanding of immune checkpoint expression within the BCC tumor microenvironment may inform combinatorial treatment strategies to optimize response rates. CD3, PD-1, programmed death ligand-1 (PD-L1), lymphocyte activation gene 3 (LAG-3), and T-cell immunoglobulin domain and mucin domain 3 (TIM-3)+ cell densities within the tumor microenvironment of 34 archival, histologically aggressive BCCs were assessed. Tumor infiltrating lymphocyte (TIL) expression of PD-1, PD-L1, and LAG-3, and to a lesser degree TIM-3, correlated with increasing CD3+ T-cell densities (Pearson's r=0.89, 0.72, 0.87, and 0.63, respectively). 100% of BCCs (34/34) demonstrated LAG-3 and PD-1 expression in >1% TIL; and the correlation between PD-1 and LAG-3 densities was high (Pearson's r=0.89). LAG-3 was expressed at ~50% of the level of PD-1. Additionally, we present a patient with locally-advanced BCC who experienced stable disease during and after 45 weeks of first-line anti-PD-1 (nivolumab), followed by a partial response after the addition of anti-LAG-3 (relatlimab). Longitudinal biopsies throughout the treatment course showed a graduated increase in LAG-3 expression after anti-PD-1 therapy, lending support for coordinated immunosuppression and suggesting LAG-3 as a co-target for combination therapy to augment the clinical impact of anti-PD-(L)1.
Collapse
Affiliation(s)
- Julie Stein Deutsch
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Lai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara M Schenk
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abha Soni
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M Will
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Logan L Engle
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haiying Xu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexandra Ogurtsova
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vrinda Madan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Chong
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daphne Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin F Green
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Nguyen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan D Schollenberger
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan J Lipson
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, Maryland, USA
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
110
|
Piroozkhah M, Gholinezhad Y, Piroozkhah M, Shams E, Nazemalhosseini-Mojarad E. The molecular mechanism of actions and clinical utilities of tumor infiltrating lymphocytes in gastrointestinal cancers: a comprehensive review and future prospects toward personalized medicine. Front Immunol 2023; 14:1298891. [PMID: 38077386 PMCID: PMC10704251 DOI: 10.3389/fimmu.2023.1298891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a significant global health burden, accounting for a substantial number of cases and deaths. Regrettably, the inadequacy of dependable biomarkers hinders the precise forecasting of patient prognosis and the selection of appropriate therapeutic sequencing for individuals with GI cancers, leading to suboptimal outcomes for numerous patients. The intricate interplay between tumor-infiltrating lymphocytes (TILs) and the tumor immune microenvironment (TIME) has been shown to be a pivotal determinant of response to anti-cancer therapy and consequential clinical outcomes across a multitude of cancer types. Therefore, the assessment of TILs has garnered global interest as a promising prognostic biomarker in oncology, with the potential to improve clinical decision-making substantially. Moreover, recent discoveries in immunotherapy have progressively changed the landscape of cancer treatment and significantly prolonged the survival of patients with advanced cancers. Nonetheless, the response rate remains constrained within solid tumor sufferers, even when TIL landscapes appear comparable, which calls for the development of our understanding of cellular and molecular cross-talk between TIME and tumor. Hence, this comprehensive review encapsulates the extant literature elucidating the TILs' underlying molecular pathogenesis, prognostic significance, and their relevance in the realm of immunotherapy for patients afflicted by GI tract cancers. Within this review, we demonstrate that the type, density, and spatial distribution of distinct TIL subpopulations carries pivotal implications for the prediction of anti-cancer treatment responses and patient survival. Furthermore, this review underscores the indispensable role of TILs in modulating therapeutic responses within distinct molecular subtypes, such as those characterized by microsatellite stability or programmed cell death ligand-1 expression in GI tract cancers. The review concludes by outlining future directions in TIL-based personalized medicine, including integrating TIL-based approaches into existing treatment regimens and developing novel therapeutic strategies that exploit the unique properties of TILs and their potential as a promising avenue for personalized cancer treatment.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
111
|
Tang W, Sun G, Ji GW, Feng T, Zhang Q, Cao H, Wu W, Zhang X, Liu C, Liu H, Huang T, Liu L, Xia Y, Wang X. Single-cell RNA-sequencing atlas reveals an FABP1-dependent immunosuppressive environment in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007030. [PMID: 38007237 PMCID: PMC10679975 DOI: 10.1136/jitc-2023-007030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing, also known as scRNA-seq, is a method profiling cell populations on an individual cell basis. It is particularly useful for more deeply understanding cell behavior in a complicated tumor microenvironment. Although several previous studies have examined scRNA-seq for hepatocellular carcinoma (HCC) tissues, no one has tested and analyzed HCC with different stages. METHODS In this investigation, immune cells isolated from surrounding normal tissues and cancer tissues from 3 II-stage and 4 III-stage HCC cases were subjected to deep scRNA-seq. The analysis included 15 samples. We distinguished developmentally relevant trajectories, unique immune cell subtypes, and enriched pathways regarding differential genes. Western blot and co-immunoprecipitation were performed to demonstrate the interaction between fatty acid binding protein 1 (FABP1) and peroxisome proliferator-activated receptor gamma(PPARG). In vivo experiments were performed in a C57BL/6 mouse model of HCC established via subcutaneous injection. RESULTS FABP1 was discovered to be overexpressed in tumor-associated macrophages (TAMs) with III-stage HCC tissues compared with II-stage HCC tissues. This finding was fully supported by immunofluorescence detection in significant amounts of HCC human samples. FABP1 deficiency in TAMs inhibited HCC progression in vitro. Mechanistically, FABP1 interacted with PPARG/CD36 in TAMs to increase fatty acid oxidation in HCC. When compared with C57BL/6 mice of the wild type, tumors in FABP1-/- mice consistently showed attenuation. The FABP1-/- group's relative proportion of regulatory T cells and natural killer cells showed a downward trend, while dendritic cells, M1 macrophages, and B cells showed an upward trend, according to the results of mass cytometry. In further clinical translation, we found that orlistat significantly inhibited FABP1 activity, while the combination of anti-programmed cell death 1(PD-1) could synergistically treat HCC progression. Liposomes loaded with orlistat and connected with IR780 probe could further enhance the therapeutic effect of orlistat and visualize drug metabolism in vivo. CONCLUSIONS ScRNA-seq atlas revealed an FABP1-dependent immunosuppressive environment in HCC. Orlistat significantly inhibited FABP1 activity, while the combination of anti-PD-1 could synergistically treat HCC progression. This study identified new treatment targets and strategies for HCC progression, contributing to patients with advanced HCC from new perspectives.
Collapse
Affiliation(s)
- Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | | | - Gu-Wei Ji
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Qian Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hengsong Cao
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyi Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hanyuan Liu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Huang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongxiang Xia
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
112
|
Skórzewska M, Gęca K, Polkowski WP. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5490. [PMID: 38001751 PMCID: PMC10670421 DOI: 10.3390/cancers15225490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development of therapies for advanced gastric cancer (GC) has made significant progress over the past few years. The identification of new molecules and molecular targets is expanding our understanding of the disease's intricate nature. The end of the classical oncology era, which relied on well-studied chemotherapeutic agents, is giving rise to novel and unexplored challenges, which will cause a significant transformation of the current oncological knowledge in the next few years. The integration of established clinically effective regimens in additional studies will be crucial in managing these innovative aspects of GC. This study aims to present an in-depth and comprehensive review of the clinical advancements in targeted therapy and immunotherapy for advanced GC.
Collapse
|
113
|
Taborska P, Lukac P, Stakheev D, Rajsiglova L, Kalkusova K, Strnadova K, Lacina L, Dvorankova B, Novotny J, Kolar M, Vrana M, Cechova H, Ransdorfova S, Valerianova M, Smetana K, Vannucci L, Smrz D. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep 2023; 13:19079. [PMID: 37925511 PMCID: PMC10625569 DOI: 10.1038/s41598-023-46305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.
Collapse
Affiliation(s)
- Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
| | - Karolina Strnadova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Lukas Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University, and General University Hospital, Prague, Czech Republic
| | - Barbora Dvorankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milena Vrana
- HLA Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Cechova
- HLA Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Sarka Ransdorfova
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marie Valerianova
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic.
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
114
|
Zhang L, Zhao X, Niu Y, Ma X, Yuan W, Ma J. Engineering high-affinity dual targeting cellular nanovesicles for optimised cancer immunotherapy. J Extracell Vesicles 2023; 12:e12379. [PMID: 37974395 PMCID: PMC10654473 DOI: 10.1002/jev2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Dual targeting to immune checkpoints has achieved a better therapeutic efficacy than single targeting due to synergistic extrication of tumour immunity. However, most dual targeting strategies are usually antibody dependent which facing drawbacks of antibodies, such as poor solid tumour penetration and unsatisfied affinity. To meet the challenges, we engineered a cell membrane displaying a fusion protein composed of SIRPα and PD-1 variants, the high-affinity consensus (HAC) of wild-type molecules, and with which prepared nanovesicles (NVs). Through disabling both SIRPα/CD47 and PD-1/PD-L1 signalling, HAC NVs significantly preserved the phagocytosis and antitumour effect of macrophages and T cells, respectively. In vivo study revealed that HAC NVs had better tumour penetration than monoclonal antibodies and higher binding affinity to CD47 and PD-L1 on tumour cells compared with the NVs expressing wild-type fusion protein. Exhilaratingly, dual-blockade of CD47 and PD-L1 with HAC NVs exhibited excellent therapeutic efficacy and biosafety. This study provided a novel biomaterial against tumoural immune escape and more importantly an attractive biomimetic technology of protein delivery for multi-targeting therapies.
Collapse
Affiliation(s)
- Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| | - Xu Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanan Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoya Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
115
|
Snyder CM, Gill SI. Good CARMA: Turning bad tumor-resident myeloid cells good with chimeric antigen receptor macrophages. Immunol Rev 2023; 320:236-249. [PMID: 37295964 DOI: 10.1111/imr.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
In religious philosophy, the concept of karma represents the effect of one's past and present actions on one's future. Macrophages are highly plastic cells with myriad roles in health and disease. In the setting of cancer, macrophages are among the most plentiful members of the immune microenvironment where they generally support tumor growth and restrain antitumor immunity. However, macrophages are not necessarily born bad. Macrophages or their immediate progenitors, monocytes, are induced to traffic to the tumor microenvironment (TME) and during this process they are polarized toward a tumor-promoting phenotype. Efforts to deplete or repolarize tumor-associated macrophages (TAM) for therapeutic benefit in cancer have to date disappointed. By contrast, genetic engineering of macrophages followed by their transit into the TME may allow these impressionable cells to mend their ways. In this review, we summarize and discuss recent advances in the genetic engineering of macrophages for the treatment of cancer.
Collapse
Affiliation(s)
- Christopher M Snyder
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
116
|
Zhao M, Yan CY, Wei YN, Zhao XH. Breaking the mold: Overcoming resistance to immune checkpoint inhibitors. Antiviral Res 2023; 219:105720. [PMID: 37748652 DOI: 10.1016/j.antiviral.2023.105720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune checkpoint blockade-based therapies are effective against a sorts of cancers. However, drug resistance is a problem that cannot be ignored. This review intends to elucidate the mechanisms underlying drug tolerance induced by PD-1/PD-L1 inhibitors, as well as to outline proposed mechanism-based combination therapies and small molecule drugs that target intrinsic immunity and immune checkpoints. According to the differences of patients and types of cancer, the optimization of individualized combination therapy will help to enhance PD-1/PD-L1-mediated immunoregulation, reduce chemotherapy resistance, and provide new ideas for chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China.
| |
Collapse
|
117
|
Mahdi HS, Woodall-Jappe M, Singh P, Czuczman MS. Targeting regulatory T cells by E7777 enhances CD8 T-cell-mediated anti-tumor activity and extends survival benefit of anti-PD-1 in solid tumor models. Front Immunol 2023; 14:1268979. [PMID: 38022532 PMCID: PMC10646188 DOI: 10.3389/fimmu.2023.1268979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Regulatory T cell (Treg)-targeting cancer immunotherapy aims to transiently deplete Treg cells in the tumor microenvironment, without affecting effector T cells (Teff), thus both enhancing anti-tumor activity and avoiding autoimmunity. This study evaluated whether adding E7777 (a new formulation of denileukin diftitox [DD]) improved the efficacy of anti-PD-1 antibody therapy. DD is a recombinant protein containing the hydrophobic and catalytic portions of diphtheria toxin fused to full-length human IL-2. E7777 has the same amino acid sequence and brief circulatory half-life as DD, but with greater purity and potency. Methods Subcutaneous syngeneic murine solid tumor models (colon cancer CT-26 and liver cancer H22) were used to evaluate safety, efficacy, and overall survival with E7777 and anti-PD-1 antibodies, each administered as monotherapy or in concurrent or sequential combination. In Experiment 1, treatments were compared to assess anti-tumor activity at various time points, with tumors excised and dissociated and tumor leukocytes characterized. In Experiment 2, tumor growth, response, and overall survival were characterized for 100 days following a 3-week treatment. Results E7777 administered in combination with anti-PD-1 led to significantly increased anti-tumor activity and durable, extended overall survival compared to either treatment alone. In both tumor models, the Treg cell infiltration induced by anti-PD-1 treatment was counterbalanced by co-treatment with E7777, suggesting potential synergistic activity. Combination therapy showed the most favorable results. Treatment with E7777 was safe and well-tolerated. Discussion Combined E7777 and anti-PD-1 therapy was well tolerated and more effective than monotherapy with either drug.
Collapse
Affiliation(s)
- Haider S. Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Preeti Singh
- Clinical Development and Medical Affairs, Citius Pharmaceuticals, Inc., Cranford, NJ, United States
| | - Myron S. Czuczman
- Clinical Development and Medical Affairs, Citius Pharmaceuticals, Inc., Cranford, NJ, United States
| |
Collapse
|
118
|
Fan D, Yang M, Lee HJ, Lee JH, Kim HS. AVEN: a novel oncogenic biomarker with prognostic significance and implications of AVEN-associated immunophenotypes in lung adenocarcinoma. Front Mol Biosci 2023; 10:1265359. [PMID: 37908231 PMCID: PMC10613694 DOI: 10.3389/fmolb.2023.1265359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction: AVEN, an apoptosis and caspase activation inhibitor, has been associated with adverse clinical outcomes and poor prognosis in Acute myeloid leukemia (AML). Targeting AVEN in AML improves apoptosis sensitivity and chemotherapy efficacy, making it a promising therapeutic target. However, AVEN's role has not been studied in solid tumors. Therefore, our study investigated AVEN as a prognostic biomarker in a more comprehensive manner and developed an AVEN-derived prognostic model in Lung adenocarcinoma (LUAD). Method: Pan-cancer analysis was performed to examine AVEN expression in 33 cancer types obtained from the TCGA database. GEPIA analysis was used to determine the predictive value of AVEN in each cancer type with cancer-specific AVEN expression. Lung Adenocarcinomas (LUAD) patients were grouped into AVENhigh and AVENlow based on AVEN expression level. Differentially expressed genes (DEGs) and pathway enrichment analysis were performed to gain insight into the biological function of AVEN in LUAD. In addition, several deconvolution tools, including Timer, CIBERSORT, EPIC, xCell, Quanti-seq and MCP-counter were used to explore immune infiltration. AVEN-relevant prognostic genes were identified by Random Survival Forest analysis via univariate Cox regression. The AVEN-derived genomic model was established using a multivariate-Cox regression model and GEO datasets (GSE31210, GSE50081) were used to validate its prognostic effect. Results: AVEN expression was increased in several cancer types compared to normal tissue, but its impact on survival was only significant in LUAD in the TCGA cohort. High AVEN expression was significantly correlated with tumor progression and shorter life span in LUAD patients. Pathway analysis was performed with 838 genes associated with AVEN expression and several oncogenic pathways were altered such as the Cell cycle, VEGFA-VEGFR2 pathway, and epithelial-mesenchymal-transition pathway. Immune infiltration was also analyzed, and less infiltrated B cells was observed in AVENhigh patients. Furthermore, an AVEN-derived genomic model was established, demonstrating a reliable and improved prognostic value in TCGA and GEO databases. Conclusion: This study provided evidence that AVEN is accumulated in LUAD compared to adjacent tissue and is associated with poor survival, high tumor progression, and immune infiltration alteration. Moreover, the study introduced the AVEN-derived prognostic model as a promising prognosis tool for LUAD.
Collapse
Affiliation(s)
| | | | | | | | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
119
|
Stai S, Fylaktou A, Kasimatis E, Xochelli A, Lioulios G, Nikolaidou V, Papadopoulou A, Myserlis G, Iosifidou AM, Iosifidou MA, Papagianni A, Yannaki E, Tsoulfas G, Stangou M. Immune Profile Determines Response to Vaccination against COVID-19 in Kidney Transplant Recipients. Vaccines (Basel) 2023; 11:1583. [PMID: 37896986 PMCID: PMC10611345 DOI: 10.3390/vaccines11101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND AND AIM Immune status profile can predict response to vaccination, while lymphocyte phenotypic alterations represent its effectiveness. We prospectively evaluated these parameters in kidney transplant recipients (KTRs) regarding Tozinameran (BNT162b2) vaccination. METHOD In this prospective monocenter observational study, 39 adult KTRs, on stable immunosuppression, naïve to COVID-19, with no protective humoral response after two Tozinameran doses, received the third vaccination dose, and, based on their immunity activation, they were classified as responders or non-responders. Humoral and cellular immunities were assessed at predefined time points (T0: 48 h before the first, T1: 48 h prior to the third and T2: three weeks after the third dose). RESULTS Responders, compared to non-responders, had a higher total and transitional B-lymphocyte count at baseline (96.5 (93) vs. 51 (52)cells/μL, p: 0.045 and 9 (17) vs. 1 (2)cells/μL, p: 0.031, respectively). In the responder group, there was a significant increase, from T0 to T1, in the concentrations of activated CD4+ (from 6.5 (4) to 10.08 (11)cells/μL, p: 0.001) and CD8+ (from 8 (19) to 14.76 (16)cells/μL, p: 0.004) and a drop in CD3+PD1+ T-cells (from 130 (121) to 30.44 (25)cells/μL, p: 0.001), while naïve and transitional B-cells increased from T1 to T2 (from 57.55 (66) to 1149.3 (680)cells/μL, p < 0.001 and from 1.4 (3) to 17.5 (21)cells/μL, p: 0.003). The percentages of memory and marginal zone B-lymphocytes, and activated CD4+, CD8+ and natural killer (NK) T-cells significantly increased, while those of naïve B-cells and CD3+PD1+ T-cells reduced from T0 to T1. CONCLUSIONS Responders and non-responders to the third BNT162b2 dose demonstrated distinct initial immune cell profiles and changes in cellular subpopulation composition following vaccination.
Collapse
Affiliation(s)
- Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Efstratios Kasimatis
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Anastasia Papadopoulou
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (E.Y.)
| | - Grigorios Myserlis
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Transplant Surgery, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Artemis Maria Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
| | - Myrto Aikaterini Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
| | - Aikaterini Papagianni
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (E.Y.)
| | - Georgios Tsoulfas
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Transplant Surgery, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
120
|
Wen Z, Wang J, Tu B, Liu Y, Yang Y, Hou L, Yang X, Liu X, Xie H. Radiofrequency ablation combined with toripalimab for recurrent hepatocellular carcinoma: A prospective controlled trial. Cancer Med 2023; 12:20311-20320. [PMID: 37814921 PMCID: PMC10652346 DOI: 10.1002/cam4.6602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE The effectiveness and security of radiofrequency ablation (RFA) in combination with toripalimab (anti-PD-1) for the treatment of recurrent hepatocellular carcinoma (HCC) was studied in this article. METHODS Total of 40 patients were enrolled in the study between September 2019 and November 2021. Data follow-up ends in April 2022. The study's main focus is on recurrence free survival (RFS), while the secondary objectives was safety. Chi-square tests, Kaplan-Meier, and Cox proportional hazards models were utilized to analyze the data. RESULTS The median follow-up period was 21.40 months, and the median RFS was 15.40 months in the group that received combination therapy, which was statistically significantly different (HR: 0.44, p = 0.04) compared with the RFA group (8.2 months). RFS rates (RFSr) at 6, 12 and 18 months in the combination therapy groups and RFA groups were 80% vs 65%, 62.7% vs 35% and 48.7% vs 18.8%, respectively. Between the two groups, significant difference of RFSr was found at 18 months (p = 0.04). No statistical differences were observed between the two groups in terms of safeness (p > 0.05). The subgroup analysis indicated that the combination of RFA and anti-PD-1 led to better RFS than RFA alone. Moreover, patients benefited more from combination therapy in the groups younger than 60 years (HR: 0.26, p = 0.018), male (HR: 0.32, p = 0.028) and Child-Pugh grade A (HR: 0.38, p = 0.032). CONCLUSIONS Combining RFA with anti-PD-1 showed improved RFS and was deemed safe for patients with recurrent HCC who had previously undergone RFA treatment alone.
Collapse
Affiliation(s)
- Zhenyu Wen
- Department of Public HealthJilin UniversityJilinChina
| | - Junxiao Wang
- Aerospace Medical CenterAerospace Center HospitalBeijingChina
| | - Bo Tu
- Department of Infectious DiseasesFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yane Liu
- Department of Public HealthJilin UniversityJilinChina
| | - Yuqing Yang
- Department of Public HealthJilin UniversityJilinChina
| | - Li Hou
- Department of OncologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiang Yang
- Department of OncologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaoyan Liu
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hui Xie
- Department of OncologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
121
|
Frentzas S, Kao S, Gao R, Zheng H, Rizwan A, Budha N, de la Hoz Pedroza L, Tan W, Meniawy T. AdvanTIG-105: a phase I dose escalation study of the anti-TIGIT monoclonal antibody ociperlimab in combination with tislelizumab in patients with advanced solid tumors. J Immunother Cancer 2023; 11:e005829. [PMID: 37857528 PMCID: PMC10603446 DOI: 10.1136/jitc-2022-005829] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Ociperlimab, a novel, humanized monoclonal antibody (mAb), binds to T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) with high affinity and specificity. Tislelizumab is an anti-programmed cell death protein 1 mAb. We report results from a phase I, first-in-human, dose escalation study evaluating the safety, pharmacokinetics (PK), and preliminary antitumor activity of ociperlimab plus tislelizumab in patients with advanced solid tumors. METHODS Eligible patients previously treated with standard systemic therapy, or for whom treatment was not available or tolerated, received ociperlimab intravenously on Cycle (C) 1 Day (D) 1 and tislelizumab 200 mg intravenously on C1 D8. If tolerated, patients received ociperlimab plus tislelizumab 200 mg sequentially on D29 and every 3 weeks (Q3W) thereafter until discontinuation. Dose escalation for ociperlimab was planned with four dose levels (50 mg, 150 mg, 450 mg, and 900 mg) according to a 3+3 design. An additional dose level of ociperlimab 1800 mg was also assessed. Primary endpoints were safety, determination of the maximum tolerated (or administered) dose, and the recommended phase II dose (RP2D). Secondary endpoints included overall response rate (ORR), duration of response (DoR), disease control rate (DCR) (Response Evaluation Criteria in Solid Tumors version 1.1), PK, and biomarker analysis. RESULTS At data cut-off (September 29, 2022), 32 patients had received ≥1 dose of ociperlimab plus tislelizumab 200 mg Q3W. The maximum administered dose was ociperlimab 1800 mg plus tislelizumab 200 mg Q3W. The median age of enrolled patients was 59.5 years (range: 31-79). Most patients (96.9%) experienced ≥1 treatment-emergent adverse event (TEAE); 62.5% of patients experienced ≥grade 3 TEAEs and 50.0% of patients experienced serious TEAEs. No dose limiting toxicity events were reported. The maximum tolerated dose was not reached. The RP2D was ociperlimab 900 mg plus tislelizumab 200 mg Q3W. Overall, ORR was 10.0%, median DoR was 3.6 months, and DCR was 50.0%. CONCLUSIONS Ociperlimab plus tislelizumab was well tolerated in patients with advanced solid tumors, and preliminary antitumor activity was observed with 450 mg, 900 mg, and 1800 mg ociperlimab. Phase II/III trials of ociperlimab 900 mg plus tislelizumab 200 mg Q3W are underway in a range of solid tumors. TRIAL REGISTRATION NUMBER NCT04047862.
Collapse
Affiliation(s)
- Sophia Frentzas
- Department of Medical Oncology, Monash Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Steven Kao
- Chris O'Brien Lifehouse, School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Rang Gao
- BeiGene (Shanghai) Ltd, Shanghai, China
| | - Hao Zheng
- BeiGene USA, Inc, San Mateo, California, USA
| | | | | | | | - Wei Tan
- BeiGene (Shanghai) Ltd, Shanghai, China
| | - Tarek Meniawy
- Linear Clinical Research and the University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
122
|
Zhang Z, Liao Q, Pan T, Yu L, Luo Z, Su S, Liu S, Hou M, Li Y, Damba T, Liang Y, Zhou L. BATF relieves hepatic steatosis by inhibiting PD1 and promoting energy metabolism. eLife 2023; 12:RP88521. [PMID: 37712938 PMCID: PMC10503959 DOI: 10.7554/elife.88521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD) has become a global health threat that needs to be addressed urgently. Basic leucine zipper ATF-like transcription factor (BATF) is commonly thought to be involved in immunity, but its effect on lipid metabolism is not clear. Here, we investigated the function of BATF in hepatic lipid metabolism. BATF alleviated high-fat diet (HFD)-induced hepatic steatosis and inhibited elevated programmed cell death protein (PD)1 expression induced by HFD. A mechanistic study confirmed that BATF regulated fat accumulation by inhibiting PD1 expression and promoting energy metabolism. PD1 antibodies alleviated hepatic lipid deposition. In conclusion, we identified the regulatory role of BATF in hepatic lipid metabolism and that PD1 is a target for alleviation of NAFLD. This study provides new insights into the relationship between BATF, PD1, and NAFLD.
Collapse
Affiliation(s)
- Zhiwang Zhang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qichao Liao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tingli Pan
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Menglong Hou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yixing Li
- College of Animal Science and Technology, Guangxi UniversityNanningChina
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical SciencesUlan BatorMongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
123
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
124
|
Liu Y, Zheng Z, Han J, Lin C, Liu C, Ma Y, Zhao Y. Delivery of sPD1 gene by anti-CD133 antibody conjugated microbubbles combined with ultrasound for the treatment of cervical cancer in mice. Toxicol Appl Pharmacol 2023; 474:116605. [PMID: 37355104 DOI: 10.1016/j.taap.2023.116605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
To explore new therapeutic options for cervical cancer, the inhibitory effect on cervical cancer of targeted CD133-loaded sPD1 gene microbubbles (MBs) combined with low-frequency ultrasound was studied and its mechanism was explored. We prepared microbubbles conjugated with anti-CD133 antibody to deliver the sPD1 gene and determined concentration, particle size, and potentials of MBs. In addition, we verified that CD133 targeted-MBs could specifically bind to U14 cervical cancer cells in vitro. A mouse model of subcutaneous xenograft cervical cancer was established and mice were divided into a control group, an non-targeted microbubble group, a CD133-MBs group, an sPD1-MBs group and a CD133/sPD1-MBs group. Compared with the control group, tumor growth was inhibited in each group, with the CD133/sPD1 group showing the strongest inhibitory effect after treatment. The tumor volume and weight inhibition rates in the CD133/sPD1-MBs group were 78.01% and 72.25% respectively, which were statistically different from the other groups (P < 0.05), and HE staining and TUNEL immunofluorescence showed necrosis and apoptosis in tumor tissue. Flow cytometry, lactate dehydrogenase, and indirect immunofluorescence experiments showed that T lymphocytes were activated and a large number of CD8-positive T cells infiltrated the tumor tissue after treatment, with the CD133/sPD1-MBs group showing the most prominent effects (P < 0.05). The combination of ultrasound with anti- CD133 antibody-conjugated microbubbles loaded with the sPD1 gene can inhibit the growth of cervical cancer, suggesting that the immunosuppressive microenvironment of the tumor is improved after treatment.
Collapse
Affiliation(s)
- Yun Liu
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China
| | - Zhiwei Zheng
- Medical College of China Three Gorges University, Yichang 443002, China; Department of Ultrasound, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Jiaxuan Han
- Medical College of China Three Gorges University, Yichang 443002, China
| | - Chen Lin
- Medical College of China Three Gorges University, Yichang 443002, China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of tumor microenvironment and immunotherapy, Yichang 334002, China
| | - Yao Ma
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China.
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of tumor microenvironment and immunotherapy, Yichang 334002, China.
| |
Collapse
|
125
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
126
|
Kaur J, Chandrashekar DS, Varga Z, Sobottka B, Janssen E, Gandhi K, Kowalski J, Kiraz U, Varambally S, Aneja R. Whole-Exome Sequencing Reveals High Mutational Concordance between Primary and Matched Recurrent Triple-Negative Breast Cancers. Genes (Basel) 2023; 14:1690. [PMID: 37761830 PMCID: PMC10531222 DOI: 10.3390/genes14091690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a molecularly complex and heterogeneous breast cancer subtype with distinct biological features and clinical behavior. Although TNBC is associated with an increased risk of metastasis and recurrence, the molecular mechanisms underlying TNBC metastasis remain unclear. We performed whole-exome sequencing (WES) analysis of primary TNBC and paired recurrent tumors to investigate the genetic profile of TNBC. METHODS Genomic DNA extracted from 35 formalin-fixed paraffin-embedded tissue samples from 26 TNBC patients was subjected to WES. Of these, 15 were primary tumors that did not have recurrence, and 11 were primary tumors that had recurrence (nine paired primary and recurrent tumors). Tumors were analyzed for single-nucleotide variants and insertions/deletions. RESULTS The tumor mutational burden (TMB) was 7.6 variants/megabase in primary tumors that recurred (n = 9); 8.2 variants/megabase in corresponding recurrent tumors (n = 9); and 7.3 variants/megabase in primary tumors that did not recur (n = 15). MUC3A was the most frequently mutated gene in all groups. Mutations in MAP3K1 and MUC16 were more common in our dataset. No alterations in PI3KCA were detected in our dataset. CONCLUSIONS We found similar mutational profiles between primary and paired recurrent tumors, suggesting that genomic features may be retained during local recurrence.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Darshan S. Chandrashekar
- Department of Pathology—Molecular and Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.S.C.); (S.V.)
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; (Z.V.); (B.S.)
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland; (Z.V.); (B.S.)
| | - Emiel Janssen
- Department of Pathology, Stavanger University Hospital, Health Stavanger HF, 4068 Stavanger, Norway; (E.J.); (U.K.)
| | - Khanjan Gandhi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Jeanne Kowalski
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Health Stavanger HF, 4068 Stavanger, Norway; (E.J.); (U.K.)
| | - Sooryanarayana Varambally
- Department of Pathology—Molecular and Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.S.C.); (S.V.)
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
127
|
Razaghi A, Durand-Dubief M, Brusselaers N, Björnstedt M. Combining PD-1/PD-L1 blockade with type I interferon in cancer therapy. Front Immunol 2023; 14:1249330. [PMID: 37691915 PMCID: PMC10484344 DOI: 10.3389/fimmu.2023.1249330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
PD-1 and PD-L1 are crucial regulators of immunity expressed on the surface of T cells and tumour cells, respectively. Cancer cells frequently use PD-1/PD-L1 to evade immune detection; hence, blocking them exposes tumours to be attacked by activated T cells. The synergy of PD-1/PD-L1 blockade with type I interferon (IFN) can improve cancer treatment efficacy. Type I IFN activates immune cells boosts antigen presentation and controls proliferation. In addition, type I IFN increases tumour cell sensitivity to the blockade. Combining the two therapies increases tumoral T cell infiltration and activation within tumours, and stimulate the generation of memory T cells, leading to prolonged patient survival. However, limitations include heterogeneous responses, the need for biomarkers to predict and monitor outcomes, and adverse effects and toxicity. Although treatment resistance remains an obstacle, the combined therapeutic efficacy of IFNα/β and PD-1/PD-L1 blockade demonstrated considerable benefits across a spectrum of cancer types, notably in melanoma. Overall, the phases I and II clinical trials have demonstrated safety and efficiency. In future, further investigations in clinical trials phases III and IV are essential to compare this combinatorial treatment with standard treatment and assess long-term side effects in patients.
Collapse
Affiliation(s)
- Ali Razaghi
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mickaël Durand-Dubief
- Discovery & Front-End Innovation, Lesaffre Institute of Science & Technology, Lesaffre International, Marcq-en-Baroeul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
128
|
Wang Y, Jiang R, Wang T, Wu Z, Gong H, Cai X, Liu J, Yang X, Wei H, Jiao J, Jia Q, Yang C, Zhao C, Xiao J. Identification of ARAP3 as a regulator of tumor progression, macrophage infiltration and osteoclast differentiation in a tumor microenvironment-related prognostic model of Ewing sarcoma. Am J Cancer Res 2023; 13:3721-3740. [PMID: 37693165 PMCID: PMC10492096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/11/2023] [Indexed: 09/12/2023] Open
Abstract
Understanding the specificity and complexity of the tumor microenvironment (TME) of Ewing sarcoma (ES) is essential for identifying the immune characteristics of ES, improving the prediction of immunotherapeutic response, and facilitating therapeutic target discovery. In this study, we not only evaluated the gene sets associated with TME in ES using ESTIMATE and WGCNA algorithms based on the transcriptome data of ES, but also constructed a prognostic model (ES Score) using univariate Cox regression and Lasso regression and assessed its predictive ability on immune cell infiltration. Subsequently, we identified ARAP3 as a key gene affecting the TME of ES. In addition, bioinformatic analyses and in vitro experiments proved that the high expression of ARAP3 regulated ES cell proliferation, migration, as well as apoptosis via the p53 signaling pathway and affected macrophage infiltration and osteoclast differentiation through regulating IL1B and IL11 secretion of tumor cells.
Collapse
Affiliation(s)
- Yao Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Runyi Jiang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Ting Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Zhipeng Wu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Haiyi Gong
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Xiaopan Cai
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Jialiang Liu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Xinghai Yang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Haifeng Wei
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Jian Jiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Qi Jia
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Cheng Yang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Chenglong Zhao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Jianru Xiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| |
Collapse
|
129
|
Monti Hughes A, Hu N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers (Basel) 2023; 15:4091. [PMID: 37627119 PMCID: PMC10452654 DOI: 10.3390/cancers15164091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy. It combines preferential boron accumulation in tumors and neutron irradiation. The recent initiation of BNCT clinical trials employing hospital-based accelerators rather than nuclear reactors as the neutron source will conceivably pave the way for new and more numerous clinical trials, leading up to much-needed randomized trials. In this context, it would be interesting to consider the implementation of new boron compounds and strategies that will significantly optimize BNCT. With this aim in mind, we analyzed, in this review, those articles published between 2020 and 2023 reporting new boron compounds and strategies that were proved therapeutically useful in in vitro and/or in vivo radiobiological studies, a critical step for translation to a clinical setting. We also explored new pathologies that could potentially be treated with BNCT and newly developed theranostic boron agents. All these radiobiological advances intend to solve those limitations and questions that arise during patient treatment in the clinical field, with BNCT and other therapies. In this sense, active communication between clinicians, radiobiologists, and all disciplines will improve BNCT for cancer patients, in a cost- and time-effective way.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Radiation Pathology Division, Department Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires B1650KNA, Argentina
- National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
130
|
Won S, Lee C, Bae S, Lee J, Choi D, Kim M, Song S, Lee J, Kim E, Shin H, Basukala A, Lee TR, Lee D, Gho YS. Mass-produced gram-negative bacterial outer membrane vesicles activate cancer antigen-specific stem-like CD8 + T cells which enables an effective combination immunotherapy with anti-PD-1. J Extracell Vesicles 2023; 12:e12357. [PMID: 37563797 PMCID: PMC10415594 DOI: 10.1002/jev2.12357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Despite the capability of extracellular vesicles (EVs) derived from Gram-negative and Gram-positive bacteria to induce potent anti-tumour responses, large-scale production of bacterial EVs remains as a hurdle for their development as novel cancer immunotherapeutic agents. Here, we developed manufacturing processes for mass production of Escherichia coli EVs, namely, outer membrane vesicles (OMVs). By combining metal precipitation and size-exclusion chromatography, we isolated 357 mg in total protein amount of E. coli OMVs, which was equivalent to 3.93 × 1015 particles (1.10 × 1010 particles/μg in total protein amounts of OMVs) from 160 L of the conditioned medium. We show that these mass-produced E. coli OMVs led to complete remission of two mouse syngeneic tumour models. Further analysis of tumour microenvironment in neoantigen-expressing tumour models revealed that E. coli OMV treatment causes increased infiltration and activation of CD8+ T cells, especially those of cancer antigen-specific CD8+ T cells with high expression of TCF-1 and PD-1. Furthermore, E. coli OMVs showed synergistic anti-tumour activity with anti-PD-1 antibody immunotherapy, inducing substantial tumour growth inhibition and infiltration of activated cancer antigen-specific stem-like CD8+ T cells into the tumour microenvironment. These data highlight the potent anti-tumour activities of mass-produced E. coli OMVs as a novel candidate for developing next-generation cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Solchan Won
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | | | - Seoyoon Bae
- Department of Life SciencesPOSTECHPohangRepublic of Korea
| | - Jaemin Lee
- SL Bigen Inc.IncheonRepublic of Korea
- Department of Life SciencesPOSTECHPohangRepublic of Korea
| | - Dongsic Choi
- Department of BiochemistrySoonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Min‐Gang Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | | | | | - Eunhye Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - HaYoung Shin
- Department of Life SciencesPOSTECHPohangRepublic of Korea
| | - Anita Basukala
- Department of Life SciencesPOSTECHPohangRepublic of Korea
| | | | - Dong‐Sup Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yong Song Gho
- SL Bigen Inc.IncheonRepublic of Korea
- Department of Life SciencesPOSTECHPohangRepublic of Korea
| |
Collapse
|
131
|
Lim C, Hwang D, Yazdimamaghani M, Atkins HM, Hyun H, Shin Y, Ramsey JD, Rädler PD, Mott KR, Perou CM, Sokolsky-Papkov M, Kabanov AV. High-Dose Paclitaxel and its Combination with CSF1R Inhibitor in Polymeric Micelles for Chemoimmunotherapy of Triple Negative Breast Cancer. NANO TODAY 2023; 51:101884. [PMID: 37484164 PMCID: PMC10357922 DOI: 10.1016/j.nantod.2023.101884] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mostafa Yazdimamaghani
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah Marie Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyesun Hyun
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuseon Shin
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, South Korea
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick D Rädler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
132
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
133
|
Liu D, Wang J, You W, Ma F, Sun Q, She J, He W, Yang G. A d-peptide-based oral nanotherapeutic modulates the PD-1/PD-L1 interaction for tumor immunotherapy. Front Immunol 2023; 14:1228581. [PMID: 37529049 PMCID: PMC10388715 DOI: 10.3389/fimmu.2023.1228581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Background PD-1/PD-L1 immune checkpoint inhibitors are currently the most commonly utilized agents in clinical practice, which elicit an immunostimulatory response to combat malignancies. However, all these inhibitors are currently administered via injection using antibody-based therapies, while there is a growing need for oral alternatives. Methods This study has developed and synthesized exosome-wrapped gold-peptide nanocomplexes with low immunogenicity, which can target PD-L1 and activate antitumor immunity in vivo through oral absorption. The SuperPDL1exo was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel silver staining. The transmembrane ability of SuperPDL1exo was evaluated by flow cytometry and immunofluorescence. Cell viability was determined using the Cell Counting Kit-8 (CCK-8) assay. ELISA experiments were conducted to detect serum and tissue inflammatory factors, as well as serum biochemical indicators. Tissue sections were stained with H&E for the evaluation of the safety of SuperPDL1exo. An MC38 colon cancer model was established in immunocompetent C56BL/6 mice to evaluate the effects of SuperPDL1exo on tumor growth in vivo. Immunohistochemistry (IHC) staining was performed to detect cytotoxicity factors such as perforin and granzymes. Results First, SuperPDL1 was successfully synthesized, and milk exosome membranes were encapsulated through ultrasound, repeated freeze-thaw cycles, and extrusion, resulting in the synthesis of SuperPDL1exo. Multiple characterization results confirmed the successful synthesis of SuperPDL1exo nanoparticles. Furthermore, our data demonstrated that SuperPDL1exo exhibited excellent colloidal stability and superior cell transmembrane ability. In vitro and in vivo experiments revealed that SuperPDL1exo did not cause damage to multiple systemic organs, demonstrating its good biocompatibility. Finally, in the MC38 colon cancer mouse model, it was discovered that SuperPDL1exo could inhibit the progression of colon cancer, and this tumor-suppressive effect was mediated through the activation of tumor-specific cytotoxic T lymphocyte (CTL)-related immune responses. Conclusion This study has successfully designed and synthesized an oral nanotherapeutic, SuperPDL1exo, which demonstrates small particle size, excellent colloidal stability, transmembrane ability in tumor cells, and biocompatibility. In vivo experiments have shown that it effectively activates T-cell immunity and exerts antitumor effects.
Collapse
Affiliation(s)
- Dan Liu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fang Ma
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Junjun She
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guang Yang
- Department of Oncology, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
134
|
Castillo DR, Jeon WJ, Park D, Pham B, Yang C, Joung B, Moon JH, Lee J, Chong EG, Park K, Reeves ME, Duerksen-Hughes P, Mirshahidi HR, Mirshahidi S. Comprehensive Review: Unveiling the Pro-Oncogenic Roles of IL-1ß and PD-1/PD-L1 in NSCLC Development and Targeting Their Pathways for Clinical Management. Int J Mol Sci 2023; 24:11547. [PMID: 37511306 PMCID: PMC10380530 DOI: 10.3390/ijms241411547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In the past decade, targeted therapies for solid tumors, including non-small cell lung cancer (NSCLC), have advanced significantly, offering tailored treatment options for patients. However, individuals without targetable mutations pose a clinical challenge, as they may not respond to standard treatments like immune-checkpoint inhibitors (ICIs) and novel targeted therapies. While the mechanism of action of ICIs seems promising, the lack of a robust response limits their widespread use. Although the expression levels of programmed death ligand 1 (PD-L1) on tumor cells are used to predict ICI response, identifying new biomarkers, particularly those associated with the tumor microenvironment (TME), is crucial to address this unmet need. Recently, inflammatory cytokines such as interleukin-1 beta (IL-1β) have emerged as a key area of focus and hold significant potential implications for future clinical practice. Combinatorial approaches of IL-1β inhibitors and ICIs may provide a potential therapeutic modality for NSCLC patients without targetable mutations. Recent advancements in our understanding of the intricate relationship between inflammation and oncogenesis, particularly involving the IL-1β/PD-1/PD-L1 pathway, have shed light on their application in lung cancer development and clinical outcomes of patients. Targeting these pathways in cancers like NSCLC holds immense potential to revolutionize cancer treatment, particularly for patients lacking targetable genetic mutations. However, despite these promising prospects, there remain certain aspects of this pathway that require further investigation, particularly regarding treatment resistance. Therefore, the objective of this review is to delve into the role of IL-1β in NSCLC, its participation in inflammatory pathways, and its intricate crosstalk with the PD-1/PD-L1 pathway. Additionally, we aim to explore the potential of IL-1β as a therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Dani Ran Castillo
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Won Jin Jeon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Daniel Park
- Department of Internal Medicine, University of San Francisco-Fresno, Fresno, CA 93701, USA;
| | - Bryan Pham
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Bowon Joung
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jin Hyun Moon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jae Lee
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Esther G. Chong
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Kiwon Park
- Department of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Penelope Duerksen-Hughes
- Division of Biochemistry, Department of Medicine & Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Hamid R. Mirshahidi
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Microbiology and Molecular Genetics, Department of Medicine & Basic Sciences, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|
135
|
Takahashi H, Miyoshi N, Murakami H, Okamura Y, Ogo N, Takagi A, Muraoka D, Asai A. Combined therapeutic effect of YHO-1701 with PD-1 blockade is dependent on natural killer cell activity in syngeneic mouse models. Cancer Immunol Immunother 2023; 72:2473-2482. [PMID: 37017695 PMCID: PMC10992562 DOI: 10.1007/s00262-023-03440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) signaling pathway is a key mediator of cancer cell proliferation, survival, and invasion. We discovered YHO-1701 as a small molecule inhibitor of STAT3 dimerization and demonstrated its potent anti-tumor activity using xenograft mouse models as monotherapy and combination therapy with molecular targeted drugs. STAT3 is also associated with cancer immune tolerance; therefore, we used the female CT26 syngeneic mouse model to examine the effect of combining YHO-1701 administration with PD-1/PD-L1 blockade. Pretreatment of the mice with YHO-1701 before starting anti-PD-1 antibody administration resulted in a significant therapeutic effect. In addition, the effect of monotherapy and combination treatment with YHO-1701 was significantly abolished by depleting natural killer (NK) cell activity. YHO-1701 was also found to restore the activity of mouse NK cells under inhibitory conditions in vitro. Furthermore, this combination therapy significantly inhibited tumor growth in an immunotherapy-resistant model of murine CMS5a fibrosarcoma. These results suggest that the combination of YHO-1701 with PD-1/PD-L1 blockade might be a new candidate for cancer immunotherapy involving the enhancement of NK cell activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
- Pharmaceutical Research and Development Division, Yakult Honsha Co., Ltd, Tokyo, Japan
| | - Nao Miyoshi
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Hisashi Murakami
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Yuta Okamura
- Pharmaceutical Research and Development Division, Yakult Honsha Co., Ltd, Tokyo, Japan
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Akimitsu Takagi
- Yakult Central Institute, Yakult Honsha Co., Ltd, Tokyo, Japan
| | - Daisuke Muraoka
- Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Naogya, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan.
| |
Collapse
|
136
|
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023; 13:120. [PMID: 37386520 DOI: 10.1186/s13578-023-01073-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
137
|
Zhou Y, Li H. Neurological adverse events associated with PD-1/PD-L1 immune checkpoint inhibitors. Front Neurosci 2023; 17:1227049. [PMID: 37456998 PMCID: PMC10339650 DOI: 10.3389/fnins.2023.1227049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is a promising method for cancer treatment. Among them, immune checkpoint inhibitors targeting PD-1/PD-L1 are increasingly used for certain cancers. However, with the widespread use of such drugs, reports of immune-related adverse events (irAEs) are also increasing. Neurological adverse events (nAEs) are one of the irAEs that affect the peripheral and central nervous systems. They are characterized by low incidence, hard to diagnose, and life-threatening risks, which have a significant impact on the prognosis of patients. Biomarker-based early diagnosis and subsequent treatment strategies are worthy of attention, and comprehensive management of irAEs is important for optimizing patients' quality of life and long-term outcomes. In this review, we summarized the mechanisms, common symptoms, early biomarkers, treatments, and future research directions of nAEs, in order to provide a comprehensive overview of immune checkpoint inhibitor-related nAEs targeting PD-1/PD-L1.
Collapse
|
138
|
Tierno D, Grassi G, Scomersi S, Bortul M, Generali D, Zanconati F, Scaggiante B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int J Mol Sci 2023; 24:ijms24119688. [PMID: 37298642 DOI: 10.3390/ijms24119688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The poor survival of triple-negative breast cancer (TNBC) is due to its aggressive behavior, large heterogeneity, and high risk of recurrence. A comprehensive molecular investigation of this type of breast cancer using high-throughput next-generation sequencing (NGS) methods may help to elucidate its potential progression and discover biomarkers related to patient survival. In this review, the NGS applications in TNBC research are described. Many NGS studies point to TP53 mutations, immunocheckpoint response genes, and aberrations in the PIK3CA and DNA repair pathways as recurrent pathogenic alterations in TNBC. Beyond their diagnostic and predictive/prognostic value, these findings suggest potential personalized treatments in PD -L1-positive TNBC or in TNBC with a homologous recombination deficit. Moreover, the comprehensive sequencing of large genomes with NGS has enabled the identification of novel markers with clinical value in TNBC, such as AURKA, MYC, and JARID2 mutations. In addition, NGS investigations to explore ethnicity-specific alterations have pointed to EZH2 overexpression, BRCA1 alterations, and a BRCA2-delaAAGA mutation as possible molecular signatures of African and African American TNBC. Finally, the development of long-read sequencing methods and their combination with optimized short-read techniques promise to improve the efficiency of NGS approaches for future massive clinical use.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Serena Scomersi
- Breast Unit-Azienda Sanitaria Universitaria Integrata Giuliano Isontina ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Azienda Socio-Sanitaria Territoriale di Cremona-ASST, Breast Cancer Unit and Translational Research Unit, 26100 Cremona, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
139
|
Sutherland SIM, Ju X, Silveira PA, Kupresanin F, Horvath LG, Clark GJ. CD300f signalling induces inhibitory human monocytes/macrophages. Cell Immunol 2023; 390:104731. [PMID: 37302321 DOI: 10.1016/j.cellimm.2023.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
The CD300 glycoproteins are a family of related leucocyte surface molecules that regulate the immune response via their paired triggering and inhibitory receptors. Here we studied CD300f, an apoptotic cell receptor, and how it modulates the function of human monocytes and macrophages. We showed that CD300f signalling by crosslinking with anti-CD300f mAb (DCR-2) suppressed monocytes causing upregulation of the inhibitory molecule, CD274 (PD-L1) and their inhibition of T cell proliferation. Furthermore, CD300f signalling drove macrophages preferentially towards M2-type with upregulation of CD274, which was further enhanced by IL-4. CD300f signalling activates the PI3K/Akt pathway in monocytes. Inhibition of PI3K/Akt signalling resulting from CD300f crosslinking leads to downregulation of CD274 expression on monocytes. These findings highlight the potential use of CD300f blockade in cancer immune therapy to target immune suppressive macrophages in the tumour microenvironment, a known resistance mechanism to PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Sarah I M Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Lisa G Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
140
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
141
|
Lee SH, Kim Y, Jeon BN, Kim G, Sohn J, Yoon Y, Kim S, Kim Y, Kim H, Cha H, Lee NE, Yang H, Chung JY, Jeong AR, Kim YY, Kim SG, Seo Y, Park S, Jung HA, Sun JM, Ahn JS, Ahn MJ, Park H, Yoon KW. Intracellular Adhesion Molecule-1 Improves Responsiveness to Immune Checkpoint Inhibitor by Activating CD8 + T Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204378. [PMID: 37097643 DOI: 10.1002/advs.202204378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/01/2023] [Indexed: 06/15/2023]
Abstract
Immune checkpoint inhibitor (ICI) clinically benefits cancer treatment. However, the ICI responses are only achieved in a subset of patients, and the underlying mechanisms of the limited response remain unclear. 160 patients with non-small cell lung cancer treated with anti-programmed cell death protein-1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) are analyzed to understand the early determinants of response to ICI. It is observed that high levels of intracellular adhesion molecule-1 (ICAM-1) in tumors and plasma of patients are associated with prolonged survival. Further reverse translational studies using murine syngeneic tumor models reveal that soluble ICAM-1 (sICAM-1) is a key molecule that increases the efficacy of anti-PD-1 via activation of cytotoxic T cells. Moreover, chemokine (CXC motif) ligand 13 (CXCL13) in tumors and plasma is correlated with the level of ICAM-1 and ICI efficacy, suggesting that CXCL13 might be involved in the ICAM-1-mediated anti-tumor pathway. Using sICAM-1 alone and in combination with anti-PD-1 enhances anti-tumor efficacy in anti-PD-1-responsive tumors in murine models. Notably, combinatorial therapy with sICAM-1 and anti-PD-1 converts anti-PD-1-resistant tumors to responsive ones in a preclinical study. These findings provide a new immunotherapeutic strategy for treating cancers using ICAM-1.
Collapse
Affiliation(s)
- Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Bu-Nam Jeon
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Jinyoung Sohn
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Youngmin Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Division of Nephrology, Department of Medicine, Chosun University Hospital, Chosun University School of Medicine, Gwangju, 61452, South Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Hyemin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Na-Eun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Hyunsuk Yang
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Joo-Yeon Chung
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - A-Reum Jeong
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Yun Yeon Kim
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Sang Gyun Kim
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | | | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Kyoung Wan Yoon
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| |
Collapse
|
142
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
143
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
144
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
145
|
Huang M, Yang S, Tai WCS, Zhang L, Zhou Y, Cho WCS, Chan LWC, Wong SCC. Bioinformatics Identification of Regulatory Genes and Mechanism Related to Hypoxia-Induced PD-L1 Inhibitor Resistance in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24108720. [PMID: 37240068 DOI: 10.3390/ijms24108720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The combination of a PD-L1 inhibitor and an anti-angiogenic agent has become the new reference standard in the first-line treatment of non-excisable hepatocellular carcinoma (HCC) due to the survival advantage, but its objective response rate remains low at 36%. Evidence shows that PD-L1 inhibitor resistance is attributed to hypoxic tumor microenvironment. In this study, we performed bioinformatics analysis to identify genes and the underlying mechanisms that improve the efficacy of PD-L1 inhibition. Two public datasets of gene expression profiles, (1) HCC tumor versus adjacent normal tissue (N = 214) and (2) normoxia versus anoxia of HepG2 cells (N = 6), were collected from Gene Expression Omnibus (GEO) database. We identified HCC-signature and hypoxia-related genes, using differential expression analysis, and their 52 overlapping genes. Of these 52 genes, 14 PD-L1 regulator genes were further identified through the multiple regression analysis of TCGA-LIHC dataset (N = 371), and 10 hub genes were indicated in the protein-protein interaction (PPI) network. It was found that POLE2, GABARAPL1, PIK3R1, NDC80, and TPX2 play critical roles in the response and overall survival in cancer patients under PD-L1 inhibitor treatment. Our study provides new insights and potential biomarkers to enhance the immunotherapeutic role of PD-L1 inhibitors in HCC, which can help in exploring new therapeutic strategies.
Collapse
Affiliation(s)
- Mohan Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sijun Yang
- Department of endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lingfeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yinuo Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
146
|
Liu N, Chen L, Yan M, Tao Q, Wu J, Chen J, Chen X, Zhang W, Peng C. Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0127. [PMID: 37223471 PMCID: PMC10202379 DOI: 10.34133/research.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Natural killer (NK) cells, as key immune cells, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and that a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and increased the overall survival of tumor-bearing mice; moreover, application of E. rectale led to a significant accumulation of NK cells in the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK cell function. Gas chromatography-mass spectrometry/ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomic analysis showed that l-serine production was significantly decreased in the E. rectale group; moreover, administration of an l-serine synthesis inhibitor dramatically increased NK cell activation, which enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with l-serine or application of an l-serine synthesis inhibitor affected NK cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma.
Collapse
Affiliation(s)
- Nian Liu
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Lihui Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Jie Wu
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Jing Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
147
|
Ping Y, Shan J, Liu Y, Liu F, Wang L, Liu Z, Li J, Yue D, Wang L, Chen X, Zhang Y. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8 + T cell function. Cancer Immunol Immunother 2023; 72:1015-1027. [PMID: 36261540 DOI: 10.1007/s00262-022-03308-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
The functional state of CD8+ T cells determines the therapeutic efficacy of PD-1 blockade antibodies in tumors. Amino acids are key nutrients for maintaining T cell antitumor immunity. In this study, we used samples from lung cancer patients treated with PD-1 blockade antibodies to assay the amino acids in their serum by mass spectrometry. We found that lung cancer patients with high serum taurine levels generally responded to PD-1 blockade antibody therapy, in parallel with the secretion of high levels of cytotoxic cytokines (IFN-γ and TNF-α). CD8+ T cells cultured with exogenous taurine exhibited decreased apoptosis, enhanced proliferation, and increased secretion of cytotoxic cytokines. High SLC6A6 expression in CD8+ T cells was positively associated with an effector T cell signature. SLC6A6 knockdown limited the function and proliferation of CD8+ T cells. RNA sequencing revealed that SLC6A6 knockdown altered the calcium signaling pathway, oxidative phosphorylation, and T cell receptor signaling in CD8+ T cells. Furthermore, taurine enhanced T cell proliferation and function in vitro by stimulation of PLCγ1-mediated calcium and MAPK signaling. Taurine plus immune checkpoint blockade antibody significantly attenuated tumor growth and markedly improved the function and proliferation of CD8+ T cells in a mouse tumor model. Thus, our findings indicate that taurine is an important driver for improving CD8+ T cell immune responses and could serve as a potential therapeutic agent for cancer patients.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liuya Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
148
|
Song K, Nguyen DC, Luu T, Yazdani O, Roy D, Stayton PS, Pun SH. A mannosylated polymer with endosomal release properties for peptide antigen delivery. J Control Release 2023; 356:232-241. [PMID: 36878319 PMCID: PMC10693254 DOI: 10.1016/j.jconrel.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Peptide cancer vaccines have had limited clinical success despite their safety, characterization and production advantages. We hypothesize that the poor immunogenicity of peptides can be surmounted by delivery vehicles that overcome the systemic, cellular and intracellular drug delivery barriers faced by peptides. Here, we introduce Man-VIPER, a self-assembling (40-50 nm micelles), pH-sensitive, mannosylated polymeric peptide delivery platform that targets dendritic cells in the lymph nodes, encapsulates peptide antigens at physiological pH, and facilitates endosomal release of antigens at acidic endosomal pH through a conjugated membranolytic peptide melittin. We used d-melittin to improve the safety profile of the formulation without compromising the lytic properties. We evaluated polymers with both releasable (Man-VIPER-R) or non-releasable (Man-VIPER-NR) d-melittin. Both Man-VIPER polymers exhibited superior endosomolysis and antigen cross-presentation compared to non-membranolytic d-melittin-free analogues (Man-AP) in vitro. In vivo, Man-VIPER polymers demonstrated an adjuvanting effect, induced the proliferation of antigen-specific cytotoxic T cells and helper T cells compared to free peptides and Man-AP. Remarkably, antigen delivery with Man-VIPER-NR generated significantly more antigen-specific cytotoxic T cells than Man-VIPER-R in vivo. As our candidate for a therapeutic vaccine, Man-VIPER-NR exerted superior efficacy in a B16F10-OVA tumor model. These results highlight Man-VIPER-NR as a safe and powerful peptide cancer vaccine platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Kefan Song
- Department of Bioengineering, University of Washington, USA
| | - Dinh Chuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, USA
| | - Tran Luu
- Department of Bioengineering, University of Washington, USA
| | - Omeed Yazdani
- Department of Bioengineering, University of Washington, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, USA; Molecular Engineering & Sciences Institute, University of Washington, USA.
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, USA; Molecular Engineering & Sciences Institute, University of Washington, USA.
| |
Collapse
|
149
|
Liu S, Wu J, Feng Y, Guo X, Li T, Meng M, Chen J, Chen D, Tian H. CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy. Bioact Mater 2023; 22:211-224. [PMID: 36246666 PMCID: PMC9535270 DOI: 10.1016/j.bioactmat.2022.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor vaccines trigger tumor-specific immune responses to prevent or treat tumors by activating the hosts' immune systems, and therefore, these vaccines have potential clinical applications. However, the low immunogenicity of the tumor antigen itself and the low efficiency of the vaccine delivery system hinder the efficacy of tumor vaccines that cannot produce high-efficiency and long-lasting antitumor immune effects. Here, we constructed a nanovaccine by integrating CD47KO/CRT dual-bioengineered B16F10 cancer cell membranes and the unmethylated cytosine-phosphate-guanine (CpG) adjuvant. Hyperbranched PEI25k was used to load unmethylated cytosine-phosphate-guanine (CpG) through electrostatic adsorption to prepare PEI25k/CpG nanoparticles (PEI25k/CpG-NPs). CD47KO/CRT dual-bioengineered cells were obtained by CRISPR-Cas9 gene editing technology, followed by the cell surface translocation of calreticulin (CRT) to induce immunogenic cell death (ICD) in vitro. Finally, the extracted cell membranes were coextruded with PEI25k/CpG-NPs to construct the CD47KO/CRT dual-bioengineered cancer cell membrane-coated nanoparticles (DBE@CCNPs). DBE@CCNPs could promote endocytosis of antigens and adjuvants in murine bone marrow derived dendritic cells (BMDCs) and induce their maturation and antigen cross-presentation. To avoid immune checkpoint molecule-induced T cell dysfunction, the immune checkpoint inhibitor, the anti-PD-L1 antibody, was introduced to boost tumor immunotherapy through a combination with the DBE@CCNPs nanovaccine. This combination therapy strategy can significantly alleviate tumor growth and may open up a potential strategy for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Shengyang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Tong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
150
|
Zhang Y, Qin W, Zhang W, Qin Y, Zhou YL. Guidelines on lung adenocarcinoma prognosis based on immuno-glycolysis-related genes. Clin Transl Oncol 2023; 25:959-975. [PMID: 36447119 PMCID: PMC10025218 DOI: 10.1007/s12094-022-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/29/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES This study developed a new model for risk assessment of immuno-glycolysis-related genes for lung adenocarcinoma (LUAD) patients to predict prognosis and immunotherapy efficacy. METHODS LUAD samples and data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases are used as training and test columns, respectively. Twenty-two (22) immuno-glycolysis-related genes were screened, the patients diagnosed with LUAD were divided into two molecular subtypes by consensus clustering of these genes. The initial prognosis model was developed using the multiple regression analysis method and Receiver Operating characteristic (ROC) analysis was used to verify its predictive potential. Gene set enrichment analysis (GSEA) showed the immune activities and pathways in different risk populations, we calculated immune checkpoints, immune escape, immune phenomena (IPS), and tumor mutation burden (TMB) based on TCGA datasets. Finally, the relationship between the model and drug sensitivity was analyzed. RESULTS Fifteen (15) key differentially expressed genes (DEGs) with prognostic value were screened and a new prognostic model was constructed. Four hundred and forty-three (443) samples were grouped into two different risk cohorts based on median model risk values. It was observed that survival rates in high-risk groups were significantly low. ROC curves were used to evaluate the model's accuracy in determining the survival time and clinical outcome of LUAD patients. Cox analysis of various clinical factors proved that the risk score has great potential as an independent prognostic factor. The results of immunological analysis can reveal the immune infiltration and the activity of related functions in different pathways in the two risk groups, and immunotherapy was more effective in low-risk patients. Most chemotherapeutic agents are more sensitive to low-risk patients, making them more likely to benefit. CONCLUSION A novel prognostic model for LUAD patients was established based on IGRG, which could more accurately predict the prognosis and an effective immunotherapy approach for patients.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wen Qin
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wenhui Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yi Qin
- Nursing Department, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|