101
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2023.2595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 03/07/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
102
|
Webster CM, Shepherd M. A mini-review: environmental and metabolic factors affecting aminoglycoside efficacy. World J Microbiol Biotechnol 2023; 39:7. [PMID: 36350431 PMCID: PMC9646598 DOI: 10.1007/s11274-022-03445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Following the discovery of streptomycin from Streptomyces griseus in the 1940s by Selman Waksman and colleagues, aminoglycosides were first used to treat tuberculosis and then numerous derivatives have since been used to combat a wide variety of bacterial infections. These bactericidal antibiotics were used as first-line treatments for several decades but were largely replaced by ß-lactams and fluoroquinolones in the 1980s, although widespread emergence of antibiotic-resistance has led to renewed interest in aminoglycosides. The primary site of action for aminoglycosides is the 30 S ribosomal subunit where they disrupt protein translation, which contributes to widespread cellular damage through a number of secondary effects including rapid uptake of aminoglycosides via elevated proton-motive force (PMF), membrane damage and breakdown, oxidative stress, and hyperpolarisation of the membrane. Several factors associated with aminoglycoside entry have been shown to impact upon bacterial killing, and more recent work has revealed a complex relationship between metabolic states and the efficacy of different aminoglycosides. Hence, it is imperative to consider the environmental conditions and bacterial physiology and how this can impact upon aminoglycoside entry and potency. This mini-review seeks to discuss recent advances in this area and how this might affect the future use of aminoglycosides.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
103
|
Novoselova AV, Yushina MN, Patysheva MR, Prostashkina EA, Bragina OD, Garbukov EY, Kzhyshkowska JG. Peculiarities of amino acid profile in monocytes in breast cancer. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monocytes are large circulating white blood cells that are the main precursors of tissue macrophages as well as tumor-associated macrophages in the adult body. Different types of monocytes have multidirectional effects on the growth and metastatic spread of cancer cells, both activating and inhibiting these processes. Tumor progression is associated with the triggering of a whole cascade of inflammatory and immune reactions. These pathological processes are associated with changes in the amino acid content of monocytes, which can lead to disruption of their function, in particular their migration, division and maturation. The aim of the work was to profile the amino acids of monocytes, followed by a study of the amino acid composition of monocytes from patients with breast cancer using liquid chromatography with mass spectrometric detection. Significant differences in metabolite levels in monocytes of breast cancer patients and monocytes of healthy donors were found for glycine (p-value = 0.0127), asparagine (p-value = 0.0197), proline (p-value = 0.0159), methionine (p-value = 0.0357), tryptophan (p-value = 0.0028), tyrosine (p-value = 0.0127). In the study, we identified biological networks that could potentially be involved in altering the phenotype of monocytes affected by breast cancer (BC), using bioinformatic analysis of metabolic pathways involving the discovered amino acids. Mathematical models based on amino acid combinations with 100% sensitivity and specificity have been developed. Features of immune system cell metabolism in BC have been identified and potential diagnostic biomarkers have been proposed.
Collapse
Affiliation(s)
- AV Novoselova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - MN Yushina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - MR Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia; Tomsk National State University, Tomsk, Russia
| | - EA Prostashkina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - OD Bragina
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - EYu Garbukov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - JG Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
104
|
Confino H, Dirbas FM, Goldshtein M, Yarkoni S, Kalaora R, Hatan M, Puyesky S, Levi Y, Malka L, Johnson M, Chaisson S, Monson JM, Avniel A, Lisi S, Greenberg D, Wolf I. Gaseous nitric oxide tumor ablation induces an anti-tumor abscopal effect. Cancer Cell Int 2022; 22:405. [PMID: 36514083 PMCID: PMC9745717 DOI: 10.1186/s12935-022-02828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In-situ tumor ablation provides the immune system with the appropriate antigens to induce anti-tumor immunity. Here, we present an innovative technique for generating anti-tumor immunity by delivering exogenous ultra-high concentration (> 10,000 ppm) gaseous nitric oxide (UHCgNO) intratumorally. METHODS The capability of UHCgNO to induce apoptosis was tested in vitro in mouse colon (CT26), breast (4T1) and Lewis lung carcinoma (LLC-1) cancer cell lines. In vivo, UHCgNO was studied by treating CT26 tumor-bearing mice in-situ and assessing the immune response using a Challenge assay. RESULTS Exposing CT26, 4T1 and LLC-1 cell lines to UHCgNO for 10 s-2.5 min induced cellular apoptosis 24 h after exposure. Treating CT26 tumors in-situ with UHCgNO followed by surgical resection 14 days later resulted in a significant secondary anti-tumor effect in vivo. 100% of tumor-bearing mice treated with 50,000 ppm UHCgNO and 64% of mice treated with 20,000 ppm UHCgNO rejected a second tumor inoculation, compared to 0% in the naive control for 70 days. Additionally, more dendrocytes infiltrated the tumor 14 days post UHCgNO treatment versus the nitrogen control. Moreover, T-cell penetration into the primary tumor was observed in a dose-dependent manner. Systemic increases in T- and B-cells were seen in UHCgNO-treated mice compared to nitrogen control. Furthermore, polymorphonuclear-myeloid-derived suppressor cells were downregulated in the spleen in the UHCgNO-treated groups. CONCLUSIONS Taken together, our data demonstrate that UHCgNO followed by the surgical removal of the primary tumor 14 days later induces a strong and potent anti-tumor response.
Collapse
Affiliation(s)
| | - Frederick M. Dirbas
- grid.168010.e0000000419368956Department of General Surgery, Stanford University, Stanford, CA USA
| | | | | | | | | | | | - Yakir Levi
- Beyond Cancer Ltd., 7608801 Rehovot, Israel
| | | | | | | | - Jedidiah M. Monson
- Beyond Cancer Ltd., Atlanta, GA USA ,grid.476982.6California Cancer Associates for Research and Excellence, Fresno, CA USA
| | - Amir Avniel
- Beyond Air Ltd., 7608801 Rehovot, Israel ,Beyond Air Inc, Garden City, NY 11530 USA
| | - Steve Lisi
- Beyond Air Inc, Garden City, NY 11530 USA
| | - David Greenberg
- Beyond Air Ltd., 7608801 Rehovot, Israel ,Beyond Air Inc, Garden City, NY 11530 USA
| | - Ido Wolf
- grid.413449.f0000 0001 0518 6922Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
105
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
106
|
Wang CG, Surat'man NEB, Mah JJQ, Qu C, Li Z. Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. J Mater Chem B 2022; 10:9349-9368. [PMID: 36373687 DOI: 10.1039/d2tb01555b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undesirable adhesion of microbes such as bacteria, fungi and viruses onto surfaces affects many industries such as marine, food, textile, and healthcare. In particular in healthcare and food packaging, the effects of unwanted microbial contamination can be life-threatening. With the current global COVID-19 pandemic, interest in the development of surfaces with superior anti-viral and anti-bacterial activities has multiplied. Polymers carrying anti-microbial properties are extensively used to functionalize material surfaces to inactivate infection-causing and biocide-resistant microbes including COVID-19. This review aims to introduce the fabrication of polymer-based antimicrobial surfaces through physical and chemical modifications, followed by the discussion of the inactivation mechanisms of conventional biocidal agents and new-generation antimicrobial macromolecules in polymer-modified antimicrobial surfaces. The advanced applications of polymer-based antimicrobial surfaces on personal protective equipment against COVID-19, food packaging materials, biomedical devices, marine vessels and textiles are also summarized to express the research trend in academia and industry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Justin Jian Qiang Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Chenyang Qu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore. .,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
107
|
Zhang X, Peng F, Wang D. MOFs and MOF-Derived Materials for Antibacterial Application. J Funct Biomater 2022; 13:215. [PMID: 36412856 PMCID: PMC9680240 DOI: 10.3390/jfb13040215] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial infections pose a serious threat to people's health. Efforts are being made to develop antibacterial agents that can inhibit bacterial growth, prevent biofilm formation, and kill bacteria. In recent years, materials based on metal organic frameworks (MOFs) have attracted significant attention for various antibacterial applications due to their high specific surface area, high enzyme-like activity, and continuous release of metal ions. This paper reviews the recent progress of MOFs as antibacterial agents, focusing on preparation methods, fundamental antibacterial mechanisms, and strategies to enhance their antibacterial effects. Finally, several prospects related to MOFs for antibacterial application are proposed, aiming to provide possible research directions in this field.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
108
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
109
|
Quaternary Ammonium-Tethered Phenylboronic Acids Appended Supramolecular Nanomicelles as a Promising Bacteria Targeting Carrier for Nitric Oxide Delivery. Polymers (Basel) 2022; 14:polym14204451. [PMID: 36298029 PMCID: PMC9611690 DOI: 10.3390/polym14204451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The delivery of drugs to focal sites is a central goal and a key challenge in the development of nanomedicine carriers. This strategy can improve the selectivity and bioavailability of the drug while reducing its toxicity. To ensure the specific release of nitric oxide at the site of a bacterial infection without damaging the surrounding normal tissue, we designed a host-guest molecule containing a host molecule with a target moiety and a nitric oxide donor to release nitric oxide. The boronic acid group in the structure of this nanoparticle interacts strongly and specifically with the surface of E. coli. In addition, the quaternary amine salt can interact electrostatically with bacteria, indicating a large number of negatively charged cell membranes; altering the molecular structure of the cell membrane; increasing the permeability of the cell membrane; and causing cytoplasmic diffusion and cell lysis, resulting in lethal activity against most bacteria. The synthesised molecules were characterised by 1H NMR and mass spectrometry. The strong specific interaction of the boronic acid moiety with the surface of E. coli and the electrostatic interaction of the quaternary amine salt with the cell membrane were confirmed by antibacterial experiments on molecules with and without the targeting moiety. The targeting group-modified micelles enhanced the antibacterial effect of the micelles very effectively through specific interactions and electrostatic interactions. In addition, in vitro skin wound healing experiments also confirmed the targeting and antimicrobial effect of micelles. These results suggest that the specific release of nitric oxide at the site of bacterial infection is an important guide to further address the emergence of antibiotic-resistant strains of bacteria.
Collapse
|
110
|
Purkerson JM, Everett CA, Schwartz GJ. Ammonium chloride-induced acidosis exacerbates cystitis and pyelonephritis caused by uropathogenic E. coli. Physiol Rep 2022; 10:e15471. [PMID: 36151614 PMCID: PMC9508385 DOI: 10.14814/phy2.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023] Open
Abstract
Acute pyelonephritis caused by uropathogenic E. coli (UPEC) can cause renal scarring and lead to development of chronic kidney disease. Prevention of kidney injury requires an understanding of host factors and/or UPEC adaptive responses that are permissive for UPEC colonization of the urinary tract. Although some studies have suggested urine acidification limits UPEC growth in culture, other studies have described acid-resistance mechanisms (AR) in E. coli such as the CadC/CadBA module that promotes adaptation to acid and nitrosative stress. Herein we confirm and extend our previous study by demonstrating that despite urine acidification, metabolic acidosis induced by dietary ammonium chloride (NH4 Cl-A) exacerbates cystitis and pyelonephritis in innate immune competent (C3H-HeN) mice characterized by: (1) markedly elevated UPEC burden and increased chemokine/cytokine and NOS2 mRNA expression, (2) accumulation of intravesicular debris noninvasively detected by Power Doppler Ultrasound (PDUS), and (3) collecting duct (CD) dysfunction that manifests as a urine concentration defect. Bladder debris and CD dysfunction were due to the inflammatory response, as neither was observed in Tlr4-deficient (C3H-HeJ) mice. The effect of NH4 Cl-A was unrelated to acidosis as dietary administration of hydrochloric acid (HCl-A) yielded a comparable acid-base status yet did not increase UPEC burden. NH4 Cl-A increased polyamines and decreased nitric oxide (NO) metabolites in urine indicating that excess dietary ammonium shifts arginine metabolism toward polyamines at the expense of NO synthesis. Furthermore, despite increased expression of NOS2, NO production post UPEC infection was attenuated in NH4 Cl-A mice compared to controls. Thus, in addition to induction of metabolic acidosis and urine acidification, excess dietary ammonium alters the polyamine:NO balance and thereby compromises NOS2-mediated innate immune defense.
Collapse
Affiliation(s)
- Jeffrey M. Purkerson
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Coralee A. Everett
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - George J. Schwartz
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
111
|
Chug MK, Brisbois EJ. Smartphone compatible nitric oxide releasing insert to prevent catheter-associated infections. J Control Release 2022; 349:227-240. [PMID: 35777483 PMCID: PMC9680949 DOI: 10.1016/j.jconrel.2022.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
A large fraction of nosocomial infections is associated with medical devices that are deemed life-threatening in immunocompromised patients. Medical device-related infections are a result of bacterial colonization and biofilm formation on the device surface that affects >1 million people annually in the US alone. Over the past few years, light-based antimicrobial therapy has made substantial advances in tackling microbial colonization. Taking the advantage of light and antibacterial properties of nitric oxide (NO), for the first time, a robust, biocompatible, anti-infective approach to design a universal disposable catheter disinfection insert (DCDI) that can both prevent bacterial adhesion and disinfect indwelling catheters in situ is reported. The DCDI is engineered using a photo-initiated NO donor molecule, incorporated in polymer tubing that is mounted on a side glow fiber optic connected to an LED light source. Using a smartphone application, the NO release from DCDI is photoactivated via white light resulting in tunable physiological levels of NO for up to 24 h. When challenged with microorganisms S. aureus and E. coli, the NO-releasing DCDI statistically reduced microbial attachment by >99% versus the controls with just 4 h of exposure. The DCDI also eradicated ∼97% of pre-colonized bacteria on the CVC catheter model demonstrating the ability to exterminate an established catheter infection. The smart, mobile-operated novel universal antibacterial device can be used to both prevent catheter infections or can be inserted within an infected catheter to eradicate the bacteria without complex surgical interventions. The therapeutic levels of NO generated via illuminating fiber optics can be the next-generation biocompatible solution for catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
112
|
Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng OT, Lakshminarayanan R, Verma NK, Gautam HK. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology 2022; 20:375. [PMID: 35953826 PMCID: PMC9371964 DOI: 10.1186/s12951-022-01573-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of “post-antibiotic era”. It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, New Delhi, 110007, India.,Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India
| | - Diksha Jha
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, New Delhi, India
| | - Shailendra Singh Gaurav
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Oon-Tek Ng
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Singapore, 169856, Singapore. .,Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore. .,Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore. .,National Skin Centre, Singapore, 308205, Singapore.
| | - Hemant K Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.
| |
Collapse
|
113
|
Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The rise of antimicrobial resistance (AMR) impacts public health due to the diminished potency of existing antibiotics. The microbiome plays an important role in the host's immune system activity and shows the history of exposure to antimicrobials and its manipulation in combating antimicrobial resistance. Advancements in gene technologies, DNA sequencing, and computational biology have emerged as powerful platforms to better understand the relationship between animals and microorganisms (MOs). The past few years have witnessed an increase in the use of nanotechnology, both in industry and in academia, as tools to tackle antimicrobial resistance. New strategies of microbiome manipulation have been developed, such as the use of prebiotics, probiotics, peptides, antibodies, an appropriate diet, phage therapy, and the use of various nanotechnological techniques. Owing to the research outcomes, targeted delivery of antimicrobials with some modifications with nanoparticles can lead to the destruction of resistant microbial cells. In addition, nanoparticles have been studied for their potential antimicrobial effects both in vitro and in vivo. In this review, we highlight key opportunistic areas for applying nanotechnologies with the aim of manipulating the microbiome for the treatment of antimicrobial resistance. Besides providing a detailed review on various nanomaterials, technologies, opportunities, technical needs, and potential approaches for the manipulation of the microbiome to address these challenges, we discuss future challenges and our perspective.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia.
| | - Farrukh Aqil
- UofL Health - Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
114
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Autoimmune diseases affect over 40 million people in the United States. The cause of most autoimmune diseases is unknown; therefore, most therapies focus on treating the symptoms. This review will focus on the autoimmune diseases type 1 diabetes (T1D) and multiple sclerosis (MS) and the emerging roles of red blood cells (RBCs) in the mechanisms and treatment of T1D and MS. An understanding of the role of the RBC in human health is increasing, especially with respect to its role in the regulation of vascular caliber and vessel dilation. The RBC is known to participate in the regulation of blood flow through the release of key signaling molecules, such as adenosine triphosphate (ATP) and the potent vasodilator nitric oxide (NO). However, while these RBC-derived molecules are known to be determinants of blood flow in vivo, disruptions in their concentrations in the circulation are often measured in common autoimmune diseases. Chemical and physical properties of the RBC may play a role in autoimmune disease onset, especially T1D and MS, and complications associated with downstream extracellular levels of ATP and NO. Finally, both ATP and NO are highly reactive molecules in the circulation. Coupled with the challenging matrix posed by the bloodstream, the measurement of these two species is difficult, thus prompting an appraisal of recent and novel methods to quantitatively determining these potential early indicators of immune response.
Collapse
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
115
|
Contemporary Tools for the Cure against Pernicious Microorganisms: Micro-/Nanorobots. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the most pressing concerns to global public health is the emergence of drug-resistant pathogenic microorganisms due to increased unconscious antibiotic usage. With the rising antibiotic resistance, existing antimicrobial agents lose their effectiveness over time. This indicates that newer and more effective antimicrobial agents and methods should be investigated. Many studies have shown that micro-/nanorobots exhibit promise in the treatment of microbial infections with their great properties, such as the intrinsic antimicrobial activities owing to their oxidative stress induction and metal ion release capabilities, and effective and autonomous delivery of antibiotics to the target area. In addition, they have multiple simultaneous mechanisms of action against microbes, which makes them remarkable in antimicrobial activity. This review focuses on the antimicrobial micro-/nanorobots and their strategies to impede biofilm formation, following a brief introduction of the latest advancements in micro-/nanorobots, and their implementations against various bacteria, and other microorganisms.
Collapse
|
116
|
Qian Y, Chug MK, Brisbois EJ. Nitric Oxide-Releasing Silicone Oil with Tunable Payload for Antibacterial Applications. ACS APPLIED BIO MATERIALS 2022; 5:3396-3404. [PMID: 35792809 DOI: 10.1021/acsabm.2c00358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial infections are a hurdle to the application of medical devices, and in the United States alone, more than one million infection cases are reported annually from indwelling medical devices. Infections not only affect the function of medical devices but also risk the lives and health of patients. Nitric oxide (NO) has been used as an antibacterial therapy that kills bacteria without causing resistance and provides many therapeutic effects such as anti-inflammation, antithrombosis, and angiogenesis. Silicone oils have been widely utilized in manufacturing consumer goods, healthcare products, and medical products. Specifically, liquid silicone oils are used as a medical lubricant that creates lubricated interfaces between medical devices and the exterior physiological environment to improve the performance of medical devices. Herein, we report the first primary S-nitrosothiol-based NO-releasing silicone oil (RSNO-Si) that exhibits proactive antibacterial effects. S-nitrosothiol silicone oils (RSNO-Si) were synthesized and the NO payloads ranged from 34.0 to 603.9 μM. The increased NO payload induced higher-viscosity RSNO-Si oils, as RSNO0.1-Si, RSNO0.5-Si, and RSNO1-Si had viscosities of 12.8 ± 0.1 cP, 32.0 ± 0.2 cP, and 35.1 ± 0.3 cP, respectively. RSNO-Si-SR interfaces were fabricated by infusing silicone rubber (SR) in RSNO-Si oil, and the resulting RSNO-Si-SR disks demonstrated NO release without NO donor leaching. RSNO0.1-Si-SR, RSNO0.5-Si-SR, and RSNO1-Si-SR exhibited maximum NO flux at 0.8, 6.5, and 21.5 × 10 -10 mol cm-2 min-1 in 24 h, respectively. RSNO-Si-SR disks also demonstrated 97.45, 95.40, and 96.08% of inhibition against S. aureus in a 4 h bacterial adhesion assay. Considering the easy synthesis, simple fabrication of non-leaching NO-releasing interfaces, tunable payloads, NO flux levels, and antimicrobial effects, RSNO-Si oils exhibited their potential use as platform chemicals for creating antimicrobial medical device surfaces and other antibacterial materials.
Collapse
Affiliation(s)
- Yun Qian
- School of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
117
|
An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater 2022; 146:107-118. [PMID: 35545186 DOI: 10.1016/j.actbio.2022.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.
Collapse
|
118
|
High Doses of Inhaled Nitric Oxide as an Innovative Antimicrobial Strategy for Lung Infections. Biomedicines 2022; 10:biomedicines10071525. [PMID: 35884830 PMCID: PMC9312466 DOI: 10.3390/biomedicines10071525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Since the designation of nitric oxide as “Molecule of the Year” in 1992, the scientific and clinical discoveries concerning this biomolecule have been greatly expanding. Currently, therapies enhancing the release of endogenous nitric oxide or the direct delivery of the exogenous compound are recognized as valuable pharmacological treatments in several disorders. In particular, the administration of inhaled nitric oxide is routinely used to treat patients with pulmonary hypertension or refractory hypoxemia. More recently, inhaled nitric oxide has been studied as a promising antimicrobial treatment strategy against a range of pathogens, including resistant bacterial and fungal infections of the respiratory system. Pre-clinical and clinical findings have demonstrated that, at doses greater than 160 ppm, nitric oxide has antimicrobial properties and can be used to kill a broad range of infectious microorganisms. This review focused on the mechanism of action and current evidence from in vitro studies, animal models and human clinical trials of inhaled high-dose nitric oxide as an innovative antimicrobial therapy for lung infections.
Collapse
|
119
|
Tuttle RR, Finke RG, Reynolds MM. Cu II Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from S-Nitrosoglutathione. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
120
|
Maloney SE, Broberg CA, Grayton QE, Picciotti SL, Hall HR, Wallet SM, Maile R, Schoenfisch MH. Role of Nitric Oxide-Releasing Glycosaminoglycans in Wound Healing. ACS Biomater Sci Eng 2022; 8:2537-2552. [PMID: 35580341 PMCID: PMC11574979 DOI: 10.1021/acsbiomaterials.2c00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two glycosaminoglycan (GAG) biopolymers, hyaluronic acid (HA) and chondroitin sulfate (CS), were chemically modified via carbodiimide chemistry to facilitate the loading and release of nitric oxide (NO) to develop a multi-action wound healing agent. The resulting NO-releasing GAGs released 0.2-0.9 μmol NO mg-1 GAG into simulated wound fluid with NO-release half-lives ranging from 20 to 110 min. GAGs containing alkylamines with terminal primary amines and displaying intermediate NO-release kinetics exhibited potent, broad spectrum bactericidal action against three strains each of Pseudomonas aeruginosa and Staphylococcus aureus ranging in antibiotic resistance profile. NO loading of the GAGs was also found to decrease murine TLR4 activation, suggesting that the therapeutic exhibits anti-inflammatory mechanisms. In vitro adhesion and proliferation assays utilizing human dermal fibroblasts and human epidermal keratinocytes displayed differences as a function of the GAG backbone, alkylamine identity, and NO-release properties. In combination with antibacterial properties, the adhesion and proliferation profiles of the GAG derivatives enabled the selection of the most promising wound healing candidates for subsequent in vivo studies. A P. aeruginosa-infected murine wound model revealed the benefits of CS over HA as a pro-wound healing NO donor scaffold, with benefits of accelerated wound closure and decreased bacterial burden attributable to both active NO release and the biopolymer backbone.
Collapse
Affiliation(s)
- Sara E. Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Quincy E. Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Samantha L. Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hannah R. Hall
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shannon M. Wallet
- Division of Oral, Craniofacial, and Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- North Carolina Jaycee Burn Center Research Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
121
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
122
|
Furbeck RA, Stanley RE, Bower CG, Fernando SC, Sullivan GA. Longitudinal effects of sodium chloride and ingoing nitrite concentration and source on the quality characteristics and microbial communities of deli-style ham. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
Saber S, Alomar SY, Yahya G. Blocking prostanoid receptors switches on multiple immune responses and cascades of inflammatory signaling against larval stages in snail fever. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43546-43555. [PMID: 35396684 PMCID: PMC9200668 DOI: 10.1007/s11356-022-20108-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/01/2022] [Indexed: 05/27/2023]
Abstract
Schistosomiasis, also known as snail fever or bilharziasis, is a worm infection caused by trematode called schistosomes that affects humans and animals worldwide. Schistosomiasis endemically exists in developing countries. Inflammatory responses elicited in the early phase of infection represent the rate limiting step for parasite migration and pathogenesis and could be a valuable target for therapeutic interventions. Prostaglandin E2 (PGE2) and interleukin (IL)-10 were found to be differentially affected in case of immune-modulation studies and cytokine analysis of hosts infected with either normal or radiation-attenuated parasite (RA) which switches off the development of an effective immune response against the migrating parasite in the early phase of schistosomiasis. Normal parasites induce predominantly a T helper 2 (Th2)-type cytokine response (IL-4 and IL-5) which is essential for parasite survival; here, we discuss in detail the downstream effects and cascades of inflammatory signaling of PGE2 and IL10 induced by normal parasites and the effect of blocking PGE2 receptors. We suggest that by selectively constraining the production of PGE2 during vaccination or therapy of susceptible persons or infected patients of schistosomiasis, this would boost IL-12 and reduce IL-10 production leading to a polarization toward the anti-worm Thl cytokine synthesis (IL-2 and Interferon (IFN)-γ).
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Suliman Y. Alomar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharkia, 44519 Egypt
| |
Collapse
|
124
|
Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics (Basel) 2022; 11:696. [PMID: 35625340 PMCID: PMC9137731 DOI: 10.3390/antibiotics11050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
To combat the public health threat posed by multiple-drug-resistant (MDR) pathogens, new drugs with novel chemistry and modes of action are needed. In this study, several drugs including Hesperidin (HES), curcumin (CUR), and Amphotericin B (AmpB) drug-nanoparticle formulations were tested for antibacterial strength against MDR Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae, and Gram-negative bacteria, including Escherichia coli K1, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens. Nanoparticles were synthesized and subjected to Atomic force microscopy, Fourier transform-infrared spectroscopy, and Zetasizer for their detailed characterization. Antibacterial assays were performed to determine their bactericidal efficacy. Lactate dehydrogenase (LDH) assays were carried out to measure drugs' and drug-nanoparticles' cytotoxic effects on human cells. Spherical NPs ranging from 153 to 300 nm were successfully synthesized. Results from antibacterial assays revealed that drugs and drug-nanoparticle formulations exerted bactericidal activity against MDR bacteria. Hesperidin alone failed to exhibit antibacterial effects but, upon conjugation with cinnamic-acid-based magnetic nanoparticle, exerted significant bactericidal activity against both the Gram-positive and Gram-negative isolates. AmpB-LBA-MNPs produced consistent, potent antibacterial efficacy (100% kill) against all Gram-positive bacteria. AmpB-LBA-MNPs showed strong antibacterial activity against Gram-negative bacteria. Intriguingly, all the drugs and their conjugated counterpart except AmpB showed minimal cytotoxicity against human cells. In summary, these innovative nanoparticle formulations have the potential to be utilized as therapeutic agents against infections caused by MDR bacteria and represent a significant advancement in our effort to counter MDR bacterial infections.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| |
Collapse
|
125
|
Baty JJ, Huffines JT, Stoner SN, Scoffield JA. A Commensal Streptococcus Dysregulates the Pseudomonas aeruginosa Nitrosative Stress Response. Front Cell Infect Microbiol 2022; 12:817336. [PMID: 35619650 PMCID: PMC9127344 DOI: 10.3389/fcimb.2022.817336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infections in the cystic fibrosis (CF) airway are composed of both pathogenic and commensal bacteria. However, chronic Pseudomonas aeruginosa infections are the leading cause of lung deterioration in individuals with CF. Interestingly, oral commensals can translocate to the CF lung and their presence is associated with improved lung function, presumably due to their ability to antagonize P. aeruginosa. We have previously shown that one commensal, Streptococcus parasanguinis, produces hydrogen peroxide that reacts with nitrite to generate reactive nitrogen intermediates (RNI) which inhibit P. aeruginosa growth. In this study, we sought to understand the global impact of commensal-mediated RNI on the P. aeruginosa transcriptome. RNA sequencing analysis revealed that S. parasanguinis and nitrite-mediated RNI dysregulated expression of denitrification genes in a CF isolate of P. aeruginosa compared to when this isolate was only exposed to S. parasanguinis. Further, loss of a nitric oxide reductase subunit (norB) rendered an acute P. aeruginosa isolate more susceptible to S. parasanguinis-mediated RNI. Additionally, S. parasanguinis-mediated RNI inactivated P. aeruginosa aconitase activity. Lastly, we report that P. aeruginosa isolates recovered from CF individuals are uniquely hypersensitive to S. parasanguinis-mediated RNI compared to acute infection or environmental P. aeruginosa isolates. These findings illustrate that S. parasanguinis hinders the ability of P. aeruginosa to respond to RNI, which potentially prevents P. aeruginosa CF isolates from resisting commensal and host-induced RNI in the CF airway.
Collapse
|
126
|
Black CM, Chu AJ, Thomas GH, Routledge A, Duhme-Klair AK. Synthesis and antimicrobial activity of an SO2-releasing siderophore conjugate. J Inorg Biochem 2022; 234:111875. [DOI: 10.1016/j.jinorgbio.2022.111875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/29/2022]
|
127
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
128
|
Massoumi H, Kumar R, Chug MK, Qian Y, Brisbois EJ. Nitric Oxide Release and Antibacterial Efficacy Analyses of S-Nitroso- N-Acetyl-Penicillamine Conjugated to Titanium Dioxide Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2285-2295. [PMID: 35443135 PMCID: PMC9721035 DOI: 10.1021/acsabm.2c00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Therapeutic agents can be linked to nanoparticles to fortify their selectivity and targeted delivery while impeding systemic toxicity and efficacy loss. Titanium dioxide nanoparticles (TiNPs) owe their rise in biomedical sciences to their versatile applicability, although the lack of inherent antibacterial properties limits its application and necessitates the addition of bactericidal agents along with TiNPs. Structural modifications can improve TiNP's antibacterial impact. The antibacterial efficacy of nitric oxide (NO) against a broad spectrum of bacterial strains is well established. For the first time, S-nitroso-N-acetylpenicillamine (SNAP), an NO donor molecule, was covalently immobilized on TiNPs to form the NO-releasing TiNP-SNAP nanoparticles. The TiNPs were silanized with 3-aminopropyl triethoxysilane, and N-acetyl-d-penicillamine was grafted to them via an amide bond. The nitrosation was carried out by t-butyl nitrite to conjugate the NO-rich SNAP moiety to the surface. The total NO immobilization was measured to be 127.55 ± 4.68 nmol mg-1 using the gold standard chemiluminescence NO analyzer. The NO payload can be released from the TiNP-SNAP under physiological conditions for up to 20 h. The TiNP-SNAP exhibited a concentration-dependent antimicrobial efficiency. At 5 mg mL-1, more than 99.99 and 99.70% reduction in viable Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, respectively, were observed. No significant cytotoxicity was observed against 3T3 mouse fibroblast cells at all the test concentrations determined by the CCK-8 assay. TiNP-SNAP is a promising and versatile nanoparticle that can significantly impact the usage of TiNPs in a wide variety of applications, such as biomaterial coatings, tissue engineering scaffolds, or wound dressings.
Collapse
Affiliation(s)
- Hamed Massoumi
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Rajnish Kumar
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Yun Qian
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
129
|
Ashcraft M, Douglass M, Garren M, Mondal A, Bright LE, Wu Y, Handa H. Nitric Oxide-Releasing Lock Solution for the Prevention of Catheter-Related Infection and Thrombosis. ACS APPLIED BIO MATERIALS 2022; 5:1519-1527. [PMID: 35343228 PMCID: PMC9680935 DOI: 10.1021/acsabm.1c01272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although frequently used, venous catheters are often associated with serious complications such as infection and thrombosis. Lock solution therapies are clinically used to deter these issues but generally address only infection or thrombosis with limited success. Here, we report the development of a dual-functional lock therapy using nitric oxide (NO) donor molecule, S-nitrosoglutathione (GSNO). NO is a potent, broad-spectrum antimicrobial agent that also temporarily inhibits platelet activation, preventing thrombosis. Furthermore, NO has antibiofilm actions, an ability that traditional antibiotic lock solutions lack, thus limiting their efficacy. In this work, different concentrations of GSNO were characterized via NO analysis to determine a range of NO-releasing lock solution (NOreLS) concentrations to investigate and to demonstrate prolonged potential efficacy. Tested against clinically used vancomycin and gentamicin lock solutions, GSNO-based NOreLS repeatedly outperformed in models of different stages of catheter infections. NOreLS also prevented clot formation when exposed to whole blood, showing increased efficacy compared to a heparin lock solution. Moreover, NOreLS was demonstrated to be biocompatible via hemolysis and cytotoxicity assays. NOreLS has excellent potential for safely and effectively preventing infection and thrombosis related to catheter usage.
Collapse
Affiliation(s)
- Morgan Ashcraft
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lori Estes Bright
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Wu
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
130
|
Chen F, Luo Y, Liu X, Zheng Y, Han Y, Yang D, Wu S. 2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application. Adv Healthc Mater 2022; 11:e2200360. [PMID: 35385610 DOI: 10.1002/adhm.202200360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Bacterial infections have seriously threatened human health and the abuse of natural or artificial antibiotics leads to bacterial resistance, so development of a new generation of antibacterial agents and treatment methods is urgent. 2D molybdenum sulfide (MoS2 ) has good biocompatibility, high specific surface area to facilitate surface modification and drug loading, adjustable energy bandgap, and high near-infrared photothermal conversion efficiency (PCE), so it is often used for antibacterial application through its photothermal or photodynamic effects. This review comprehensively summarizes and discusses the fabrication processes, structural characteristics, antibacterial performance, and the corresponding mechanisms of MoS2 -based materials as well as their representative antibacterial applications. In addition, the outlooks on the remaining challenges that should be addressed in the field of MoS2 are also proposed.
Collapse
Affiliation(s)
- Fangqian Chen
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yue Luo
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yufeng Zheng
- School of Materials Science & Engineering Peking University Beijing 100871 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science Quanzhou Normal University Quanzhou Fujian Province 362000 China
| | - Shuilin Wu
- School of Materials Science & Engineering Peking University Beijing 100871 China
| |
Collapse
|
131
|
Synthesis, structure and antibacterial activity of dinitrosyl iron complexes (DNICs) dimers functionalized with 5-(nitrophenyl) -4-H-1,2,4-triazole-3-thiolyls. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
132
|
Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, Khan A, Kalusalingam A, Ng PW. A review and revisit of nanoparticles for antimicrobial drug delivery. J Med Life 2022; 15:328-335. [PMID: 35449993 PMCID: PMC9015166 DOI: 10.25122/jml-2021-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022] Open
Abstract
Antimicrobials are widely used to treat bacteria, viruses, fungi, and protozoa. Therefore, research and development of newer types of antimicrobials are important. Antimicrobial resistance has emerged as a major challenge to the healthcare system, although various alternative antimicrobials have been proposed. However, none of these show consistent and comparable efficacy to antimicrobials in clinical trials. More recently, nanoparticles have emerged as a potential solution to antimicrobial agents to overcome antimicrobial resistance. This article revisits and updates applications of various types of nanoparticles for the delivery of antimicrobial agents and their characterization. Though nanoparticle technology has some limitations, it provides an innovative approach to pharmaceutical technology. Furthermore, nanoparticles offer a variety of advantages, such as enhancement of solubility and permeation, leading to better efficacy. In this article, approaches commonly employed to improve antimicrobial therapy are discussed. These approaches have advantages and applications and provide a broader opportunity for pharmaceutical scientists to choose the proper method per the desired outcome.
Collapse
Affiliation(s)
- Kai Bin Liew
- Corresponding Author: Kai Bin Liew, Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Ma CJ, He Y, Jin X, Zhang Y, Zhang X, Li Y, Xu M, Liu K, Yao Y, Lu F. Light-regulated nitric oxide release from hydrogel-forming microneedles integrated with graphene oxide for biofilm-infected-wound healing. BIOMATERIALS ADVANCES 2022; 134:112555. [PMID: 35523645 DOI: 10.1016/j.msec.2021.112555] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an antimicrobial agent that possesses tissue-regenerating ability. However, it also has a short half-life and storage difficulties as disadvantages to its application. To overcome these limitations, a new type of hydrogel-forming microneedle (HFMN) is proposed that can be fabricated by integrating polyvinyl alcohol (PVA) hydrogels (a highly biocompatible drug carrier) with S-nitrosoglutathione (GSNO, a NO releasing agent), and graphene oxide (GO) at freezing temperatures (GO-GNSO-HFMNs). Results show that GSNO-GO-HFMNs release NO gradually with increasing temperature and, more importantly, can be warmed up by mild infrared irradiation to accelerate subcutaneous release of NO from the heat-sensitive GSNO. Biofilm-infected wounds often present obstacles to drug delivery, whereas the microneedle (MN) structure disrupts the biofilm and directly releases NO into the wound. This inhibits bacterial growth and increases tissue regeneration while shortening the healing time of biofilm-infected wounds. Therefore, this type of patch can be regarded as a novel, heat-sensitive, light-regulated, NO-releasing MN patch.
Collapse
Affiliation(s)
- Chi Juan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxuan Jin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangdong Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kaiyang Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
134
|
Mascharak PK. Nitric oxide delivery platforms derived from a photoactivatable Mn(II) nitrosyl complex: Entry to photopharmacology. J Inorg Biochem 2022; 231:111804. [DOI: 10.1016/j.jinorgbio.2022.111804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
|
135
|
Dey N, Kamatchi C, Vickram AS, Anbarasu K, Thanigaivel S, Palanivelu J, Pugazhendhi A, Ponnusamy VK. Role of nanomaterials in deactivating multiple drug resistance efflux pumps - A review. ENVIRONMENTAL RESEARCH 2022; 204:111968. [PMID: 34453898 DOI: 10.1016/j.envres.2021.111968] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The changes in lifestyle and living conditions have affected not only humans but also microorganisms. As man invents new drugs and therapies, pathogens alter themselves to survive and thrive. Multiple drug resistance (MDR) is the talk of the town for decades now. Many generations of medications have been termed useless as MDR rises among the infectious population. The surge in nanotechnology has brought a new hope in reducing this aspect of resistance in pathogens. It has been observed in several laboratory-based studies that the use of nanoparticles had a synergistic effect on the antibiotic being administered to the pathogen; several resistant strains scummed to the stress created by the nanoparticles and became susceptible to the drug. The major cause of resistance to date is the efflux system, which makes the latest generation of antibiotics ineffective without reaching the target site. If species-specific nanomaterials are used to control the activity of efflux pumps, it could revolutionize the field of medicine and make the previous generation resistant medications active once again. Therefore, the current study was devised to assess and review nanoparticles' role on efflux systems and discuss how specialized particles can be designed towards an infectious host's particular drug ejection systems.
Collapse
Affiliation(s)
- Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C Kamatchi
- Department of Biotechnology, The Oxford College of Science, Bengaluru, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Thanigaivel
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | | | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, Taiwan.
| |
Collapse
|
136
|
Hawas S, Verderosa AD, Totsika M. Combination Therapies for Biofilm Inhibition and Eradication: A Comparative Review of Laboratory and Preclinical Studies. Front Cell Infect Microbiol 2022; 12:850030. [PMID: 35281447 PMCID: PMC8915430 DOI: 10.3389/fcimb.2022.850030] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Microbial biofilms are becoming increasingly difficult to treat in the medical setting due to their intrinsic resistance to antibiotics. To combat this, several biofilm dispersal agents are currently being developed as treatments for biofilm infections. Combining biofilm dispersal agents with antibiotics is emerging as a promising strategy to simultaneously disperse and eradicate biofilms or, in some cases, even inhibit biofilm formation. Here we review studies that have investigated the anti-biofilm activity of some well-studied biofilm dispersal agents (e.g., quorum sensing inhibitors, nitric oxide/nitroxides, antimicrobial peptides/amino acids) in combination with antibiotics from various classes. This review aims to directly compare the efficacy of different combination strategies against microbial biofilms and highlight synergistic treatments that warrant further investigation. By comparing across studies that use different measures of efficacy, we can conclude that treating biofilms in vitro and, in some limited cases in vivo, with a combination of an anti-biofilm agent and an antibiotic, appears overall more effective than treating with either compound alone. The review identifies the most promising combination therapies currently under development as biofilm inhibition and eradication therapies.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Makrina Totsika,
| |
Collapse
|
137
|
Rosier BT, Takahashi N, Zaura E, Krom BP, MartÍnez-Espinosa RM, van Breda SGJ, Marsh PD, Mira A. The Importance of Nitrate Reduction for Oral Health. J Dent Res 2022; 101:887-897. [PMID: 35196931 DOI: 10.1177/00220345221080982] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salivary glands concentrate plasma nitrate into saliva, leading to high nitrate concentrations that can reach the millimolar range after a nitrate-rich vegetable meal. Whereas human cells cannot reduce nitrate to nitrite effectively, certain oral bacteria can. This leads to an increase in systemic nitrite that can improve conditions such as hypertension and diabetes through nitric oxide availability. Apart from systemic benefits, it has been proposed that microbial nitrate reduction can also promote oral health. In this review, we discuss evidence associating dietary nitrate with oral health. Oral bacteria can reduce nitrite to nitric oxide, a free radical with antimicrobial properties capable of inhibiting sensitive species such as anaerobes involved in periodontal diseases. Nitrate has also been shown to increase resilience against salivary acidification in vivo and in vitro, thus preventing caries development. One potential mechanism is proton consumption during denitrification and/or bacterial reduction of nitrite to ammonium. Additionally, lactic acid (organic acid involved in oral acidification) and hydrogen sulfide (volatile compound involved in halitosis) can act as electron donors for these processes. The nitrate-reducing bacteria Rothia and Neisseria are consistently found at higher levels in individuals free of oral disease (vs. individuals with caries, periodontitis, and/or halitosis) and increase when nitrate is consumed in clinical studies. Preliminary in vitro and clinical evidence show that bacteria normally associated with disease, such as Veillonella (caries) and Prevotella (periodontal diseases and halitosis), decrease in the presence of nitrate. We propose nitrate as an ecologic factor stimulating eubiosis (i.e., an increase in health-associated species and functions). Finally, we discuss the preventive and therapeutic potential, as well as safety issues, related to the use of nitrate. In vivo evidence is limited; therefore, robust clinical studies are required to confirm the potential benefits of nitrate reduction on oral health.
Collapse
Affiliation(s)
- B T Rosier
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain
| | - N Takahashi
- Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - E Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - B P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - R M MartÍnez-Espinosa
- Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - S G J van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - A Mira
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain.,CIBER Institute of Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
138
|
Douglass M, Ghalei S, Brisbois E, Handa H. Potent, Broad-Spectrum Antimicrobial Effects of S-Nitroso- N-acetylpenicillamine-Impregnated Nitric Oxide-Releasing Latex Urinary Catheters. ACS APPLIED BIO MATERIALS 2022; 5:700-710. [PMID: 35119808 PMCID: PMC9680922 DOI: 10.1021/acsabm.1c01130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although numerous prevention and intervention techniques have been developed to counteract catheter-associated urinary tract infections (CAUTIs), urinary catheters remain one of the most common sources of hospital-acquired infections. Nitric oxide (NO), a gaseous free radical responsible for regulating many physiological functions in the body, has gained immense popularity due to its potent, broad-spectrum antimicrobial activity, which is capable of combating medical device-associated infections. In this work, a straightforward solvent-swelling method was used to load the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) into commercial latex catheters (SNAP-UCs) for the first time. The effects of swelling catheters with different concentrations of SNAP solutions (25-125 mg/mL SNAP in tetrahydrofuran (THF)) were studied by measuring the NO release kinetics, SNAP loading, and SNAP leaching. SNAP-UCs impregnated with a 50 mg/mL SNAP-THF solution were found to maximize the amount of SNAP loaded into the latex (0.115 ± 0.009 mg SNAP/mg catheter) and showed physiological levels of NO release (>2 × 10-10 mol min-1 cm-2) over 7 days and minimal SNAP leaching (<2%). SNAP-UCs showed impressive in vitro contact-based and diffusible antimicrobial efficacy against three CAUTI-associated pathogens, reducing the viability of adhered and planktonic Escherichia coli, Proteus mirabilis, and Staphylococcus aureus by ∼98.0 to 99.1% (adhered) and 86.3-96.3% (planktonic) compared to control latex catheters. In vitro cytotoxicity against 3T3 mouse fibroblasts using a CCK-8 assay showed that SNAP-UCs were noncytotoxic (>90% viability). In summary, SNAP-UCs show stable, noncytotoxic NO release characteristics capable of potent, broad-spectrum antimicrobial activity, demonstrating great potential for reducing the devastating effects associated with CAUTIs.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering and Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
139
|
Chung CW, Liao BW, Huang SW, Chiou SJ, Chang CH, Lin SJ, Chen BH, Liu WL, Hu SH, Chuang YC, Lin CH, Hsu IJ, Cheng CM, Huang CC, Lu TT. Magnetic Responsive Release of Nitric Oxide from an MOF-Derived Fe 3O 4@PLGA Microsphere for the Treatment of Bacteria-Infected Cutaneous Wound. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6343-6357. [PMID: 35080366 DOI: 10.1021/acsami.1c20802] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(μ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.
Collapse
Affiliation(s)
- Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Wen Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Wei Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Cheng-Han Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sheng-Ju Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Ling Liu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
140
|
Ambruso DR, Briones NJ, Baroffio AF, Murphy JR, Tran AD, Gowan K, Sanford B, Ellison M, Jones KL. In vivo interferon-gamma induced changes in gene expression dramatically alter neutrophil phenotype. PLoS One 2022; 17:e0263370. [PMID: 35113934 PMCID: PMC8812922 DOI: 10.1371/journal.pone.0263370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
The cytokine Interferon-γ (IFN-γ) exerts powerful immunoregulatory effects on the adaptive immune system and also enhances functions of the neutrophil (PMN). The clinical use of IFN-γ has been driven by the finding that its administration to patients with chronic granulomatous disease (CGD) results in decreased incidence and severity of infections. However, IFN-γ has no effect on the characteristic defect of CGD, the inability to convert oxygen to microbicidal metabolites including superoxide anion (O2-) during the phagocytosis associated oxidative burst. We administered varying doses of IFN-γ to adult volunteers and studied the effects on plasma drug levels and response molecules and PMNs isolated from blood drawn at intervals over a 96- hour period. Plasma concentrations of IFN-γ, IP-10 and neopterin, and stimulated release of O2- from PMNs exhibited dose- and time-dependent increases after IFN-γ administration. Gene expression in PMNs was altered for 2775 genes; changes occurred rapidly after administration and returned to baseline in 24-36 hours. Several genes involved with neutrophil host defense were upregulated including those for components of the O2- generating NADPH oxidase; innate-immune and Fc receptors; proteins involved in MHCI and II; a regulator of circulating PMN number; guanylate binding proteins; and a key enzyme in synthesis of an essential NOS cofactor. Coordinate changes were detected in protein levels of representative products from several of these genes. Lysates from isolated neutrophils also demonstrated a spike in NO following IFN-γ administration. IFN-γ appears to increase non-oxygen dependent microbicidal functions of PMNs which could provide strategies to compensate for deficiencies, explain its clinical benefit for CGD patients and expand therapeutic applications of IFN-γ to other disorders. Trial registration: Protocol registered in ClinicalTrials.gov, NCT02609932, Effect of IFN-γ on Innate Immune Cells.
Collapse
Affiliation(s)
- Daniel R. Ambruso
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Natalie J. Briones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Angelina F. Baroffio
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - John R. Murphy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander D. Tran
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Katherine Gowan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael Ellison
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| |
Collapse
|
141
|
Li M, Aveyard J, Doherty KG, Deller RC, Williams RL, Kolegraff KN, Kaye SB, D’Sa RA. Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications. ACS MATERIALS AU 2022; 2:190-203. [PMID: 36855758 PMCID: PMC9888637 DOI: 10.1021/acsmaterialsau.1c00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility.
Collapse
Affiliation(s)
- Man Li
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Kyle G. Doherty
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Robert C. Deller
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Rachel L. Williams
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Keli N. Kolegraff
- Department
of Plastic and Reconstructive Surgery, The
Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
| | - Stephen B. Kaye
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Raechelle A. D’Sa
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom,
| |
Collapse
|
142
|
Geiß C, Salas E, Guevara-Coto J, Régnier-Vigouroux A, Mora-Rodríguez RA. Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells 2022; 11:404. [PMID: 35159214 PMCID: PMC8834178 DOI: 10.3390/cells11030404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment.
Collapse
Affiliation(s)
- Carsten Geiß
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Elvira Salas
- Department of Biochemistry, Faculty of Medicine, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Jose Guevara-Coto
- Department of Computer Sciences and Informatics (ECCI), Faculty of Engineering, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Research Center for Information and Communication Technologies (CITIC), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Rodrigo A. Mora-Rodríguez
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
- Research Center for Tropical Diseases (CIET), Lab of Tumor Chemosensitivity (LQT), Faculty of Microbiology, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
143
|
Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infections. Int J Pharm 2022; 616:121507. [PMID: 35085729 DOI: 10.1016/j.ijpharm.2022.121507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Respiratory infections are one of the major global health problems. Among them, chronic respiratory infections caused by biofilm formation are difficult to treat because of both drug tolerance and poor drug penetration into the complex biofilm structure. A major part of the current research on combating respiratory biofilm infections have been focused on destroying the matrix of extracellular polymeric substance and eDNA of the biofilm or promoting the penetration of antibiotics through the extracellular polymeric substance via delivery technologies in order to kill the bacteria inside. There are also experimental data showing that certain inhaled antibiotics with simple formulations can effectively penetrate EPS to kill surficially located bacteria and centrally located dormant bacteria or persisters. This article aims to review recent advances in the pharmaceutical strategies for combating respiratory biofilm infections with a focus on nanotechnology-based drug delivery approaches. The formation and characteristics of bacterial biofilm infections in the airway mucus are presented, which is followed by a brief review on the current clinical approaches to treat respiratory biofilm infections by surgical removal and antimicrobial therapy, and also the emerging clinical treatment approaches. The current combination of antibiotics and non-antibiotic adjuvants to combat respiratory biofilm infections are also discussed.
Collapse
|
144
|
Gao L, Cheng J, Shen Z, Zhang G, Liu S, Hu J. Orchestrating Nitric Oxide and Carbon Monoxide Signaling Molecules for Synergistic Treatment of MRSA Infections. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Gao
- Department of Polymer Science and Engineering Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Jian Cheng
- Department of Polymer Science and Engineering Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiqiang Shen
- Department of Polymer Science and Engineering Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Guoying Zhang
- Department of Polymer Science and Engineering Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyong Liu
- Department of Polymer Science and Engineering Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinming Hu
- Department of Polymer Science and Engineering Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
145
|
Huang M, Zhang J, Ke X, Gao S, Wu D, Chen J, Weng Y. Stearic acid modified nano CuMOFs used as a nitric oxide carrier for prolonged nitric oxide release. RSC Adv 2022; 12:2383-2390. [PMID: 35425263 PMCID: PMC8979339 DOI: 10.1039/d1ra08066k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) shows high potential in the cardiovascular system with anticoagulant and antibacterial efficacy. Cu based metal organic frameworks with amino modification (CuMOFs) were found to have an extraordinary high NO loading, but at the expense of framework stability in ambient moisture. Nano CuMOFs was synthesized by hydrothermal method in this work, and treated with stearic acid (SA) creating a hydrophobic form. It was found that the structure of the particles was not affected after treatment with SA, and the treated CuMOFs had tunable hydrophobicity. Both CuMOFs and SA modified CuMOFs adsorbed NO with the reaction of the amino group and NO to form a NONOate. SA modification enhanced stability of the CuMOFs in phosphate buffer solution (PBS, pH = 7.4), slowed down the interaction between the NO loading unit and H2O, and thus NO releasing was prolonged. The resulting NO-loaded CuMOFs inhibited platelet activation dramatically, prolonged the coagulation time and displayed excellent antibacterial properties. They could be envisioned as a good candidate for application in blood contacting implants. Nitric oxide (NO) shows high potential in the cardiovascular system with anticoagulant and antibacterial efficacy.![]()
Collapse
Affiliation(s)
- Maotao Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Jianwen Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Xianlan Ke
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd Chengdu PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd Chengdu PR China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| |
Collapse
|
146
|
Chang LH, Hu TM. Co-delivery of nitric oxide and camptothecin using organic-inorganic composite colloidal particles for enhanced anticancer activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
147
|
Dey TK, Bose P, Paul S, Karmakar BC, Saha RN, Gope A, Koley H, Ghosh A, Dutta S, Dhar P, Mukhopadhyay AKKUMAR. Protective efficacy of fish oil nanoemulsion against non-typhoidal Salmonella mediated mucosal inflammation and loss of barrier function. Food Funct 2022; 13:10083-10095. [DOI: 10.1039/d1fo04419b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-typhoidal Salmonella serotypes are well-adapted to utilize the inflammation for colonization in mammalian gut mucosa and bring down the integrity of the epithelial barrier in mammalian intestine. The present study...
Collapse
|
148
|
Vanin AF, Telegina VI, Mikoyan VD, Tkachev NA, Vasilieva SV. The Cytostatic Action of Dinitrosyl Iron Complexes with Glutathione on Escherichia coli Cells Is Mediated by Nitrosonium Cations Released from These Complexes. Biophysics (Nagoya-shi) 2022; 67:761-767. [PMID: 36567970 PMCID: PMC9762666 DOI: 10.1134/s0006350922050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022] Open
Abstract
This study demonstrates a bacteriostatic effect of binuclear dinitrosyl iron complexes with glutathione on Escherichia coli TN300 cells. It has been quantified by the colony formation assay. The bacteriostatic effect exerted by these complexes increases considerably in the presence of diethyldithiocarbamate. Our results suggest that this effect is caused by the intense release of nitrosonium cations, NO+, from the complexes, which decompose under the action of diethyldithiocarbamate. A similar effect is observed when E. coli cells are treated with diethyldithiocarbamate 40 min after the addition of sodium nitrite or S-nitrosoglutathione. Notably, the level of dinitrosyl iron complexes observed in the bacterial cells due to the effects of sodium nitrite or S-nitrosoglutathione is almost the same as that obtained after treatment with glutathione-containing complexes. The bacteriostatic effects of the NO molecules released from nitrite or S-nitrosoglutathione during their brief interaction with bacteria were significantly smaller than the bacteriostatic effect of NO+. We deduce therefrom that the nitrosonium cations released from DNICs are responsible for the observed bacteriostatic effect of these complexes in E. coli cells.
Collapse
Affiliation(s)
- A. F. Vanin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - V. I. Telegina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - V. D. Mikoyan
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - N. A. Tkachev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - S. V. Vasilieva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
149
|
Hasan N, Lee J, Ahn HJ, Hwang WR, Bahar MA, Habibie H, Amir MN, Lallo S, Son HJ, Yoo JW. Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections. Pharmaceutics 2021; 14:22. [PMID: 35056917 PMCID: PMC8779945 DOI: 10.3390/pharmaceutics14010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Polymicrobial wound infections are a major cause of infectious disease-related morbidity and mortality worldwide. In this study, we prepared a nitric oxide (NO)-releasing oxidized bacterial cellulose/chitosan (BCTO/CHI) crosslinked hydrogel to effectively treat polymicrobial wound infections. Linear polyethyleneimine diazeniumdiolate (PEI/NO) was used as the NO donor. The aldehyde group of BCTO and the amine of CHI were used as crosslinked hydrogel-based materials; their high NO loading capacity and antibacterial activity on the treatment of polymicrobial-infected wounds were investigated. The blank and NO-loaded crosslinked hydrogels, namely BCTO-CHI and BCTO-CHI-PEI/NO, were characterized according to their morphologies, chemical properties, and drug loading. BCTO-CHI-PEI/NO exhibited sustained drug release over four days. The high NO loading of BCTO-CHI-PEI/NO enhanced the bactericidal efficacy against multiple bacteria compared with BCTO-CHI. Furthermore, compared with blank hydrogels, BCTO-CHI-PEI/NO has a favorable rheological property due to the addition of a polymer-based NO donor. Moreover, BCTO-CHI-PEI/NO significantly accelerated wound healing and re-epithelialization in a mouse model of polymicrobial-infected wounds. We also found that both crosslinked hydrogels were nontoxic to healthy mammalian fibroblast cells. Therefore, our data suggest that the BCTO-CHI-PEI/NO developed in this study improves the efficacy of NO in the treatment of polymicrobial wound infections.
Collapse
Affiliation(s)
- Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
| | - Hye-Jin Ahn
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Korea; (H.-J.A.); (W.R.H.)
| | - Wook Ryol Hwang
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Korea; (H.-J.A.); (W.R.H.)
| | - Muhammad Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Muhammad Nur Amir
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Hong-Joo Son
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627706, Korea;
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
| |
Collapse
|
150
|
Lee SS, Laganenka L, Du X, Hardt WD, Ferguson SJ. Silicon Nitride, a Bioceramic for Bone Tissue Engineering: A Reinforced Cryogel System With Antibiofilm and Osteogenic Effects. Front Bioeng Biotechnol 2021; 9:794586. [PMID: 34976982 PMCID: PMC8714913 DOI: 10.3389/fbioe.2021.794586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Silicon nitride (SiN [Si3N4]) is a promising bioceramic for use in a wide variety of orthopedic applications. Over the past decades, it has been mainly used in industrial applications, such as space shuttle engines, but not in the medical field due to scarce data on the biological effects of SiN. More recently, it has been increasingly identified as an emerging material for dental and orthopedic implant applications. Although a few reports about the antibacterial properties and osteoconductivity of SiN have been published to date, there have been limited studies of SiN-based scaffolds for bone tissue engineering. Here, we developed a silicon nitride reinforced gelatin/chitosan cryogel system (SiN-GC) by loading silicon nitride microparticles into a gelatin/chitosan cryogel (GC), with the aim of producing a biomimetic scaffold with antibiofilm and osteogenic properties. In this scaffold system, the GC component provides a hydrophilic and macroporous environment for cells, while the SiN component not only provides antibacterial properties and osteoconductivity but also increases the mechanical stiffness of the scaffold. This provides enhanced mechanical support for the defect area and a better osteogenic environment. First, we analyzed the scaffold characteristics of SiN-GC with different SiN concentrations, followed by evaluation of its apatite-forming capacity in simulated body fluid and protein adsorption capacity. We further confirmed an antibiofilm effect of SiN-GC against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as enhanced cell proliferation, mineralization, and osteogenic gene upregulation for MC3T3-E1 pre-osteoblast cells. Finally, we developed a bioreactor to culture cell-laden scaffolds under cyclic compressive loading to mimic physiological conditions and were able to demonstrate improved mineralization and osteogenesis from SiN-GC. Overall, we confirmed the antibiofilm and osteogenic effect of a silicon nitride reinforced cryogel system, and the results indicate that silicon nitride as a biomaterial system component has a promising potential to be developed further for bone tissue engineering applications.
Collapse
Affiliation(s)
- Seunghun S. Lee
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Leanid Laganenka
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Xiaoyu Du
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Stephen J. Ferguson
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|