1451
|
Clingan JM, Matloubian M. B Cell-intrinsic TLR7 signaling is required for optimal B cell responses during chronic viral infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:810-8. [PMID: 23761632 DOI: 10.4049/jimmunol.1300244] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The importance for activation of innate immunity by pattern recognition receptors in forming an effective adaptive immune response is well known. TLRs were demonstrated to be critical for Ab responses to a variety of immunizations. In particular, recent evidence suggests that B cell-intrinsic TLR signaling is required for optimal responses to virus-like Ags, but the mechanisms by which TLR signaling impacts Ab responses during infection in vivo is unclear. In the current study, we demonstrate that deficiency of TLR7 in B cells alone is sufficient to significantly impact Ab responses in mice during chronic viral infection. This effect was independent of T follicular helper cells and resulted in a loss of plasma cells generated later, but not early, in the response. The defect in plasma cell formation appeared to be secondary to a qualitative effect of TLR signaling on the germinal center (GC) B cell response. GC B cells in TLR7-deficient mice proliferated to a lesser extent and had a greater proportion of cells with phenotypic characteristics of light zone, relative to dark zone, GC B cells. These results suggest that B cell-intrinsic TLR signaling in vivo likely affects plasma cell output by altered selection of Ag-specific B cells in the GC.
Collapse
Affiliation(s)
- Jonathan M Clingan
- Division of Rheumatology, Department of Medicine and Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
1452
|
Forsell MNE, Soldemo M, Dosenovic P, Wyatt RT, Karlsson MCI, Karlsson Hedestam GB. Independent expansion of epitope-specific plasma cell responses upon HIV-1 envelope glycoprotein immunization. THE JOURNAL OF IMMUNOLOGY 2013; 191:44-51. [PMID: 23740950 DOI: 10.4049/jimmunol.1203087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs that bind the functional envelope glycoprotein (Env) spike are considered critical for a broadly effective prophylactic HIV-1 vaccine. The difficulty in eliciting such Abs by vaccination is partially attributed to the immunodominance of hydrophilic, surface-exposed variable protein regions of Env. However, little is known about the potential for competition between B cells that recognize distinct and distal epitopes on Env during protein subunit vaccination. In this study, we address this basic question at the level of Ab-secreting cells and serum IgG using a pair of isogenic soluble Env trimers, designated wildtype and gV3, which differ only in their potential to activate B cell responses against the highly immunogenic V3 region of Env. Immunization of mice with gV3 resulted in a markedly lower Ag-specific response compared with that induced by wildtype Env and could be explained by a loss of V3-directed reactivities. There was no redistribution of the response to other regions of Env in gV3-inoculated mice, suggesting that the epitope-specific Ab-secreting cell responses measured after boost are independently regulated rather than dictated by direct or indirect competition between B cells recognizing different structural elements of Env. This information is relevant for ongoing efforts in Env immunogen design to focus responses on conserved neutralizing determinants and for our general understanding of B cell responses to large-protein Ags that display numerous B cell epitopes.
Collapse
Affiliation(s)
- Mattias N E Forsell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
1453
|
Donius LR, Handy JM, Weis JJ, Weis JH. Optimal germinal center B cell activation and T-dependent antibody responses require expression of the mouse complement receptor Cr1. THE JOURNAL OF IMMUNOLOGY 2013; 191:434-47. [PMID: 23733878 DOI: 10.4049/jimmunol.1203176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular dendritic cells (FDCs) and complement receptor (Cr)1 and complement receptor (Cr)2 are important for the generation of humoral immunity. Cr1/2 expression on B cells and FDCs was shown to provide a secondary signal for B cell activation, to facilitate transport of Ag in immune follicles, and to enhance retention of immune complexes by FDCs. We show in this study that murine B cells predominantly express the Cr2 product from the Cr2 gene, whereas FDCs almost exclusively express the Cr1 isoform generated from the Cr2 gene. To define the specific role of Cr1, we created an animal that maintains normal cell-restricted expression of Cr2 but does not express Cr1. Cr1-deficient (Cr1KO) mice develop normal B1 and B2 immature and mature B cell subsets and have normal levels of naive serum Abs but altered levels of natural Abs. Immunization of the Cr1KO animal demonstrates deficient Ab responses to T-dependent, but not T-independent, Ags. Germinal centers from the immunized Cr1KO animal possess a deficiency in activated B cells, similar to that seen for animals lacking both Cr1 and Cr2 or C3. Finally, animals lacking only Cr1 respond similarly to wild-type animals to infections with Streptococcus pneumoniae, a pathogen to which animals lacking C3 or both Cr1 and Cr2 are particularly sensitive. Altogether, these data suggest that the production of Cr1, primarily by FDCs, is critical in the generation of appropriately activated B cells of the germinal center and the generation of mature Ab responses.
Collapse
Affiliation(s)
- Luke R Donius
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
1454
|
Hu J, Havenar-Daughton C, Crotty S. Modulation of SAP dependent T:B cell interactions as a strategy to improve vaccination. Curr Opin Virol 2013; 3:363-70. [PMID: 23743125 DOI: 10.1016/j.coviro.2013.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 11/15/2022]
Abstract
Generating long-term humoral immunity is a crucial component of successful vaccines and requires interactions between T cells and B cells in germinal centers (GC). In GCs, a specialized subset of CD4+ helper T cells, called T follicular helper cells (Tfh), provide help to B cells; this help directs the magnitude and quality of the antibody response. Tfh cell help influences B cell survival, proliferation, somatic hypermutation, class switch recombination, and differentiation. Sustained contact between Tfh cells and B cells is necessary for the provision of help to B cells. SAP (Signaling lymphocytic activation molecule (SLAM)-associated protein, encoded by Sh2d1a) regulates the duration of T:B cell interactions and is required for long-term humoral immunity in animal models and in humans. SAP binds to SLAM family receptors and mediates signaling that affects cell adhesion, cytokine secretion, and TCR signaling strength. Therefore, the modulation of SAP and SLAM family receptor expression represents a major axis by which the quality and duration of an antibody response is controlled after vaccination.
Collapse
Affiliation(s)
- Joyce Hu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
1455
|
Tang J, van Panhuys N, Kastenmüller W, Germain RN. The future of immunoimaging--deeper, bigger, more precise, and definitively more colorful. Eur J Immunol 2013; 43:1407-12. [PMID: 23568494 PMCID: PMC3748132 DOI: 10.1002/eji.201243119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/01/2013] [Accepted: 04/03/2013] [Indexed: 01/28/2023]
Abstract
Immune cells are thoroughbreds, moving farther and faster and surveying more diverse tissue space than their nonhematopoietic brethren. Intravital 2-photon microscopy has provided insights into the movements and interactions of many immune cell types in diverse tissues, but more information is needed to link such analyses of dynamic cell behavior to function. Here, we describe additional methods whose application promises to extend our vision, allowing more complete, multiscale dissection of how immune cell positioning and movement are linked to system state, host defense, and disease.
Collapse
Affiliation(s)
- Jianyong Tang
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | |
Collapse
|
1456
|
Todd EM, Deady LE, Morley SC. Intrinsic T- and B-cell defects impair T-cell-dependent antibody responses in mice lacking the actin-bundling protein L-plastin. Eur J Immunol 2013; 43:1735-44. [PMID: 23589339 DOI: 10.1002/eji.201242780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/19/2013] [Accepted: 04/11/2013] [Indexed: 01/21/2023]
Abstract
Germinal center development, critical for long-term humoral immunity, requires the trafficking of T and B lymphocytes to defined tissues and locations after antigenic challenge. The molecular mechanisms that support lymphocyte trafficking through the linkage of extracellular chemotactic and adhesive cues to the actin cytoskeleton are not yet fully defined. We have previously identified the actin-bundling protein L-plastin (LPL) as a requisite intermediary in both naive B and T lymphocyte migration and in T-cell activation. We tested the hypothesis that humoral immunity would require LPL. We show that mice lacking LPL demonstrated defective germinal center formation and reduced production of T-cell-dependent antibodies. T cells from LPL(-/-) mice exhibited defective expansion of the follicular helper T population. Reduced expansion of LPL(-/-) follicular helper T cells correlated with impaired trafficking to or retention of cells in the spleen following challenge, highlighting the importance of initial lymphocyte recruitment to the eventual success of the immune response. Furthermore, LPL(-/-) B cells demonstrated cell-intrinsic defects in population expansion and in differentiation into germinal center B cells. LPL thus modulates both T- and B-cell function during the germinal center reaction and the production of T-cell-dependent antibody responses.
Collapse
Affiliation(s)
- Elizabeth M Todd
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
1457
|
Choi YS, Yang JA, Crotty S. Dynamic regulation of Bcl6 in follicular helper CD4 T (Tfh) cells. Curr Opin Immunol 2013; 25:366-72. [PMID: 23688737 DOI: 10.1016/j.coi.2013.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/11/2022]
Abstract
Our bodies are continuously exposed to various types of infectious pathogens. Vaccinations are the most cost effective way to protect our bodies against a variety of infectious microbes. The efficacy of most vaccines relies on protective antibody production and generation of memory B cells. These two key components develop mostly from B cells that participate in germinal center reactions. Recent efforts have highlighted the critical role of follicular helper CD4 T (Tfh) cells in the generation of germinal centers. Given that Bcl6 is a major transcription factor for Tfh differentiation, here we review recent developments in the understanding of signaling molecules that regulate Bcl6 expression in CD4 T cells, as a potential target for development of more efficacious vaccines.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
1458
|
The good, the bad and the ugly — TFH cells in human health and disease. Nat Rev Immunol 2013; 13:412-26. [DOI: 10.1038/nri3447] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
1459
|
Xu H, Li X, Liu D, Li J, Zhang X, Chen X, Hou S, Peng L, Xu C, Liu W, Zhang L, Qi H. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 2013; 496:523-7. [PMID: 23619696 DOI: 10.1038/nature12058] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/05/2013] [Indexed: 11/09/2022]
Abstract
Germinal centres support antibody affinity maturation and memory formation. Follicular T-helper cells promote proliferation and differentiation of antigen-specific B cells inside the follicle. A genetic deficiency in the inducible co-stimulator (ICOS), a classic CD28 family co-stimulatory molecule highly expressed by follicular T-helper cells, causes profound germinal centre defects, leading to the view that ICOS specifically co-stimulates the follicular T-helper cell differentiation program. Here we show that ICOS directly controls follicular recruitment of activated T-helper cells in mice. This effect is independent from ICOS ligand (ICOSL)-mediated co-stimulation provided by antigen-presenting dendritic cells or cognate B cells, and does not rely on Bcl6-mediated programming as an intermediate step. Instead, it requires ICOSL expression by follicular bystander B cells, which do not present cognate antigen to T-helper cells but collectively form an ICOS-engaging field. Dynamic imaging reveals ICOS engagement drives coordinated pseudopod formation and promotes persistent T-cell migration at the border between the T-cell zone and the B-cell follicle in vivo. When follicular bystander B cells cannot express ICOSL, otherwise competent T-helper cells fail to develop into follicular T-helper cells normally, and fail to promote optimal germinal centre responses. These results demonstrate a co-stimulation-independent function of ICOS, uncover a key role for bystander B cells in promoting the development of follicular T-helper cells, and reveal unsuspected sophistication in dynamic T-cell positioning in vivo.
Collapse
Affiliation(s)
- Heping Xu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1460
|
Abstract
Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles of histone posttranslational modifications and the significance of AID function outside of antibody diversity.
Collapse
Affiliation(s)
- Jeremy A. Daniel
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
1461
|
Sun J, Rothschild G, Pefanis E, Basu U. Transcriptional stalling in B-lymphocytes: a mechanism for antibody diversification and maintenance of genomic integrity. Transcription 2013; 4:127-35. [PMID: 23584095 PMCID: PMC4042586 DOI: 10.4161/trns.24556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
B cells utilize three DNA alteration strategies-V(D)J recombination, somatic hypermutation (SHM) and class switch recombination (CSR)-to somatically mutate their genome, thereby expressing a plethora of antibodies tailor-made against the innumerable antigens they encounter while in circulation. Of these three events, the single-strand DNA cytidine deaminase, Activation Induced cytidine Deaminase (AID), is responsible for SHM and CSR. Recent advances, discussed in this review article, point toward various components of RNA polymerase II "stalling" machinery as regulators of AID activity during antibody diversification and maintenance of B cell genome integrity.
Collapse
Affiliation(s)
- Jianbo Sun
- Department of Microbiology and Immunology; College of Physicians and Surgeons; Columbia University; New York, NY USA
| | | | | | | |
Collapse
|
1462
|
Nikbakht N, Shen S, Manser T. Cutting edge: Macrophages are required for localization of antigen-activated B cells to the follicular perimeter and the subsequent germinal center response. THE JOURNAL OF IMMUNOLOGY 2013; 190:4923-7. [PMID: 23567932 DOI: 10.4049/jimmunol.1300350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We demonstrated recently that, after accumulation of Ag-engaged B cells at the T cell zone boundaries in the spleen, these B cells migrate to the perimeter of follicles adjacent to the marginal zone. They undergo rapid proliferation at this site prior to coalescence into germinal centers (GCs). In this article, we report that this phase of migration and expansion of activated Ag-specific B cells, as well as subsequent formation of GCs, does not take place in the absence of splenic macrophages. Our data suggest a previously unappreciated function for macrophages in orchestrating the early phases of T cell-dependent B cell responses and formation of GCs distinct from their potential role in Ag presentation to T cells.
Collapse
Affiliation(s)
- Neda Nikbakht
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
1463
|
Promoting remyelination for the treatment of multiple sclerosis: opportunities and challenges. Neurosci Bull 2013; 29:144-54. [PMID: 23558587 DOI: 10.1007/s12264-013-1317-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/06/2013] [Indexed: 01/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic and devastating autoimmune demyelinating disease of the central nervous system. With the increased understanding of the pathophysiology of this disease in the past two decades, many disease-modifying therapies that primarily target adaptive immunity have been shown to prevent exacerbations and new lesions in patients with relapsing-remitting MS. However, these therapies only have limited efficacy on the progression of disability. Increasing evidence has pointed to innate immunity, axonal damage and neuronal loss as important contributors to disease progression. Remyelination of denuded axons is considered an effective way to protect neurons from damage and to restore neuronal function. The identification of several key molecules and pathways controlling the differentiation of oligodendrocyte progenitor cells and myelination has yielded clues for the development of drug candidates that directly target remyelination and neuroprotection. The long-term efficacy of this strategy remains to be evaluated in clinical trials. Here, we provide an overview of current and emerging therapeutic concepts, with a focus on the opportunities and challenges for the remyelination approach to the treatment of MS.
Collapse
|
1464
|
Darzentas N, Stamatopoulos K. The Significance of Stereotyped B-Cell Receptors in Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am 2013; 27:237-50. [DOI: 10.1016/j.hoc.2012.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
1465
|
Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, Pancera M, Zhou T, Incesu RB, Fu BZ, Gnanapragasam PNP, Oliveira TY, Seaman MS, Kwong PD, Bjorkman PJ, Nussenzweig MC. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 2013; 153:126-38. [PMID: 23540694 PMCID: PMC3792590 DOI: 10.1016/j.cell.2013.03.018] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 01/07/2013] [Accepted: 03/11/2013] [Indexed: 01/13/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) to HIV-1 can prevent infection and are therefore of great importance for HIV-1 vaccine design. Notably, bNAbs are highly somatically mutated and generated by a fraction of HIV-1-infected individuals several years after infection. Antibodies typically accumulate mutations in the complementarity determining region (CDR) loops, which usually contact the antigen. The CDR loops are scaffolded by canonical framework regions (FWRs) that are both resistant to and less tolerant of mutations. Here, we report that in contrast to most antibodies, including those with limited HIV-1 neutralizing activity, most bNAbs require somatic mutations in their FWRs. Structural and functional analyses reveal that somatic mutations in FWR residues enhance breadth and potency by providing increased flexibility and/or direct antigen contact. Thus, in bNAbs, FWRs play an essential role beyond scaffolding the CDR loops and their unusual contribution to potency and breadth should be considered in HIV-1 vaccine design.
Collapse
Affiliation(s)
- Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1466
|
Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 2013; 152:417-29. [PMID: 23374339 PMCID: PMC4382911 DOI: 10.1016/j.cell.2013.01.007] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Indexed: 12/15/2022]
Abstract
Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end-joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and the influences of three-dimensional genome organization on physiological processes and cancer genomes.
Collapse
Affiliation(s)
- Frederick W Alt
- Departments of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
1467
|
[Plasma cell-eosinophil interaction]. Z Rheumatol 2013; 72:267-9. [PMID: 23503783 DOI: 10.1007/s00393-012-1032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
1468
|
Raoof S, Heo M, Shakhnovich EI. A one-shot germinal center model under protein structural stability constraints. Phys Biol 2013; 10:025001. [PMID: 23492682 DOI: 10.1088/1478-3975/10/2/025001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The germinal center reaction is the process by which low-affinity B cells evolve into potent, immunoglobulin-secreting plasma and memory B cells. Since the recycling hypothesis was created, experimental studies have both tracked movement of a small population of B cells from the light zone into the dark zone, supporting the recycling model, and parallel to the light zone-dark zone interface, indicating a one-way trajectory. We present a novel, sequence-based ab initio model of protein stability and protein interactions. Our model contains a dark zone region of clonal expansion and somatic hypermutation and a light zone site of antigenic selection. We show not only that a one-shot model is sufficient to achieve biologically-realistic rates of affinity growth, population dynamics, and silent:non-silent mutation ratios in the complementary determining region and framework region of antibodies, but also that a stochastic recycling program with or without realistic constraints on the structural stabilities of GC antibodies cannot produce biologically-observed affinity growth, population dynamics or silent:non-silent mutation profiles. The effect of recycling erases affinity gains made by potent antibodies cycling back from the light zone and causes B cells to pool in the dark zone under high replication rates.
Collapse
Affiliation(s)
- Sana Raoof
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
1469
|
Abstract
Antibody responses represent a key immune protection mechanism. T follicular helper (Tfh) cells are the major CD4(+) T-cell subset that provides help to B cells to generate an antibody response. Tfh cells together with B cells form germinal centers (GCs), the site where high-affinity B cells are selected and differentiate into either memory B cells or long-lived plasma cells. We show here that interleukin-12 receptor β1 (IL-12Rβ1)-mediated signaling is important for in vivo Tfh response in humans. Although not prone to B cell-deficient-associated infections, subjects lacking functional IL-12Rβ1, a receptor for IL-12 and IL-23, displayed substantially less circulating memory Tfh and memory B cells than control subjects. GC formation in lymph nodes was also impaired in IL-12Rβ1-deficient subjects. Consistently, the avidity of tetanus toxoid-specific serum antibodies was substantially lower in these subjects than in age-matched controls. Tfh cells in tonsils from control individuals displayed the active form of signal transducer and activator of transcription 4 (STAT4), demonstrating that IL-12 is also acting on Tfh cells in GCs. Thus, our study shows that the IL-12-STAT4 axis is associated with the development and the functions of Tfh cells in vivo in humans.
Collapse
|
1470
|
Persistent Antigen and Germinal Center B Cells Sustain T Follicular Helper Cell Responses and Phenotype. Immunity 2013; 38:596-605. [DOI: 10.1016/j.immuni.2012.11.020] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/12/2012] [Indexed: 01/29/2023]
|
1471
|
Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013; 12:229-43. [PMID: 23449308 PMCID: PMC7595252 DOI: 10.1038/nrd3937] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signalling through the B cell receptor (BCR) is central to the development and maintenance of B cells. In light of the numerous proliferative and survival pathways activated downstream of the BCR, it comes as no surprise that malignant B cells would co-opt this receptor to promote their own growth and survival. However, direct evidence for BCR signalling in human lymphoma has only come to light recently. Roles for antigen-dependent and antigen-independent, or tonic, BCR signalling have now been described for several different lymphoma subtypes. Furthermore, correlative data implicate antigen-dependent BCR signalling in many other forms of lymphoma. A host of therapeutic agents targeting effectors of the BCR signalling pathway are now in clinical trials and have shown initial success against multiple forms of lymphoma.
Collapse
Affiliation(s)
- Ryan M Young
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
1472
|
Immunopaleontology reveals how affinity enhancement is achieved during affinity maturation of antibodies to influenza virus. Proc Natl Acad Sci U S A 2013; 110:7-8. [PMID: 23284164 DOI: 10.1073/pnas.1219396110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
1473
|
Sindhava VJ, Scholz JL, Cancro MP. Roles for BLyS family members in meeting the distinct homeostatic demands of innate and adaptive B cells. Front Immunol 2013; 4:37. [PMID: 23443938 PMCID: PMC3580333 DOI: 10.3389/fimmu.2013.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
B-1 and B-2 B cell populations have different progenitors, receptor diversity, anatomic location, and functions – suggesting vastly differing requisites for homeostatic regulation. There is evidence that the B lymphocyte stimulator (BLyS) family of cytokines and receptors, key factors in the homeostatic regulation of B-2 B cell subsets, is also a major player in the B-1 compartment. Here we review the development and differentiation of these two primary B cell lineages and their immune functions. We discuss evidence that BLyS or a proliferation-inducing ligand (APRIL) availability in different anatomic sites, coupled with signature BLyS receptor expression patterns on different B cell subsets, may be important for homeostatic regulation of B-1 as well as B-2 populations. Finally, we extend our working model of B cell homeostasis to integrate B-1s.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | |
Collapse
|
1474
|
Phares TW, Stohlman SA, Bergmann CC. Intrathecal humoral immunity to encephalitic RNA viruses. Viruses 2013; 5:732-52. [PMID: 23435240 PMCID: PMC3640523 DOI: 10.3390/v5020732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022] Open
Abstract
The nervous system is the target for acute encephalitic viral infections, as well as a reservoir for persisting viruses. Intrathecal antibody (Ab) synthesis is well documented in humans afflicted by infections associated with neurological complications, as well as the demyelinating disease, multiple sclerosis. This review focuses on the origin, recruitment, maintenance, and biological relevance of Ab-secreting cells (ASC) found in the central nervous system (CNS) following experimental neurotropic RNA virus infections. We will summarize evidence for a highly dynamic, evolving humoral response characterized by temporal alterations in B cell subsets, proliferation, and differentiation. Overall local Ab plays a beneficial role via complement-independent control of virus replication, although cross or self-reactive Ab to CNS antigens may contribute to immune-mediated pathogenesis during some infections. Importantly, protective Ab exert anti-viral activity not only by direct neutralization, but also by binding to cell surface-expressed viral glycoproteins. Ab engagement of viral glycoproteins blocks budding and mediates intracellular signaling leading to restored homeostatic and innate functions. The sustained Ab production by local ASC, as well as chemokines and cytokines associated with ASC recruitment and retention, are highlighted as critical components of immune control.
Collapse
Affiliation(s)
- Timothy W Phares
- Departments of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
1475
|
Pai S, Danne KJ, Qin J, Cavanagh LL, Smith A, Hickey MJ, Weninger W. Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy. Front Cell Neurosci 2013; 6:67. [PMID: 23316136 PMCID: PMC3539661 DOI: 10.3389/fncel.2012.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023] Open
Abstract
Intravital imaging of the superficial brain tissue in mice represents a powerful tool for the dissection of the cellular and molecular cues underlying inflammatory and infectious central nervous system (CNS) diseases. We present here a step-by-step protocol that will enable a non-specialist to set up a two-photon brain-imaging model. The protocol offers a two-part approach that is specifically optimized for imaging leukocytes but can be easily adapted to answer varied CNS-related biological questions. The protocol enables simultaneous visualization of fluorescently labeled immune cells, the pial microvasculature and extracellular structures such as collagen fibers at high spatial and temporal resolution. Intracranial structures are exposed through a cranial window, and physiologic conditions are maintained during extended imaging sessions via continuous superfusion of the brain surface with artificial cerebrospinal fluid (aCSF). Experiments typically require 1-2 h of preparation, which is followed by variable periods of immune cell tracking. Our methodology converges the experience of two laboratories over the past 10 years in diseased animal models such as cerebral ischemia, lupus, cerebral malaria, and toxoplasmosis. We exemplify the utility of this protocol by tracking leukocytes in transgenic mice in the pial vessels under steady-state conditions.
Collapse
Affiliation(s)
- Saparna Pai
- Immune Imaging Program, The Centenary Institute Newtown, NSW, Australia ; Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
1476
|
Abstract
A large antibody repertoire is generated in developing B cells in the bone marrow. Before these B cells achieve immunocompetence, those expressing autospecificities must be purged. To that end, B cells within the bone marrow and just following egress from the bone marrow are subject to tolerance induction. Once B cells achieve immunocompetence, the antibody repertoire can be further diversified by somatic hypermutation of immunoglobulin genes in B cells that have been activated by antigen and cognate T cell help and have undergone a germinal center (GC) response. This process also leads to the generation of autoreactive B cells which must be again purged to protect the host. Thus, B cells within the GC and just following egress from the GC are also subject to tolerance induction. Available data suggest that B cell intrinsic processes triggered by signaling through the B cell receptor activate tolerance mechanisms at both time points. Recent data suggest that GC and post-GC B cells are also subject to B cell extrinsic tolerance mechanisms mediated through soluble and membrane-bound factors derived from various T cell subsets.
Collapse
|
1477
|
Abstract
The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.
Collapse
Affiliation(s)
- Celia Keim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
1478
|
Abstract
Expression of Toll-like receptors (TLRs) in B cells provides a cell-intrinsic mechanism for innate signals regulating adaptive immune responses. In combination with other signaling pathways in B cells, including through the B-cell receptor (BCR), TLR signaling plays multiple roles in B-cell differentiation and activation. The outcome of TLR signaling in B cells is largely context-dependent, which partly explains discrepancies among in vitro and in vivo studies, or studies using different immunogens. We focus on recent findings on how B-cell-intrinsic TLR signaling regulates antibody responses, including germinal center formation and autoantibody production in autoimmune disease models. In addition, TLR signaling also acts on the precursors of B cells, which could influence the immune response of animals by shaping the composition of the immune system. With TLR signaling modulating immune responses at these different levels, much more needs to be understood before we can depict the complete functions of innate signaling in host defense.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
1479
|
|
1480
|
Abstract
mTOR is an evolutionarily conserved serine/threonine kinase that plays a critical role in cell growth and metabolism by sensing different environmental cues. There is a growing appreciation of mTOR in immunology for its role in integrating diverse signals from the immune microenvironment and coordinating the functions of immune cells and their metabolism. In CD8 T cells, mTOR has shown to influence cellular commitment to effector versus memory programming; in CD4 T cells, mTOR integrates environmental cues that instruct effector cell differentiation. In this review, we summarize and discuss recent advances in the field, with a focus on the mechanisms through which mTOR regulates cellular and humoral immunity. Further understanding will enable the manipulation of mTOR signaling to direct the biological functions of immune cells, which holds great potential for improving immune therapies and vaccination against infections and cancer.
Collapse
Affiliation(s)
| | | | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory, University School of Medicine, Atlanta, GA, 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory, University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
1481
|
A method for inducing antigen-specific IgG production by in vitro immunization. J Immunol Methods 2012; 386:60-9. [DOI: 10.1016/j.jim.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/22/2012] [Accepted: 08/29/2012] [Indexed: 12/26/2022]
|
1482
|
Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc Natl Acad Sci U S A 2012; 110:264-9. [PMID: 23175789 DOI: 10.1073/pnas.1218256109] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Affinity maturation refines a naive B-cell response by selecting mutations in antibody variable domains that enhance antigen binding. We describe a B-cell lineage expressing broadly neutralizing influenza virus antibodies derived from a subject immunized with the 2007 trivalent vaccine. The lineage comprises three mature antibodies, the unmutated common ancestor, and a common intermediate. Their heavy-chain complementarity determining region inserts into the conserved receptor-binding pocket of influenza HA. We show by analysis of structures, binding kinetics and long time-scale molecular dynamics simulations that antibody evolution in this lineage has rigidified the initially flexible heavy-chain complementarity determining region by two nearly independent pathways and that this preconfiguration accounts for most of the affinity gain. The results advance our understanding of strategies for developing more broadly effective influenza vaccines.
Collapse
|
1483
|
Basso K, Schneider C, Shen Q, Holmes AB, Setty M, Leslie C, Dalla-Favera R. BCL6 positively regulates AID and germinal center gene expression via repression of miR-155. ACTA ACUST UNITED AC 2012; 209:2455-65. [PMID: 23166356 PMCID: PMC3526356 DOI: 10.1084/jem.20121387] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center (GC) formation and whose de-regulation is involved in lymphomagenesis. Although substantial evidence indicates that BCL6 exerts its function by repressing the transcription of hundreds of protein-coding genes, its potential role in regulating gene expression via microRNAs (miRNAs) is not known. We have identified a core of 15 miRNAs that show binding of BCL6 in their genomic loci and are down-regulated in GC B cells. Among BCL6 validated targets, miR-155 and miR-361 directly modulate AID expression, indicating that via repression of these miRNAs, BCL6 up-regulates AID. Similarly, the expression of additional genes relevant for the GC phenotype, including SPI1, IRF8, and MYB, appears to be sustained via BCL6-mediated repression of miR-155. These findings identify a novel mechanism by which BCL6, in addition to repressing protein coding genes, promotes the expression of important GC functions by repressing specific miRNAs.
Collapse
Affiliation(s)
- Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
1484
|
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Res Ther 2012; 14 Suppl 4:S1. [PMID: 23281837 PMCID: PMC3535718 DOI: 10.1186/ar3918] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clearest evidence that B cells play an important role in human autoimmunity is that immunotherapies that deplete B cells are very effective treatments for many autoimmune diseases. All people, healthy or ill, have autoreactive B cells, but not at the same frequency. A number of genes influence the level of these autoreactive B cells and whether they are eliminated or not during development at a central checkpoint in the bone marrow (BM) or at a later checkpoint in peripheral lymphoid tissues. These genes include those encoding proteins that regulate signaling through the B-cell receptor complex such as Btk and PTPN22, proteins that regulate innate signaling via Toll-like receptors (TLRs) such as MyD88 and interleukin-1 receptor-associated kinase 4, as well as the gene encoding the activation-induced deaminase (AID) essential for B cells to undergo class switch recombination and somatic hypermutation. Recent studies have revealed that TLR signaling elements and AID function not only in peripheral B cells to help mediate effective antibody responses to foreign antigens, but also in the BM to help remove autoreactive B-lineage cells at a very early point in B-cell development. Newly arising B cells that leave the BM and enter the blood and splenic red pulp can express both AID and TLR signaling elements like TLR7, and thus are fully equipped to respond rapidly to antigens (including autoantigens), to isotype class switch, and to undergo somatic hypermutation. These red pulp B cells may thus be an important source of autoantibody-producing cells arising particularly in extrafollicular sites, and indeed may be as significant a source of autoantibody-producing cells as B cells arising from germinal centers.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Immunology, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
1485
|
Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 2012; 13:1083-91. [PMID: 23001145 PMCID: PMC3711534 DOI: 10.1038/ni.2428] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/21/2012] [Indexed: 12/14/2022]
Abstract
After antigenic challenge, B cells enter the dark zone (DZ) of germinal centers (GCs) to proliferate and hypermutate their immunoglobulin genes. Mutants with greater affinity for the antigen are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells or reenter the DZ. The molecular circuits that govern positive selection in the GC are not known. We show here that the GC reaction required biphasic regulation of expression of the cell-cycle regulator c-Myc that involved its transient induction during early GC commitment, its repression by Bcl-6 in DZ B cells and its reinduction in B cells selected for reentry into the DZ. Inhibition of c-Myc in vivo led to GC collapse, which indicated an essential role for c-Myc in GCs. Our results have implications for the mechanism of GC selection and the role of c-Myc in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Expression Regulation
- Genes, Reporter
- Genes, myc/immunology
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Green Fluorescent Proteins
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/pathology
- Mice
- Mice, Transgenic
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
| | - Gabriel D. Victora
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Carol Y. Ying
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Ryan T. Phan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Masumichi Saito
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
1486
|
Mesin L, Sollid LM, Di Niro R. The intestinal B-cell response in celiac disease. Front Immunol 2012; 3:313. [PMID: 23060888 PMCID: PMC3463893 DOI: 10.3389/fimmu.2012.00313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/18/2012] [Indexed: 12/19/2022] Open
Abstract
The function of intestinal immunity is to provide protection toward pathogens while preserving the composition of the microflora and tolerance to orally fed nutrients. This is achieved via a number of tightly regulated mechanisms including production of IgA antibodies by intestinal plasma cells. Celiac disease is a common gut disorder caused by a dysfunctional immune regulation as signified, among other features, by a massive intestinal IgA autoantibody response. Here we review the current knowledge of this B-cell response and how it is induced, and we discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Luka Mesin
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
1487
|
Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 2012; 120:2240-8. [PMID: 22740445 PMCID: PMC3447782 DOI: 10.1182/blood-2012-03-415380] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/12/2012] [Indexed: 11/20/2022] Open
Abstract
Germinal centers (GCs) are sites of B-cell clonal expansion, hypermutation, and selection. GCs are polarized into dark (DZ) and light zones (LZ), a distinction that is of key importance to GC selection. However, the difference between the B cells in each of these zones in humans remains unclear. We show that, as in mice, CXCR4 and CD83 can be used to distinguish human LZ and DZ cells. Using these markers, we show that LZ and DZ cells in mice and humans differ only in the expression of characteristic "activation" and "proliferation" programs, suggesting that these populations represent alternating states of a single-cell type rather than distinct differentiation stages. In addition, LZ/DZ transcriptional profiling shows that, with the exception of "molecular" Burkitt lymphomas, nearly all human B-cell malignancies closely resemble LZ cells, which has important implications for our understanding of the molecular programs of lymphomagenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cells, Cultured
- Child
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Oligonucleotide Array Sequence Analysis
- Palatine Tonsil/immunology
- Palatine Tonsil/metabolism
- Palatine Tonsil/pathology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Species Specificity
- CD83 Antigen
Collapse
Affiliation(s)
- Gabriel D Victora
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
1488
|
Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:79-103. [PMID: 22974238 DOI: 10.1146/annurev-pathol-020712-164004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of B cell lymphomas in the early 1980s led to the cloning of genes (c-MYC and IGH) at a chromosome translocation breakpoint. A rush followed to identify recurrently translocated genes in all types of cancer, which led to remarkable advances in our understanding of cancer genetics. B lymphocyte tumors commonly bear chromosome translocations to immunoglobulin genes, which points to a role for antibody gene diversification processes in tumorigenesis. The discovery of activation-induced cytidine deaminase (AID) and the use of murine models to study translocation have led to a new understanding of how these events contribute to the genesis of lymphomas. Here, we review these advances with a focus on AID and insights gained from the study of translocations in primary cells.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
1489
|
Zuidscherwoude M, van Spriel AB. The origin of IgE memory and plasma cells. Cell Mol Immunol 2012; 9:373-4. [PMID: 22885525 DOI: 10.1038/cmi.2012.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
1490
|
Abstract
Three recent papers provide striking insight into the mechanisms used to regulate B-cell differentiation. They demonstrate that B-cell fate choice can be stochastic, directed, inherited, or some combination of these, depending on the circumstances. The trick is going to be working out which is important when.
Collapse
Affiliation(s)
- David Tarlinton
- Walter and Eliza Hall Institute, 1G Royal Melbourne Hospital, Parkville 3052, Australia.
| |
Collapse
|
1491
|
Meyer-Hermann M, Mohr E, Pelletier N, Zhang Y, Victora GD, Toellner KM. A theory of germinal center B cell selection, division, and exit. Cell Rep 2012; 2:162-74. [PMID: 22840406 DOI: 10.1016/j.celrep.2012.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/22/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger.
Collapse
Affiliation(s)
- Michael Meyer-Hermann
- Department for Systems Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
1492
|
Zotos D, Tarlinton DM. Determining germinal centre B cell fate. Trends Immunol 2012; 33:281-8. [DOI: 10.1016/j.it.2012.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 12/13/2022]
|
1493
|
Peperzak V, Vikstrom IB, Tarlinton DM. Through a glass less darkly: apoptosis and the germinal center response to antigen. Immunol Rev 2012; 247:93-106. [DOI: 10.1111/j.1600-065x.2012.01123.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
1494
|
IgA synthesis: a form of functional immune adaptation extending beyond gut. Curr Opin Immunol 2012; 24:261-8. [PMID: 22503962 DOI: 10.1016/j.coi.2012.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody isotype in mammals. The primary function of IgA is to maintain homeostasis at mucosal surfaces. IgA is generated in specialized gut associated lymphoid tissues (GALT) by T cell-dependent and T cell-independent mechanisms. Studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Aberrant bacterial growth, by activating innate and adaptive immune cells, has emerged as a risk factor for inflammatory diseases such as metabolic disorders and autoimmune diseases. Dynamic diversification of IgA shields bacterial antigens preventing inflammatory responses, but when IgA regulation is suboptimal aberrant bacterial growth and inflammation can ensue.
Collapse
|
1495
|
Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function. Blood 2012; 119:3966-74. [PMID: 22411869 DOI: 10.1182/blood-2010-09-308197] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASP) is a key cytoskeletal regulator of hematopoietic cells. Although WASP-knockout (WKO) mice have aberrant B-cell cytoskeletal responses, B-cell development is relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homolog of WASP, may serve some redundant functions with WASP in B cells. In the present study, we generated mice lacking WASP and N-WASP in B cells (conditional double knockout [cDKO] B cells) and show that cDKO mice had decreased numbers of follicular and marginal zone B cells in the spleen. Receptor-induced activation of cDKO B cells led to normal proliferation but a marked reduction of spreading compared with wild-type and WKO B cells. Whereas WKO B cells showed decreased migration in vitro and homing in vivo compared with wild-type cells, cDKO B cells showed an even more pronounced decrease in the migratory response in vivo. After injection of 2,4,6-trinitrophenol (TNP)-Ficoll, cDKO B cells had reduced antigen uptake in the splenic marginal zone. Despite high basal serum IgM, cDKO mice mounted a reduced immune response to the T cell-independent antigen TNP-Ficoll and to the T cell-dependent antigen TNP-keyhole limpet hemocyanin. Our results reveal that the combined activity of WASP and N-WASP is required for peripheral B-cell development and function.
Collapse
|
1496
|
Abstract
Interleukin (IL)-21 is a member of a family of cytokines that includes IL-2, IL-4, IL-7, IL-9, and IL-15, all of which utilize a common γ chain in their individual receptor complexes for delivering intracellular signals in their target cells. IL-21 is produced by CD4+ T-cells, in particular follicular T-helper cells, and is critically important in the regulation and maintenance of T cells and B cells in innate and adaptive immunity. The effects of IL-21 are pleiotropic because of the broad cellular distribution of the IL-21 receptor, and it plays a critical role in T cell-dependent and -independent human B cell differentiation for generating humoral immune responses. This article reviews the current knowledge about the importance of IL-21 and IL-21 receptor interaction in human B cell responses, immune defects of B cells and IL-21 in HIV infection, and the potential applicability of IL-21 in vaccines/immunotherapeutic approaches to augment relevant immune responses.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL- 33136
| | - Anita Parmigiani
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL- 33136
| | - Savita Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL- 33136
| |
Collapse
|