101
|
Ding Z, Zhang J, Choudhury M. A High-Fat and High-Fructose Diet Exacerbates Liver Dysfunction by Regulating Sirtuins in a Murine Model. Life (Basel) 2024; 14:729. [PMID: 38929712 PMCID: PMC11205069 DOI: 10.3390/life14060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the most prevalent chronic liver disease, closely linked to the escalating rates of diabesity. The Western diet's abundance of fat and fructose significantly contributes to MASLD, disrupting hepatic glucose metabolism. We previously demonstrated that a high-fat and high-fructose diet (HFHFD) led to increased body and liver weight compared to the low-fat diet (LFD) group, accompanied by glucose intolerance and liver abnormalities, indicating an intermediate state between fatty liver and liver fibrosis in the HFHFD group. Sirtuins are crucial epigenetic regulators associated with energy homeostasis and play a pivotal role in these hepatic dysregulations. Our investigation revealed that HFHFD significantly decreased Sirt1 and Sirt7 gene and protein expression levels, while other sirtuins remained unchanged. Additionally, glucose 6-phosphatase (G6Pase) gene expression was reduced in the HFHFD group, suggesting a potential pathway contributing to fibrosis progression. Chromatin immunoprecipitation analysis demonstrated a significant increase in histone H3 lysine 18 acetylation within the G6Pase promoter in HFHFD livers, potentially inhibiting G6Pase transcription. In summary, HFHFD may inhibit liver gluconeogenesis, potentially promoting liver fibrosis by regulating Sirt7 expression. This study offers an epigenetic perspective on the detrimental impact of fructose on MASLD progression.
Collapse
Affiliation(s)
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843-1114, USA
| |
Collapse
|
102
|
Leng X, Liao WZ, Zheng FP. Gastroesophageal reflux disease and non-alcoholic fatty liver disease: a two-sample Mendelian randomization combined with meta-analysis. Sci Rep 2024; 14:12633. [PMID: 38824176 PMCID: PMC11144195 DOI: 10.1038/s41598-024-63646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Accumulating evidence from observational studies have suggested an association between gastroesophageal reflux disease (GERD) and non-alcoholic fatty liver disease (NAFLD). However, due to that such studies are prone to biases, we imported Mendelian randomization (MR) to explore whether the causal association between two diseases exsit. Hence, we aimed to analysis the potential association with MR. The single nucleotide polymorphisms (SNPs) of GERD were retrieved from the genome-wide association study dataset as the exposure. The SNPs of NAFLD were taken from the FinnGen dataset as the outcome. The relationship was analyzed with the assistance of inverse variance weighted, MR-Egger, and weighted median. We also uitilized the MR-Egger intercept, Cochran's Q test, leave-one-out analysis, MR-PRESSO, and Steiger directionality test to evaluate the robustness of the causal association. The meta-analysis were also implemented to give an overall evaluation. Finally, our analysis showed a causal relationship between GERD and NAFLD with aid of MR and meta-analysis (OR 1.71 95% CI 1.40-2.09; P < 0.0001).
Collapse
Affiliation(s)
- Xuan Leng
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, 310000, Zhejiang Province, China
- Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wan-Zhe Liao
- Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, 511436, China
| | - Fen-Ping Zheng
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
103
|
Yu Y, Zeng F, Han P, Zhang L, Yang L, Zhou F, Liu Q, Ruan Z. Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota. Int J Food Sci Nutr 2024; 75:369-384. [PMID: 38389248 DOI: 10.1080/09637486.2024.2318590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The high-fat diet would lead to excessive fat storage in the liver to form metabolic dysfunction-associated steatotic liver disease (MASLD), and the trend is burgeoning. The aim of the study is to investigate the effects of chlorogenic acid (CGA) on metabolites and gut microorganisms in MASLD mice induced by a high-fat diet. In comparison to the HF group, the TC (total cholesterol), TG (total triglycerides), LDL-C (low-density lipoprotein cholesterol), AST (aspartate aminotransferase) and ALT (alanine transaminase) levels were reduced after CGA supplement. CGA led to an increase in l-phenylalanine, l-tryptophan levels, and promoted fatty acid degradation. CGA increased the abundance of the Muribaculaceae, Bacteroides and Parabacteroides. Changes in these microbes were significantly associated with the liver metabolites level and lipid profile level. These data suggest important roles for CGA regulating the gut microbiota, liver and caecum content metabolites, and TG-, TC- and LDL-C lowering function.
Collapse
Affiliation(s)
- Yujuan Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fumao Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Peiheng Han
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Li Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ling Yang
- Hebei Yiran Biological Technology Co., Ltd., Shijiazhuang, China
| | - Feng Zhou
- Suzhou Globalpeak High-tech Co., Ltd., Suzhou, China
| | - Qing Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
104
|
Zhou J, Liang T, Xing F, Li X. Probabilistic Scatter Plots for visualizing carbohydrate and lipid metabolism states in Non-Alcoholic Fatty Liver Disease. Clin Res Hepatol Gastroenterol 2024; 48:102365. [PMID: 38703816 DOI: 10.1016/j.clinre.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by dysregulated carbohydrate and lipid metabolism, which are its primary features. However, traditional biochemical markers pose challenges for accurate quantification and visualization of metabolic states. This study introduces a novel states-based approach for accurate NAFLD assessment. METHODS Joint probabilistic distributions of triglycerides and glycemia were constructed using dual-indicator Probabilistic Scatter Plots based on clinical data (healthy controls: n = 1978; NAFLD patients: n = 471). Patterns of metabolic dysregulation were revealed through comparison against healthy profiles. Self-organizing feature mapping (SOFM) clustered the distributions into four dominant states. RESULTS Healthy scatter plots demonstrated a distinct progression of sub-states ranging from very healthy to sub-healthy. In contrast, NAFLD plots exhibited shifted probability centers and outward divergence. SOFM clustering classified the states into: mild; moderate and severe lipid metabolism disorders; and carbohydrate metabolism disorders. CONCLUSIONS Probabilistic Scatter Plots, when combined with SOFM clustering, facilitate a states-based quantification of NAFLD metabolic dysregulation. This method integrates multi-dimensional biochemical indicators and their distributions into a cohesive framework, enabling precise and intuitive visualization for personalized diagnosis and monitoring of prognostic developments.
Collapse
Affiliation(s)
- Jialin Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tengxiao Liang
- Fever Clinics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangliang Xing
- Beijing Intelligent Entropy Science & Technology Co Ltd., Beijing, China
| | - Xinyuan Li
- Intensive Care Medicine Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
105
|
Ezhilarasan D. Deciphering the molecular pathways of saroglitazar: A dual PPAR α/γ agonist for managing metabolic NAFLD. Metabolism 2024; 155:155912. [PMID: 38609038 DOI: 10.1016/j.metabol.2024.155912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Saroglitazar (SARO), a dual peroxisome proliferator activated receptor (PPAR)-α/γ agonist, has been used to treat metabolic diseases such as insulin resistance and diabetic dyslipidemia in patients with non-alcoholic fatty liver disease (NAFLD). SARO, administered at a dose of 4 mg/day, has been consistently studied in clinical trials with different time points ranging from 4 to 24 weeks with NAFLD patients. Due to its PPAR-γ agonistic action, SARO prevents adipose tissue-mediated fatty acid delivery to the liver by increasing insulin sensitivity and regulating adiponectin and leptin levels in adipose tissue. In hepatocytes, SARO induces fatty acid β-oxidation in mitochondria and transcriptionally activates lipid metabolizing genes in peroxisomes. SARO inhibits insulin resistance, thereby preventing the activation of sterol regulatory element-binding proteins -1c and carbohydrate response element binding protein in hepatocytes through its PPAR-α agonistic action. SARO treatment reduces lipotoxicity-mediated oxidative stress by activating the nuclear factor erythroid 2-related factor 2 and transcriptionally expressing the antioxidants from the antioxidant response element in the nucleus through its PPAR-γ agonistic action. SARO provides a PPAR-α/γ-mediated anti-inflammatory effect by preventing the phosphorylation of mitogen-activated protein kinases (JNK and ERK) and nuclear factor kappa B in hepatocytes. Additionally, SARO interferes with transforming growth factor-β/Smad downstream signaling, thereby reducing liver fibrosis progression through its PPAR-α/γ agonistic actions. Thus, SARO improves insulin resistance and dyslipidemia in NAFLD, reduces lipid accumulation in the liver, and thereby prevents mitochondrial toxicity, oxidative stress, inflammation, and fibrosis progression. This review summarizes the possible molecular mechanism of SARO in the NAFLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
106
|
Keingeski MB, Longo L, Brum da Silva Nunes V, Figueiró F, Dallemole DR, Pohlmann AR, Vier Schmitz TM, da Costa Lopez PL, Álvares-da-Silva MR, Uribe-Cruz C. Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction. Metab Syndr Relat Disord 2024; 22:394-401. [PMID: 38498801 DOI: 10.1089/met.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.
Collapse
Affiliation(s)
- Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitória Brum da Silva Nunes
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabrício Figueiró
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danieli Rosane Dallemole
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thalia Michele Vier Schmitz
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Luciana da Costa Lopez
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Investigación de la Facultad de Ciencias de la Salud, (UCAMI) Universidad Católica de las Misiones, Posadas, Argentina
| |
Collapse
|
107
|
Nendouvhada LP, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Gabuza KB. Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:5571. [PMID: 38891759 PMCID: PMC11171778 DOI: 10.3390/ijms25115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.
Collapse
Affiliation(s)
- Livhuwani P. Nendouvhada
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Abram M. Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Kwazikwakhe B. Gabuza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
108
|
Santos JDM, Silva JFT, Alves EDS, Cruz AG, Santos ARM, Camargo FN, Talarico CHZ, Silva CAA, Camporez JP. Strength Training Protects High-Fat-Fed Ovariectomized Mice against Insulin Resistance and Hepatic Steatosis. Int J Mol Sci 2024; 25:5066. [PMID: 38791103 PMCID: PMC11120807 DOI: 10.3390/ijms25105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil (J.F.T.S.); (E.d.S.A.); (A.G.C.); (A.R.M.S.); (F.N.C.); (C.H.Z.T.); (C.A.A.S.)
| |
Collapse
|
109
|
Abosheaishaa H, Nassar M, Abdelhalim O, Bahbah AA, Abbas S, Morsi SM, Ghallab M, Alagha Z, Omran A, Elfert K, Bandaru P, Forlemu AN, Reddy M. Relation between non-alcoholic fatty liver disease and carotid artery intimal media thickness as a surrogate for atherosclerosis: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2024; 36:592-607. [PMID: 38489662 DOI: 10.1097/meg.0000000000002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis without heavy alcohol consumption or other chronic conditions, encompasses a spectrum from non-alcoholic fatty liver to non-alcoholic steatohepatitis leading to cirrhosis. This analysis aimed to investigate the correlation between NAFLD and carotid intimal media thickness (C-IMT), a non-invasive surrogate for atherosclerosis. METHODOLOGY Database searches, including PubMed, EMBASE and Cochrane Library, yielded studies up to April 2023. Included were studies exploring the NAFLD-C-IMT relationship in populations aged >18 years. Exclusions comprised non-English papers, those involving animals or pediatric populations and studies lacking control groups. RESULTS No statistical significance was noted between mild and moderate NAFLD compared to the control group regarding C-IMT [95% confidence intervals (CI): -0.03, 0.12] and (95% CI: -0.03, 0.21), respectively. There was a statistically significant difference only in the Severe NAFLD group ( P value 0.03). NAFLD with and without metabolic syndrome showed statistically significant differences compared to control regarding C-IMT (95% CI: 0.04, 0.12) and (95% CI: 0.01, 0.07), respectively. Fifty-nine studies were mentioned without classification of NAFLD severity and revealed a high statistically significant difference between NAFLD and controls regarding C-IMT with (95% CI: 0.09, 0.12, P < 0.00001). Stratified analysis according to sex was done in two studies and revealed statistical differences between NAFLD and control regarding C-IMT in both groups. CONCLUSION This meta-analysis underscores a significant association between NAFLD and increased C-IMT, emphasizing the importance of assessing C-IMT in NAFLD patients to identify cardiovascular risk and tailor therapeutic interventions for improved patient outcomes.
Collapse
Affiliation(s)
- Hazem Abosheaishaa
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health + Hospitals Queens, New York
| | - Mahmoud Nassar
- University at Buffalo School of Medicine and Biomedical Sciences, New York, USA
| | - Omar Abdelhalim
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health + Hospitals Queens, New York
| | | | - Sharif Abbas
- Koc University School of Medicine, Istanbul, Turkey
| | - Samah M Morsi
- John's Hopkins School of Medicine, Department of Radiology, Duke University, Department of Radiology
| | - Muhammad Ghallab
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health + Hospitals Queens, New York
| | - Zakaria Alagha
- Marshall University, Joan Edward School of Medicine, West Virginia, New York, USA
| | - Ahmed Omran
- Trinitas Regional Medical Center|RWJBH, Lindon
| | | | - Praneeth Bandaru
- Gastroenterology and Hepatology, The Brooklyn Hospital Center, Brooklyn, New York, USA
| | | | - Madhavi Reddy
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health + Hospitals Queens, New York
| |
Collapse
|
110
|
Siqueira JS, Garcia JL, Ferron AJT, Moreto F, Sormani LE, Costa MR, Palacio TLN, Nai GA, Aldini G, Francisqueti-Ferron FV, Correa CR, D'Amato A. Proteomic study of gamma-oryzanol preventive effect on a diet-induced non-alcoholic fatty liver disease model. J Nutr Biochem 2024; 127:109607. [PMID: 38432453 DOI: 10.1016/j.jnutbio.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with obesity and diabetes prevalence. The use of natural compounds has become an attractive approach to prevent NAFLD and its progression. Gamma-oryzanol (Orz) is a natural compound whose beneficial effects on chronic metabolic diseases have been reported. Therefore, we aimed to investigate the preventive effect of Orz on the hepatic proteome in a diet induced NAFLD model. Wistar rats were randomly distributed into three experimental groups (n=6/group) according to the diet received for 30 weeks: Control group, high sugar-fat (HSF) group, and HSF+Orz group. The isolated Orz was added to the chow at the dose of 0.5% (w/w). We evaluated the nutritional profile, characterized the presence of steatosis through histological analysis, triglyceride content in liver tissue and hepatic inflammation. Next, we performed label-free quantitative proteomics of hepatic tissue. Network analysis was performed to describe involved protein pathways. NAFLD induction was characterized by the presence of hepatic steatosis. Orz prevented lipid accumulation. The compound prevented alterations of the hepatic proteome, highlighted by the modulation of lipid metabolism, inflammation, oxidative stress, xenobiotic metabolism, and the sirtuin signaling pathway. It was possible to identify key altered pathways of NAFLD pathophysiology modulated by Orz which may provide insights into NAFLD treatment targets.
Collapse
Affiliation(s)
| | | | | | - Fernando Moreto
- Botucatu Medical School, São Paulo State University (Unesp), Botucatu, Brazil.
| | | | | | | | - Gisele Alborghetti Nai
- Department of Pathology, Medical School, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | | | | | - Alfonsina D'Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
111
|
Xiao Y, Wang J, Zhang Y, Zhang T, Qi X, Hou L, Ma Z, Xu F. Hepatic polypeptide nutrient solution improves high-cholesterol diet-induced rats with nonalcoholic fatty liver disease by activating AMP-activated protein kinase signaling pathway. Food Sci Nutr 2024; 12:3225-3236. [PMID: 38726419 PMCID: PMC11077238 DOI: 10.1002/fsn3.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Hepatic polypeptide nutrient solution (HP) is a mixture of hepatoprotective peptides derived from fresh porcine liver with various effects. However, the role and mechanisms of HP in nonalcoholic fatty liver disease (NAFLD) are still not well understood. We investigated the effects of HP NAFLD rats induced by high-cholesterol diet (HCD) and its underlying mechanisms. Rats were provided with HCD for 4 weeks and then received HP or metformin after 2 weeks of HCD feeding. The study found that HP reduced cholesterol and triglyceride levels in rats with NAFLD (all p < .05). Histopathological examination also showed that HP improved the liver lesions induced by the HCD diet. Furthermore, the oxidative stress and inflammatory responses of NAFLD rats treated with HP were also improved. In addition, it was discovered that HP triggered the activation of AMPK and decreased the expression of SREBP-1c and FAS while enhancing the expression of PPAR α and CPT-1 in liver. These findings indicated that HP might have therapeutic potential for NAFLD, possibly via activating AMPK signaling pathway.
Collapse
Affiliation(s)
- Yingying Xiao
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Jianan Wang
- Graduate SchoolHebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Ying Zhang
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Ting Zhang
- Experimental CenterHebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Xingzhong Qi
- Hebei Zhitong Biological Pharmaceutical Co., Ltd.BaodingHebeiChina
| | - Lei Hou
- Hebei Zhitong Biological Pharmaceutical Co., Ltd.BaodingHebeiChina
| | - Zhihong Ma
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebeiChina
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese MedicineShijiazhuangHebeiChina
- Hebei Key Laboratory of Integrative Medicine on Liver‐Kidney PatternsShijiazhuangHebeiChina
| | - Feng Xu
- Hebei Zhitong Biological Pharmaceutical Co., Ltd.BaodingHebeiChina
| |
Collapse
|
112
|
Anushiravani A, rayatpisheh M, Kasaeian A, Menbari Oskouie I. Genetic and Lifestyle Risk Factors of Metabolic Dysfunction-Associated Fatty Liver Disease and Its Relationship with Premature Coronary Artery Disease: A Study on the Pars Cohort. ARCHIVES OF IRANIAN MEDICINE 2024; 27:248-254. [PMID: 38690791 PMCID: PMC11097319 DOI: 10.34172/aim.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The main objective of this study is to identify the risk factors of metabolic dysfunction-associated fatty liver disease (MAFLD) in coronary artery disease (CAD) patients. METHODS The present retrospective cohort study is part of the Pars Cohort Study (PCS). The participants were categorized as having MAFLD or not. The pattern of independent variables in patients was compared with those who did not have MAFLD. All variables were retained in the multivariable logistic regression model. RESULTS Totally, 1862 participants with CAD were enrolled in this study. MAFLD was diagnosed in 647 (40.1%) participants. Gender, diabetes, hypertension, tobacco, opium, alcohol, age, weight, waist circumference, cholesterol, HDL, triglyceride, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were significantly different in MAFLD and non-MAFLD patients. Also, the results of multivariable logistic regression show male gender (OR=0.651, 95% CI: 0.470‒0.902, P value=0.01) and opium consumption (OR=0.563, 95% CI: 0.328‒0.968, P value<0.001) to be negative risk factors of MAFLD occurrence in CAD patients. Having diabetes (OR=2.414, 95% CI: 1.740-3.349, P value<0.001), high waist circumference (OR=1.078, 95% CI: 1.055‒1.102, P value<0.01), high triglyceride (OR=1.005, 95% CI: 1.001‒1.008, P value=0.006), and high ALT (OR=1.039, 95% CI: 1.026‒1.051, P value<0.01) were positive risk factors of MAFLD in CAD patients. CONCLUSION Our study found that consuming opium decreases the likelihood of MAFLD in CAD patients, since these patients have decreased appetite and lower body mass index (BMI). On the other hand, female gender, having diabetes, high waist circumference, high triglyceride levels, and high ALT levels increase the probability of MAFLD in CAD patients.
Collapse
Affiliation(s)
- Amir Anushiravani
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam rayatpisheh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Menbari Oskouie
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Yuan Y, Xu M, Zhang X, Tang X, Zhang Y, Yang X, Xia G. Development and validation of a nomogram model for predicting the risk of MAFLD in the young population. Sci Rep 2024; 14:9376. [PMID: 38654043 PMCID: PMC11039663 DOI: 10.1038/s41598-024-60100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to develop and validate a nomogram model that includes clinical and laboratory indicators to predict the risk of metabolic-associated fatty liver disease (MAFLD) in young Chinese individuals. This study retrospectively analyzed a cohort of young population who underwent health examination from November 2018 to December 2021 at The Affiliated Hospital of Southwest Medical University in Luzhou City, Sichuan Province, China. We extracted the clinical and laboratory data of 43,040 subjects and randomized participants into the training and validation groups (7:3). Univariate logistic regression analysis, the least absolute shrinkage and selection operator regression, and multivariate logistic regression models identified significant variables independently associated with MAFLD. The predictive accuracy of the model was analyzed in the training and validation sets using area under the receiver operating characteristic (AUROC), calibration curves, and decision curve analysis. In this study, we identified nine predictors from 31 variables, including age, gender, body mass index, waist-to-hip ratio, alanine aminotransferase, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, uric acid, and smoking. The AUROC for the subjects in the training and validation groups was 0.874 and 0.875, respectively. The calibration curves show excellent accuracy of the nomogram. This nomogram which was based on demographic characteristics, lifestyle habits, anthropometrics, and laboratory data can visually and individually predict the risk of developing MAFLD. This nomogram is a quick and effective screening tool for assessing the risk of MAFLD in younger populations and identifying individuals at high risk of MAFLD, thereby contributing to the improvement of MAFLD management.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Muying Xu
- The People's Hospital Of Luzhou, Luzhou, 646000, Sichuan, China
| | - Xuefei Zhang
- Department of Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanlang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Yang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guodong Xia
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
114
|
Mubarak M. Changes in the terminology and diagnostic criteria of non-alcoholic fatty liver disease: Implications and opportunities. World J Gastrointest Pathophysiol 2024; 15:92864. [PMID: 38682023 PMCID: PMC11045356 DOI: 10.4291/wjgp.v15.i1.92864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Fatty liver disease (FLD) is a highly prevalent pathological liver disorder. It has many and varied etiologies and has heterogeneous clinical course and outcome. Its proper nomenclature and classification have been problematic since its initial recognition. Traditionally, it was divided into two main categories: Alcohol-associated liver disease and nonalcoholic FLD (NAFLD). Among these, the latter condition has been plagued with nomenclature and classification issues. The two main objections to its use have been the use of negative (non-alcoholic) and stigmatizing (fatty) terms in its nomenclature. Numerous attempts were made to address these issues but none achieved universal acceptance. Just recently, NAFLD has received a new nomenclature from an international collaborative effort based on a rigorous scientific methodology. FLD has been renamed steatotic liver disease (SLD), and NAFLD as metabolic dysfunction-associated SLD. Metabolic dysfunction-associated steatohepatitis was chosen as the replacement terminology for non-alcoholic steatohepatitis. This is a significant positive change in the nomenclature and categorization of FLD and will likely have a major impact on research, diagnosis, treatment, and prognosis of the disease in the future.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Javed I. Kazi Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Pakistan
| |
Collapse
|
115
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
116
|
Quetglas-Llabrés MM, Monserrat-Mesquida M, Bouzas C, García S, Argelich E, Casares M, Ugarriza L, Llompart I, Tur JA, Sureda A. Impact of Adherence to the Mediterranean Diet on Antioxidant Status and Metabolic Parameters in NAFLD Patients: A 24-Month Lifestyle Intervention Study. Antioxidants (Basel) 2024; 13:480. [PMID: 38671927 PMCID: PMC11047536 DOI: 10.3390/antiox13040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The Mediterranean Diet (MedDiet) is recognized as a healthy dietary pattern. Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive accumulation of fat in the liver. OBJECTIVES To assess the antioxidant status in erythrocytes, plasma, and peripheral blood mononuclear cells (PBMCs) of NAFLD patients following a 24-month lifestyle intervention based on the MedDiet. Adult patients (n = 40; aged 40-60 years) diagnosed with NAFLD by magnetic resonance imaging were divided into two groups based on their adherence to the MedDiet. Consumption was assessed using a validated 143-item semiquantitative Food Frequency Questionnaire. Anthropometrics, biochemistry parameters, intrahepatic fat contents (IFC), antioxidants, and inflammatory biomarkers were measured in plasma and erythrocytes before and after the intervention. RESULTS After the intervention, body mass index (BMI) and plasma levels of total cholesterol, low-density lipoprotein cholesterol (LDL-chol), triglycerides, malondialdehyde (MDA), and cytokeratin-18 (CK18) decreased, and high-density lipoprotein cholesterol (HDL-chol) increased. Participants with high adherence to MedDiet showed lower IFC, hepatic enzyme (AST, ALT, and GGT), glycemia, oxidase LDL (oxLDL) plasma levels, and erythrocyte MDA levels. Higher antioxidant activity (erythrocyte catalase-CAT, superoxide dismutase-SOD, glutathione peroxidase-GPx, glutathione reductase-GRd, and total glutathione-GSH as well as PBMCs-CAT gene expression) was observed in these patients, along with a reduction of PBMCs reactive oxygen species production and Toll-like receptor 4 (TLR4) expression. Inverse associations were observed between adherence to the MedDiet and BMI, glycemia, AST, IFC, and CK18 plasma levels and oxLDL, CAT, SOD, and GRd activities in erythrocytes. A significant linear regression was observed between adherence to the MedDiet and antioxidant score. CONCLUSIONS Adherence to the MedDiet is associated with improved plasma and PBMC antioxidant and inflammatory biomarker profiles and high antioxidant defences in erythrocytes.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Silvia García
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Emma Argelich
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Miguel Casares
- Radiodiagnosis Service, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain
| | - Lucía Ugarriza
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- C.S. Camp Redó, IBSalut, 07010 Palma de Mallorca, Spain
| | - Isabel Llompart
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Clinical Analysis Service, University Hospital Son Espases, 07198 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain (M.M.-M.); (I.L.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
117
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
118
|
Luo Z, Yan S, Chao Y, Shen M. Unveiling the mitophagy puzzle in non-alcoholic fatty liver disease (NAFLD): Six hub genes for early diagnosis and immune modulatory roles. Heliyon 2024; 10:e28935. [PMID: 38601640 PMCID: PMC11004814 DOI: 10.1016/j.heliyon.2024.e28935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) stands as a predominant chronic liver ailment globally, yet its pathogenesis remains elusive. This study aims to identify Hub mitophagy-related genes (MRGs), and explore the underlying pathological mechanisms through which these hub genes regulate NAFLD. Methods A total of 3 datasets were acquired from the GEO database and integrated to identify differentially expressed genes (DEGs) in NAFLD and perform Gene Set Enrichment Analysis (GSEA). By intersecting DEGs with MRGs, mitophagy-related differentially expressed genes (MRDEGs) were obtained. Then, hub MRGs with diagnostic biomarker capability for NAFLD were screened and a diagnostic prediction model was constructed and assessed using Nomogram, Decision Curve Analysis (DCA), and ROC curves. Functional enrichment analysis was conducted on the identified hub genes to explore their biological significance. Additionally, regulatory networks were constructed using databases. NAFLD was stratified into high and low-risk groups based on the Riskscore from the diagnostic prediction model. Furthermore, single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms were employed to analyze immune cell infiltration patterns and the relationship between Hub MRGs and immune cells. Results The integrated dataset comprised 122 NAFLD samples and 31 control samples. After screening, 18 MRDEGs were identified. Subsequently, six hub MRGs (NR4A1, PPP2R2A, P4HA1, TUBB6, DUSP1, NAMPT) with diagnostic potential were selected through WGCNA, logistic regression, SVM, RF, and LASSO models, all significantly downregulated in NAFLD samples compared to the control group. A diagnostic prediction model based on these six genes demonstrated robust predictive performance. Functional enrichment analysis of the six hub genes revealed involvement in processes such as protein phosphorylation or dephosphorylation. Correlation analysis demonstrated a significant association between hub MRGs and infiltrating immune cells. Conclusion We identified six hub MRGs in NAFLD and constructed a diagnostic prediction model based on these six genes, applicable for early NAFLD diagnosis. These genes may participate in regulating NAFLD progression through the modulation of mitophagy and immune activation. Our findings may contribute to subsequent clinical and basic research on NAFLD.
Collapse
Affiliation(s)
- Zhenguo Luo
- Department of Internal Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shu Yan
- Department of Internal Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yu Chao
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ming Shen
- Department of Cardiology, The 926th Hospital of the Joint Logistic Support Force of PLA, Affiliated Hospital of Kunming University of Science and Technology, Kaiyuan, Yunnan, China
| |
Collapse
|
119
|
Wang X, Jin Y, Di C, Zeng Y, Zhou Y, Chen Y, Pan Z, Li Z, Ling W. Supplementation of Silymarin Alone or in Combination with Salvianolic Acids B and Puerarin Regulates Gut Microbiota and Its Metabolism to Improve High-Fat Diet-Induced NAFLD in Mice. Nutrients 2024; 16:1169. [PMID: 38674860 PMCID: PMC11053752 DOI: 10.3390/nu16081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Can Di
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
120
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
121
|
Du G, Jiang Z, Xia T, Liu M, Liu Z, Zhou H, Zhang H, Zhai X, Jin B. lincRNA00907 promotes NASH progression by targeting miRNA-942-5p/TAOK1. Aging (Albany NY) 2024; 16:6868-6882. [PMID: 38613803 PMCID: PMC11087098 DOI: 10.18632/aging.205730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVE The study aims to examine the involvement of lincRNA00907 in the advancement of non-alcoholic steatohepatitis (NASH). METHODS The examination was conducted to assess the expression of linc00907 in liver tissues from NASH patients and healthy individuals. High-fat diets induced NASH in mouse models, while palmitic acid/oleic acid treatment was used to create in vitro cell models. Various techniques, such as qRT-PCR, Oil Red O staining and gene knockdown/overexpression, were used to assess the impact of linc00907 on genes related to lipid metabolism and immunity, as well as intracellular lipid accumulation. Furthermore, dual-luciferase reporter assays were carried out to confirm the connection between miRNA-942-5p and linc00907 or TAOK1 mRNA. RESULTS Linc00907 was found to be significantly upregulated in both NASH patients and NASH mouse models. Overexpression of linc00907 led to an increase in intracellular lipid accumulation, while knockdown of linc00907 resulted in decreased lipid content. It was found that miRNA-942-5p binds with linc00907, and their interaction was confirmed in dual-luciferase reporter assays. Additionally, TAOK1 was predicted to be a downstream target of miRNA-942-5p, and the upregulation of TAOK1 due to linc00907 was reversed by miRNA-942-5p overexpression. linc00907 overexpression reduces apoptosis but can be reversed by TAOK1 knockdown. The reduction of TAOK1 counteracted the impact of linc00907 on gene expression associated with lipid metabolism and immunity, as well as on the accumulation of intracellular lipids. CONCLUSIONS Our research suggests that linc00907 functions as a competitive endogenous RNA (ceRNA) by sequestering miRNA-942-5p, thus increasing the expression of TAOK1 and encouraging lipid accumulation in hepatocytes, leading to the aggravation of NASH development. Targeting the linc00907/miRNA-942-5p/TAOK1 axis may hold therapeutic potential for the treatment of NASH.
Collapse
Affiliation(s)
- Gang Du
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Zhaochen Jiang
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Tong Xia
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Mingkun Liu
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Zeyang Liu
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| | - Hao Zhang
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| | - Bin Jin
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| |
Collapse
|
122
|
Ma P, Ou H, Sun Z, Lu Y, Li M, Xu L, Liang Y, Zheng J, Ou Y. IAVPGEVA: Orally Available DPP4-Targeting Soy Glycinin Derived Octapeptide with Therapeutic Potential in Nonalcoholic Steatohepatitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7167-7178. [PMID: 38511978 DOI: 10.1021/acs.jafc.3c08932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Hao Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yunbiao Lu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Mengdan Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Liuxin Xu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yan Liang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Jiawei Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| |
Collapse
|
123
|
Merenda T, Juszczak F, Ferier E, Duez P, Patris S, Declèves AÉ, Nachtergael A. Natural compounds proposed for the management of non-alcoholic fatty liver disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:24. [PMID: 38556609 PMCID: PMC10982245 DOI: 10.1007/s13659-024-00445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Although non-alcoholic fatty liver disease (NAFLD) presents as an intricate condition characterized by a growing prevalence, the often-recommended lifestyle interventions mostly lack high-level evidence of efficacy and there are currently no effective drugs proposed for this indication. The present review delves into NAFLD pathology, its diverse underlying physiopathological mechanisms and the available in vitro, in vivo, and clinical evidence regarding the use of natural compounds for its management, through three pivotal targets (oxidative stress, cellular inflammation, and insulin resistance). The promising perspectives that natural compounds offer for NAFLD management underscore the need for additional clinical and lifestyle intervention trials. Encouraging further research will contribute to establishing more robust evidence and practical recommendations tailored to patients with varying NAFLD grades.
Collapse
Affiliation(s)
- Théodora Merenda
- Unit of Clinical Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Florian Juszczak
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Elisabeth Ferier
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
- Unit of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Stéphanie Patris
- Unit of Clinical Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Anne-Émilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Amandine Nachtergael
- Unit of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.
| |
Collapse
|
124
|
Kunlayawutipong T, Apaijai N, Tepmalai K, Kongkarnka S, Leerapun A, Pinyopornpanish K, Soontornpun A, Chattipakorn SC, Chattipakorn N, Pinyopornpanish K. Imbalance of mitochondrial fusion in peripheral blood mononuclear cells is associated with liver fibrosis in patients with metabolic dysfunction-associated steatohepatitis. Heliyon 2024; 10:e27557. [PMID: 38496899 PMCID: PMC10944232 DOI: 10.1016/j.heliyon.2024.e27557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Mitochondrial dysfunction and inflammation contribute to the pathophysiology of metabolic dysfunction-associated steatohepatitis (MASH). This study aims to evaluate the potential association between mitochondrial dynamics and cell death markers from peripheral blood mononuclear cells (PBMCs) and the presence of MASH with significant liver fibrosis among metabolic dysfunction-associated steatotic liver disease (MASLD) patients. Consecutive patients undergoing bariatric surgery from January to December 2022 were included. Patients with histologic steatosis were classified into MASH with significant fibrosis (F2-4) group or MASLD/MASH without significant fibrosis group (F0-1). Mitochondrial dynamic proteins and cell death markers were extracted from PBMCs. A total of 23 MASLD/MASH patients were included (significant fibrosis group, n = 7; without significant fibrosis group, n = 16). Of the mitochondrial dynamics and cell death markers evaluated, OPA1 protein, a marker of mitochondrial fusion is higher in MASH patients with significant fibrosis compared to those without (0.861 ± 0.100 vs. 0.560 ± 0.260 proportional to total protein, p = 0.001). Mitochondrial fusion/fission (OPA1/DRP1) ratio is significantly higher in MASH patients with significant fibrosis (1.072 ± 0.307 vs. 0.634 ± 0.313, p = 0.009). OPA1 (per 0.01 proportional to total protein) was associated with the presence of significant liver fibrosis with an OR of 1.08 (95%CI, 1.01-1.15, p = 0.035), and adjusted OR of 1.10 (95%CI, 1.00-1.21, p = 0.042). OPA1 from PBMCs is associated with MASH and substantial fibrosis. Future studies should explore if OPA1 could serve as a novel non-invasive liver fibrosis marker.
Collapse
Affiliation(s)
- Thanaput Kunlayawutipong
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokkan Tepmalai
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Leerapun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Atiwat Soontornpun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
125
|
De Cól JP, de Lima EP, Pompeu FM, Cressoni Araújo A, de Alvares Goulart R, Bechara MD, Laurindo LF, Méndez-Sánchez N, Barbalho SM. Underlying Mechanisms behind the Brain-Gut-Liver Axis and Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Int J Mol Sci 2024; 25:3694. [PMID: 38612504 PMCID: PMC11011299 DOI: 10.3390/ijms25073694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) includes several metabolic dysfunctions caused by dysregulation in the brain-gut-liver axis and, consequently, increases cardiovascular risks and fatty liver dysfunction. In MAFLD, type 2 diabetes mellitus, obesity, and metabolic syndrome are frequently present; these conditions are related to liver lipogenesis and systemic inflammation. This study aimed to review the connection between the brain-gut-liver axis and MAFLD. The inflammatory process, cellular alterations in hepatocytes and stellate cells, hypercaloric diet, and sedentarism aggravate the prognosis of patients with MAFLD. Thus, to understand the modulation of the physiopathology of MAFLD, it is necessary to include the organokines involved in this process (adipokines, myokines, osteokines, and hepatokines) and their clinical relevance to project future perspectives of this condition and bring to light new possibilities in therapeutic approaches. Adipokines are responsible for the activation of distinct cellular signaling in different tissues, such as insulin and pro-inflammatory cytokines, which is important for balancing substances to avoid MAFLD and its progression. Myokines improve the quantity and quality of adipose tissues, contributing to avoiding the development of MAFLD. Finally, hepatokines are decisive in improving or not improving the progression of this disease through the regulation of pro-inflammatory and anti-inflammatory organokines.
Collapse
Affiliation(s)
- Júlia Pauli De Cól
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Fernanda Moris Pompeu
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-080, Brazil;
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo 17500-000, Brazil
| |
Collapse
|
126
|
Alyavi AL, Sobirova GN, Abdullaev AO, Shadmanova DA. Ways to overcome difficulties in diagnosing non-alcoholic fatty liver disease. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:175-181. [DOI: 10.31146/1682-8658-ecg-218-10-175-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The purpose of the study is to evaluate the status and capabilities of modern types of diagnostics of non-alcoholic fatty liver disease as part of a meta-analysis of scientific data. Materials and methods. The literature search was carried out in electronic databases Cochrane Library, PubMed.gov, Elsevier.com, Google Scholar. The analysis of the data obtained was focused on works published between 2010 and 2023 (the bias in the form of later studies was used in isolated cases when it came to fundamental scientometric data). Results. After reviewing 693 scientific papers for duplication and inconsistency, 38 sources were selected. Conclusions. The analysis of scientific data revealed that despite the understanding of the pathogenetic causes of non-alcoholic fatty liver disease and the complexity of this disease, liver biopsy still remains the gold standard for assessing liver health. In this regard, there is a need to introduce accessible non-imaging tools and accurate biomarkers, with the help of which it will be possible not only to make an adequate diagnosis, but also to analyze new treatments for NAFLD in clinical trials.
Collapse
Affiliation(s)
- A. L. Alyavi
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - G. N. Sobirova
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - A. O. Abdullaev
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - D. A. Shadmanova
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| |
Collapse
|
127
|
Gan LL, Xia C, Zhu X, Gao Y, Wu WC, Li Q, Li L, Dai Z, Yan YM. Predictive value of angiopoietin-like protein 8 in metabolic dysfunction-associated fatty liver disease and its progression: A case-control study. World J Diabetes 2024; 15:418-428. [PMID: 38591072 PMCID: PMC10999044 DOI: 10.4239/wjd.v15.i3.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is rapidly increasing, currently affecting approximately 25% of the global population. Liver fibrosis represents a crucial stage in the development of MAFLD, with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma. Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers. However, imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints. Consequently, it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis. AIM To investigate the predictive value of angiopoietin-like protein 8 (ANGPTL8) in MAFLD and its progression. METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department, Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology, during September 2021-July 2022. Using abdominal ultrasonography and MAFLD diagnostic criteria, among the 160 patients, 80 patients (50%) were diagnosed with MAFLD. The MAFLD group was divided into the liver fibrosis group (n = 23) and non-liver fibrosis group (n = 57) by using a cut-off fibrosis-4 index ≥ 1.45. Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression. Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression. RESULTS Compared with non-MAFLD patients, MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose (TyG) index (both P < 0.05). Serum ANGPTL8 (r = 0.576, P < 0.001) and TyG index (r = 0.473, P < 0.001) were positively correlated with MAFLD. Serum ANGPTL8 was a risk factor for MAFLD [odds ratio (OR): 1.123, 95% confidence interval (CI): 1.066-1.184, P < 0.001). Serum ANGPTL8 and ANGPTL8 + TyG index predicted MAFLD [area under the curve (AUC): 0.832 and 0.886, respectively; both P < 0.05]. Compared with MAFLD patients without fibrosis, those with fibrosis had higher serum ANGPTL8 and TyG index (both P < 0.05), and both parameters were positively correlated with MAFLD-associated fibrosis. Elevated serum ANGPTL8 (OR: 1.093, 95%CI: 1.044-1.144, P < 0.001) and TyG index (OR: 2.383, 95%CI: 1.199-4.736, P < 0.013) were risk factors for MAFLD-associated fibrosis. Serum ANGPTL8 and ANGPTL8 + TyG index predicted MAFLD-associated fibrosis (AUC: 0.812 and 0.835, respectively; both P < 0.05). CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD. They can serve as predictors for the risk of MAFLD and liver fibrosis, with the ANGPTL8 + TyG index potentially exhibiting even higher predictive value.
Collapse
Affiliation(s)
- Lu-Lu Gan
- Medical College, Wuhan University of Science and Technology, Wuhan 430071, Hubei Province, China
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan 432000, Hubei Province, China
| | - Can Xia
- Medical College, Wuhan University of Science and Technology, Wuhan 430071, Hubei Province, China
| | - Xuan Zhu
- Medical College, Wuhan University of Science and Technology, Wuhan 430071, Hubei Province, China
| | - Yue Gao
- Medical College, Wuhan University of Science and Technology, Wuhan 430071, Hubei Province, China
| | - Wen-Chang Wu
- Medical College, Wuhan University of Science and Technology, Wuhan 430071, Hubei Province, China
| | - Qi Li
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan 432000, Hubei Province, China
| | - Ling Li
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan 432000, Hubei Province, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yi-Min Yan
- Medical College, Wuhan University of Science and Technology, Wuhan 430071, Hubei Province, China
- Department of Endocrinology, Xiaogan Hospital Affiliated with Wuhan University of Science and Technology, The Central Hospital of Xiaogan, Xiaogan 432000, Hubei Province, China
| |
Collapse
|
128
|
Fu Y, Li G, Feng Z, Liu J, Wang X, Wang T, Liu J. Methyl Cinnamate (MC) Alleviates Free Fatty Acids (FFAs) Induced Lipid Accumulation Through the AMPK Pathway in HepG2 Cells. Diabetes Metab Syndr Obes 2024; 17:1183-1197. [PMID: 38469107 PMCID: PMC10926926 DOI: 10.2147/dmso.s449300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Background AMP-activated protein kinase (AMPK) plays a critical role in energy metabolism. Its activation leads to the phosphorylation of downstream proteins such as acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein-1 (SREBP1), subsequently inhibiting de novo fatty acid synthesis, thereby reducing intracellular triglyceride accumulation. MC is a compound found in extracts from Zanthoxylum armatum DC plants. Research has shown that MC can inhibit the differentiation of 3T3-L1 adipocytes through the CAMKK2-AMPK pathway. However, the biological effect of MC in HepG2 cells remains unknown. Methods In this study, we utilized HepG2 cells to establish a model of MAFLD through FFAs stimulation. We investigated the biological effects of MC on HepG2 cells and studied its impact on lipid metabolism. Small interfering RNA was employed to explore the mechanism by which MC activates AMPK. Finally, molecular docking was conducted, establishing a model of the interaction between AMPK and MC. Results We observed that MC can alleviate triglyceride accumulation in HepG2 cells. We observed the elevated p-AMPK/AMPK, P-ACC/ ACC, and elevated CPT1a after treatment of MC in HepG2 cells. The interference of CAMKK2 mRNA did not impact the ability of MC to phosphorylate AMPK. Compound C attenuates the ability of MC to increase p-AMPK. Molecular docking results led us to hypothesize that MC directly interacts with AMPK, resulting in AMPK phosphorylation and improved lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Yingda Fu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Guangbing Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zichen Feng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Xiaoyu Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tao Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
129
|
Grandini NA, Costa MR, Gregolin CS, Siqueira JS, Vieira TA, Togneri Ferron AJ, Francisqueti-Ferron FV, Romualdo GR, Lúcia Dos Anjos Ferreira A, Aldini G, Corrêa CR, Moreto F. Effects of carnosine supplementation on markers for the pathophysiological development of metabolic dysfunction-associated steatotic liver disease in a diet-induced model. Mol Cell Endocrinol 2024; 582:112138. [PMID: 38147954 DOI: 10.1016/j.mce.2023.112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Consumption of diets high in sugar and fat is related to the development of Metabolic dysfunction-associated steatotic liver disease (MASLD). Carnosine (CAR) is a dipeptide with antioxidant and anti-inflammatory action and has been studied for treating diseases. This work aimed to evaluate the effects of CAR on diet-induced MASLD in rats. Male Wistar rats were distributed into 2 groups (17 weeks): normocaloric (Co, n = 12), and hypercaloric diet rich in lipids and simple carbohydrates (MASLD, n = 12). After, the animals were redistributed to begin the treatment with CAR (4 weeks): Co (n = 6), Co + CAR (n = 6), MASLD (n = 6), and MASLD + CAR (n = 6), administered intraperitoneally (250 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; hepatic steatosis, inflammatory and oxidative markers. MASLD group had a higher adiposity index, systolic blood pressure, glucose, plasma and liver triglycerides and cholesterol, insulin, hepatic steatosis, oxidative markers, and lower PPAR-α (Peroxisome Proliferator-activated receptor α), compared to the Co. CAR attenuated plasma and hepatic triglyceride and cholesterol levels, hepatic steatosis, CD68+ macrophages, and hepatic oxidative markers, in addition to increasing HDL cholesterol levels and PPAR-α, compared to the untreated MASLD group. CAR acts in importants pathophysiological processes of MASLD and may be a therapeutic compound to control the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | | | - Fernando Moreto
- São Paulo State University (UNESP), Medical School, 18618687, Botucatu, Brazil
| |
Collapse
|
130
|
Wang RR, Chen JL, Duan SJ, Lu YX, Chen P, Zhou YC, Yao SK. Noninvasive Diagnostic Technique for Nonalcoholic Fatty Liver Disease Based on Features of Tongue Images. Chin J Integr Med 2024; 30:203-212. [PMID: 38051474 DOI: 10.1007/s11655-023-3616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE To investigate a new noninvasive diagnostic model for nonalcoholic fatty liver disease (NAFLD) based on features of tongue images. METHODS Healthy controls and volunteers confirmed to have NAFLD by liver ultrasound were recruited from China-Japan Friendship Hospital between September 2018 and May 2019, then the anthropometric indexes and sampled tongue images were measured. The tongue images were labeled by features, based on a brief protocol, without knowing any other clinical data, after a series of corrections and data cleaning. The algorithm was trained on images using labels and several anthropometric indexes for inputs, utilizing machine learning technology. Finally, a logistic regression algorithm and a decision tree model were constructed as 2 diagnostic models for NAFLD. RESULTS A total of 720 subjects were enrolled in this study, including 432 patients with NAFLD and 288 healthy volunteers. Of them, 482 were randomly allocated into the training set and 238 into the validation set. The diagnostic model based on logistic regression exhibited excellent performance: in validation set, it achieved an accuracy of 86.98%, sensitivity of 91.43%, and specificity of 80.61%; with an area under the curve (AUC) of 0.93 [95% confidence interval (CI) 0.68-0.98]. The decision tree model achieved an accuracy of 81.09%, sensitivity of 91.43%, and specificity of 66.33%; with an AUC of 0.89 (95% CI 0.66-0.92) in validation set. CONCLUSIONS The features of tongue images were associated with NAFLD. Both the 2 diagnostic models, which would be convenient, noninvasive, lightweight, rapid, and inexpensive technical references for early screening, can accurately distinguish NAFLD and are worth further study.
Collapse
Affiliation(s)
- Rong-Rui Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia-Liang Chen
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Shao-Jie Duan
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ying-Xi Lu
- Nanjing Linkwah Micro-electronics Institute, Beijing, 100191, China
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
| | - Ping Chen
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
| | - Yuan-Chen Zhou
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Shu-Kun Yao
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China.
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
131
|
Gensluckner S, Wernly B, Datz C, Aigner E. Iron, Oxidative Stress, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:208. [PMID: 38397806 PMCID: PMC10886327 DOI: 10.3390/antiox13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Excess free iron is a substrate for the formation of reactive oxygen species (ROS), thereby augmenting oxidative stress. Oxidative stress is a well-established cause of organ damage in the liver, the main site of iron storage. Ferroptosis, an iron-dependent mechanism of regulated cell death, has recently been gaining attention in the development of organ damage and the progression of liver disease. We therefore summarize the main mechanisms of iron metabolism, its close connection to oxidative stress and ferroptosis, and its particular relevance to disease mechanisms in metabolic-dysfunction-associated fatty liver disease and potential targets for therapy from a clinical perspective.
Collapse
Affiliation(s)
- Sophie Gensluckner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Christian Datz
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
132
|
Zhu L, Wang F, Wang H, Zhang J, Xie A, Pei J, Zhou J, Liu H. Liver fat volume fraction measurements based on multi-material decomposition algorithm in patients with nonalcoholic fatty liver disease: the influences of blood vessel, location, and iodine contrast. BMC Med Imaging 2024; 24:37. [PMID: 38326746 PMCID: PMC10848342 DOI: 10.1186/s12880-024-01215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND In recent years, spectral CT-derived liver fat quantification method named multi-material decomposition (MMD) is playing an increasingly important role as an imaging biomarker of hepatic steatosis. However, there are various measurement ways with various results among different researches, and the impact of measurement methods on the research results is unknown. The aim of this study is to evaluate the reproducibility of liver fat volume fraction (FVF) using MMD algorithm in nonalcoholic fatty liver disease (NAFLD) patients when taking blood vessel, location, and iodine contrast into account during measurement. METHODS This retrospective study was approved by the institutional ethics committee, and the requirement for informed consent was waived because of the retrospective nature of the study. 101 patients with NAFLD were enrolled in this study. Participants underwent non-contrast phase (NCP) and two-phase enhanced CT scanning (late arterial phase (LAP) and portal vein phase (PVP)) with spectral mode. Regions of interest (ROIs) were placed at right posterior lobe (RPL), right anterior lobe (RAL) and left lateral lobe (LLL) to obtain FVF values on liver fat images without and with the reference of enhanced CT images. The differences of FVF values measured under different conditions (ROI locations, with/without enhancement reference, NCP and enhanced phases) were compared. Friedman test was used to compare FVF values among three phases for each lobe, while the consistency of FVF values was assessed between each two phases using Bland-Altman analysis. RESULTS Significant difference was found between FVF values obtained without and with the reference of enhanced CT images. There was no significant difference about FVF values obtained from NCP images under the reference of enhanced CT images between any two lobes or among three lobes. The FVF value increased after the contrast injection, and there were significant differences in the FVF values among three scanning phases. Poor consistencies of FVF values between each two phases were found in each lobe by Bland-Altman analysis. CONCLUSION MMD algorithm quantifying hepatic fat was reproducible among different lobes, while was influenced by blood vessel and iodine contrast.
Collapse
Affiliation(s)
- Liuhong Zhu
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
- Xiamen Radiological Control Center, Xiamen, Fujian, China
| | - Funan Wang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
| | - Heqing Wang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
| | - Jinhui Zhang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Anjie Xie
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Jinkui Pei
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China.
- Department of Radiology, Zhongshan Hospital Fudan University, Fenglin Road No.180, Xuhui District, Shanghai, 200032, China.
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital Fudan University, Fenglin Road No.180, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
133
|
Huang C, Zhang Y, Xu Y, Wei S, Yang T, Wang S, Li C, Lin H, Li X, Zhao S, Zhu L, Pan W. Prepared Radix Polygoni Multiflori and emodin alleviate lipid droplet accumulation in nonalcoholic fatty liver disease through MAPK signaling pathway inhibition. Aging (Albany NY) 2024; 16:2362-2384. [PMID: 38284886 PMCID: PMC10911387 DOI: 10.18632/aging.205485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.
Collapse
Affiliation(s)
- Changyudong Huang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Yiqiong Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Yongjie Xu
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Sijia Wei
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Tingting Yang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Shuang Wang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Chengcheng Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Hairong Lin
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Xing Li
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550004, Guizhou, P.R. China
| | - Shuyun Zhao
- Reproductive Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Liying Zhu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Wei Pan
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| |
Collapse
|
134
|
Cheng WC, Chen HF, Cheng HC, Li CY. Comparison of all-cause mortality associated with non-alcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease in Taiwan MJ cohort. Epidemiol Health 2024; 46:e2024024. [PMID: 38317531 PMCID: PMC11099596 DOI: 10.4178/epih.e2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVES The global burden of non-alcoholic fatty liver disease (NAFLD) is rising. An alternative term, metabolic dysfunction-associated fatty liver disease (MAFLD), instead highlights the associated metabolic risks. This cohort study examined patient classifications under NAFLD and MAFLD criteria and their associations with all-cause mortality. METHODS Participants who attended a paid health check-up (2012-2015) were included. Hepatic steatosis (HS) was diagnosed ultrasonographically. NAFLD was defined as HS without secondary causes, while MAFLD involved HS with overweight/obesity, type 2 diabetes mellitus, or ≥2 metabolic dysfunctions. Mortality was tracked via the Taiwan Death Registry until November 30, 2022. RESULTS Of 118,915 participants, 36.9% had NAFLD, 40.2% had MAFLD, and 32.9% met both definitions. Participants with NAFLD alone had lower mortality, and those with MAFLD alone had higher mortality, than individuals with both conditions. After adjustment for potential confounders, the hazard ratios (HRs) for all-cause mortality were 1.08 (95% confidence interval [CI], 0.78 to 1.48) for NAFLD alone and 1.26 (95% CI, 1.09 to 1.47) for MAFLD alone, relative to both conditions. Advanced fibrosis conferred greater mortality risk, with HRs of 1.93 (95% CI, 1.44 to 2.58) and 2.08 (95% CI, 1.61 to 2.70) for advanced fibrotic NAFLD and MAFLD, respectively. Key mortality risk factors for NAFLD and MAFLD included older age, unmarried status, higher body mass index, smoking, diabetes mellitus, chronic kidney disease, and advanced fibrosis. CONCLUSIONS All-cause mortality in NAFLD and/or MAFLD was linked to cardiometabolic covariates, with risk attenuated after multivariable adjustment. A high fibrosis-4 index score, indicating fibrosis, could identify fatty liver disease cases involving elevated mortality risk.
Collapse
Affiliation(s)
- Wei-Chun Cheng
- Department of Internal Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Public Health, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Gastroenterology and Hepatology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Hua-Fen Chen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine and Department of Public Health, Fujen Catholic University College of Medicine, New Taipei City, Taiwan
| | - Hsiu-Chi Cheng
- Department of Internal Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Gastroenterology and Hepatology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Public Health, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Public Health, China Medical University College of Public Health, Taichung, Taiwan
- Department of Healthcare Administration, Asia University College of Medical and Health Science, Taichung, Taiwan
| |
Collapse
|
135
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
136
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. MATERIALS AND METHODS A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). RESULTS The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. CONCLUSION The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
137
|
Pansa CC, Molica LR, de Oliveira Júnior FC, Santello LC, Moraes KCM. Cellular and molecular effects of fipronil in lipid metabolism of HepG2 and its possible connection to non-alcoholic fatty liver disease. J Biochem Mol Toxicol 2024; 38:e23595. [PMID: 38050659 DOI: 10.1002/jbt.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global public health problem that affects more than a quarter of the population. The development of this disease is correlated with metabolic dysfunctions that lead to lipid accumulation in the liver. Pesticides are one of etiologies that support NAFLD establishment. Therefore, the effects of the insecticide fipronil on the lipid metabolism of the human hepatic cell line, HepG2, was investigated, considering its widespread use in field crops and even to control domestic pests. To address the goals of the study, biochemical, cellular, and molecular analyses of different concentrations of fipronil in cell cultures were investigated, after 24 h of incubation. Relevant metabolites such as triglycerides, glucose levels, β-oxidation processes, and gene expression of relevant elements correlated with lipid and metabolism of xenobiotics were investigated. The results suggested that at 20 μM, the pesticide increased the accumulation of triglycerides and neutral lipids by reducing fatty acid oxidation and increasing de novo lipogenesis. In addition, changes were observed in genes that control oxidative stress and the xenobiotic metabolism. Together, the results suggest that the metabolic changes caused by the insecticide fipronil may be deleterious if persistent, favoring the establishment of hepatic steatosis.
Collapse
Affiliation(s)
- Camila C Pansa
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Letícia R Molica
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Fabiano C de Oliveira Júnior
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Lara C Santello
- Laboratório de Microbiologia Ambiental, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Karen C M Moraes
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
138
|
Suk FM, Hsu FY, Hsu MH, Chiu WC, Fang CC, Chen TL, Liao YJ. Treatment with a new barbituric acid derivative suppresses diet-induced metabolic dysfunction and non-alcoholic fatty liver disease in mice. Life Sci 2024; 336:122327. [PMID: 38061536 DOI: 10.1016/j.lfs.2023.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, often accompanied by obesity, diabetes, and increased risks of depression and anxiety. Currently, there are no FDA-approved drugs to treat NAFLD and its related systemic symptoms. Previously, we identified a new barbituric acid derivative (BA-5) that expressed effectiveness against fibrosis and drug-resistant hepatocellular carcinoma. AIMS This study investigated the potential of BA-5 against high-fat diet (HFD)-induced NAFLD and mood disorders in mice. MAIN METHODS Six-weeks-old male C57BL/6 mice were fed with a 45 % HFD for 8 weeks to induce NAFLD and associated metabolic disorders. Mice were treated with a BA-5 and the therapeutic effects and the underlying molecular mechanisms were investigated. KEY FINDINGS Administration of BA-5 significantly reduced serum levels of alanine aminotransferase (ALT), low-density lipoprotein (LDL), fatty acids (FA), and triglycerides (TG) in HFD-fed mice. BA-5 treatment decreased expressions of hepatic lipogenesis-related markers (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and ATP-citrate lyase (ACLY)), increased fatty acid oxidation markers (carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1)), and attenuated hepatic fat accumulation in HFD-fed mice. Moreover, HFD-induced adipocyte size enlargement and activation of lipolysis markers such as phosphorylated (p)-hormone-sensitive lipase (HSL) 565, p-HSL 660, and perilipin were inhibited in BA-5-treated mice. Notably, HFD-induced anxiety- and depression-like behaviors significantly improved in the BA-5 treated group through enhanced anti-inflammatory responses in the hippocampus. SIGNIFICANCE This study provides new insights into clinical therapeutic strategies of barbituric acid derivatives for HFD-induced NAFLD and associated mood disturbances.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-Yu Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Cheng-Chieh Fang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
139
|
Hlušička J, Žák A. Dyslipidaemia in Liver Diseases. Folia Biol (Praha) 2024; 70:239-247. [PMID: 39889216 DOI: 10.14712/fb2024070050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
The liver is the central organ in lipid metabolism and plays a key role in a variety of biochemical processes. It is involved in lipoprotein synthesis, fatty acid beta oxidation, ketone body production, cholesterol synthesis, bile production, and storage and mobilization of lipids. Metabolic diseases such as obesity, type 2 diabetes mellitus and certain dyslipidaemias can lead to chronic liver conditions, especially non-alcoholic fatty liver disease. Conversely, chronic liver diseases such as liver cirrhosis and chronic cholestasis can induce dyslipidaemias. This review provides a comprehensive biochemical and clinical overview of the intricate relationship between the lipid-lipoprotein metabolism and chronic liver diseases, including non-alcoholic fatty liver disease, cholestasis, alcohol-related liver disease, viral hepatitis and cirrhosis, all of which have been selected due to their importance in current clinical practice. These conditions not only affect liver function but also have widespread metabolic implications critical for patient management and therapeutic strategies. In addition to discussing the clinical manifestations and pathophysiology of liver diseases, this review delves into the genetic and non-genetic factors that influence their development and progression. By bridging clinical observations with biochemical me-chanisms, this review aims to improve the understan-ding of how lipid metabolism disorders contribute to chronic liver diseases and to identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jiří Hlušička
- 4th Department of Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University and General University Hospital Prague, Prague, Czech Republic.
| | - Aleš Žák
- 4th Department of Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University and General University Hospital Prague, Prague, Czech Republic
| |
Collapse
|
140
|
Castro ET, Alves AG, de Bittencourt Maia D, Magalhães LS, Paim MP, Penteado F, Gomes CS, Lenardão EJ, Brüning CA, Bortolatto CF. Bioactivity of selenium-containing pyridinium salts: Prospecting future pharmaceutical constituents to treat liver diseases involving oxidative stress. J Biochem Mol Toxicol 2024; 38:e23535. [PMID: 37711070 DOI: 10.1002/jbt.23535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/04/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Redox imbalance leads to oxidative stress that causes irreversible cellular damage. The incorporation of the antioxidant element selenium (Se) in the structure of pyridinium salts has been used as a strategy in chemical synthesis and can be useful in drug development. We investigated the antioxidant activity of Se-containing pyridinium salts (named Compounds 3A, 3B, and 3C) through in vitro tests. We focused our study on liver protein carbonylation, liver lipoperoxidation, free radical scavenging activity (1,1-diphenyl-2-picryl-hydrazil [DPPH]; 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid [ABTS]), and enzyme-mimetic activity assays (glutathione S-transferase [GST]-like; superoxide dismutase [SOD]-like). In addition, 2-(4-chlorophenyl)-2-oxoethyl)-2-((phenylselanyl)methyl)pyridin-1-ium bromide (3C) was selected to evaluate the acute oral toxicity in mice due to the best antioxidant profile. The three compounds were effective in reducing the levels of protein carbonylation and lipoperoxidation in the liver in a µM concentration range. All compounds demonstrated scavenger activity of DPPH and ABTS radicals, and GST-like action. No significant effects were detected in the SOD-like assay. Experimental data also showed that the acute oral treatment of mice with Compound 3C (50 and 300 mg/kg) did not cause mortality or change markers of liver and kidney functions. In summary, our findings reveal the antioxidant potential of Se-containing pyridinium salts in liver tissue, which could be related to their radical scavenging ability and mimetic action on the GST enzyme. They also demonstrate a low toxicity potential for Compound 3C. Together, the promising results open space for future studies on the therapeutic application of these molecules.
Collapse
Affiliation(s)
- Ediandra T Castro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Amália G Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Daniela de Bittencourt Maia
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Larissa S Magalhães
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Mariana P Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Filipe Penteado
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Caroline S Gomes
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Eder J Lenardão
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - César A Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| |
Collapse
|
141
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
142
|
Weinstein G, O'Donnell A, Frenzel S, Xiao T, Yaqub A, Yilmaz P, de Knegt RJ, Maestre GE, Melo van Lent D, Long M, Gireud‐Goss M, Ittermann T, Frost F, Bülow R, Vasan RS, Grabe HJ, Ikram MA, Beiser AS, Seshadri S. Nonalcoholic fatty liver disease, liver fibrosis, and structural brain imaging: The Cross-Cohort Collaboration. Eur J Neurol 2024; 31:e16048. [PMID: 37641505 PMCID: PMC10840827 DOI: 10.1111/ene.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND PURPOSE Prior studies reported conflicting findings regarding the association of nonalcoholic fatty liver disease (NAFLD) and liver fibrosis with measures of brain health. We examined whether NAFLD and liver fibrosis are associated with structural brain imaging measures in middle- and old-age adults. METHODS In this cross-sectional study among dementia- and stroke-free individuals, data were pooled from the Offspring and Third Generation cohorts of the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Study of Health in Pomerania. NAFLD was assessed through abdominal imaging. Transient hepatic elastography (FibroScan) was used to assess liver fibrosis in FHS and RS. Linear regression models were used to explore the relation of NAFLD and liver fibrosis with brain volumes, including total brain, gray matter, hippocampus, and white matter hyperintensities, adjusting for potential confounders. Results were combined using fixed effects meta-analysis. RESULTS In total, 5660 and 3022 individuals were included for NAFLD and liver fibrosis analyses, respectively. NAFLD was associated with smaller volumes of total brain (β = -3.5, 95% confidence interval [CI] = -5.4 to -1.7), total gray matter (β = -1.9, 95% CI = -3.4 to -0.3), and total cortical gray matter (β = -1.9, 95% CI = -3.7 to -0.01). In addition, liver fibrosis (defined as liver stiffness measure ≥8.2 kPa) was related to smaller total brain volumes (β = -7.3, 95% CI = -11.1 to -3.5). Heterogeneity between studies was low. CONCLUSIONS NAFLD and liver fibrosis may be directly related to brain aging. Larger and prospective studies are warranted to validate these findings and identify liver-related preventive strategies for neurodegeneration.
Collapse
Affiliation(s)
| | - Adrienne O'Donnell
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham StudyFraminghamMassachusettsUSA
| | - Stefan Frenzel
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Tian Xiao
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Amber Yaqub
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Pinar Yilmaz
- Department of Radiology & Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert J. de Knegt
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Gladys E. Maestre
- Neurosciences Laboratory, Biological Research Institute and Research Institute of Cardiovascular Diseases, Faculty of MedicineUniversidad del Zulia Maracaibo VenezuelaMaracaiboVenezuela
- Division of Neurosciences, Department of Biomedical SciencesUniversity of Texas Rio Grande Valley School of MedicineEdinburgTexasUSA
| | - Debora Melo van Lent
- Framingham StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Michelle Long
- Section of Gastroenterology, Boston Medical CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Monica Gireud‐Goss
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
| | - Till Ittermann
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Fabian Frost
- Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Robin Bülow
- Institute for Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Ramachandran S. Vasan
- Framingham StudyFraminghamMassachusettsUSA
- Section of Preventive Medicine and Epidemiology, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Disease, partner site Rostock/GreifswaldRostockGermany
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Alexa S. Beiser
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Sudha Seshadri
- Framingham StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
143
|
Alasmari AA, Al-Khalifah AS, BaHammam AS, Alshiban NMS, Almnaizel AT, Alodah HS, Alhussain MH. Ramadan fasting model exerts hepatoprotective, anti-obesity, and anti-hyperlipidemic effects in an experimentally-induced nonalcoholic fatty liver in rats. Saudi J Gastroenterol 2024; 30:53-62. [PMID: 38192177 PMCID: PMC10852143 DOI: 10.4103/sjg.sjg_204_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The epidemic of nonalcoholic fatty liver disease (NAFLD) and its metabolic effects present a serious public health concern. We hypothesized that the Ramadan fasting model (RFM), which involves fasting from dawn to dusk for a month, could provide potential therapeutic benefits and mitigate NAFLD. Accordingly, we aimed to validate this hypothesis using obese male rats. METHODS Rats were split into two groups (n = 24 per group), and they were given either a standard (S) or high-fat diet (HFD) for 12 weeks. During the last four weeks of the study period, both S- and HFD-fed rats were subdivided into eight groups to assess the effect of RFM with/without training (T) or glucose administration (G) on the lipid profile, liver enzymes, and liver structure (n = 6/group). RESULTS The HFD+RFM group exhibited a significantly lower final body weight than that in the HFDC group. Serum cholesterol, low-density lipoprotein, and triglyceride levels were significantly lower in the HFD+RFM, HFD+RFM+T, and HFD+RFM+G groups than those in the HFDC group. Compared with the HFDC group, all groups had improved serum high-density lipoprotein levels. Furthermore, HFD groups subjected to RFM had reduced serum levels of aspartate transaminase and alanine transaminase compared with those of the HFD-fed group. Moreover, the liver histology improved in rats subjected to RFM compared with that of HFD-fed rats, which exhibited macro- and micro-fat droplet accumulation. CONCLUSION RFM can induce positive metabolic changes and improve alterations associated with NAFLD, including weight gain, lipid profile, liver enzymes, and hepatic steatosis.
Collapse
Affiliation(s)
- Abeer A. Alasmari
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman S. Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S. BaHammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Noura M. S. Alshiban
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad T. Almnaizel
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hesham S. Alodah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maha H. Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
144
|
Kim SH, Kwo PY. Pharmacologic treatment of NAFLD/NASH and their related comorbidities. METABOLIC STEATOTIC LIVER DISEASE 2024:197-220. [DOI: 10.1016/b978-0-323-99649-5.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
145
|
Du J, Wang T, Xiao C, Dong Y, Zhou S, Zhu Y. Pharmacological Activation of AMPK Prevents Drp1-mediated Mitochondrial Fission and Alleviates Hepatic Steatosis In vitro. Curr Mol Med 2024; 24:1506-1517. [PMID: 38310549 DOI: 10.2174/0115665240275594231229121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Adenosine monophosphate-activated protein kinase (AMPK) activation is beneficial for NAFLD treatment. Recent studies show the excessive fission of mitochondria during NAFLD progression, so targeting mitochondria dynamics may be a possible target for NAFLD. Still, little is known about whether AMPK regulates mitochondrial dynamics in hepar. OBJECTIVE This study investigated whether AMPK activation alleviates hepatic steatosis by regulating mitochondrial dynamics mediated by GTPase dynamin-related protein 1 (Drp1). METHODS Human hepatocyte line L-02 cells were cultured and subjected to palmitic acid (PA) treatment for 24 h to establish a hepatic steatosis model in vitro, which was pre-treated with different tool drugs. Hepatocyte function, hepatocyte lipid content, mitochondrial reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) were examined. The expression levels of genes and proteins associated with mitochondrial dynamics were assessed using reverse transcription-quantitative PCR and western blotting. RESULTS The results indicated that 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMPK activator, improved hepatocyte function, as demonstrated by decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity (P<0.05 or P<0.01). In addition, AICAR decreased total cholesterol (TC) and triglyceride (TG) content and lipid deposition in hepatocytes (P<0.01); decreased ROS production; improved MMP (P<0.01); reduced fission-1 (Fis1) and mitochondrial fission factor (Mff) mRNA expression; and downregulated p-Drp1 (Ser 616) protein expression. In contrast, AICAR increased mitochondrial fusion factor mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) mRNA expression and upregulated p-Drp1 (Ser 637) protein expression. Mdivi-1, a Drp-1 inhibitor, was used to confirm whether mitochondrial dynamics regulated by Drp1-mediated the role of AICAR. Similar to AICAR, Mdivi-1 improved hepatocyte function and MMP significantly, decreased ROS production and lipid deposition, downregulated Fis1 and Mff mRNA expression, downregulated p-Drp1 (Ser 616) protein expression, and enhanced Mfn1 and Mfn2 mRNA and p-Drp1 (Ser 637) protein expression. However, Compound C, an AMPKspecific inhibitor, had less impact on the protective effect of Mdivi-1. CONCLUSION The results demonstrated that AMPK activation has a protective effect on hepatic steatosis in vitro, largely dependent on the inhibition of Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Jingxia Du
- Department of Pharmacy, School of Basic Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Tingting Wang
- Department of Pharmacy, School of Basic Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chengyao Xiao
- Department of Pharmacy, School of Basic Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yibo Dong
- Department of Pharmacy, School of Basic Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shiyao Zhou
- Department of Pharmacy, School of Basic Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yujiao Zhu
- Department of Pharmacy, School of Basic Medical, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
146
|
Ali H, Shahzil M, Moond V, Shahzad M, Thandavaram A, Sehar A, Waseem H, Siddiqui T, Dahiya DS, Patel P, Tillmann H. Non-Pharmacological Approach to Diet and Exercise in Metabolic-Associated Fatty Liver Disease: Bridging the Gap between Research and Clinical Practice. J Pers Med 2024; 14:61. [PMID: 38248762 PMCID: PMC10817352 DOI: 10.3390/jpm14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review provides a practical and comprehensive overview of non-pharmacological interventions for metabolic-associated fatty liver disease (MASLD), focusing on dietary and exercise strategies. It highlights the effectiveness of coffee consumption, intermittent fasting, and Mediterranean and ketogenic diets in improving metabolic and liver health. The review emphasizes the importance of combining aerobic and resistance training as a critical approach to reducing liver fat and increasing insulin sensitivity. Additionally, it discusses the synergy between diet and exercise in enhancing liver parameters and the role of gut microbiota in MASLD. The paper underscores the need for a holistic, individualized approach, integrating diet, exercise, gut health, and patient motivation. It also highlights the long-term benefits and minimal risks of lifestyle interventions compared to the side effects of pharmacological and surgical options. The review calls for personalized treatment strategies, continuous patient education, and further research to optimize therapeutic outcomes in MASLD management.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University, Greenville, NC 27834, USA
| | - Muhammad Shahzil
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Vishali Moond
- Department of Internal Medicine, Saint Peter’s University Hospital, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Maria Shahzad
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abhay Thandavaram
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad 500068, Telangana, India
| | - Alina Sehar
- Department of Internal Medicine, University of Alabama at Birmingham-Huntsville Campus, Huntsville, AL 35801, USA
| | - Haniya Waseem
- Department of Internal Medicine, Advent Health Tampa, Tampa, FL 33613, USA
| | - Taha Siddiqui
- Department of Internal Medicine, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA;
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66103, USA
| | - Pratik Patel
- Department of Gastroenterology, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA
| | - Hans Tillmann
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
| |
Collapse
|
147
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. What Does Sarcopenia Have to Do with Nonalcoholic Fatty Liver Disease? Life (Basel) 2023; 14:37. [PMID: 38255652 PMCID: PMC10820621 DOI: 10.3390/life14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease. As the second stage of developing steatosis, nonalcoholic hepatitis (NASH) carries the risk of fibrosis, cirrhosis, and hepatocellular carcinoma. Sarcopenia is defined as a condition characterized by a decrease in muscle mass and functional decline. Both NAFLD and sarcopenia are global problems. The pathophysiological mechanisms that link the two entities of the disease are insulin resistance, inflammation, nutritional deficiencies, impairment of myostatin and adiponectin, or physical inactivity. Furthermore, disorders of the gut-liver axis appear to induce the process of developing NAFLD and sarcopenia. The correlations between NAFLD and sarcopenia appear to be bidirectional, so the main objective of the review was to determine the cause-and-effect relationship between the two diseases.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
148
|
Xiong Z, Chen P, Yuan M, Yao L, Wang Z, Liu P, Jiang Y. Integrated Bioinformatics and Validation Reveal IFI27 and Its Related Molecules as Potential Identifying Genes in Liver Cirrhosis. Biomolecules 2023; 14:13. [PMID: 38275754 PMCID: PMC10813755 DOI: 10.3390/biom14010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cirrhosis remains a significant global public health concern, with liver transplantation standing as the foremost effective treatment currently available. Therefore, investigating the pathogenesis of liver cirrhosis and developing novel therapies is imperative. Mitochondrial dysfunction stands out as a pivotal factor in its development. This study aimed to elucidate the relationship between mitochondria dysfunction and liver cirrhosis using bioinformatic methods to unveil its pathogenesis. Initially, we identified 460 co-expressed differential genes (co-DEGs) from the GSE14323 and GSE25097 datasets, alongside their combined datasets. Functional analysis revealed that these co-DEGs were associated with inflammatory cytokines and cirrhosis-related signaling pathways. Utilizing weighted gene co-expression network analysis (WCGNA), we screened module genes, intersecting them with co-DEGs and oxidative stress-related mitochondrial genes. Two algorithms (least absolute shrinkage and selection operator (LASSO) regression and SVE-RFE) were then employed to further analyze the intersecting genes. Finally, COX7A1 and IFI27 emerged as identifying genes for liver cirrhosis, validated through a receiver operating characteristic (ROC) curve analysis and related experiments. Additionally, immune infiltration highlighted a strong correlation between macrophages and cirrhosis, with the identifying genes (COX7A1 and IFI27) being significantly associated with macrophages. In conclusion, our findings underscore the critical role of oxidative stress-related mitochondrial genes (COX7A1 and IFI27) in liver cirrhosis development, highlighting their association with macrophage infiltration. This study provides novel insights into understanding the pathogenesis of liver cirrhosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.X.); (P.C.); (M.Y.); (L.Y.); (Z.W.); (P.L.)
| |
Collapse
|
149
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
150
|
Han S, Zeng Y, Li Y, Li H, Yang L, Ren X, Lan M, Wang B, Song X. Carbon Monoxide: A Second Biomarker to Couple with Viscosity for the Construction of "Dual-Locked" Near-Infrared Fluorescent Probes for Accurately Diagnosing Non-Alcoholic Fatty Liver Disease. Anal Chem 2023; 95:18619-18628. [PMID: 38054238 DOI: 10.1021/acs.analchem.3c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can progress to cirrhosis and liver cancer if left untreated. Therefore, it is of great importance to develop useful tools for the noninvasive and accurate diagnosis of NAFLD. Increased microenvironmental viscosity was considered as a biomarker of NAFLD, but the occurrence of increased viscosity in other liver diseases highly reduces the diagnosis accuracy of NAFLD by a single detection of viscosity. Hence, it is very necessary to seek a second biomarker of NAFLD. It has been innovatively proposed that the overexpressed heme oxygenase-1 enzyme in NAFLD would produce abnormally high concentrations of CO in hepatocytes and that CO could serve as a potential biomarker. In this work, we screened nine lactam Changsha dyes (HCO-1-HCO-9) with delicate structures to obtain near-infrared (NIR), metal-free, and "dual-locked" fluorescent probes for the simultaneous detection of CO and viscosity. Changsha dyes with a 2-pyridinyl hydrazone substituent could sense CO, and the 5-position substituents on the 2-pyridinyl moiety had a great electron effect on the reaction rate. The double bond in these dyes served as the sensing group for viscosity. Probe HCO-9 was utilized for precise diagnosis of NAFLD by simultaneous detection of CO and viscosity. Upon reacting with CO in a high-viscosity microenvironment, strong fluorescence at 745 nm of probe HCO-9 was turned on with NIR excitation at 700 nm. Probe HCO-9 was proven to be an effective tool for imaging CO and viscosity. Due to the advantages of NIR absorption and low toxicity, probe HCO-9 was successfully applied to image NAFLD in a mouse model.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuyang Zeng
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yiling Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Haipu Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong 276000, China
| | - Xiaojie Ren
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Department of Chemistry and Centre of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|