101
|
Mao M, Wang X, Sheng H, Liu Y, Zhang L, Dai S, Chi PD. A novel score based on serum apolipoprotein A-1 and C-reactive protein is a prognostic biomarker in hepatocellular carcinoma patients. BMC Cancer 2018; 18:1178. [PMID: 30486825 PMCID: PMC6260712 DOI: 10.1186/s12885-018-5028-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to propose a prognostic scoring system based on preoperative serum apolipoprotein A-1 and C-reactive protein (ApoA-1 and CRP, AC score) levels and to evaluate the prognostic value of these markers in patients with hepatocellular carcinoma (HCC). Methods In all, 539 consecutive cases diagnosed with HCC from 2009 to 2012 at Sun Yat-sen University Cancer Center were analysed. The characteristics and levels of pretreatment lipids (ApoA-1, apolipoprotein B (Apo-B), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TGs)) and CRP were reviewed and determined by univariate and multivariate Cox hazard models. Then, the AC score was proposed, which combines two independent risk factors (ApoA-1 and CRP). Results The optimal cut-off points in our study were determined according to established reference ranges. Patients with decreased ApoA-1 levels (< 1.090 g/L) and increased CRP levels (≥3.00 mg/L) exhibited a significantly poor overall survival (OS) and disease-free survival (DFS). The AC score was calculated as follows: patients with decreased ApoA-1 and elevated CRP were given a score of 3, patients with only one of these abnormalities were given a score of 2, and those with no abnormalities were given a score of 1. Patients with a higher AC score showed more progressive disease and a poorer prognosis. This was observed not only in the entire cohort (for OS, P < 0.001; for DFS, P < 0.001) but also in the subgroups stratified by pathological stage (stage I-II and stage III-IV). The discriminatory ability of the AC score in HCC was assessed according to the AUC values. The AUC value of the AC score (AUC: 0.676, 95% CI: 0.629–0.723, P < 0.001) was higher than that of AFP. In addition, the combination of the AFP and AC scores (AUC: 0.700, 95% CI: 0.655–0.745, P < 0.001) was superior to the AFP and AC scores alone. Conclusions The AC score is a significant valuable predictor of OS and DFS and could more accurately differentiate the prognosis of HCC patients. As this study is a retrospective analysis, the value of the AC score should be validated in large prospective trials.
Collapse
Affiliation(s)
- Minjie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Hui Sheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yijun Liu
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Lin Zhang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Shuqin Dai
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Pei-Dong Chi
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
102
|
Haghikia A, Landmesser U. High-Density Lipoproteins: Effects on Vascular Function and Role in the Immune Response. Cardiol Clin 2018; 36:317-327. [PMID: 29609761 DOI: 10.1016/j.ccl.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The focus in studies of high-density lipoproteins was on their capacity to remove excess cholesterol and deliver it to the liver. Other functions and vascular effects have been described. Clinical trials and translational/genetic studies have led to a refined understanding of the role of high-density lipoprotein; it is likely not a causal cardiovascular risk factor. In healthy subjects, it limits lipid oxidation, protects endothelial cell functions/integrity, and exerts antiinflammatory/antiapoptotic effects. In patients with coronary disease or diabetes, it undergoes modifications/remodeling, resulting in dysfunctional high-density lipoprotein. We summarize recent findings about the regulation of its function and discuss the clinical implications.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Postfach 65 21 33, Berlin 13316, Germany.
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Postfach 65 21 33, Berlin 13316, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin 10178, Germany
| |
Collapse
|
103
|
Choi SH, Wallace AM, Schneider DA, Burg E, Kim J, Alekseeva E, Ubags ND, Cool CD, Fang L, Suratt BT, Miller YI. AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight 2018; 3:120519. [PMID: 30135304 DOI: 10.1172/jci.insight.120519] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Removal of excess cholesterol from the plasma membrane of inflammatory cells helps reduce their activation. The secreted apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells to the plasma lipoprotein HDL. Here, we find that AIBP was expressed in inflammatory cells in the human lung and was secreted into the bronchoalveolar space in mice subjected to inhalation of LPS. AIBP bound surfactant protein B and increased cholesterol efflux from alveolar macrophages to calfactant, a therapeutic surfactant formulation. In vitro, AIBP in the presence of surfactant reduced LPS-induced p65, ERK1/2 and p38 phosphorylation, and IL-6 secretion by alveolar macrophages. In vivo, inhalation of AIBP significantly reduced LPS-induced airspace neutrophilia, alveolar capillary leak, and secretion of IL-6. These results suggest that, similar to HDL in plasma, surfactant serves as a cholesterol acceptor in the lung. Furthermore, lung injury increases pulmonary AIBP expression, which likely serves to promote cholesterol efflux to surfactant and reduce inflammation.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Aaron M Wallace
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | - Elianne Burg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Jungsu Kim
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Niki Dj Ubags
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, and.,Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist, Houston, Texas, USA
| | - Benjamin T Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Yury I Miller
- Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
104
|
Abstract
The lung has a unique relationship to cholesterol that is shaped by its singular physiology. On the one hand, the lungs receive the full cardiac output and have a predominant dependence on plasma lipoprotein uptake for their cholesterol supply. On the other hand, surfactant lipids, including cholesterol, are continually susceptible to oxidation owing to direct environmental exposure and must be cleared or recycled because of the very narrow biophysical mandates placed upon surfactant lipid composition. Interestingly, increased lipid-laden macrophage "foam cells" have been noted in a wide range of human lung pathologies. This suggests that lipid dysregulation may be a unifying and perhaps contributory event in chronic lung disease pathogenesis. Recent studies have shown that perturbations in intracellular cholesterol trafficking critically modify the immune response of macrophages and other cells. This minireview discusses literature that has begun to demonstrate the importance of regulated cholesterol traffic through the lung to pulmonary immunity, inflammation, and fibrosis. This emerging recognition of coupling between immunity and lipid homeostasis in the lung presents potentially transformative concepts for understanding lung disease and may also offer novel and exciting avenues for therapeutic development.
Collapse
|
105
|
Ko SH, Jeong J, Baeg MK, Han KD, Kim HS, Yoon JS, Kim HH, Kim JT, Chun YH. Lipid profiles in adolescents with and without asthma: Korea National Health and nutrition examination survey data. Lipids Health Dis 2018; 17:158. [PMID: 30021597 PMCID: PMC6052620 DOI: 10.1186/s12944-018-0807-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Background Metabolic syndrome and dyslipidemia contribute to the development of a pro-inflammatory state in asthma. However, studies investigating the association between asthma and dyslipidemia have reported conflicting results. This study aimed to uncover the relationship between asthma and lipid profiles in adolescents using a national health and nutrition survey. Methods This cross-sectional study analyzed the 2010–2012 Korea National Health and Nutrition Examination Survey data and included 2841 subjects aged 11–18 years with fasting blood sample data. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were analyzed. We compared asthma prevalence between high-risk and low-risk lipid groups. Results There were 123 adolescents with asthma and 2718 without asthma (controls). The TC/HDL-C ratio, LDL-C/HDL-C ratio, and non-HDL-C levels were significantly higher in the asthma group than in the non-asthma group (P < 0.05). The high-risk groups displayed significantly higher asthma prevalence with higher TC, TG, LDL-C, and non-HDL-C levels and TG/HDL-C ratio than the low-risk groups (P < 0.05). After adjusting for potential confounding factors, the high-risk groups were associated with asthma according to their higher TC levels (adjusted odds ratio, 1.69; 95% confidence interval, 1.012–2.822) and TG/HDL-C ratios (adjusted odds ratio, 1.665; 95% confidence interval, 1.006–2.756). Conclusions Asthma prevalence was greater in adolescents with a high TC level and TG/HDL-C ratio. In addition to the standard lipid profile, elevated TG/HDL-C ratio can be used as a useful additional lipid measure to evaluate interactions between dyslipidemia and asthma.
Collapse
Affiliation(s)
- Sun-Hye Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jaewook Jeong
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myong Ki Baeg
- Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Kyung-Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwan Soo Kim
- Department of Pediatrics, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jong-Seo Yoon
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Kim
- Department of Pediatrics, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Jin Tack Kim
- Department of Pediatrics, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Yoon Hong Chun
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-Ro, Bupyeong-Gu, Incheon, 21431, Republic of Korea.
| |
Collapse
|
106
|
Sviridov D, Mukhamedova N. Cdc42 - A tryst between host cholesterol metabolism and infection. Small GTPases 2018; 9:237-241. [PMID: 27580266 DOI: 10.1080/21541248.2016.1223533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Emerging evidence points to an important connection between pathogenesis of intracellular infections and host cholesterol metabolism. In our study we demonstrated that human cytomegalovirus exploits host small GTPase Cdc42 to hijack cellular cholesterol efflux pathway. It appears that the virus uses host machinery to stimulate cholesterol efflux by modifying lipid rafts and altering properties of plasma membrane, but the altered pathway is controlled by the viral protein US28 instead of the host ATP binding cassette transporter A1. We speculate that virus-controlled remodeling of plasma membrane facilitates immune evasion, exocytosis of viral proteins and cell-to-cell transmission of human cytomegalovirus. These mechanisms may be not unique for the cytomegalovirus and subverting reverse cholesterol transport pathway may be a generic mechanism used by pathogens to alter properties of host plasma membrane adapting it for their purposes-to hide and disseminate.
Collapse
Affiliation(s)
- Dmitri Sviridov
- a Baker IDI Heart and Diabetes Institute , Melbourne , Australia
| | | |
Collapse
|
107
|
Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, Chen LY, Zheng XL, Tang XE, Tang CK. Apolipoprotein A-1 Binding Protein Inhibits Inflammatory Signaling Pathways by Binding to Apolipoprotein A-1 in THP-1 Macrophages. Circ J 2018; 82:1396-1404. [PMID: 29618705 DOI: 10.1253/circj.cj-17-0877] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
BACKGROUND It has previously been demonstrated that apolipoprotein A-1 (apoA-1) binding protein (AIBP) promotes apoA-1 binding to ATP-binding cassette transporter A1 (ABCA1) and prevents ABCA1 protein degradation so as to inhibit foam cell formation. Because apoA-1 inhibits inflammatory signaling pathways, whether AIBP has an inhibitory effect on inflammatory signaling pathways in THP-1-derived macrophages is investigated. METHODS AND RESULTS Analysis of inflammation-related gene expression indicated that AIBP decreased lipopolysaccharide (LPS)-mediated macrophage inflammation. AIBP significantly prevented NF-κB nuclear translocation. Further, AIBP prevented the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular-signal regulated kinase and c-Jun N-terminal kinase. AIBP decreased MyD88 expression at both mRNA and protein levels, but did not have any effect on TLR4 expression. Moreover, treatment with both AIBP and apoA-1 decreased the abundance of TLR4 in the lipid raft fraction. AIBP lacking 115-123 amino acids (∆115-123), however, did not have such effects as described for intact AIBP. In addition, knockdown of ABCA1 inhibited the effects of AIBP on inflammatory factor secretion. CONCLUSIONS These results suggest that AIBP inhibits inflammatory signaling pathways through binding to apoA-1 and stabilizing ABCA1, and subsequent alteration of lipid rafts and TLR4 in the cell membrane.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Guo-Jun Zhao
- Department of Histology and Embryology, Guilin Medical University
| | - Kai Yin
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xiao-Dan Xia
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Duo Gong
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Ling-Yan Chen
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center
- Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University
| | - Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Atherosclerology of Hunan Province, Medicine Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
| |
Collapse
|
108
|
Zhong J, Peng L, Wang B, Zhang H, Li S, Yang R, Deng Y, Huang H, Yuan J. Tacrolimus interacts with voriconazole to reduce the severity of fungal keratitis by suppressing IFN-related inflammatory responses and concomitant FK506 and voriconazole treatment suppresses fungal keratitis. Mol Vis 2018; 24. [PMID: 29527115 PMCID: PMC5836723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To investigate the expression and roles of type I and II interferons (IFNs) in fungal keratitis, as well as the therapeutic effects of tacrolimus (FK506) and voriconazole on this condition. METHODS The mRNA and protein expression levels of type I (IFN-α/β) and II (IFN-γ) IFNs, as well as of related downstream inflammatory cytokines (interleukin (IL)-1α, IL-6, IL-12, and IL-17), were detected in macrophages, neutrophils, lymphocytes, and corneal epithelial cells (A6(1) cells) stimulated with zymosan (10 mg/ml) for 8 or 24 h. A fungal keratitis mouse model was generated through intrastromal injection of Aspergillus fumigatus, and the mice were then divided into four groups: group I, the PBS group; group II, the voriconazole group; group III, the FK506 group; and group IV, the voriconazole plus 0.05% FK506 group. Corneal damage was evaluated with clinical scoring and histological examination. In addition, the mRNA and protein expression levels of type I (IFN-α/β) and type II (IFN-γ) IFNs, as well as related inflammatory cytokines, were determined at different time points using quantitative real-time PCR (qRT-PCR) and western blotting. RESULTS After zymosan stimulation of mouse neutrophils, lymphocytes, macrophages, and A6(1) cells, the IFN mRNA and protein expression levels were markedly increased until 24 h, peaking at 8 h (p<0.001). The mRNA and protein expression levels of inflammatory cytokines (IL-1α, IL-6, IL-12, and IL-17) were also upregulated after zymosan stimulation. Moreover, type I (IFN-α/β) and type II (IFN-γ) IFN expression levels were increased and positively correlated with the progression of fungal keratitis in vivo. FK506 administered with voriconazole reduced the pathological infiltration of inflammatory cells into the cornea and downregulated the expression levels of IFNs and related inflammatory cytokines. CONCLUSIONS In conclusion, this study demonstrated that type I and II IFN levels were markedly increased in fungal keratitis and that FK506 combined with voriconazole decreased the severity of fungal keratitis by suppressing type I and II IFNs and their related inflammatory responses.
Collapse
|
109
|
Hu G, Zheng W, Li A, Mu Y, Shi M, Li T, Zou H, Shao H, Qin A, Ye J. A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. Vet Res 2018; 49:16. [PMID: 29439726 PMCID: PMC5812233 DOI: 10.1186/s13567-018-0513-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Cell-penetrating peptide (CPP) is a promising cargo for delivering bioactive molecules. In this study, the N terminus of VP1 from chicken anemia virus, designated as CVP1, was found to carry enriched arginine residues with α-helix. By confocal imaging, flow cytometry and MTT assay, we identified CVP1 as a novel, safe and efficient CPP. CVP1-FITC peptide could entry different types of cells tested with dose dependence, but without cytotoxic effects. Compared with TAT-FITC peptide, the CVP1-FITC peptide showed much higher cell-penetrating activity. Moreover, CVP1 could successfully deliver β-glycosidase, poly (I:C) and plasmid into HCT116 cells. Inhibitors and temperature sensitivity analysis further indicated that the cell-penetrating activity of CVP1 was based on ATP-dependent and caveolae-mediated endocytosis. All these data demonstrate that CVP1 has efficient cell-penetrating activity and great potential for developing a novel delivery vector.
Collapse
Affiliation(s)
- Gaowei Hu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenlv Zheng
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ao Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yaru Mu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mingyu Shi
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Haitao Zou
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
110
|
Sargolzaei J, Chamani E, Kazemi T, Fallah S, Soori H. The role of adiponectin and adipolin as anti-inflammatory adipokines in the formation of macrophage foam cells and their association with cardiovascular diseases. Clin Biochem 2018; 54:1-10. [PMID: 29452073 DOI: 10.1016/j.clinbiochem.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Obesity is one of the major public health concerns that is closely associated with obesity-related disorders such as type 2 diabetes mellitus (T2DM), hypertension, and atherosclerosis. Atherosclerosis is a chronic disease characterized by excess cholesterol deposition in the arterial intima and the formation of foam cells. Adipocytokines or adipokines are secreted by the adipose tissue as endocrine glands; adiponectin and adipolin are among these adipokines that are associated with obese and insulin-resistant phenotypes. Adipolin and adiponectin are cytokines that exert substantial impact on obesity, progression of atherosclerosis, insulin resistance, and glucose metabolism. In this paper, we review the formation of macrophage foam cells, which are associated with atherosclerosis, and the macrophage mechanism, which includes uptake, esterification, and release. We also summarize current information on adipose tissue-derived hormone and energy homeostasis in obesity. Finally, the role of adipokines, e.g., adipoline and adiponectin, in regulating metabolic, cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Javad Sargolzaei
- Department of Biochemistry, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Elham Chamani
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Tooba Kazemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosna Soori
- Department of Biochemistry, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
111
|
Abstract
This review provides an overview on components of the sphingolipid superfamily, on their localization and metabolism. Information about the sphingolipid biological activity in cell physiopathology is given. Recent studies highlight the role of sphingolipids in inflammatory process. We summarize the emerging data that support the different roles of the sphingolipid members in specific phases of inflammation: (1) migration of immune cells, (2) recognition of exogenous agents, and (3) activation/differentiation of immune cells.
Collapse
|
112
|
Filipe HAL, Sousa C, Marquês JT, Vila-Viçosa D, de Granada-Flor A, Viana AS, Santos MSCS, Machuqueiro M, de Almeida RFM. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Free Radic Biol Med 2018; 115:232-245. [PMID: 29221989 DOI: 10.1016/j.freeradbiomed.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 01/08/2023]
Abstract
Phenolic acids have been associated to a wide range of important health benefits underlain by a common molecular mechanism of action. Considering that significant membrane permeation is prevented by their hydrophilic character, we hypothesize that their main effects result from the interplay with cell membrane surface. This hypothesis was tested using the paradigmatic caffeic acid (CA) and two of its ester derivatives, rosmarinic (RA) and chlorogenic (CGA) acids, for which we predict, based on molecular dynamics simulations, a shallow location in phospholipid bilayers dependent on the protonation-state. Using complementary experimental approaches, an interaction with the membrane was definitely revealed for the three compounds, with RA exhibiting the highest lipid bilayer partition, and the redox signals of membrane-bound RA and CA being clearly detected. Cholesterol decreased the compounds bilayer partition, but not their ability to lower membrane dipole potential. In more complex membrane models containing also sphingomyelin, with liquid disordered (ld)/ liquid ordered (lo) phases coexistence, mimicking domains in the external leaflet of human plasma membrane, all compounds were able to affect nanodomains lateral organization. RA, and to a lesser extent CGA, decreased the size of lo domains. The most significant effect of CA was the possible formation of a rigid gel-like phase, enriched in sphingomyelin. In addition, all phenolic acids decreased the order of lo domains. In sum, phenolic acid effects on the membrane are enhanced in cholesterol-rich lo phases, which predominate in the outer leaflet of human cell membranes and are involved in many key cellular processes.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Carla Sousa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joaquim T Marquês
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - António de Granada-Flor
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - M Soledade C S Santos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
113
|
Hellwing C, Schoeniger A, Roessler C, Leimert A, Schumann J. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition. PeerJ 2018; 6:e4212. [PMID: 29312832 PMCID: PMC5757419 DOI: 10.7717/peerj.4212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toll like receptors (TLRs) are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA) induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. METHODS In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA) or arachidonic acid (AA) and analyzed for receptor expression and microdomain localization in context of TLR stimulation. RESULTS AND CONCLUSIONS Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.
Collapse
Affiliation(s)
- Christine Hellwing
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Claudia Roessler
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Anja Leimert
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| |
Collapse
|
114
|
Yang X, Chen GT, Wang YQ, Xian S, Zhang L, Zhu SM, Pan F, Cheng YX. TLR4 promotes the expression of HIF-1α by triggering reactive oxygen species in cervical cancer cells in vitro-implications for therapeutic intervention. Mol Med Rep 2017; 17:2229-2238. [PMID: 29207048 PMCID: PMC5783462 DOI: 10.3892/mmr.2017.8108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
The present study investigated the mechanism underlying Toll-like receptor 4 (TLR4)-mediated stimulation of hypoxia-inducible factor-1α (HIF-1α) activity and its association with reactive oxygen species (ROS) in cervical cancer cells. SiHa cells were cultured and randomized to control, lipopolysaccharide (LPS), methyl-β-cyclodextrin (MβCD)+LPS, ammonium pyrrolidinedithiocarbamate (PDTC)+LPS, ST2825+LPS and small interfering (si) RNA TLR4+LPS treatment groups. Cell proliferation was quantified using an MTT assay, cell cloning was performed using soft agar colony formation and HIF-1α expression was detected by immunocytochemical staining and western blot analyses. Dichloro-dihydro-fluorescein diacetate and lucigenin luminescence assays were used to detect alterations in ROS and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase content, respectively. Co-localization of TLR4 and HIF-1α was detected by immunofluorescence staining and observed using fluorescence microscopy. Compared with the control group, cell proliferation was enhanced in the LPS-treated group and was not altered in the PDTC+LPS treatment group. Cell proliferation was reduced in all other treatment groups (P<0.05). Compared with the LPS group, cell proliferation decreased in all other groups. Compared with the PDTC+LPS treatment group, cell proliferation significantly decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.01). Treatment with MβCD+LPS exhibited an increased inhibitory effect on cell activity and proliferation. Compared with the control group, HIF-1α expression was enhanced following treatment with LPS, although it decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.05). HIF-1α expression decreased following treatment with ST2825, siTLR4, MβCD and PDTC+LPS, compared with treatment with LPS alone. Compared with the PDTC+LPS group, HIF-1α activity decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase and ROS levels increased in cells treated with LPS, compared with the control group, at 24 and 12 h following treatment, respectively, and decreased at 12 h when LPS was co-administered with ST2825, siTLR4 and MβCD. There was no difference between the LPS and PDTC+LPS groups with respect to NADPH and ROS levels. Compared with the PDTC+LPS group, NADPH oxidase activity and ROS content decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase activity and ROS content were lowest in the MβCD+LPS treatment group, and immunofluorescent staining demonstrated that TLR4 was localized to the cell surface and HIF-1α was primarily localized to the cytoplasm. TLR4 was co-expressed with HIF-1α in cervical cancer cells. The results of the present study suggested that TLR4 signaling primarily promoted HIF-1α activity via activation of lipid rafts/NADPH oxidase redox signaling and may be associated with the initiation and progression of cervical cancer. This promoting effect was stronger in TLR4/lipid rafts/NADPH oxidase pathway than that in TLR4-NF-κB signaling pathway. Therefore, the TLR4/lipid raft-associated redox signal may be a target for therapeutic intervention to prevent the growth of cervical cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gan Tao Chen
- Department of Gastroenterology, The Third Renmin Hospital of Xiantao City, Xiantao, Hubei 433000, P.R. China
| | - Yan Qing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Pan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
115
|
The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages. PLoS One 2017; 12:e0185767. [PMID: 28968465 PMCID: PMC5624624 DOI: 10.1371/journal.pone.0185767] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.
Collapse
|
116
|
Lin J, Liu Q, Zhang H, Huang X, Zhang R, Chen S, Wang X, Yu B, Hou J. C1q/Tumor necrosis factor-related protein-3 protects macrophages against LPS-induced lipid accumulation, inflammation and phenotype transition via PPARγ and TLR4-mediated pathways. Oncotarget 2017; 8:82541-82557. [PMID: 29137283 PMCID: PMC5669909 DOI: 10.18632/oncotarget.19657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophage inflammation and foam cell formation are critical events during the initiation and development of atherosclerosis (AS). C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine with anti-inflammatory and cardioprotection properties; however, little is known regarding the influence of CTRP3 on AS. As macrophages play a key role in AS, this study investigated the effects of CTRP3 on macrophage lipid metabolism, inflammatory reactions, and phenotype transition, as well as underlying mechanisms, to reveal the relationship between CTRP3 and AS. CTRP3 reduced the number of lipid droplets, lowered cholesteryl ester (CE), total cholesterol (TC), and free cholesterol (FC) levels, reduced the CE/TC ratio, and dose-dependently inhibited TNFα, IL-6, MCP-1, MMP-9 and IL-1β release in lipopolysaccharide (LPS)-stimulated THP-1 macrophages and mouse peritoneal macrophages. Pretreatment with CTRP3 effectively increased macrophage transformation to M2 macrophages rather than M1 macrophages. Western blotting showed that the specific NF-κB pathway inhibitor ammonium pyrrolidine dithiocarbamate (PDTC) or siRNA targeting PPARγ/LXRα markedly strengthened or abolished the above-mentioned effects of CTRP3, respectively. These results show that CTRP3 inhibits TLR4-NF-κB pro-inflammatory pathways but activates the PPARγ-LXRα-ABCA1/ABCG1 cholesterol efflux pathway. Taken together, CTRP3 participates in anti-lipid accumulation, anti-inflammation and macrophage phenotype conversion via the TLR4-NF-κB and PPARγ-LXRα-ABCA1/ABCG1 pathways and, thus, may have anti-atherosclerotic properties.
Collapse
Affiliation(s)
- Jiale Lin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qi Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hui Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shuyuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
117
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
118
|
Murrell-Lagnado RD. Regulation of P2X Purinergic Receptor Signaling by Cholesterol. CURRENT TOPICS IN MEMBRANES 2017; 80:211-232. [PMID: 28863817 DOI: 10.1016/bs.ctm.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
P2X receptors are cation-selective channels that are activated by the binding of extracellular ATP. They have a high permeability to Ca2+, Na+, and K+ and are expressed widely throughout the nervous, immune, cardiovascular, skeletal, gastrointestinal, respiratory, and endocrine systems. Seven mammalian subtypes of P2X receptor subunits have been identified, P2X1-7, and those that function as homotrimeric receptors (P2X1, 2, 3, 4, and 7) are targeted to lipid rafts, although they show limited resistance to solubilization by Triton X-100. Recent crystal structures of P2X3 and P2X4 receptors have provided considerable high-resolution information about the architecture of this family of receptors and yet the molecular details of how they are regulated by cholesterol are unknown. Currents mediated by the P2X1-4 receptors are either inhibited or relatively insensitive to cholesterol depletion, but there is no clear evidence to support the direct binding of cholesterol to these receptors. In contrast, the activity of the low-affinity, proinflammatory P2X7 receptor is potentiated by cholesterol depletion and regions within the proximal C-terminus play an important role in coupling changes in cholesterol to the gating of the pore. Based upon our understanding of the lipid signaling events that are triggered downstream of P2X7 receptor activation, a change in the levels of cholesterol may contribute to the sensitization of receptor currents and the dilation of the pore that occurs following prolonged, high-level stimulation. This chapter focuses on the regulation of P2X7 receptor signaling by cholesterol and our current understanding of the mechanisms that underlie this.
Collapse
Affiliation(s)
- Ruth D Murrell-Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
119
|
Bah SY, Dickinson P, Forster T, Kampmann B, Ghazal P. Immune oxysterols: Role in mycobacterial infection and inflammation. J Steroid Biochem Mol Biol 2017; 169:152-163. [PMID: 27155346 DOI: 10.1016/j.jsbmb.2016.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022]
Abstract
Infection remains an important cause of morbidity and mortality. Natural defenses to infection are mediated by intrinsic/innate and adaptive immune responses. While our understanding is considerable it is incomplete and emerging areas of research such as those related to the immune-metabolic axis are only beginning to be appreciated. There is increasing evidence showing a connection between immune signalling and the regulation of sterol and fatty acid metabolism. In particular, metabolic intermediates of cholesterol biosynthesis and its oxidized metabolites (oxysterols) have been shown to regulate adaptive immunity and inflammation and for innate immune signalling to regulate the dynamics of cholesterol synthesis and homeostasis. The side-chain oxidized oxysterols, 25-hydroxycholesterol (25HC) and vitamin D metabolites (vitamin D3 and vitamin D2), are now known to impart physiologically profound effects on immune responses. Macrophages play a frontline role in this process connecting immunity, infection and lipid biology, and collaterally are a central target for infection by a wide range of pathogens including viruses and bacteria, especially intracellular bacteria such as mycobacteria. Clinical manifestations of disease severity in the infected host are likely to pay tribute to perturbations of the metabolic-immune phenomena found in lymphocytes and myeloid cells. Historically and consistent with this notion, vitamin D based oxysterols have had a long association with promoting clinical improvements to patients infected with Mycobacterium tuberculosis. Hence understanding the role of early metabolic mediators of inflammatory responses to infection in particular oxysterols, will aid in the development of urgently needed host directed therapeutic and diagnostic design innovation to combat adverse infection outcomes and antibiotic resistance.
Collapse
Affiliation(s)
- Saikou Y Bah
- Division of Infection and Pathway Medicine, University of Edinburgh Medical, Edinburgh EH16 4SB, United Kingdom; Vaccines and Immunity Theme, MRC Unit, Gambia.
| | - Paul Dickinson
- Division of Infection and Pathway Medicine, University of Edinburgh Medical, Edinburgh EH16 4SB, United Kingdom
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, University of Edinburgh Medical, Edinburgh EH16 4SB, United Kingdom
| | - Beate Kampmann
- Vaccines and Immunity Theme, MRC Unit, Gambia; Centre of International Child Health, Department of Medicine, Imperial College London, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, University of Edinburgh Medical, Edinburgh EH16 4SB, United Kingdom; SynthSys at Edinburgh University, The Kings Buildings, Edinburgh, United Kingdom.
| |
Collapse
|
120
|
Cianciola NL, Chung S, Manor D, Carlin CR. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol 2017; 91:e01904-16. [PMID: 28077646 PMCID: PMC5331795 DOI: 10.1128/jvi.01904-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich "lipid rafts." Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes.IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune-mediated pathology have been a particularly rich source of information regarding intracellular protein trafficking. Our studies with the early region 3-encoded RIDα protein also provided fundamental new information regarding mechanisms of nonvesicular lipid transport and the flow of molecular information at membrane contacts between different organelles. We describe a new pathway that delivers cholesterol from endosomes to the endoplasmic reticulum, where it is esterified and stored in lipid droplets. Although lipid droplets are attracting renewed interest from the standpoint of normal physiology and human diseases, including those resulting from viral infections, experimental model systems for evaluating how and why they accumulate are still limited. Our studies also revealed an intriguing relationship between lipid droplets and innate immunity that may represent a new paradigm for viruses utilizing these organelles.
Collapse
Affiliation(s)
- Nicholas L Cianciola
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stacey Chung
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cathleen R Carlin
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
121
|
Chu EP, Elso CM, Pollock AH, Alsayb MA, Mackin L, Thomas HE, Kay TW, Silveira PA, Mansell AS, Gaus K, Brodnicki TC. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol Immunol 2017; 82:19-33. [DOI: 10.1016/j.molimm.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
|
122
|
High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling. Cell Metab 2017; 25:197-207. [PMID: 27866837 DOI: 10.1016/j.cmet.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 06/30/2016] [Accepted: 10/20/2016] [Indexed: 01/15/2023]
Abstract
Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.
Collapse
|
123
|
Li L, Xu GK, Song F. Impact of lipid rafts on the T-cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions. Phys Rev E 2017; 95:012403. [PMID: 28208397 DOI: 10.1103/physreve.95.012403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Indexed: 01/02/2023]
Abstract
The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
124
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
125
|
Zhu H, Ornaghi F, Belin S, Givogri MI, Wrabetz L, Bongarzone ER. Generation of a LacZ reporter transgenic mouse line for the stereological analysis of oligodendrocyte loss in galactosylceramidase deficiency. J Neurosci Res 2016; 94:1520-1530. [PMID: 27426866 PMCID: PMC5069144 DOI: 10.1002/jnr.23839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 11/11/2022]
Abstract
Krabbe's disease is a leukodystrophy resulting from deficiency of galactosylceramidase and the accumulation of galactosylsphingosine (psychosine) in the nervous system. Psychosine is believed to cause central demyelination by killing oligodendrocytes. Quantitative analysis of this process is lacking. To address this, we generated a new transgenic reporter twitcher line in which myelinating oligodendrocytes are genetically marked by the expression of LacZ under control of the myelin basic protein (MBP) promoter. MBP-LacZ-twitcher transgenic mice were used for unbiased stereological quantification of β-galactosidase+ oligodendrocytes in the spinal cord. As expected, we found decreased numbers of these cells in mutant cords, paralleling the severity of clinical disease. The decrease of oligodendrocytes does not correlate well with the increase of psychosine. The new MBP-LacZ-twitcher line will be a useful genetic tool for measuring changes in oligodendrocyte numbers in different regions of the mutant CNS and in preclinical trials of therapies to prevent demyelination. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Francesca Ornaghi
- San Raffaele Scientific Institute, Milano, Italy
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Sophie Belin
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
126
|
Wallner S, Grandl M, Liebisch G, Peer M, Orsó E, Sigrüner A, Sobota A, Schmitz G. oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages. PLoS One 2016; 11:e0166798. [PMID: 27870891 PMCID: PMC5117723 DOI: 10.1371/journal.pone.0166798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Background Extravasation of macrophages and formation of lipid-laden foam cells are key events in the development and progression of atherosclerosis. The degradation of atherogenic lipoproteins subsequently leads to alterations in cellular lipid metabolism that influence inflammatory signaling. Especially sphingolipids and ceramides are known to be involved in these processes. We therefore analyzed monocyte derived macrophages during differentiation and after loading with enzymatically (eLDL) and oxidatively (oxLDL) modified low-density lipoproteins (LDL). Methods Primary human monocytes were isolated from healthy, normolipidemic blood donors using leukapheresis and counterflow elutriation. On the fourth day of MCSF-induced differentiation eLDL (40 μg/ml) or oxLDL (80 μg/ml) were added for 48h. Lipid species were analyzed by quantitative tandem mass spectrometry. Taqman qPCR was performed to investigate transcriptional changes in enzymes involved in sphingolipid metabolism. Furthermore, membrane lipids were studied using flow cytometry and confocal microscopy. Results MCSF dependent phagocytic differentiation of blood monocytes had only minor effects on the sphingolipid composition. Levels of total sphingomyelin and total ceramide remained unchanged, while lactosylceramides, cholesterylesters and free cholesterol decreased. At the species level most ceramide species showed a reduction upon phagocytic differentiation. Loading with eLDL preferentially increased cellular cholesterol while loading with oxLDL increased cellular ceramide content. Activation of the salvage pathway with a higher mRNA expression of acid and neutral sphingomyelinase, neutral sphingomyelinase activation associated factor and glucosylceramidase as well as increased surface expression of SMPD1 were identified as potentially underlying mechanisms. Moreover, flow-cytometric analysis revealed a higher cell-surface-expression of ceramide, lactosylceramide (CDw17), globotriaosylceramide (CD77), dodecasaccharide-ceramide (CD65s) and GM1 ganglioside upon oxLDL loading. ApoE in contrast to apoA-I preferentially bound to the ceramide enriched surfaces of oxLDL loaded cells. Confocal microscopy showed a co-localization of acid sphingomyelinase with ceramide rich membrane microdomains. Conclusion eLDL leads to the formation of lipid droplets and preferentially induces cholesterol/sphingomyelin rich membrane microdomains while oxLDL promotes the development of cholesterol/ceramide rich microdomains via activation of the salvage pathway.
Collapse
Affiliation(s)
- Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Margot Grandl
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Markus Peer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Sigrüner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Andrzej Sobota
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
127
|
The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 2016; 7:13436. [PMID: 27824038 PMCID: PMC5105176 DOI: 10.1038/ncomms13436] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.
Collapse
|
128
|
Brameshuber M, Sevcsik E, Rossboth BK, Manner C, Deigner HP, Peksel B, Péter M, Török Z, Hermetter A, Schütz GJ. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms. Biophys J 2016; 110:205-13. [PMID: 26745423 DOI: 10.1016/j.bpj.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents.
Collapse
Affiliation(s)
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | | | - Hans-Peter Deigner
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany; Fraunhofer Institute IZI/EXIM, Furtwangen, Germany
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
129
|
Fessler MB. The Intracellular Cholesterol Landscape: Dynamic Integrator of the Immune Response. Trends Immunol 2016; 37:819-830. [PMID: 27692616 DOI: 10.1016/j.it.2016.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon (IFN) response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, 'professional' role for sterols and oxysterols in macrophage and T-cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease.
Collapse
Affiliation(s)
- Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01 Research Triangle Park, NC 27709, USA.
| |
Collapse
|
130
|
Wei Y, Schober A. MicroRNA regulation of macrophages in human pathologies. Cell Mol Life Sci 2016; 73:3473-95. [PMID: 27137182 PMCID: PMC11108364 DOI: 10.1007/s00018-016-2254-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Abstract
Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies, like in the defence against infectious agents, in inflammation resolution, and wound repair. In the past several years, microRNAs (miRNAs) have been demonstrated to play important roles in immune diseases by regulating macrophage functions. In this review, we will summarize the role of miRNAs in the differentiation of monocytes into macrophages, in the classical and alternative activation of macrophages, and in the regulation of phagocytosis and apoptosis. Notably, miRNAs preferentially target genes related to the cellular cholesterol metabolism, which is of key importance for the inflammatory activation and phagocytic activity of macrophages. miRNAs functionally link various mechanisms involved in macrophage activation and contribute to initiation and resolution of inflammation. miRNAs represent promising diagnostic and therapeutic targets in different conditions, such as infectious diseases, atherosclerosis, and cancer.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
131
|
Lin CS, Liu PY, Lian CH, Lin CH, Lai JH, Ho LJ, Yang SP, Cheng SM. Gentiana scabra Reduces SR-A Expression and Oxidized-LDL Uptake in Human Macrophages. ACTA CARDIOLOGICA SINICA 2016; 32:460-6. [PMID: 27471359 DOI: 10.6515/acs20150416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Macrophages can imbibe low-density lipoprotein (LDL) through scavenger receptors to become foam cells, which is critical in the initiation and progression of atherosclerosis. Mounting evidence suggests that the anti-inflammatory nature of Chinese herbs have the capacity to halt the complex mechanisms underlying atherosclerosis. This study examined the effects of Chinese herbs on foam cell formation. METHODS Chinese herbs were obtained from the Sun Ten pharmaceutic company. Using oxidized LDL (OxLDL) uptake and a cell toxicity assay, we screened more than 30 types of Chinese herbs. Western blotting was used to determine expressions of scavenger receptors (SRs) and extracellular-signal-regulated kinase (ERK) activities. RESULTS We found that Gentiana scabra reduced oxidized LDL uptake effectively in THP-1 macrophages (p < 0.05 vs. OxLDL treated control). Moreover, treatment with Gentiana scabra in THP-1 macrophages resulted in decreased expression of scavenger receptor- A (SR-A) (p < 0.05 vs. control). Molecular investigation revealed that Gentiana scabra inhibited SR-A protein expression, possibly by regulating ERK signaling pathways (p < 0.05 vs. control). CONCLUSIONS By regulating SR-A expression, Gentiana scabra reduced oxidized LDL uptake in human macrophages. These results support the potential use of Gentiana scabra in treating atherosclerosis.
Collapse
Affiliation(s)
- Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pang-Yen Liu
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Hao Lian
- Division of General Laboratory, Ministry of Health and Welfare, KinMen Hospital, Kinmen
| | | | - Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
132
|
Didichenko SA, Navdaev AV, Cukier AMO, Gille A, Schuetz P, Spycher MO, Thérond P, Chapman MJ, Kontush A, Wright SD. Enhanced HDL Functionality in Small HDL Species Produced Upon Remodeling of HDL by Reconstituted HDL, CSL112: Effects on Cholesterol Efflux, Anti-Inflammatory and Antioxidative Activity. Circ Res 2016; 119:751-63. [PMID: 27436846 PMCID: PMC5006797 DOI: 10.1161/circresaha.116.308685] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
Supplemental Digital Content is available in the text. Rationale: CSL112, human apolipoprotein A-I (apoA-I) reconstituted with phosphatidylcholine, is known to cause a dramatic rise in small high-density lipoprotein (HDL). Objective: To explore the mechanisms by which the formation of small HDL particles is induced by CSL112. Methods and Results: Infusion of CSL112 into humans caused elevation of 2 small diameter HDL fractions and 1 large diameter fraction. Ex vivo studies showed that this remodeling does not depend on lipid transfer proteins or lipases. Rather, interaction of CSL112 with purified HDL spontaneously gave rise to 3 HDL species: a large, spherical species composed of apoA-I from native HDL and CSL112; a small, disc-shaped species composed of apoA-I from CSL112, but smaller because of the loss of phospholipids; and the smallest species, lipid-poor apoA-I composed of apoA-I from HDL and CSL112. Time-course studies suggest that remodeling occurs by an initial fusion of CSL112 with HDL and subsequent fission leading to the smaller forms. Functional studies showed that ATP-binding cassette transporter 1–dependent cholesterol efflux and anti-inflammatory effects in whole blood were carried by the 2 small species with little activity in the large species. In contrast, the ability to inactivate lipid hydroperoxides in oxidized low-density lipoprotein was carried predominantly by the 2 largest species and was low in lipid-poor apoA-I. Conclusions: We have described a mechanism for the formation of small, highly functional HDL species involving spontaneous fusion of discoidal HDL with spherical HDL and subsequent fission. Similar remodeling is likely to occur during the life cycle of apoA-I in vivo.
Collapse
Affiliation(s)
- Svetlana A Didichenko
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Alexei V Navdaev
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Alexandre M O Cukier
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Andreas Gille
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Patrick Schuetz
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Martin O Spycher
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Patrice Thérond
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - M John Chapman
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Anatol Kontush
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Samuel D Wright
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.).
| |
Collapse
|
133
|
Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease. J Alzheimers Dis 2016; 48:319-53. [PMID: 26401998 PMCID: PMC4923765 DOI: 10.3233/jad-142853] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer's disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
134
|
Low H, Mukhamedova N, Cui HL, McSharry BP, Avdic S, Hoang A, Ditiatkovski M, Liu Y, Fu Y, Meikle PJ, Blomberg M, Polyzos KA, Miller WE, Religa P, Bukrinsky M, Soderberg-Naucler C, Slobedman B, Sviridov D. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells. Cell Rep 2016; 16:186-200. [PMID: 27320924 DOI: 10.1016/j.celrep.2016.05.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 01/30/2023] Open
Abstract
Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.
Collapse
Affiliation(s)
- Hann Low
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Huanhuan L Cui
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Karolinska Institute, Stockholm 171 76, Sweden
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
| | - Selmir Avdic
- Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
| | - Anh Hoang
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Yingying Liu
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Ying Fu
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Martin Blomberg
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, Stockholm 171 76, Sweden
| | - Michael Bukrinsky
- GW School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| |
Collapse
|
135
|
Shaikh SR, Fessler MB, Gowdy KM. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. J Leukoc Biol 2016; 100:985-997. [PMID: 27286794 PMCID: PMC5069085 DOI: 10.1189/jlb.4vmr0316-103r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
Review on how complex mixtures of bioactive lipids and cholesterol may influence the pulmonary immune response during infection. Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n‐3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University (ECU), Greenville, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA;
| |
Collapse
|
136
|
Liu D, Guo H, Zheng W, Zhang N, Wang T, Wang P, Ma X. Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin. Appl Microbiol Biotechnol 2016; 100:5079-88. [PMID: 26960316 DOI: 10.1007/s00253-016-7423-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Heat-labile enterotoxin (LT) is a protein toxin produced by enterotoxigenic Escherichia coli (ETEC). As a bacterial toxin, LT holotoxin can enter intestinal epithelial cells and cause diarrhea. In addition, LT is also a powerful mucosal adjuvant capable of enhancing the strong immune responses to co-administered antigens. However, the LT immunological mechanism is still not clear in some aspects, especially with the respect to how the LTA subunit functions alone. Here, we discovered that the A2 domain of LTA could carry a fluorescent protein into cells, whose function is similar to a cell-penetrating peptide. The transmembrane-transporting ability of the A2 domain is non-specific in its cell-penetrating function, which was shown through testing with different cell types. Moreover, the LTA2 fusion protein penetrated a fluorescently labeled cell membrane that identified LTA2 internalization through membrane transport pathways, and showed it finally localized in the endoplasmic reticulum. Furthermore, low-temperature stress and pharmacological agent treatments showed that the LTA2 internalization route is a temperature-dependent process involving the clathrin-mediated endocytosis and the macropinocytosis pathways. These results could explain the internalization of the LTA subunit alone without the LTB pentamer, contributing to a better understanding of LTA working as a mucosal adjuvant; they also suggest that the A2 domain could be used as a novel transport vehicle for research and treatment of disease.
Collapse
Affiliation(s)
- Di Liu
- School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hua Guo
- School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| | - Na Zhang
- School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Tianwen Wang
- School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ping Wang
- School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xingyuan Ma
- School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
137
|
Schober A, Weber C. Mechanisms of MicroRNAs in Atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:583-616. [DOI: 10.1146/annurev-pathol-012615-044135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| |
Collapse
|
138
|
Liver disease alters high-density lipoprotein composition, metabolism and function. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:630-8. [PMID: 27106140 DOI: 10.1016/j.bbalip.2016.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/03/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023]
Abstract
High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.
Collapse
|
139
|
Köberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 2016; 39:28-36. [PMID: 26895312 DOI: 10.1016/j.ceb.2016.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes.
Collapse
Affiliation(s)
- Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
140
|
Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci Rep 2016; 6:20542. [PMID: 26861908 PMCID: PMC4997016 DOI: 10.1038/srep20542] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/07/2016] [Indexed: 12/01/2022] Open
Abstract
Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.
Collapse
|
141
|
Schoeniger A, Fuhrmann H, Schumann J. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. PeerJ 2016; 4:e1663. [PMID: 26870615 PMCID: PMC4748739 DOI: 10.7717/peerj.1663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023] Open
Abstract
It is well known that PUFA impede the LPS-mediated activation of the transcription factor NFkappaB. However, the underlying mode of action has not been clarified yet. To address this issue in a comprehensive approach, we used the monocyte/macrophage cell line RAW264.7 to investigate the consequences of a PUFA supplementation on the TLR4 pathway with a focus on (i) the gene expression of TLR4 itself as well as of its downstream mediators, (ii) the membrane microdomain localization of TLR4 and CD14, (iii) the stimulation-induced interaction of TLR4 and CD14. Our data indicate that the impairment of the TLR4-mediated cell activation by PUFA supplementation is not due to changes in gene expression of mediator proteins of the signaling cascade. Rather, our data provide evidence that the PUFA enrichment of macrophages affects the TLR4 pathway at the membrane level. PUFA incorporation into membrane lipids induces a reordering of membrane microdomains thereby affecting cellular signal transduction. It is important to note that this remodeling of macrophage rafts has no adverse effect on cell viability. Hence, microdomain disruption via macrophage PUFA supplementation has a potential as non-toxic strategy to attenuate inflammatory signaling.
Collapse
Affiliation(s)
- Axel Schoeniger
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, University of Leipzig, Leipzig, Germany
| | - Herbert Fuhrmann
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, University of Leipzig, Leipzig, Germany
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| |
Collapse
|
142
|
Regenass-Lechner F, Staack RF, Mary JL, Richter WF, Winter M, Jordan G, Justies N, Langenkamp A, Garrido R, Albassam M, Singer T, Atzpodien EA. Immunogenicity, Inflammation, and Lipid Accumulation in Cynomolgus Monkeys Infused with a Lipidated Tetranectin-ApoA-I Fusion Protein. Toxicol Sci 2016; 150:378-89. [DOI: 10.1093/toxsci/kfw004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
143
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
144
|
Gardner LA, Levin MC. Importance of Apolipoprotein A-I in Multiple Sclerosis. Front Pharmacol 2015; 6:278. [PMID: 26635608 PMCID: PMC4654019 DOI: 10.3389/fphar.2015.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person's own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood-brain barrier to cause inflammation and myelin destruction. The anti-inflammatory role of high-density lipoproteins (HDLs) has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However, it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.
Collapse
Affiliation(s)
- Lidia A. Gardner
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael C. Levin
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
145
|
Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and Cancer. Front Pharmacol 2015; 6:265. [PMID: 26617517 PMCID: PMC4642354 DOI: 10.3389/fphar.2015.00265] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the predominant protein in plasma HDL, have long been the focus of intense studies in the field of atherosclerosis and cardiovascular disease. ApoA-I, in large part, is responsible for HDL assembly and its main atheroprotective function, that of shuttling excess cholesterol from peripheral tissues to the liver for excretion (reverse cholesterol transport). Recently, a protective role for HDL in cancer was suggested from several large clinical studies where an inverse relationship between plasma HDL-cholesterol (HDL-C) levels and risk of developing cancer was noted. This notion has now been tested and found to be supported in mouse tumor studies, where increasing levels of apoA-I/HDL were discovered to protect against tumor development and provision of human apoA-I was therapeutic against established tumors. This mini-review discusses the emerging role of apoA-I in tumor biology and its potential as cancer therapeutic.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
146
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
147
|
Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism. Curr Allergy Asthma Rep 2015; 15:48. [PMID: 26149587 DOI: 10.1007/s11882-015-0548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science.
Collapse
|
148
|
Park JW, Reed JR, Backes WL. The Localization of Cytochrome P450s CYP1A1 and CYP1A2 into Different Lipid Microdomains Is Governed by Their N-terminal and Internal Protein Regions. J Biol Chem 2015; 290:29449-60. [PMID: 26468279 DOI: 10.1074/jbc.m115.687103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/06/2022] Open
Abstract
In cellular membranes, different lipid species are heterogeneously distributed forming domains with different characteristics. Ordered domains are tightly packed with cholesterol, sphingomyelin, and saturated fatty acids, whereas disordered domains contain high levels of unsaturated fatty acids. Our laboratory has shown that membrane heterogeneity affects the organization of cytochrome P450s and their cognate redox partner, the cytochrome P450 reductase (CPR). Despite the high degree of sequence similarity, CYP1A1 was found to localize to disordered regions, whereas CYP1A2 resided in ordered domains. We hypothesized that regions of amino acid sequence variability may contain signal motifs that direct CYP1A proteins into ordered or disordered domains. Thus, chimeric constructs of CYP1A1 and CYP1A2 were created, and their localization was tested in HEK293T cells. CYP1A2, containing the N-terminal regions from CYP1A1, no longer localized in ordered domains, whereas the N terminus of CYP1A2 partially directed CYP1A1 into ordered regions. In addition, intact CYP1A2 containing a 206-302-residue peptide segment of CYP1A1 had less affinity to bind to ordered microdomains. After expression, the catalytic activity of CYP1A2 was higher than that of the CYP1A1-CYP1A2 chimera containing the N-terminal end of CYP1A1 with subsaturating CPR concentrations, but it was approximately equal with excess CPR suggesting that the localization of the CYP1A enzyme in ordered domains favored its interaction with CPR. These data demonstrate that both the N-terminal end and an internal region of CYP1A2 play roles in targeting CYP1A2 to ordered domains, and domain localization may influence P450 function under conditions that resemble those found in vivo.
Collapse
Affiliation(s)
- Ji Won Park
- From the Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - James R Reed
- From the Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - Wayne L Backes
- From the Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| |
Collapse
|
149
|
Chow S, Buckstein R, Spaner DE. A link between hypercholesterolemia and chronic lymphocytic leukemia. Leuk Lymphoma 2015; 57:797-802. [PMID: 26325342 DOI: 10.3109/10428194.2015.1088651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The incidence of hypercholesterolemia and its possible relationship with clinical course were determined by reviewing the records of 231 consecutive patients presenting to a specialized Chronic Lymphocytic Leukemia (CLL) clinic. Evidence for elevated cholesterol was found in up to 174/231 patients (75%) based on existing use of statins (107 patients) or non-fasting low-density lipoprotein cholesterol levels greater than 2.5 mM. Excluding patients with 17p deletions, time to first treatment (TFT) was prolonged if patients were taking cholesterol-lowering statins (57.5 (IQR = 32, 77) vs 36 (IQR = 11, 100) months, p < 0.02). If patients were prescribed statins after being diagnosed with CLL, TFT was longer than if they were taking statins before the diagnosis. These observations suggest there is a high incidence of hypercholesterolemia in CLL patients and cholesterol-lowering may impact the disease course.
Collapse
Affiliation(s)
- Signy Chow
- a Odette Cancer Centre and Sunnybrook Health Sciences Centre , Toronto , ON , Canada .,b Division of Hematology and Oncology, Department of Medicine , University of Toronto , Toronto , ON , Canada , and
| | - Rena Buckstein
- a Odette Cancer Centre and Sunnybrook Health Sciences Centre , Toronto , ON , Canada .,b Division of Hematology and Oncology, Department of Medicine , University of Toronto , Toronto , ON , Canada , and
| | - David E Spaner
- a Odette Cancer Centre and Sunnybrook Health Sciences Centre , Toronto , ON , Canada .,b Division of Hematology and Oncology, Department of Medicine , University of Toronto , Toronto , ON , Canada , and.,c Division of Molecular and Cellular Biology , Sunnybrook Research Institute, University of Toronto , Toronto , ON , Canada
| |
Collapse
|
150
|
Shaikh SR, Boyle S, Edidin M. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale. Prostaglandins Leukot Essent Fatty Acids 2015; 100:1-4. [PMID: 26143085 PMCID: PMC4554807 DOI: 10.1016/j.plefa.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 01/16/2023]
Abstract
Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale clustering of the murine T cell receptor, TCR, on the surface of naive CD4(+) T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- Diet, High-Fat
- Fatty Acids/metabolism
- Fatty Acids, Monounsaturated/metabolism
- Fatty Acids, Omega-3/metabolism
- Mice
- Mice, Transgenic
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Spectrum Analysis/methods
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA.
| | - Sarah Boyle
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Michael Edidin
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|