101
|
Zheng H, Dong Y, Zhang X, Liu J, Geng X, Liu Z, Liao Y, Liu Y, Yang P, Yang G, Liu X. Modulation of Mettl5 alleviates airway allergy by regulating the epigenetic profile of M2 macrophages. Cell Signal 2025; 131:111740. [PMID: 40089091 DOI: 10.1016/j.cellsig.2025.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
M2 macrophages (M2 cells) are known to be involved in both Th2 responses and immune regulation. However, the underlying mechanisms remain unclear. Functional abnormalities in macrophages are associated with airway allergy (AA). The objective of this study was to investigate the role of methyltransferase-like 5 (Mettl5) in macrophages and its potential to alleviate AA. In this study, an airway allergy (AA) mouse model was established using dust mite extracts (DME) as the specific antigen. M2 cells were collected from mice with and without AA. The role of Mettl5 in modulating the immune activities of M2 cells was assessed using both epigenetic and immunological approaches. We found that Mettl5 levels were elevated in airway M2 cells from mice with AA. The presence of Mettl5 in airway M2 cells was positively correlated with airway Th2 polarization in these mice. Airway M2 cells from AA mice exhibited impaired immune-suppressive function, which was resolved by ablating the Mettl5 gene in macrophages. Mettl5 was responsible for the hypermethylation of the Il10 promoter in airway M2 cells of AA mice. Exposure to DME induced Mettl5, which in turn recruited USP21 to deubiquitinate GATA3, thereby boosting IL-4 expression in M2 cells. Inhibiting Mettl5 restored the immune-suppressive capacity of airway M2 cells and mitigated experimental AA. In conclusion, Mettl5 plays a critical role in subverting the immune-regulatory capacity and enhancing IL-4 expression in M2 cells. Inhibition of Mettl5 can mitigate experimental AA by restoring the immune-regulatory functions of M2 cells.
Collapse
Affiliation(s)
- Haoyue Zheng
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China
| | - Yixuan Dong
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China
| | - Xiwen Zhang
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Xiaorui Geng
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Zhiqiang Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Yun Liao
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China.
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China.
| |
Collapse
|
102
|
Chen H, Zhang R, Jin M, Yang J, Chen L, Xie Y. Advances in the mechanism and therapies of achondroplasia. Genes Dis 2025; 12:101436. [PMID: 40256430 PMCID: PMC12008630 DOI: 10.1016/j.gendis.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/24/2024] [Indexed: 04/22/2025] Open
Abstract
Achondroplasia (ACH), is the prevailing type of genetic dwarfism in humans, caused by mutations in fibroblast growth factor receptor 3 (FGFR3) that are inherited in an autosomal dominant manner. FGFR3 is mainly expressed in condensed mesenchyme, chondrocytes, and mature osteoblasts and osteoclasts, in which it regulates the formation, development, growth, and remodeling of the skeletal system. Mutations in FGFR3 causing ACH result in enhanced FGFR3 signaling through combined mechanisms including enhancing FGF dimerization and tyrosine kinase activity and stabilizing FGF receptors. In ACH, suppression of the proliferation and maturation of chondrocytes in the growth plate leads to a notable reduction in growth plate size, trabecular bone volume, and bone elongation through a profound enhancement of FGFR3 signaling. This review aims to comprehensively outline the cellular and molecular mechanisms contributing to the pathological process of ACH and its potential therapeutic interventions.
Collapse
Affiliation(s)
- Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Ruobin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
103
|
Koyama T, Saeed U, Rewitz K, Halberg KV. The Integrative Physiology of Hormone Signaling: Insights from Insect Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39887191 DOI: 10.1152/physiol.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Hormones orchestrate virtually all physiological processes in animals and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology. These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas, hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism, and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Usama Saeed
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
104
|
Abós B, Morel E, Ama LFD, Ordás MC, Vicente-Gil S, Carrasco JC, Koppang E, Tafalla C, Herranz-Jusdado JG. Immunological characterization of the rainbow trout bursa. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110345. [PMID: 40246038 DOI: 10.1016/j.fsi.2025.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The bursa of Fabricius is an immune organ, located in the caudo-dorsal surface of the cloaca, responsible for the development and maturation of avian B cells. A few years ago, a lymphoepithelial tissue placed caudal to the urogenital papilla of the cloaca analogous to the bursa was identified for the first time in Atlantic salmon (Salmo salar). The salmon bursa was demonstrated to involute around sexual maturation, as in birds. However, no primary lymphoid functions were identified in this tissue. In the current study, we have identified a homologous immune organ in rainbow trout (Oncorhynchus mykiss), a different salmonid species. This lymphoepithelium covering a blind sac, caudal to the anus, was identified in rainbow trout at different stages of development and it also experienced regression in an age-dependent way. It contained abundant IgM+ B cells and CD3+ cells and especially numerous was the number of MHC II-expressing cells. In contrast to Atlantic salmon, in rainbow trout, the bursa epithelium contained quite a few IgT+ B cells but very few IgD+ B cells. Thus, by flow cytometry, we could determine that the IgM+ B cells identified in the trout bursa had lost surface IgD expression. Interestingly, although an immunization of rainbow trout by bath barely had effects on the bursa at a transcriptional level, when fish were immunized anally with a model antigen, there were significant changes in the levels of transcription of immune genes in this tissue. These included secreted igm, secreted and membrane igd, bcma and prdm1-a2. Altogether these results evidence the existence of a bursa-like immune structure in another teleost species and provide novel information to understand the immune role of this tissue in fish, pointing to a relation to gut immune responses.
Collapse
Affiliation(s)
- Beatriz Abós
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Esther Morel
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Laura Fernández-Del Ama
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos, Madrid, Spain
| | - M Camino Ordás
- Biology, Geology, Physics and Chemistry Department, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Samuel Vicente-Gil
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Juan Carlos Carrasco
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - Erling Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences, Ås, Norway
| | - Carolina Tafalla
- Biotechnology Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain.
| | | |
Collapse
|
105
|
Ma Z, Zhang Y, Tian X, Lu W, Peng H. EIF4E1B interacts with HSPA1A and PPP2CA and is involved in mouse oocyte maturation and early embryonic development. Theriogenology 2025; 240:117398. [PMID: 40139147 DOI: 10.1016/j.theriogenology.2025.117398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The protein translation process is an important part of mammalian ovogenesis and early embryonic development. The eukaryotic translation initiation factors 4E family (eIF4E) initiates the eukaryotic mRNA translation process and plays an important role in protein synthesis. The aim of this research was to analyze the expression and localization of eIF4E family members and the role of EIF4E1B in mouse oocyte maturation and early embryonic development. Here, we report the expression and localization of EIF4E1, EIF4E2, and EIF4E3 in multiple tissues, during oocyte maturation and early embryonic development in mice. However, EIF4E1B was expressed only in ovarian and testicular tissues, and this protein was detected only at the one-to two-cell embryonic stage of early embryos. Moreover, knockdown of eIF4E1b in GV-stage oocytes and zygotes resulted in significant reductions in the rates of oocyte maturation and blastocyst formation, respectively. Further investigation revealed that EIF4E1B interacted with the PPP2CA and HSPA1A proteins and might be involved in the mouse oocyte maturation process. These results provide the first evidence for a novel function of EIF4E1B in oocyte maturation and early embryonic development in mice.
Collapse
Affiliation(s)
- Zengyou Ma
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China; College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, China
| | - Yanyan Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China
| | - Xueqi Tian
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China
| | - Wenjie Lu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China.
| |
Collapse
|
106
|
Li L, Wei C, Xie Y, Su Y, Liu C, Qiu G, Liu W, Liang Y, Zhao X, Huang D, Wu D. Expanded insights into the mechanisms of RNA-binding protein regulation of circRNA generation and function in cancer biology and therapy. Genes Dis 2025; 12:101383. [PMID: 40290118 PMCID: PMC12022641 DOI: 10.1016/j.gendis.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 04/30/2025] Open
Abstract
RNA-binding proteins (RBPs) regulate the generation of circular RNAs (circRNAs) by participating in the reverse splicing of circRNA and thereby influencing circRNA function in cells and diseases, including cancer. Increasing evidence has demonstrated that the circRNA-RBP network plays a complex and multifaceted role in tumor progression. Thus, a better understanding of this network may provide new insights for the discovery of cancer drugs. In this review, we discuss the characteristics of RBPs and circRNAs and how the circRNA-RBP network regulates tumor cell phenotypes such as proliferation, metastasis, apoptosis, metabolism, immunity, drug resistance, and the tumor environment. Moreover, we investigate the factors that influence circRNA-RBP interactions and the regulation of downstream pathways related to tumor development, such as the tumor microenvironment and N6-methyladenosine modification. Furthermore, we discuss new ideas for targeting circRNA-RBP interactions using various RNA technologies.
Collapse
Affiliation(s)
- Lixia Li
- Cancer Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Chunhui Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanyu Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Caixia Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Guiqiang Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Weiliang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanmei Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
107
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
108
|
Wen S, Su X, Guo J, Ou Z, Wang L, Yue Z, Zhao J, Ran L, Hu J, Wang Y, Ran M, He Q, Ji P, Ye L, Chen Z, Xu L, Huang Q. Bcl6 controls the stability and suppressive function of regulatory T cells in head and neck squamous cell carcinoma. Genes Dis 2025; 12:101505. [PMID: 40290124 PMCID: PMC12033904 DOI: 10.1016/j.gendis.2024.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/16/2024] [Accepted: 12/02/2024] [Indexed: 04/30/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) ranks as the sixth most common cancer globally. Most studies in HNSCC demonstrated that regulatory T (Treg) cells confine the anti-tumor activity of effector T cells which may contribute to the immune escape and uncontrolled tumor progression. Here, we uncovered that the specific abrogation of Bcl6 in Treg cells resulted in significantly delayed malignant transformation of 4NQO-induced tumorigenesis. Bcl6 deficiency impairs the lineage stability of Treg cells by down-regulating the histone H3K4 trimethylation. Importantly, Bcl6 inhibition repressed the tumor growth of murine HNSCC and exhibited synergistic effects with immune checkpoint blockade therapy. These findings suggest that Bcl6 can be exploited as a promising therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Shuqiong Wen
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Junyi Guo
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhanpeng Ou
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Zhengliang Yue
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Jing Zhao
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Ling Ran
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yuzhu Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Mengqu Ran
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing 400016, China
| | - Qinyi He
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
109
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
110
|
Shastri A, Balaraja S, De A, Mitra S, Duseja A. Unearthing TULP3 Mutation as a Rare Cause of Cryptogenic Cirrhosis: A Case Report and Review of the Literature. J Clin Exp Hepatol 2025; 15:102542. [PMID: 40226390 PMCID: PMC11987596 DOI: 10.1016/j.jceh.2025.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Whole-exome sequencing may help unearth uncommon monogenic causes of cryptogenic cirrhosis and portal hypertension. Tubby-like protein 3 (TULP3) gene encodes the tubby domain family of proteins, mutations of which is associated with progressive degenerative disease of major organs such as kidney, heart, and liver. Here we report a case of a young male with decompensated cirrhosis who was ultimately identified with homozygous pathogenic splice donor variant c.492+1G > A in intron 5 of TULP3 gene.
Collapse
Affiliation(s)
- Arpit Shastri
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S. Balaraja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Suvradeep Mitra
- Departments of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
111
|
Lee S, Lee B, Kwon SH, Park J, Kim SH. MCC in the spotlight: Its dual role in signal regulation and oncogenesis. Cell Signal 2025; 131:111756. [PMID: 40118128 DOI: 10.1016/j.cellsig.2025.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The mutated in colorectal cancer (MCC) gene is closely associated with the onset and progression of colorectal cancer. MCC plays a critical role in regulating the cell cycle and various signaling pathways and is recognized to inhibit cancer cell proliferation via the β-catenin signaling pathway. β-catenin is a key component of the WNT signaling pathway that influences cell growth, differentiation, survival, and migration, thereby positioning MCC as an important tumor suppressor. Notably, MCC has also been implicated in other cancer types, including lung, liver, and brain cancers. However, the precise mechanisms by which MCC functions in these malignancies remain inadequately understood. Comprehensive investigations into the interactions among MCC, various signaling pathways, and metabolic processes are essential for uncovering the molecular mechanisms of cancer and the pathological features characteristic of different cancer stages. This review presents the structural characteristics of MCC and its cell growth regulation mechanisms and functional roles within tissues, with the aims of enhancing our understanding of the role of MCC in cancer biology and highlighting potential therapeutic strategies targeting this gene.
Collapse
Affiliation(s)
- Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, South Korea.
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea.
| | - Seon-Hwan Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
112
|
Zhu M, Wang X, Zhao H, Wang Z. Update on R-loops in genomic integrity: Formation, functions, and implications for human diseases. Genes Dis 2025; 12:101401. [PMID: 40271193 PMCID: PMC12017992 DOI: 10.1016/j.gendis.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 04/25/2025] Open
Abstract
R-loops, three-strand nucleic acid structures, have emerged as crucial players in various physiological processes, including the regulation of gene expression, DNA replication, and class switch recombination. However, their presence also poses a significant threat to genome stability. A particularly challenging aspect is understanding the dynamic balance between R-loops' "light" and "dark" sites, especially concerning maintaining genome integrity. The complex and multifaceted roles of R-loops in genome stability necessitate a deeper understanding. This review offers a comprehensive exploration of the formation, resolution, and implications of R-loops, particularly in the context of DNA damage and human disease. We delve into the dualistic nature of R-loops, highlighting their role in DNA damage response and repair, and discuss the therapeutic potential arising from our evolving understanding of these enigmatic entities. Emphasizing recent advancements and unresolved questions, this review aims to provide a cohesive overview of R-loops, inviting further inquiry and investigation into their complex biological significance.
Collapse
Affiliation(s)
- Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xinyu Wang
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hongchang Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| |
Collapse
|
113
|
Liu X, Lv M, Feng B, Gong Y, Min Q, Wang Y, Wu Q, Chen J, Zhao D, Li J, Zhang W, Zhan Q. SQLE amplification accelerates esophageal squamous cell carcinoma tumorigenesis and metastasis through oncometabolite 2,3-oxidosqualene repressing Hippo pathway. Cancer Lett 2025; 621:217528. [PMID: 39924077 DOI: 10.1016/j.canlet.2025.217528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide, characterized by a dismal prognosis and elusive therapeutic targets. Dysregulated cholesterol metabolism is a critical hallmark of cancer cells, facilitating tumor progression. Here, we used whole genome sequencing data from several ESCC cohorts to identify the important role of squalene epoxidase (SQLE) in promoting ESCC tumorigenesis and metastasis. Specifically, our findings highlight the significance of 2,3-oxidosqualene, an intermediate metabolite of cholesterol biosynthesis, synthesized by SQLE and metabolized by lanosterol synthase (LSS), as a key regulator of ESCC progression. Mechanistically, the interaction between 2,3-oxidosqualene and vinculin enhances the nuclear accumulation of Yes-associated protein 1 (YAP), thereby increasing YAP/TEAD-dependent gene expression and accelerating both tumor growth and metastasis. In a 4-nitroquinoline 1-oxide (4-NQO)-induced ESCC mouse model, overexpression of Sqle resulted in accelerated tumorigenesis compared to wild-type controls, highlighting the pivotal role of SQLE in vivo. Furthermore, elevated SQLE expression in ESCC patients correlates with a poorer prognoses, suggesting potential therapeutic avenues for treatment. In conclusion, our study elucidates the oncogenic function of 2,3-oxidosqualene as a naturally occurring metabolite and proposes modulation of its levels as a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Bicong Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Soochow University Cancer Institute, Suzhou, 215127, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
114
|
Weng K, He Y, Weng X, Yuan Y. Exercise alleviates osteoporosis by regulating the secretion of the Senescent Associated Secretory Phenotype. Bone 2025; 196:117485. [PMID: 40216288 DOI: 10.1016/j.bone.2025.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
As the elderly population grows, the number of patients with metabolic bone diseases such as osteoporosis has increased sharply, posing a significant threat to public health and social economics. Although pharmacological therapies for osteoporosis demonstrate therapeutic benefits, their prolonged use is associated with varying degrees of adverse effects. As a non-pharmacological intervention, exercise is widely recognized for its cost-effectiveness, safety, and lack of toxic side effects, making it a recommended treatment for osteoporosis prevention and management. Previous studies have demonstrated that exercise can improve metabolic bone diseases by modulating the Senescent Associated Secretory Phenotype (SASP). However, the mechanisms through which exercise influences SASP remain unclear. Therefore, this review aims to summarize the effects of exercise on SASP and elucidate the specific mechanisms by which exercise regulates SASP to alleviate osteoporosis, providing a theoretical basis for osteoporosis through exercise and developing targeted therapies.
Collapse
Affiliation(s)
- Kaihong Weng
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Yuting He
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| |
Collapse
|
115
|
Yao J, Li Y, Liu X, Liang W, Li Y, Wu L, Wang Z, Song W. FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression. Neural Regen Res 2025; 20:2068-2083. [PMID: 39254567 PMCID: PMC11691456 DOI: 10.4103/nrr.nrr-d-23-01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00028/figure1/v/2024-09-09T124005Z/r/image-tiff Alzheimer's disease is characterized by deposition of amyloid-β, which forms extracellular neuritic plaques, and accumulation of hyperphosphorylated tau, which aggregates to form intraneuronal neurofibrillary tangles, in the brain. The NLRP3 inflammasome may play a role in the transition from amyloid-β deposition to tau phosphorylation and aggregation. Because NLRP3 is primarily found in brain microglia, and tau is predominantly located in neurons, it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines. Here, we found that neurons also express NLRP3 in vitro and in vivo, and that neuronal NLRP3 regulates tau phosphorylation. Using biochemical methods, we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons. In primary neurons and the neuroblastoma cell line Neuro2A, FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-β is present. In the brains of aged wild-type mice and a mouse model of Alzheimer's disease, FUBP3 expression was markedly increased in cortical neurons. Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses. We also found that FUBP3 trimmed the 5' end of DNA fragments that it bound, implying that FUBP3 functions in stress-induced responses. These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to-phospho-tau transition than microglial NLRP3, and that amyloid-β fundamentally alters the regulatory mechanism of NLRP3 expression in neurons. Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice, FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang Province, China
| |
Collapse
|
116
|
Lou Y, Dong C, Jiang Q, He Z, Yang S. Protein succinylation mechanisms and potential targeted therapies in urinary disease. Cell Signal 2025; 131:111744. [PMID: 40090556 DOI: 10.1016/j.cellsig.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Succinylation is a relatively common post-translational modification. It occurs in the cytoplasm, mitochondria, and the nucleus, where its essential precursor, succinyl-CoA, is present, allowing for the modification of non-histone and histone proteins. In normal cells, succinylation levels are carefully regulated to sustain a dynamic balance, necessitating the involvement of various regulatory mechanisms, including non-enzymatic reactions, succinyltransferases, and desuccinylases. Among these regulatory factors, sirtuin 5, the first identified desuccinylase, plays a significant role and has been extensively researched. The level of succinylation has a significant effect on multiple metabolic pathways, including the tricarboxylic acid cycle, redox balance, and fatty acid metabolism. Dysregulated succinylation can contribute to the progression or exacerbation of various urinary diseases. Succinylation predominantly affects disease progression by altering the expression of key genes and modulating the activity of enzymes involved in vital metabolic processes. Desuccinylases primarily affect enzymes associated with Warburg's effect, thereby affecting the energy supply of tumor cells, while succinyltransferases can regulate gene transcription to alter cell phenotype, thereby involving the development of urinary diseases. Considering these effects, targeting succinylation-related enzymes to regulate metabolic pathways or gene expression may offer a promising therapeutic strategy for treating urinary diseases.
Collapse
Affiliation(s)
- Yuanquan Lou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
117
|
Wang Q, Sun S, Sun G, Han B, Zhang S, Zheng X, Chen L. Histone modification inhibitors: An emerging frontier in thyroid Cancer therapy. Cell Signal 2025; 131:111703. [PMID: 40044017 DOI: 10.1016/j.cellsig.2025.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Thyroid cancer (TC) is the most common endocrine cancer and is a serious health concern due to its aggressiveness and high incidence. Histone modifications affect DNA accessibility and gene transcriptional activity by altering the structure of chromatin. Abnormal histone modifications may affect genome stability and disrupt gene expression patterns, leading to many diseases, including cancer. A growing body of research suggests that histone modifications and TC progression are inextricably linked. This article discusses the impact of aberrant histone modification patterns on TC. By targeting specific histone-modifying enzymes, it may be possible to regulate gene expression and inhibit the growth of TC. Finally, we summarize the relevant histone modification inhibitors to better understand the development stage of the use of these drugs to inhibit histone-modifying enzymes in cancer treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shu Sun
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Guojun Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bing Han
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Lu Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
118
|
Xiao X, Huang L, Li M, Zhang Q. Intersection between lung cancer and neuroscience: Opportunities and challenges. Cancer Lett 2025; 621:217701. [PMID: 40194655 DOI: 10.1016/j.canlet.2025.217701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Lung cancer, which has the highest morbidity and mortality rates worldwide, involves intricate interactions with the nervous system. Research indicates that the nervous system not only plays a role in the origin of lung cancer, but also engages in complex interactions with cancer cells through neurons, neurotransmitters, and various neuroactive molecules during tumor proliferation, invasion, and metastasis, especially in brain metastases. Cancer and its therapies can remodel the nervous system. Despite advancements in immunotherapy and targeted therapies in recent years, drug resistance of lung cancer cells after treatment limits improvements in patient survival and prognosis. The emergence of neuroscience has created new opportunities for the treatment of lung cancer. However, it also presents challenges. This review emphasizes that a deeper understanding of the interactions between the nervous system and lung cancer, along with the identification of new therapeutic targets, may lead to significant advancements or even a revolution in treatment strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Lingli Huang
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China; Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, PR China
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| | - Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
119
|
Song Y, Zhang K, Zhang J, Li Q, Huang N, Ma Y, Hou N, Han F, Kan C, Sun X. Epigenetic regulation of nuclear receptors: Implications for endocrine-related diseases and therapeutic strategies. Genes Dis 2025; 12:101481. [PMID: 40290121 PMCID: PMC12022648 DOI: 10.1016/j.gendis.2024.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 04/30/2025] Open
Abstract
The expression and function of the receptor are controlled by epigenetic changes, such as DNA methylation, histone modification, and noncoding RNAs. These modifications play a pivotal role in receptor activity and can lead to or exacerbate endocrine-related diseases. This review examines the epigenetic alterations of nuclear receptors and their significant impact on conditions such as diabetes, thyroid disorders, and endocrine-related tumors. It highlights current therapies targeting these epigenetic mechanisms, including gene editing, epigenetic drugs, and various other therapeutic approaches. This review offers fresh insight into the mechanisms of endocrine-associated disorders, highlighting the latest progress in the development of novel epigenetic therapies that can be used to address receptor-endocrine interactions.
Collapse
Affiliation(s)
- Yixin Song
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Qinying Li
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| |
Collapse
|
120
|
Vasquez I, Soto-Davila M, Hossain A, Gnanagobal H, Hall JR, Santander J. Dual-seq transcriptomics of Aeromonas salmonicida infection in Atlantic salmon (Salmo salar) primary macrophages reveals lysosome and apoptosis impairments. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110359. [PMID: 40262690 DOI: 10.1016/j.fsi.2025.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
A. salmonicida subsp. salmonicida is one of the oldest-known marine pathogens causing furunculosis in freshwater to marine fish species. A. salmonicida causes septicemia and fish death due to a systemic shock. Early stages of A. salmonicida infection, including intracellular macrophage infection, are not fully comprehended. Here, we conducted a dual RNA-seq study and functional analyses in Atlantic salmon primary macrophages infected with A. salmonicida to identify relevant genes for fish cellular immunity and A. salmonicida pathogenesis. At 1-h post-infection (hpi), A. salmonicida modulated the expression of genes associated with inflammation, fatty acids synthesis, and apoptosis. While at 2 hpi A. salmonicida hijacked pathways related to myeloid cell differentiation, cytoskeleton and actin filament organization, lysosome maturation, and apoptosis. In contrast, A. salmonicida upregulated genes encoding for hemolysin, aerolysin, type IVa pili, and T3SS effectors. In conclusion, these results suggest that A. salmonicida induces endocytosis, impairs lysosome maturation, and reduces apoptosis.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences Memorial University of Newfoundland, NL, Canada.
| | - Manuel Soto-Davila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences Memorial University of Newfoundland, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences Memorial University of Newfoundland, NL, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences Memorial University of Newfoundland, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences Memorial University of Newfoundland, NL, Canada.
| |
Collapse
|
121
|
Jadhav A, Menon A, Gupta K, Singh N. Molecular and therapeutic insight into ER stress signalling in NSCLC. J Drug Target 2025; 33:877-886. [PMID: 39883064 DOI: 10.1080/1061186x.2025.2461105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Endoplasmic Reticulum (ER) stress is intricately involved in cancer development, progression and response to chemotherapy. ER stress related genes might play an important role in predicting the prognosis in lung adenocarcinoma patients and may be manipulated to improve the treatment outcome and overall survival rate. In this review, we analysed the contribution of the three major ER stress pathways-IRE1, ATF6, and PERK-in lung cancer pathogenesis via modulation of tumour microenvironment (TME) and processes as metastasis, angiogenesis, apoptosis and N-glycosylation. Furthermore, we discuss the regulatory role of microRNAs in fine-tuning ER stress pathways in Non-Small Cell Lung Cancer (NSCLC). Our review also highlights various promising strategies to overcome chemoresistance by targeting ER stress pathways, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Aastha Jadhav
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arjun Menon
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kush Gupta
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
122
|
Shah PT, Guo F, Feng J, Wu C, Xing L. Role of UBC9 in the inflammatory response and pathogen susceptibility in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110337. [PMID: 40239932 DOI: 10.1016/j.fsi.2025.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
UBC9 is a key enzyme involved in SUMOylation, a post-translational modification that targets protein function, stability, transcriptional regulation, and localization to affect biological processes in host cells. Pathogens often target UBC9 by exploiting the host's SUMO system to modify their proteins with altered functionality, which in turn favors the pathogens' survival or invasion. Herein, we investigated the critical role of UBC9 in regulating the inflammatory response and susceptibility to Mycobacterium marinum (Mm) infection in zebrafish. We effectively knocked down the UBC9 expression using morpholino antisense oligonucleotides, which showed significant developmental abnormalities in zebrafish, particularly in cartilage formation. Our results indicated that UBC9 is essential for immune cell migration, as its knockdown led to impaired macrophage and neutrophil responses during inflammation. Furthermore, we investigated the impact of UBC9 on the zebrafish response to Mm, a close relative of the tuberculosis-causing bacterium. Our results showed that UBC9-knocked-down zebrafish displayed a slight increase in bacterial proliferation, suggesting a potential role of UBC9 in host's ability to control pathogen replication and spread. The study explores the complex interplay between UBC9 and the immune system and provides insights into the important role of UBC9 in immune regulation and pathogen defence.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; Faculty of Medicine, School of Basic Medical Sciences, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, Liaoning province, China
| | - Fan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
123
|
Blengini CS, Tang S, Mendola RJ, Garrisi GJ, Swain JE, Schindler K. AURKA controls oocyte spindle assembly checkpoint and chromosome alignment by HEC1 phosphorylation. Life Sci Alliance 2025; 8:e202403146. [PMID: 40328643 PMCID: PMC12056248 DOI: 10.26508/lsa.202403146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Shuang Tang
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert J Mendola
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | - G John Garrisi
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | | | - Karen Schindler
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
124
|
Tung MC, Oner M, Soong SW, Cheng PT, Li YH, Chen MC, Chou CK, Kang HY, Lin FCF, Tsai SCS, Lin H. CDK5 targets p21 CIP1 to regulate thyroid cancer cell proliferation and malignancy in patients. Mol Med Rep 2025; 32:182. [PMID: 40280108 PMCID: PMC12059462 DOI: 10.3892/mmr.2025.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/12/2025] [Indexed: 04/29/2025] Open
Abstract
Cyclin‑dependent kinase 5 (CDK5), known for its role in neuronal function, has emerged as a key player in cancer biology, particularly in thyroid cancer. The present study explored the interaction between CDK5 and the cyclin‑dependent kinase inhibitor p21CIP1 in thyroid cancer (TC). Bioinformatic tools and immunoprecipitation assays were used to confirm that CDK5 targets p21 for ubiquitin‑mediated degradation, reducing its stability and tumor‑suppressive effects. Data from The Cancer Genome Atlas revealed a significant inverse correlation between CDK5 and p21 expression, with higher CDK5 levels linked to increased tumor malignancy and worse survival outcomes; conversely, higher p21 expression was correlated with an improved prognosis. Immunohistochemistry analysis of TC samples further confirmed that increased CDK5 and reduced p21 expression were associated with more advanced tumor stages and aggressive phenotypes. These findings suggested that CDK5‑mediated degradation of p21 contributes to TC progression and malignancy, highlighting the potential of targeting the CDK5‑p21 axis as a therapeutic strategy for management of TC.
Collapse
Affiliation(s)
- Min-Che Tung
- Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Yu-Hsuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan, R.O.C
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 83301, Taiwan, R.O.C
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804959, Taiwan, R.O.C
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan, R.O.C
- Department of Surgery, Chung Shan University Hospital, Taichung 402367, Taiwan, R.O.C
| | - Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C
- College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
125
|
Yang J, Wu J, Xie X, Xia P, Lu J, Liu J, Bai L, Li X, Yu Z, Li H. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke. Neural Regen Res 2025; 20:2015-2028. [PMID: 39254564 PMCID: PMC11691472 DOI: 10.4103/nrr.nrr-d-23-01540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00024/figure1/v/2024-09-09T124005Z/r/image-tiff Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination. Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage. Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation, and plays an important role in the pathological process of ischemic stroke. However, there are few studies on oligodendrocyte progenitor cell ferroptosis. We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia. Bioinformatics analysis suggested that perilipin-2 (PLIN2) was involved in oligodendrocyte progenitor cell ferroptosis. PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation. For further investigation, we established a mouse model of cerebral ischemia/reperfusion. We found significant myelin damage after cerebral ischemia, as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area. The ferroptosis inhibitor, ferrostatin-1, rescued oligodendrocyte progenitor cell death and subsequent myelin injury. We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells. Plin2 knockdown rescued demyelination and improved neurological deficits. Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Pengfei Xia
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiale Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
126
|
Tian M, Zhou Y, Guo Y, Xia Q, Wang Z, Zheng X, Shen J, Guo J, Duan S, Wang L. MicroRNAs in adipose tissue fibrosis: Mechanisms and therapeutic potential. Genes Dis 2025; 12:101287. [PMID: 40242037 PMCID: PMC12002615 DOI: 10.1016/j.gendis.2024.101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2025] Open
Abstract
Adipose tissue fibrosis, characterized by abnormal extracellular matrix deposition within adipose tissue, signifies a crucial indicator of adipose tissue malfunction, potentially leading to organ tissue dysfunction. Various factors, including a high-fat diet, non-alcoholic fatty liver disease, and insulin resistance, coincide with adipose tissue fibrosis. MicroRNAs (miRNAs) represent a class of small non-coding RNAs with significant influence on tissue fibrosis through diverse signaling pathways. For instance, in response to a high-fat diet, miRNAs can modulate signaling pathways such as TGF-β/Smad, PI3K/AKT, and PPAR-γ to impact adipose tissue fibrosis. Furthermore, miRNAs play roles in inhibiting fibrosis in different contexts: suppressing corneal fibrosis via the TGF-β/Smad pathway, mitigating cardiac fibrosis through the VEGF signaling pathway, reducing wound fibrosis via regulation of the MAPK signaling pathway, and diminishing fibrosis post-fat transplantation via involvement in the PDGFR-β signaling pathway. Notably, the secretome released by miRNA-transfected adipose-derived stem cells facilitates targeted delivery of miRNAs to evade host immune rejection, enhancing their anti-fibrotic efficacy. Hence, this study endeavors to elucidate the role and mechanism of miRNAs in adipose tissue fibrosis and explore the mechanisms and advantages of the secretome released by miRNA-transfected adipose-derived stem cells in combating fibrotic diseases.
Collapse
Affiliation(s)
- Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yitong Guo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
127
|
Jia Y, Jia R, Chen Y, Lin X, Aishan N, li H, Wang L, Zhang X, Ruan J. The role of RNA binding proteins in cancer biology: A focus on FMRP. Genes Dis 2025; 12:101493. [PMID: 40271197 PMCID: PMC12017997 DOI: 10.1016/j.gendis.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 04/25/2025] Open
Abstract
RNA-binding proteins (RBPs) act as crucial regulators of gene expression within cells, exerting precise control over processes such as RNA splicing, transport, localization, stability, and translation through their specific binding to RNA molecules. The diversity and complexity of RBPs are particularly significant in cancer biology, as they directly impact a multitude of RNA metabolic events closely associated with tumor initiation and progression. The fragile X mental retardation protein (FMRP), as a member of the RBP family, is central to the neurodevelopmental disorder fragile X syndrome and increasingly recognized in the modulation of cancer biology through its influence on RNA metabolism. The protein's versatility, stemming from its diverse RNA-binding domains, enables it to govern a wide array of transcript processing events. Modifications in FMRP's expression or localization have been associated with the regulation of mRNAs linked to various processes pertinent to cancer, including tumor proliferation, metastasis, epithelial-mesenchymal transition, cellular senescence, chemotherapy/radiotherapy resistance, and immunotherapy evasion. In this review, we emphasize recent findings and analyses that suggest contrasting functions of this protein family in tumorigenesis. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention of cancer, some of which have already moved into clinical trials or clinical practice.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xuanyi Lin
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Han li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
128
|
Podh NK, Das A, Kumari A, Garg K, Yadav R, Kashyap K, Islam S, Gupta A, Mehta G. Single-molecule tracking reveals the dynamic turnover of Ipl1 at the kinetochores in Saccharomyces cerevisiae. Life Sci Alliance 2025; 8:e202503290. [PMID: 40250989 PMCID: PMC12008175 DOI: 10.26508/lsa.202503290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Aurora kinase B, Ipl1 in Saccharomyces cerevisiae, is a master regulator of cell division, required for checkpoint regulation, spindle assembly and disassembly, chromosome segregation, and cytokinesis. Decades of research employed ensemble averaging methods to understand its dynamics and function; however, the dynamic information was lost because of population-based averaging. Here, we use single-molecule imaging and tracking (SMIT) to quantify the recruitment dynamics of Ipl1 at the kinetochores and spindles in live cells. Our data suggest that Ipl1 is recruited to these locations with different dynamics. We have demonstrated how the recruitment dynamics of Ipl1 at the kinetochores during metaphase changes in the presence and absence of tension across the kinetochores, in the absence of protein phosphatase 1 (Glc7), and in the absence of its known recruiters (Ctf19 and Bub1). The SMIT of other chromosome passenger complex members (Bir1, Nbl1, Sli15) suggests their hierarchical assembly at the kinetochore. Hence, SMIT provides a dynamic view of the Ipl1 trafficking at the kinetochores and spindles.
Collapse
Affiliation(s)
- Nitesh Kumar Podh
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Ayan Das
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Akriti Kumari
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Kirti Garg
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Rashmi Yadav
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Kirti Kashyap
- Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Sahil Islam
- Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Anupam Gupta
- Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Gunjan Mehta
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
129
|
Danek V, Tureckova J, Huebner K, Erlenbach-Wuensch K, Baranova P, Dobes J, Balounova J, Simova M, Novosadova V, Madureira Trufen CE, Prochazkova M, Talacko P, Harant K, Barinka C, Beck IM, Schneider-Stock R, Sedlacek R, Prochazka J. CUL4A exhibits tumor-suppressing role via regulation of HUWE1-mediated SMAD3 intracellular shuttling. Cancer Lett 2025; 621:217663. [PMID: 40120800 DOI: 10.1016/j.canlet.2025.217663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Changes in cellular physiology and proteomic homeostasis accompanied the initiation and progression of colorectal cancer. Thus, ubiquitination represents a central regulatory mechanism in proteome dynamics. However, the complexity of the ubiquitinating network involved in carcinogenesis remains unclear. This study revealed the tumor-suppressive role of the ubiquitin ligase Cullin4A (CUL4A) in the intestine. We showed that simultaneous loss of CUL4A and hyperactivation of the Wnt pathway promotes tumor development in the distal colon. This tumor development is caused by an accumulation of the inactive SMAD3, a TGF-β pathway mediator. Depletion of CUL4A resulted in stabilization of HUWE1, which attenuated SMAD3 function. We showed a correlation between the intracellular localization of CUL4A and colorectal cancer progression, where nuclear CUL4A localization correlates with advanced colorectal cancer progression. In summary, we identified CUL4A as an important regulator of SMAD3 signal transduction competence in a HUWE1-dependent manner and demonstrated a critical role for the crosstalk between ubiquitination and the Wnt/TGF-β signaling pathways in gastrointestinal homeostasis.
Collapse
Affiliation(s)
- Veronika Danek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jolana Tureckova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | | | - Petra Baranova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 252 50, Czech Republic
| | - Jan Dobes
- Department of Cell Biology, Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Michaela Simova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Carlos Eduardo Madureira Trufen
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Michaela Prochazkova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Pavel Talacko
- BIOCEV Proteomics Core Facility, Faculty of Science, Charles University, Vestec, 252 50, Czech Republic
| | - Karel Harant
- BIOCEV Proteomics Core Facility, Faculty of Science, Charles University, Vestec, 252 50, Czech Republic
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 252 50, Czech Republic
| | - Inken M Beck
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic; Animal Research Centre, Ulm University, Ulm, Germany
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany; Institute of Pathology, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic.
| |
Collapse
|
130
|
Najdek C, Walle P, Flaig A, Ayral AM, Demiautte F, Coulon A, Buiche V, Lambert E, Amouyel P, Gelle C, Siedlecki-Wullich D, Dumont J, Kilinc D, Eysert F, Lambert JC, Chapuis J. Calpain and caspase regulate Aβ peptide production via cleavage of KINDLIN2 encoded by the AD-associated gene FERMT2. Neurobiol Aging 2025; 151:117-125. [PMID: 40273529 DOI: 10.1016/j.neurobiolaging.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
The adapter protein KINDLIN2, encoded by the Alzheimer's disease (AD) genetic risk factor FERMT2, was identified as a modulator of APP processing. KINDLIN2 directly interacts with APP to modulate its metabolism, and KINDLIN2 underexpression impairs long-term potentiation in an APP-dependent manner. Altogether, these data suggest that loss of KINDLIN2 could have a detrimental effect on synaptic function and promote AD pathophysiological process. In this study, we identified KINDLIN2 as a novel substrate of caspases and calpain I, two well-characterized cysteine proteases involved in the regulation of synaptic plasticity. These cleavages resulted in the dissociation of the F0 and F1 domains of KINDLIN2 that are necessary for it to function as an adapter protein. Furthermore, we demonstrate that these cleavages lead to a decrease in KINDLIN2's ability to control APP processing. Overall, these KINDLIN2 cleavages appear as potential new mechanisms in the regulation of KINDLIN2 functions at the synapse and could be of interest for the pathophysiology of AD.
Collapse
Affiliation(s)
- Chloé Najdek
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Pauline Walle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Amandine Flaig
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Anne-Marie Ayral
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Florie Demiautte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Audrey Coulon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Valérie Buiche
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Erwan Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Carla Gelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Dolores Siedlecki-Wullich
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Julie Dumont
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Devrim Kilinc
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Fanny Eysert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Julien Chapuis
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France.
| |
Collapse
|
131
|
Alberts A, Kjaer SK, Søegaard SH, Winther JF, Schmiegelow K, Sopina L, Erdmann F, Hargreave M. Childhood vaccinations and the risk of leukemia: A nationwide cohort study. Int J Cancer 2025; 157:55-63. [PMID: 39821269 DOI: 10.1002/ijc.35338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
A protective effect of childhood vaccinations on leukemia risk, particularly acute lymphoblastic leukemia (ALL), has been hypothesized, though findings are inconsistent. We used a nationwide cohort of Danish children born 1997-2018 (n = 1,360,230), to examine associations between childhood vaccinations and leukemia (<20 years) using registry data (follow-up: December 31, 2018). Cox proportional hazard models with age as the underlying time estimated hazard ratios (HRs) for leukemia (any, ALL, acute myeloid [AML], and other), comparing vaccinated with unvaccinated children. We also accessed the effect of each additional vaccine dose. During 14,536,819 person-years, 771 children were diagnosed with leukemia (74% ALL, 16% AML, and 10% other). Any vaccination was associated with an increased HR for ALL (HR: 2.76; 95% CI: 0.66-11.58), compared to unvaccinated children, with a change in HR of 1.01 (95% CI: 0.96-1.05) per dose. The corresponding HRs for any leukemia, AML, and other leukemia were 1.04 (95% CI: 0.50-2.17), 0.67 (95% CI: 0.18-2.59) and 0.29 (95% CI: 0.09-0.99), with a change in HR of 0.97 (95% CI: 0.94-1.02), 0.92 (95% CI: 0.84-1.00, p = .062) and 0.88 (95% CI: 0.78-1.00, p = .044) per dose. No significant associations were found for vaccination types, except for the pneumococcal vaccine which was associated with a decreased risk of other leukemia (HR: 0.32; 95% CI: 0.14-0.74). In six-months lag analyses, no significant associations were observed, and decreased risks were attenuated. The results provide no strong evidence that childhood vaccinations reduce leukemia risk. The limited number of unvaccinated cases and wide confidence intervals suggest cautious interpretation of some findings.
Collapse
Affiliation(s)
- Aya Alberts
- Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
| | - Susanne K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
- Department of Gynecology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Signe H Søegaard
- Department of Hematology, Danish Cancer Institute, Copenhagen, Denmark
| | - Jeanette F Winther
- Childhood Cancer Research Group, Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, Aarhus, Denmark
| | - Kjeld Schmiegelow
- Pediatric and Adolescent Medicine, Juliane Marie Center, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liza Sopina
- Danish Center for Health Economics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Friederike Erdmann
- Research Group Aetiology and Inequalities in Childhood Cancer, Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
| | - Marie Hargreave
- Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
132
|
Yao J, Yang H, Yuan M, Wang C, Liao H, Song R, Xu Z, Zeng X, Zhang Z. GINS4 silencing mediates hepatocellular cancer cell proliferation, cycle and ferroptosis through POLE2. Cell Signal 2025; 131:111742. [PMID: 40081544 DOI: 10.1016/j.cellsig.2025.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND GINS4 has been identified as a regulator associated with multiple types of cancers. However, the effects of GINS4 on hepatocellular carcinoma (HCC) have not been reported. METHODS GINS4 expression in HCC was evaluated utilizing UALCAN database. The relationship between the expression of GINS4 and the survival probability of HCC patients was analyzed using Kaplan-Meier Plotter. Cell viability was evaluated by CCK8 assay and EDU assay. qRT-PCR and western blot were performed to examine GINS4 expression. The level of cell cycle was measured by flow cytometry and western blot. Fe2+ level and ferroptosis-related proteins were measured by corresponding kits and western blot. Lipid peroxidation was explored by C11 BODIPY 581/591 probe. STRING database and HDOCK database were performed to predict the binding of GINS4 to POLE2. Immunofluorescence and western blotting was adopted for assessing cell autophagy and mTOR signaling pathway. Ki67 and GPX4 levels were measured by immunohistochemistry. The expression levels of POLE2/PI3K/AKT were assessed by western blot. RESULTS The data indicated that GINS4 expression was upregulated in HCC. Knockdown of GINS4 alleviated the proliferation and cycle and promoted ferroptosis of HuH7 cells. GINS4 was proved to bind to POLE2 and the silencing of GINS4 inhibited the expression of POLE2. GINS4 knockdown accelerated ferroptosis in HuH7 cells. POLE2 overexpression reversed the influences of GINS4 silencing on proliferation and cycle, and also ferroptosis. In addition, interference with GINS4 suppressed the activation of PI3K/AKT signaling via POLE2. In vivo experiments illustrated that GINS4 deletion suppressed HCC tumor growth, increased the GPX4 expression and restrained the Ki67 level, as well as reducing POLE2/PI3K/AKT signaling. CONCLUSION GINS4 silencing suppressed proliferation and cycle while promoted ferroptosis in HCC cells by regulating PI3K/AKT signaling via binding to POLE2.
Collapse
Affiliation(s)
- Jinni Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Anhui University of Science and Technology, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Huaicheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; First Clinical College of Anhui University of Science and Technology, Huainan 232007, China.
| | - Meng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Anhui University of Science and Technology, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Congyu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; First Clinical College of Anhui University of Science and Technology, Huainan 232007, China
| | - Heqiang Liao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; First Clinical College of Anhui University of Science and Technology, Huainan 232007, China
| | - Rui Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Zhe Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Xiangrui Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Zheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| |
Collapse
|
133
|
Liu H, Tan S, Li Z, Qi J, Tang X, Zhang J. OTUB1 promotes glioma progression by stabilizing TRAF4. Cell Signal 2025; 131:111704. [PMID: 40090557 DOI: 10.1016/j.cellsig.2025.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor with poor prognosis. This study aims to investigate the functional role of OTUB1 in glioma and its impact on TRAF4 stability, seeking potential therapeutic targets. METHODS We mined single-cell sequencing data from 12 glioma patients to analyze the heterogeneity of 20,145 glioma cells. The expression of OTUB1 in glioma tissues and cell lines was assessed using Western blot and qPCR. Additionally, immunoprecipitation and ubiquitination assays were conducted to evaluate the effect of OTUB1 on TRAF4 and its role in regulating TRAF4 stability. In vitro assays were performed to assess the effects of OTUB1 on cell proliferation, migration, and clonogenicity, while in vivo experiments using xenograft models in nude mice validated the impact of OTUB1 on tumor growth. RESULTS OTUB1 was found to be significantly overexpressed in glioma tissues, correlating with poor patient outcomes. Knockdown of OTUB1 markedly inhibited the proliferation and migration of LN229 and U87MG cells while increasing apoptosis. Immunoprecipitation studies revealed that OTUB1 stabilizes TRAF4 by inhibiting its ubiquitination, thereby promoting glioma cell proliferation and invasion. In vivo, tumors with OTUB1 knockdown demonstrated significantly reduced growth rates. CONCLUSION OTUB1 plays a critical role in glioma progression and may serve as a novel therapeutic target. The development of inhibitors targeting OTUB1 could potentially improve outcomes for glioma patients.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shasha Tan
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Jian Qi
- Department of Neurosurgery, Nanchong Fifth People's Hospital, Nanchong, Sichuan, China
| | - Xiaoping Tang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Junhao Zhang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
134
|
Wan L, Yuan Q, Tang M, Zhu Z, Liu Y, Huang Z, Zhou S, Zhang L, Wang Q, Guo Y, Yang J. Comparison of routine blood parameters by altitude and residence duration in the Western Sichuan Plateau. Pract Lab Med 2025; 45:e00467. [PMID: 40242487 PMCID: PMC12002941 DOI: 10.1016/j.plabm.2025.e00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background This study explores how routine blood test parameters change over time in acclimatized individuals at different altitudes on the Western Sichuan Plateau. Methods Healthy men aged 20-40 from low-altitude areas who moved to Ganzi Prefecture to live and work were recruited. The observation sites were Guzan Town (1400 m), Kangding County Seat (2500 m), Luhuo County Seat (3400 m), and Litang County Seat (4100 m). Participants at the same altitude were grouped according to residence duration. The relationships between blood test parameters, altitude, and residence duration were analyzed. Results After moving to the plateau, white blood cell, red blood cell, hemoglobin, and hematocrit levels rose quickly in the short term, then declined and stabilized. In contrast, platelet levels increased steadily and were positively correlated with altitude. Conclusions Changes in blood parameters during high-altitude acclimatization are significant physiological responses to hypoxia and are affected by both altitude and residence duration.
Collapse
Affiliation(s)
| | | | - Mingxia Tang
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Zhu Zhu
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Yanwu Liu
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Zhenglin Huang
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Shuzhi Zhou
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Ling Zhang
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Qiaoling Wang
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Yuntao Guo
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| | - Jian Yang
- Yaan People's Hospital, No. 8 Ankang Road, Yucheng District, Ya'an City, 625000, China
| |
Collapse
|
135
|
Li H, Hu X, Zhang Y, Hou W, Wang W, Sun H. Relationship between dietary energy and macronutrient intake at dinner versus breakfast and biological aging and premature mortality: Assessment of 2003-2014 National Health and Nutrition Examination Survey participants. J Affect Disord 2025; 380:466-473. [PMID: 40154808 DOI: 10.1016/j.jad.2025.03.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The impact of dietary patterns on health and lifespan is well-established, yet the effects of meal timing on the aging process and risk of premature death remain unclear. This study aimed to investigate the association between the difference in energy and macronutrient intake at dinner versus breakfast and the risk of premature mortality and biological aging. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2014, a cohort of 27,261 adults was examined. Dietary data were collected through 24-h dietary recalls, and Cox proportional hazards models and binary logistic regression models were used to assess the risk of premature death and indicators of biological aging. RESULTS Individuals with higher energy and protein intake at dinner compared to breakfast exhibited an increased risk of premature death and higher biological aging indicators. Isocaloric substitution of energy and macronutrients from breakfast to dinner significantly increased the risk of aging. CONCLUSION The difference in energy and macronutrient intake at dinner versus breakfast is closely associated with the risk of premature death and biological aging. The findings underscore the potential impact of meal timing on metabolic health and lifespan extension.
Collapse
Affiliation(s)
- Hui Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Xierong Hu
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yue Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Wanying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Weiqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Hongru Sun
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
136
|
Song S, Fan Y, Zou G, Huo L, Kumar J, Li Y, Wang R, Dai E, Jin J, Scott AW, Shao S, Pizzi MP, Vykoukal JV, Katayama H, Hanash S, Calin GA, Zhang X, Lee MG, Wang Z, Lo YH, Gan Q, Waters RE, Yin F, Wang L, Cheng X, Ajani JA, Dhar SS. KAP1 promotes gastric adenocarcinoma progression by activating Hippo/YAP1 signaling via binding to HNRNPAB. Cancer Lett 2025; 621:217695. [PMID: 40189014 DOI: 10.1016/j.canlet.2025.217695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Gastric adenocarcinoma (GAC) remains a significant global health challenge, with over a million new cases annually. Peritoneal carcinomatosis (PC), detected in ∼20 % of cases at diagnosis and ∼45 % later, is uniformly fatal, with limited treatment options. This study investigated the role of KAP1 in GAC progression, focusing on its interaction with YAP1 and cancer stemness traits. Analysis of over 596 primary GACs and 72 PC samples revealed that high nuclear KAP1 expression correlates with poor prognosis. KAP1 knockdown reduced oncogenic activity and stemness traits in GAC cells. Mechanistically, KAP1 positively regulates YAP1 transcription by binding to its promoter and reducing H3K27ac levels. Mass spectrometry identified an interaction between KAP1 and HNRNPAB, further modulating YAP1 signaling. Expression of the KRAB domain of ZFP568 without its DNA-binding zinc fingers inhibited both KAP1 and YAP1 expression, significantly reducing colony formation and tumor growth in vivo. Additionally, emerging antisense oligonucleotides (ASOs) targeting KAP1 or YAP1 effectively suppressed mouse tumor progression. These findings establish KAP1 as a critical driver of tumor progression in GAC through YAP1 regulation and HNRNPAB interaction, highlighting its potential therapeutic target. This study advances our understanding and offers a preclinical framework to improve outcomes for GAC.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gengyi Zou
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janani Kumar
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ruiping Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Shao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xing Zhang
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Gyu Lee
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yuan-Hung Lo
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiong Gan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca E Waters
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Yin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shilpa S Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
137
|
Guo Y, Wang R, Lv C, Xu C, Shen G, Wang G, Zhang W, Wang Q, Zhao Y. Jak/Stat-regulated Esftz-f1 negatively regulates the antibacterial immunity of Eriocheir sinensis against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110366. [PMID: 40273962 DOI: 10.1016/j.fsi.2025.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
With the growing global demand for premium aquatic products, the expanding international market presence of Eriocheir sinensis has led to a continuous appreciation of its economic value. However, E. sinensis is threatened by various diseases during its breeding, among which bacterial diseases seriously affect its immune function and impede its growth. Ftz-f1, an orphan nuclear receptor, plays a vital role in the embryonic development, molting process, gonadal development, and immune regulation of invertebrates. This study aims to identify the ftz-f1 homolog, called Esftz-f1, in E. sinensis. The Esftz-f1 ORF spans 1770 bp, encoding a 589-amino acid protein that shares 87.84 % sequence similarity with the Litopenaeus vannamei homolog and this protein contains two conserved functional domains. It is widely expressed in the multiple tissues of E. sinensis, with particularly high expression in the hepatopancreas. Subcellular localization analysis revealed nuclear localization of EsFtz-f1. The expression level of Esftz-f1 changes significantly upon stimulation by V. parahaemolyticus. When Jak and Stat are silenced or inhibited, the expression levels of Esftz-f1 are significantly downregulated. After Esftz-f1 is silenced, the expression levels of antimicrobial peptides, the phagocytic ability of hemocytes, bacterial clearance rate and the survival rate of crabs are significantly upregulated, suggesting that EsFtz-f1 plays a negative regulatory role in the resistance of E. sinensis to V. parahaemolyticus infection. We believe our study will help broaden the research scope of orphan nuclear receptors. It may also provide useful insights that aid further study of the immune mechanism of E. sinensis and provided references for the prevention of diseases during its breeding.
Collapse
Affiliation(s)
- Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rongping Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Chengyu Lv
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Chaohui Xu
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Guangyu Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yunlong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
138
|
Lee HK, Chen J, Philips RL, Lee SG, Feng X, Wu Z, Liu C, Schultz AB, Dalzell M, Meggendorfer M, Haferlach C, Birnbaum F, Sexton JA, Keating AE, O'Shea JJ, Young NS, Villarino AV, Furth PA, Hennighausen L. STAT5B leukemic mutations, altering SH2 tyrosine 665, have opposing impacts on immune gene programs. Life Sci Alliance 2025; 8:e202503222. [PMID: 40228864 PMCID: PMC11999048 DOI: 10.26508/lsa.202503222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
STAT5B is a vital transcription factor for lymphocytes. Here, the function of two STAT5B mutations from human T-cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5BY665F) and the other with histidine (STAT5BY665H), was interrogated. In silico modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity. In primary T cells in vitro, STAT5BY665F showed gain-of-function, whereas STAT5BY665H demonstrated loss-of-function. Introducing the mutation into the mouse genome illustrated that the gain-of-function Stat5b Y665F mutation resulted in accumulation of CD8+ effector and memory and CD4+ regulatory T cells, altering CD8+/CD4+ ratios. In contrast, STAT5BY665H "knock-in" mice showed diminished CD8+ effector and memory and CD4+ regulatory T cells. In contrast to WT STAT5B, the STAT5BY665F variant displayed greater STAT5 phosphorylation, DNA binding, and transcriptional activity after cytokine activation, whereas the STAT5BY665H variant resembled a null. The work exemplifies how joining in silico and in vivo studies of single nucleotides deepens our understanding of disease-associated variants, revealing structural determinants of altered function, defining mechanistic roles, and, specifically here, identifying a gain-of-function variant that does not directly induce hematopoietic malignancy.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachael L Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung-Gwon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Aaron B Schultz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Molly Dalzell
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Claudia Haferlach
- Munich Leukemia Laboratory (MLL) Max-Lebsche-Platz 31, München, Germany
| | - Foster Birnbaum
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joel A Sexton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Priscilla A Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
139
|
Bashir B, Sethi P, Panda S, Manikyam HK, Vishwas S, Singh SK, Singh K, Jain D, Chaitanya MVNL, Coutinho HDM. Unravelling the epigenetic based mechanism in discovery of anticancer phytomedicine: Evidence based studies. Cell Signal 2025; 131:111743. [PMID: 40107479 DOI: 10.1016/j.cellsig.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic mechanisms play a crucial role in the normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of these processes can result in changes to gene function and the transformation of cells into a malignant state. Cancer is characterized by widespread alterations in the epigenetic landscape, revealing that it involves not only genetic mutations but also epigenetic abnormalities. Recent progress in the field of cancer epigenetics has demonstrated significant reprogramming of various components of the epigenetic machinery in cancer, such as DNA methylation, modifications to histones, positioning of nucleosomes, and the expression of non-coding RNAs, particularly microRNAs. The ability to reverse epigenetic abnormalities has given rise to the hopeful field of epigenetic therapy, which has shown advancement with the recent approval by the FDA of three drugs targeting epigenetic mechanisms for the treatment of cancer. In the present manuscript, a comprehensive review has been presented about the role of understanding the epigenetic link between cancer and mechanisms by which phytomedicine offers treatment avenues. Further, this review deciphers the significance of natural products in the identification of epigenetic therapeutics, the diversity of their molecular targets, the use of nanotechnology, and the creation of new strategies for overcoming the inherent clinical challenges associated with developing these drug leads.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India
| | - Hemanth Kumar Manikyam
- Department of Chemistry, Faculty of science, North East Frontier Technical University, Arunachal Pradesh 791001, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India.
| | | |
Collapse
|
140
|
Shah PT, Guo F, Feng J, Wu C, Xing L. Role of UBC9 in the inflammatory response and pathogen susceptibility in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110337. [DOI: https:/doi.org/10.1016/j.fsi.2025.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
|
141
|
Tsoneva Y, Velikova T, Nikolaev G. Circadian clock regulation of myofibroblast fate. Cell Signal 2025; 131:111774. [PMID: 40169063 DOI: 10.1016/j.cellsig.2025.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Fibrosis-related disorders represent an increasing medical and economic burden on a worldwide scale, accounting for one-third of all disease-related deaths with limited therapeutic options. As central mediators in fibrosis development, myofibroblasts have been gaining increasing attention in the last 20 years as potential targets for fibrosis attenuation and reversal. While various aspects of myofibroblast physiology have been proposed as treatment targets, many of these approaches have shown limited long-term efficacy so far. However, ongoing research is uncovering new potential strategies for targeting myofibroblast activity, offering hope for more effective treatments in the future. The circadian molecular clock is a feature of almost every cell in the human body that dictates the rhythmic nature of various aspects of human physiology and behavior in response to changes in the surrounding environment. The dysregulation of these rhythms with aging is considered to be one of the underlying reasons behind the development of multiple aging-related chronic disorders, with fibrotic tissue scarring being a common pathological complication among the majority of them. Myofibroblast dysregulation due to skewed circadian clockwork might significantly contribute to fibrotic scar persistence. In the current review, we highlight the role of the circadian clock in the context of myofibroblast activation and deactivation and examine its dysregulation as a driver of fibrogenesis.
Collapse
Affiliation(s)
- Yoanna Tsoneva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Bulgaria.
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria.
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Bulgaria.
| |
Collapse
|
142
|
Chiang YH, Emmrich S, Vannini N. Metabolic Alterations in HSCs during Aging and Leukemogenesis. Physiology (Bethesda) 2025; 40:0. [PMID: 40019828 DOI: 10.1152/physiol.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/15/2024] [Accepted: 02/23/2025] [Indexed: 04/26/2025] Open
Abstract
Aging is a multifaceted process associated with a functional decline in cellular function over time, affecting all lifeforms. During the aging process, metabolism, a fundamental hallmark of life (1), is profoundly altered. In the context of hematopoiesis, the proper function of hematopoietic stem cells, at the apex of the blood system, is tightly linked to their energy metabolism, which in turn shapes hematopoietic output. Here, we review the latest developments in our understanding of the metabolic states and changes in aged hematopoietic stem cells, molecular players and pathways involved in aged hematopoietic stem cell metabolism, the consequences of perturbed metabolism on clonal hematopoiesis and leukemogenesis, and pharmacologic/genetic strategies to reverse or rejuvenate altered metabolic phenotypes.
Collapse
Affiliation(s)
- Yi-Hsuan Chiang
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Stephan Emmrich
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
143
|
Nakada T, Koga M, Takeuchi H, Doi K, Sugiyama H, Sakurai H. PP2A adapter protein IER5 induces dephosphorylation and degradation of MDM2, thereby stabilizing p53. Cell Signal 2025; 131:111739. [PMID: 40081547 DOI: 10.1016/j.cellsig.2025.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The tumor suppressor p53 activates transcription of the IER5 gene, which encodes an adapter protein of protein phosphatase PP2A. IER5 binds to both the B55 regulatory subunit of PP2A and PP2A's target proteins, facilitating PP2A/B55-catalyzed dephosphorylation of these proteins. Here, we show that IER5 functions as a positive regulator of p53 by inhibiting its ubiquitination, thereby increasing cellular p53 levels. Mechanistically, this effect of IER5 requires its nuclear localization and binding to both PP2A/B55 and the p53 ubiquitin E3 ligase MDM2. Importantly, IER5 fails to inhibit p53 ubiquitination in cells treated with the MDM2 inhibitor Nutlin-3. The IER5-PP2A/B55 complex dephosphorylates MDM2 at Ser166, leading to MDM2 ubiquitination and a reduction in nuclear MDM2. Altogether, our data provide evidence that IER5-PP2A/B55 regulates the nuclear balance between MDM2 and p53 via MDM2 dephosphorylation.
Collapse
Affiliation(s)
- Taisei Nakada
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Mayuko Koga
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroto Takeuchi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kuriko Doi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Haruka Sugiyama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
144
|
Guo R, Wang F, Su H, Meng X, Xie Q, Zhao W, Yang Z, Li N. Superiority of 68Ga-DOTA-FAPI-04 PET/CT to 18F-FDG PET/CT in the evaluation of different cancers with bone metastases. Bone 2025; 196:117426. [PMID: 40086684 DOI: 10.1016/j.bone.2025.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND 68Ga-DOTA-FAPI-04 is a new positron imaging agent, and its application in bone metastasis has been limited. The purpose of this retrospective study was to compare the diagnostic ability of 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT to detect bone metastases in patients with different types of cancer. METHODS A total of 293 patients with pathologically confirmed primary malignancies were examined with 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT within one week. Using pathological examination or follow-up CT or MRI scan as the gold standard, the diagnostic efficacy of the two methods in differentiating bone metastases was compared (p < 0.05, with statistical significance). The maximum standard uptake value (SUVmax) of the two methods for different types of bone metastasis was further compared. The SUVmax was used to compare the differences between the two methods in detecting bone metastases in different tumor types and different sites. RESULTS A total of 48 patients were diagnosed with bone metastasis, and 245 patients without bone metastasis. There were 376 bone metastases and 243 benign bone lesions. 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT detected 376 and 228 metastases, respectively. Sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy of 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT were 100.0 % vs 60.6 %, 93.8 % vs 99.2 %, 96.2 % vs 99.2 %, 100.0 % vs 62.0 % and 97.6 % vs 75.8 %, respectively. Compared with 18F-FDG, 68Ga-DOTA-FAPI-04 uptake was significantly increased in both benign bone lesions and metastases (p = 0.001). The uptake of 68Ga-DOTA-FAPI-04 for osteoblastic metastasis was also significantly higher than that of 18F-FDG (p < 0.001). In bone metastasis of lung cancer and gastric cancer, 68Ga-DOTA-FAPI-04 uptake was higher than that of 18F-FDG PET/CT (p < 0.05). Using SUVmax = 4.1 and SUVmax = 6.2 as the cutoff value by 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT, it was possible to predict the occurrence of metastases (AUC = 0.817,95 % CI: 0.791-0.923 vs AUC =0.751,95%CI:0.626-0.875). CONCLUSIONS 68Ga-DOTA-FAPI-04 as a novel imaging agent, can detect more bone metastases and has a higher tracer uptake level than 18F-FDG. Especially for lung and gastric cancer, 68Ga-DOTA-FAPI-04 PET/CT may be a more reliable means to detect bone metastases.
Collapse
Affiliation(s)
- Rui Guo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxi Meng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qing Xie
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Nan Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
145
|
Zhu Q, Guo J, Alee I, Wang C, Li L. Differential expression of bovine milk-derived exosomal miRNAs and their role in modulating endometrial receptivity during early pregnancy. Res Vet Sci 2025; 190:105636. [PMID: 40239443 DOI: 10.1016/j.rvsc.2025.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Endometrial receptivity is critical for successful implantation of bovine embryos. MicroRNA (miRNA), as a key regulator of uterine receptivity, is involved in physiological processes such as cell differentiation, proliferation, and apoptosis. The aim of this study was to identify pregnancy-specific miRNAs derived from milk exosomes of non-pregnant and early pregnant cows. In addition, bioinformatics analysis was used to assess the differential expression, target genes, and functions of these miRNAs in order to examine their significance in endometrial cell regulation. Exosomes were isolated from milk using an exosome extraction kit and then identified by Western blotting and transmission electron microscopy. We used Illumina high-throughput sequencing to profile miRNAs and identify differentially expressed miRNAs in bovine milk-derived exosomes at different stages of pregnancy (days 15, 25 and 30) and in non-pregnant cows (day 0). The sequencing data revealed a significant upregulation of bta-miR-125b in pregnant cows at days 15 and 25 compared to non-pregnant cows. Bta-miR-125b targets the Leukemia inhibitory factor (LIF), which is thought to play a critical role in the development of endometrial receptivity by regulating gene expression. KEGG pathway enrichment and Gene Ontology analysis indicated that the target genes of the differential miRNAs were significantly enriched in the key signaling pathways, including the MAPK, phosphatidylinositol signaling system and PI3K-Akt signaling pathways, as well as physiological activities such as RNA polymerase II transcriptional regulation, protein phosphorylation, apoptosis control and cell proliferation regulation. These signaling pathways and physiological activities are all indispensable parts during the process of pregnancy. These findings emphasize bta-miR-125b critical function in regulating endometrial receptivity via important signaling pathways, providing potential indicators for early pregnancy detection and insights into enhancing reproductive efficiency in dairy cows.
Collapse
Affiliation(s)
- Qi Zhu
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Jiaxing Guo
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Ilyas Alee
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Cheng Wang
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Lian Li
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| |
Collapse
|
146
|
Lin Z, Ying C, Si X, Xue N, Liu Y, Zheng R, Chen Y, Pu J, Zhang B. NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation. Neural Regen Res 2025; 20:2038-2052. [PMID: 38993139 PMCID: PMC11691449 DOI: 10.4103/nrr.nrr-d-23-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/18/2023] [Accepted: 03/18/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00026/figure1/v/2024-09-09T124005Z/r/image-tiff Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation, plays a vital role in the death of dopaminergic neurons. However, the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated. NADPH oxidase 4 is related to oxidative stress, however, whether it regulates dopaminergic neuronal ferroptosis remains unknown. The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis, and if so, by what mechanism. We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model. NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons. Moreover, NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals. Mechanistically, we found that NADPH oxidase 4 interacted with activated protein kinase C α to prevent ferroptosis of dopaminergic neurons. Furthermore, by lowering the astrocytic lipocalin-2 expression, NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation. These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation, which contribute to dopaminergic neuron death, suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhihao Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Changzhou Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Naijia Xue
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ran Zheng
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
147
|
Liu X, Zhang L, Chen J, Shao W. Decoding intricate interactions between m6A modification with mRNAs and non-coding RNAs in cervical cancer: Molecular mechanisms and clinical implications. Cell Signal 2025; 131:111745. [PMID: 40107480 DOI: 10.1016/j.cellsig.2025.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent RNA modification that is regulated by three regulatory factors: "writers", "erasers" and "readers". m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Current research has demonstrated that m6A methylation is involved in the regulation of occurrence and development of cancers by controlling the expression of cancer-related genes. This review summarizes the role of m6A modification on messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) in cervical cancer (CC). We highlight the dual role of m6A regulatory factors, which act as oncogenes or tumor suppressors depending on the cellular context and downstream targets. Additionally, we examine how ncRNAs reciprocally regulate m6A modification in two ways: by guiding the deposition or removal of m6A modifications on RNA targets, and by modulating the expression of m6A regulatory factors. These interactions further contribute to tumor progression. Furthermore, the therapeutic potential of targeting m6A modification has been emphasized in CC. Moreover, recent advances in small-molecule inhibitors targeting m6A regulators and RNA-based therapies which may offer new treatment strategies have been summarized. Finally, we discuss the current challenges in m6A modification research and provide suggestions for future research directions. This review aims to deepen the understanding of m6A modification in CC and contribute to the development of targeted and personalized treatment strategies.
Collapse
Affiliation(s)
- Xuefei Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China; First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Lizhi Zhang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Ji Chen
- Department of Obstetrics, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, Anhui, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
148
|
Ma C, Wang J, Li Q, Wu Y, Yu Z, Chao Y, Liu Z, Chen G. Injectable oxidized high-amylose starch hydrogel scaffold for macrophage-mediated glioblastoma therapy. Biomaterials 2025; 318:123128. [PMID: 39884130 DOI: 10.1016/j.biomaterials.2025.123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Glioblastoma, characterized by rapid proliferation and invasiveness, is largely resistant to current treatment modalities. A major obstacle is the blood-brain barrier (BBB), which restricts the delivery of therapeutic agents as well as the infiltration of effective immune cells into glioblastoma. In this study, we developed an injectable oxidized high-amylose starch hydrogel (OHASM) to serve as a biomaterial scaffold for the delivery of macrophages and macrophage-polarizing drugs, aiming to bypass the BBB and enhance glioblastoma treatment. The in vitro and in vivo experiments confirmed the efficacy of the hydrogel in loading and delivering macrophages and polarizing drugs against glioblastoma. Additionally, the hydrogel's interconnected porous structure was conducive to cellular growth and activity, and its slow release of therapeutics contributed to the extended survival of treated mice in a mouse GL261 glioblastoma tumor model. The immunological mechanisms underlying the therapeutic efficacy were further elucidated, revealing the potential of the hydrogel system to modulate macrophage polarization and induce apoptosis in tumor cells via the poly ADP-ribose polymerase (PARP) pathway. The study underscores the potential of the hydrogel-based macrophage delivery strategy as an effective and safe treatment for glioblastoma, offering a promising avenue for clinical management of this aggressive brain cancer.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006 China
| | - Jiahe Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006 China
| | - Qiaofeng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Yuzhe Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006 China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006 China.
| |
Collapse
|
149
|
Xiong S, Zhang Y, Zhou X, Pant V, Mirani A, Gencel-Augusto J, Chau G, You MJ, Lozano G. Dependence on Mdm2 for Mdm4 inhibition of p53 activity. Cancer Lett 2025; 621:217622. [PMID: 40081463 DOI: 10.1016/j.canlet.2025.217622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Both Mdm2 and Mdm4 inhibit p53 activity by masking of its transcriptional activation domain. In addition, Mdm2 functions as an E3 ubiquitin ligase, targeting p53 for degradation. The amino terminus of Mdm4 binds wild type and mutant p53 while its RING domain, which lacks E3 ligase activity, is required for heterodimerization with Mdm2. To determine how these domains of Mdm4 regulate p53, we generated mouse models with either a deletion of the Mdm4 RING domain (Mdm4ΔR) or all of Mdm4 (Mdm4─) on a hypomorphic (p53neo) background. Mdm4ΔR mice exhibited elevated p53 levels and activity, albeit to a lesser extent than mice with complete Mdm4 loss, indicating that the amino terminus of Mdm4 contributes to p53 inhibition. Moreover, in the absence of Mdm2, neither the deletion of the Mdm4 RING domain nor the complete loss of Mdm4 further increased p53 protein levels on a mutant p53 background, indicating that Mdm4 modulates Mdm2 in its regulation of p53 stability. Collectively, our findings suggest that Mdm4 contributes to p53 inhibition by modulating Mdm2 activity via both its amino terminus and RING domains.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yun Zhang
- Department of Pharmaceutical Sciences, Joan M. Lafleur College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Xin Zhou
- Department of Pediatrics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Vinod Pant
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Akshita Mirani
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Gilda Chau
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guillermina Lozano
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
150
|
Feng Y, Qiu H, Chen D. Regulation of Stem Cell Function by NAD . Physiology (Bethesda) 2025; 40:0. [PMID: 39907078 DOI: 10.1152/physiol.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), a coenzyme in cellular metabolism, has never ceased to capture the fascination of scientists since its discovery in 1906. The expansion of NAD+'s function from cellular metabolism to DNA repair, gene regulation, cell signaling, and aging reflects the central role of cellular metabolism in orchestrating the diverse cellular pathways. In the past decade, NAD+ has emerged as a key regulator of stem cells, opening the door to potential approaches for regenerative medicine. Here we reflect on how the field of NAD+ regulation of stem cells has evolved since a decade ago, when sirtuins, NAD+-dependent enzymes, were shown to be critical regulators of stem cells. We review the recent development on how NAD+ is regulated in stem cells to influence fate decision. We discuss the difference in NAD+ regulation of normal and cancer stem cells. Finally, we consider the consequences of NAD+ regulation of stem cells for health and diseases.
Collapse
Affiliation(s)
- Yufan Feng
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| | - Huixian Qiu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| |
Collapse
|