151
|
Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honoré N, Doubeikovsky A, Duprez E, Pandolfi PP, Puvion E, Freemont P, de Thé H. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 2001; 193:1361-71. [PMID: 11413191 PMCID: PMC2193303 DOI: 10.1084/jem.193.12.1361] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promyelocytic leukemia (PML) is the organizer of nuclear matrix domains, PML nuclear bodies (NBs), with a proposed role in apoptosis control. In acute promyelocytic leukemia, PML/retinoic acid receptor (RAR) alpha expression disrupts NBs, but therapies such as retinoic acid or arsenic trioxide (As2O3) restore them. PML is conjugated by the ubiquitin-related peptide SUMO-1, a process enhanced by As2O3 and proposed to target PML to the nuclear matrix. We demonstrate that As2O3 triggers the proteasome-dependent degradation of PML and PML/RARalpha and that this process requires a specific sumolation site in PML, K160. PML sumolation is dispensable for its As2O3-induced matrix targeting and formation of primary nuclear aggregates, but is required for the formation of secondary shell-like NBs. Interestingly, only these mature NBs harbor 11S proteasome components, which are further recruited upon As2O3 exposure. Proteasome recruitment by sumolated PML only likely accounts for the failure of PML-K160R to be degraded. Therefore, studying the basis of As2O3-induced PML/RARalpha degradation we show that PML sumolation directly or indirectly promotes its catabolism, suggesting that mature NBs could be sites of intranuclear proteolysis and opening new insights into NB alterations found in viral infections or transformation.
Collapse
Affiliation(s)
- Valérie Lallemand-Breitenbach
- Centre National de la Recherche Scientifique (CNRS) UPR 9051, Laboratoire Associé N°11 du Comité de Paris de la Ligue Nationale Contre le Cancer, Affilié à l'Université Paris VII, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | - Jun Zhu
- Centre National de la Recherche Scientifique (CNRS) UPR 9051, Laboratoire Associé N°11 du Comité de Paris de la Ligue Nationale Contre le Cancer, Affilié à l'Université Paris VII, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | - Francine Puvion
- CNRS UPR 9044, BP 8 Institut de Recherche sur le Cancer, 94801 Villejuif, France
| | - Marcel Koken
- Centre National de la Recherche Scientifique (CNRS) UPR 9051, Laboratoire Associé N°11 du Comité de Paris de la Ligue Nationale Contre le Cancer, Affilié à l'Université Paris VII, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | - Nicole Honoré
- Centre National de la Recherche Scientifique (CNRS) UPR 9051, Laboratoire Associé N°11 du Comité de Paris de la Ligue Nationale Contre le Cancer, Affilié à l'Université Paris VII, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | - Alexandre Doubeikovsky
- Centre National de la Recherche Scientifique (CNRS) UPR 9051, Laboratoire Associé N°11 du Comité de Paris de la Ligue Nationale Contre le Cancer, Affilié à l'Université Paris VII, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | - Estelle Duprez
- Molecular Structure and Function Laboratory, Imperial Cancer Research Fund, WC2A3PX London, United Kingdom
| | - Pier Paolo Pandolfi
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Edmond Puvion
- CNRS UPR 9044, BP 8 Institut de Recherche sur le Cancer, 94801 Villejuif, France
| | - Paul Freemont
- Molecular Structure and Function Laboratory, Imperial Cancer Research Fund, WC2A3PX London, United Kingdom
| | - Hugues de Thé
- Centre National de la Recherche Scientifique (CNRS) UPR 9051, Laboratoire Associé N°11 du Comité de Paris de la Ligue Nationale Contre le Cancer, Affilié à l'Université Paris VII, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| |
Collapse
|
152
|
Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Shinagawa T, Ichikawa-Iwata E, Zhong S, Pandolfi PP, Ishii S. Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol Cell 2001; 7:1233-43. [PMID: 11430826 DOI: 10.1016/s1097-2765(01)00257-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusion of the promyelocytic leukemia (PML) protein to the retinoic acid receptor-alpha (RARalpha) generates the transforming protein of acute promyelocytic leukemias. PML appears to be involved in multiple functions, including apoptosis and transcriptional activation by RAR, whereas PML-RARalpha blocks these functions of PML. However, the mechanisms of leukemogenesis by PML-RARalpha remain elusive. Here we show that PML interacts with multiple corepressors (c-Ski, N-CoR, and mSin3A) and histone deacetylase 1, and that this interaction is required for transcriptional repression mediated by the tumor suppressor Mad. PML-RARalpha has the two corepressor-interacting sites and inhibits Mad-mediated repression, suggesting that aberrant binding of PML-RARalpha to the corepressor complexes may lead to abrogation of the corepressor function. These mechanisms may contribute to events leading to leukemogenesis.
Collapse
Affiliation(s)
- M M Khan
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 305-0074, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Tobaly-Tapiero J, Bittoun P, Giron ML, Neves M, Koken M, Saïb A, de Thé H. Human foamy virus capsid formation requires an interaction domain in the N terminus of Gag. J Virol 2001; 75:4367-75. [PMID: 11287585 PMCID: PMC114181 DOI: 10.1128/jvi.75.9.4367-4375.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral Gag expression is sufficient for capsid assembly, which occurs through interaction between distinct Gag domains. Human foamy virus (HFV) capsids assemble within the cytoplasm, although their budding, which mainly occurs in the endoplasmic reticulum, requires the presence of homologous Env. Yet little is known about the molecular basis of HFV Gag precursor assembly. Using fusions between HFV Gag and a nuclear reporter protein, we have identified a strong interaction domain in the N terminus of HFV Gag which is predicted to contain a conserved coiled-coil motif. Deletion within this region in an HFV provirus abolishes viral production through inhibition of capsid assembly.
Collapse
Affiliation(s)
- J Tobaly-Tapiero
- CNRS UPR9051, Hôpital Saint-Louis, Université Paris 7, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
154
|
Adamson AL, Kenney S. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 2001; 75:2388-99. [PMID: 11160742 PMCID: PMC114822 DOI: 10.1128/jvi.75.5.2388-2399.2001] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the immediate-early proteins of both herpes simplex virus (HSV) and cytomegalovirus (CMV) are known to modify promyelocytic leukemia (PML) (ND10) bodies in the nucleus of the host cell, it has been unclear whether lytic infection with gamma herpesviruses induces a similar effect. The PML protein is induced by interferon, involved in major histocompatibility complex class I presentation, and necessary for certain types of apoptosis. Therefore, it is likely that PML bodies function in an antiviral capacity. SUMO-1 modification of PML is known to be required for the formation of PML bodies. To examine whether Epstein-Barr virus (EBV) lytic replication interferes with PML bodies, we expressed the EBV immediate-early genes BZLF1 (Z) and BRLF1 (R) in EBV-positive cell lines and examined PML localization. Both Z and R expression resulted in PML dispersion in EBV-positive cells. Z but not R expression is sufficient to disrupt PML bodies in EBV-negative cell lines. We show that dispersion of PML bodies by Z requires a portion of the transcriptional activation domain of Z but not the DNA-binding function. As was previously reported for the HSV-1 ICP0 and CMV IE1 proteins, Z reduces the amount of SUMO-1-modified PML. We also found that Z itself is SUMO-1 modified (through amino acid 12) and that Z competes with PML for limiting amounts of SUMO-1. These results suggest that disruption of PML bodies is important for efficient lytic replication of EBV. Furthermore, Z may potentially alter the function of a variety of cellular proteins by inhibiting SUMO-1 modification.
Collapse
Affiliation(s)
- A L Adamson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|
155
|
Lehembre F, Müller S, Pandolfi PP, Dejean A. Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene 2001; 20:1-9. [PMID: 11244500 DOI: 10.1038/sj.onc.1204063] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Revised: 10/25/2000] [Accepted: 10/30/2000] [Indexed: 11/08/2022]
Abstract
Pax3 is an evolutionarily conserved transcription factor that plays a major role in a variety of developmental processes. Mutations in Pax3 lead to severe malformations as seen in human Waardenburg syndrome and in the Splotch mutant mice. The transcriptional activity of Pax3 was recently shown to be repressed by Daxx whereas the oncogenic fusion protein Pax3-FKHR is unresponsive to this repressive action. Here we demonstrate that Daxx-mediated repression of Pax3 can be inhibited by the nuclear body (NB)-associated protein PML. Interestingly, this suppression of Daxx properties correlates with its recruitment to the NBs. Factors such as arsenicals and interferons that enhance NB formation, trigger both the targeting of Daxx to these nuclear structures and the relief of the repressive activity of Daxx. Conversely, lack of structurally intact NBs profoundly impairs Pax3 transcriptional activity, likely by increasing the pool of available nucleoplasmic Daxx. Moreover, a PML mutant that can not be modified by the ubiquitin-related SUMO-1 modifier is no more able to interact with Daxx. Consistently, such a mutant fails both to inhibit the Daxx repressing effect on Pax3 and to induce its accumulation into the NBs. Taken together, these results argue that SUMO-1 modified PML can derepress Pax3 transcriptional activity through sequestration of the Daxx repressor into the NBs and suggest a role for these nuclear structures in the transcriptional control by Pax proteins. Oncogene (2001) 20, 1 - 9.
Collapse
Affiliation(s)
- F Lehembre
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
156
|
Merghoub T, Gurrieri C, Piazza F, Pandolfi PP. Modeling Acute Promyelocytic Leukemia in the Mouse: New Insights in the Pathogenesis of Human Leukemias. Blood Cells Mol Dis 2001; 27:231-48. [PMID: 11358384 DOI: 10.1006/bcmd.2001.0385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the expansion of malignant myeloid cells blocked at the promyelocytic stage of differentiation and is associated with reciprocal chromosomal translocations always involving the retinoic acid receptor alpha (RARalpha) gene on chromosome 17. As a consequence of the translocation, RARalpha variably fuses to the PML, PLZF, NPM, NuMA, and Stat5b genes (X genes), respectively, leading to the generation of RARalpha-X and X-RARalpha fusion genes. The aberrant chimeric proteins encoded by these genes, as well as the inactivation of the X and RARalpha functions, may exert a crucial role in leukemogenesis. To define the molecular genetics of APL and the contribution of each molecular event in APL pathogenesis, we have generated transgenic mice harboring X-RARalpha and/or RARalpha-X genes as well as mice where the various X genes have been inactivated by homologous recombination. Here we show that while the X-RARalpha fusion gene is crucial for leukemogenesis, the presence of RARalpha-X and the inactivation of X function are critical in modulating the onset as well as the phenotype of the leukemia.
Collapse
Affiliation(s)
- T Merghoub
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
157
|
|
158
|
Negorev D, Ishov AM, Maul GG. Evidence for separate ND10-binding and homo-oligomerization domains of Sp100. J Cell Sci 2001; 114:59-68. [PMID: 11112690 DOI: 10.1242/jcs.114.1.59] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear domains called ND10 or PML nuclear bodies consist of an aggregation of several proteins, most notably PML and Sp100. PML is essential in the nucleation and formation of ND10 as well as in the recruitment of other ND10-associated proteins such as Daxx, pRb, BLM and Sp100. In cells induced to overexpress Sp100, ND10 binding of Sp100 was saturable and excess Sp100 formed new aggregation sites devoid of other ND10-associated proteins, suggesting that homo-oligomerization is the basis for aggregation. To determine whether Sp100 binds to ND10 through hetero- or oligomerization, Sp100 deletion variants fused with GFP were transfected into cells with and without endogenous Sp100, and the localization of the GFP-labeled fragments was determined relative to ND10. Amino acids 29-152 were sufficient for deposition of the GFP-labeled fragments at ND10 in the absence of endogenous Sp100 (heterologous binding) and for self-aggregation (formation of new Sp100 deposits). None of the shorter fragments was deposited at ND10 or self-aggregated. The 29-152 amino acid fragment and some larger fragments, but not the full-size Sp100, induced elongation of ND10, which at their ends contain only Sp100, probably due to self-aggregation. By fusing a peptide consisting of the p53-binding domain from hMDM2 to the Sp100(29-152) fragment, this self-aggregation could be blocked while retaining the limited ND10 binding capacity, indicating that the Sp100 self-aggregation domain and the ND10 binding domain are separate entities. This fusion peptide was used to demonstrate the potential of ND10 to recruit p53 as a protein not usually present at this site. Such deposited p53 was protected from turnover. The capacity of ND10 to recruit Sp100 may serve primarily to reduce its availability.
Collapse
Affiliation(s)
- D Negorev
- The Wistar Institute, Philadelphia, PA, USA
| | | | | |
Collapse
|
159
|
Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS, Spector DL. Visualization of gene activity in living cells. Nat Cell Biol 2000; 2:871-8. [PMID: 11146650 DOI: 10.1038/35046510] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chromatin structure is thought to play a critical role in gene expression. Using the lac operator/repressor system and two colour variants of green fluorescent protein (GFP), we developed a system to visualize a gene and its protein product directly in living cells, allowing us to examine the spatial organization and timing of gene expression in vivo. Dynamic morphological changes in chromatin structure, from a condensed to an open structure, were observed upon gene activation, and targeting of the gene product, cyan fluorescent protein (CFP) reporter to peroxisomes was visualized directly in living cells. We found that the integrated gene locus was surrounded by a promyelocytic leukaemia (PML) nuclear body. The association was transcription independent but was dependent upon the direct in vivo binding of specific proteins (EYFP/lac repressor, tetracycline receptor/VP16 transactivator) to the locus. The ability to visualize gene expression directly in living cells provides a powerful system with which to study the dynamics of nuclear events such as transcription, RNA processing and DNA repair.
Collapse
Affiliation(s)
- T Tsukamoto
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
Vitamin A, its physiologic metabolites, and synthetic derivatives (retinoids) have been shown to have protective effects against the development of certain types of cancer. In addition, pharmacologic amounts of retinoids have been used with some success in the treatment of a few human tumors. The chemoprevention effect of retinoids is most likely exerted at the tumor-promotion phase of carcinogenesis. Retinoids block tumor promotion by inhibiting proliferation, inducing apoptosis, inducing differentiation, or a combination of these actions. Clinically, isotretinoin (13-cis-retinoic acid) significantly decreases the incidence of second primary tumors in patients with head-and-neck cancer and reduces appearance of non-melanoma skin cancer in patients with xeroderma pigmentosum. Retinoic acid has proved to be an effective treatment for promyelocytic leukemia. However, retinoid resistance limits its use as a single agent. Clinical trials are in progress to determine the efficacy of retinoids in treating other types of cancer such as neuroblastoma and breast carcinoma. The development of receptor-selective retinoids and selective inhibitors of retinoid metabolism may lead to further use of retinoids in both chemoprevention and treatment of cancer.
Collapse
Affiliation(s)
- R M Niles
- Department of Biochemistry and Molecular Biology, Marshall University School of Medicine, Huntington, West Virginia 25754, USA.
| |
Collapse
|
161
|
Villamor N, Costa D, Aymerich M, Esteve J, Carrió A, Rozman M, Aguilar JL, Falini B, Montserrat E, Campo E, Colomer D. Rapid diagnosis of acute promyelocytic leukemia by analyzing the immunocytochemical pattern of the PML protein with the monoclonal antibody PG-M3. Am J Clin Pathol 2000; 114:786-92. [PMID: 11068554 DOI: 10.1309/j6pu-3xy6-r0c3-nw26] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fusion protein, promyelocytic leukemia-retinoic acid receptor (PML-RAR)alpha, generated by the t(15;17) translocation has an abnormal cellular distribution with colocalization of RARalpha and PML proteins. We analyzed the immunostaining pattern of PML protein using the PG-M3 monoclonal antibody directed against the amino terminal portion of PML (retained in wild-type PML and PML-RARalpha fusion protein) in the diagnosis of acute promyelocytic leukemia (APL). In addition, we compared this test with other methods for detecting the PML-RARalpha fusion gene. A normal immunostaining pattern was observed in nonmyeloid disorders and in 78 of 111 acute myeloid leukemias (AMLs). A microgranular pattern was observed in 25 AMLs, all corresponding to APL. These results were concordant with the reverse transcriptase-polymerase chain reaction results for PML-RARalpha fusion gene. Only 1 case positive for the PML-RARalpha transcript showed a normal protein pattern by immunocytochemistry. PML immunostaining was helpful to rapidly differentiate 7 cases with borderline characteristics and to obtain the diagnosis in 2 cases with scarce material. The effectiveness and low cost of this technique support its routine use as a first-line procedure in the differential diagnosis of AML.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Cytogenetics
- Fluorescent Antibody Technique
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Nuclear Proteins
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/analysis
- Translocation, Genetic
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- N Villamor
- Department of Pathology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Postgraduate School of Hematology Farreras-Valentí, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Peng R, Tan J, Ling PD. Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 2000; 74:9953-63. [PMID: 11024123 PMCID: PMC102033 DOI: 10.1128/jvi.74.21.9953-9963.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-LP is a latent protein whose function is not fully understood. Recent studies have shown that EBNA-LP may be an important EBNA2 cofactor by enhancing EBNA2 stimulation of the latency C and LMP-1 promoters. To further our understanding of EBNA-LP function, we have introduced a series of mutations into evolutionarily conserved regions and tested the mutant proteins for the ability to enhance EBNA2 stimulation of the latency C and LMP-1 promoters. Three conserved regions (CR1 to CR3) are located in the repeat domains that are essential for the EBNA2 cooperativity function. In addition, three serine residues are also well conserved in the repeat domains. Clustered alanine mutations were introduced into CR1 to CR3, and the conserved serines were also changed to alanine residues in an EBNA-LP with two repeats, which is the minimal protein able to cooperate with EBNA2. Mutations introduced into CR1a had no effect on EBNA-LP function, while mutations introduced into CR1b resulted in EBNA-LP with slightly decreased activity. Mutations in CR1c and CR2 resulted in proteins that no longer localized exclusively to the nucleus and also had no EBNA2 cooperation activity. Mutations introduced into conserved serines S5/71 resulted in proteins with slightly higher activity, while mutations introduced into conserved serines S35/101 or in CR3 (which contains S60/126) resulted in EBNA-LP proteins with substantially reduced activity. The potential karyophilic signals within EBNA-LP CR1c and CR2 were also examined by introducing oligonucleotides encoding these positively charged amino acid groupings into a cytoplasmic test protein, herpes simplex virus DeltaIE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBNA-LP amino acids 43 and 50 (109 to 117 in the second W repeat) comprising CR2, while EBNA-LP amino acids 29 to 36 (91 to 98 in the second W repeat) were unable to function independently as a nuclear localization signal. However, a combination of amino acids 29 to 50 resulted in more efficient nuclear localization than with amino acids 43 to 50 alone. These results indicate that EBNA-LP has a bipartite nuclear localization signal and that efficient nuclear localization is essential for EBNA2 cooperativity function. Interestingly, EBNA-LP with only a single repeat localized exclusively to the cytoplasm, providing an explanation for why this isoform has no activity. In addition, two conserved serine residues which are distinct from nuclear import functions are important for EBNA2 cooperativity function.
Collapse
Affiliation(s)
- R Peng
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
163
|
Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C. Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 2000; 14:1833-49. [PMID: 11021759 DOI: 10.1038/sj.leu.2401902] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most chemotherapeutic drugs can induce tumor cell death by apoptosis. Analysis of the molecular mechanisms that regulate apoptosis has indicated that anticancer agents simultaneously activate several pathways that either positively or negatively regulate the death process. The main pathway from specific damage induced by the drug to apoptosis involves activation of caspases in the cytosol by pro-apoptotic molecules such as cytochrome c released from the mitochondrial intermembrane space. At least in some cell types, anticancer drugs also upregulate the expression of death receptors and sensitize tumor cells to their cognate ligands. The Fas-mediated pathway could contribute to the early steps of drug-induced apoptosis while sensitization to the cytokine TRAIL could be used to amplify the response to cytotoxic drugs. The Bcl-2 family of proteins, that includes anti- and pro-apoptotic molecules, regulates cell sensitivity mainly at the mitochondrial level. Anticancer drugs modulate their expression (eg through p53-dependent gene transcription), their activity (eg by phosphorylating Bcl-2) and their subcellular localization (eg by inducing the translocation of specific BH3-only pro-apoptotic proteins). Very early after interacting with tumor cells, anticancer drugs also activate lipid-dependent signaling pathways that either increase or decrease cell ability to die by apoptosis. In addition, cytotoxic agents can activate protective pathways that involve activation of NFkappaB transcription factor, accumulation of heat shock proteins such as Hsp27 and activation of proteins involved in cell cycle regulation. This review discusses how modulation of the balance between noxious and protective signals that regulate drug-induced apoptosis could be used to improve the efficacy of current therapeutic regimens in hematological malignancies.
Collapse
|
164
|
Parrado A, Chomienne C, Padua RA. Retinoic acid receptor alpha (RAralpha) Mutations in Human Leukemia. Leuk Lymphoma 2000; 39:271-82. [PMID: 11342307 DOI: 10.3109/10428190009065826] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The retinoic acid receptor alpha (RARalpha) plays a central role in the biology of the myeloid cellular compartment. Chromosomal translocations involving the RARalpha locus probably represent the malignant initiating events in acute promyelocytic leukemia (APL). Recent studies that identify novel interactions between RARalpha and the nuclear receptor co-activators and co-repressors, new functions of the oncogenic RARalpha fusion proteins and their catabolism in retinoic acid-induced differentiation, and the availability of new transgenic mice models have provided important insights into our understanding of the mechanisms by which mutant forms of RARalpha can be implicated in the development of leukemia. Novel alterations of the RARalpha gene identified in hematopoietic malignant disorders other than APL, such as myelodysplastic syndromes, non-APL acute myeloid leukemias and B-chronic lymphocytic leukemias, suggest that disruption of the RARalpha gene might predispose to myeloid and lymphoid disorders.
Collapse
Affiliation(s)
- A Parrado
- Laboratoire de Biologie Cellulaire Hématopoïétique, Institut d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | |
Collapse
|
165
|
Abstract
Promyelocytic leukemia protein (PML) is a tumor suppressor involved in the t(15;17) translocation that causes acute promyelocytic leukemia (APL). PML is located at multiple nuclear domains known as PML oncogenic domains (PODs), whose structures are dynamically regulated and disrupted in t(15;17) APL cells. PML is involved in several important cellular processes; however, its exact function is unclear. Recently, a POD-associated protein was found to be transcriptional repressor, suggesting a new role for PODs in regulating transcriptional repression.
Collapse
Affiliation(s)
- H Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
166
|
Zhang JW, Wang JY, Chen SJ, Chen Z. Mechanisms of all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells. J Biosci 2000; 25:275-84. [PMID: 11022230 DOI: 10.1007/bf02703936] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinoic acids (RA) play a key role in myeloid differentiation through their agonistic nuclear receptors (RAR alpha/RXR) to modulate the expression of target genes. In acute promyelocytic leukemia (APL) cells with rearrangement of retinoic acid receptor a (RAR alpha) (including: PML-RAR alpha, PLZF-RAR alpha, NPM-RAR alpha, NuMA- RAR alpha or STAT5b-RAR alpha) as a result of chromosomal translocations, the RA signal pathway is disrupted and myeloid differentiation is arrested at the promyelocytic stage. Pharmacologic dosage of all-trans retinoic acid (ATRA) directly modulates PML-RAR alpha and its interaction with the nuclear receptor co-repressor complex, which restores the wild-type RAR alpha/RXR regulatory pathway and induces the transcriptional expression of downstream genes. Analysing gene expression profiles in APL cells before and after ATRA treatment represents a useful approach to identify genes whose functions are involved in this new cancer treatment. A chronologically well coordinated modulation of ATRA-regulated genes has thus been revealed which seems to constitute a balanced functional network underlying decreased cellular proliferation, initiation and progression of maturation, and maintenance of cell survival before terminal differentiation.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Differentiation/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells/cytology
- HL-60 Cells/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/physiology
- Nuclear Receptor Co-Repressor 1
- Oncogene Proteins, Fusion/drug effects
- Oncogene Proteins, Fusion/genetics
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Repressor Proteins/physiology
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Signal Transduction/drug effects
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Translocation, Genetic
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- J W Zhang
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Second Medical University, 197 Ruijin Road II, Shanghai 200 025, People's Republic of China
| | | | | | | |
Collapse
|
167
|
Abstract
PML, the gene associated with acute promyelocytic leukemia (APL); PML, the target of numerous viral agents; PML, the growth suppressor; PML, the mediator of multiple apoptotic pathways; PML, the tumor suppressor; PML, the protein which epitomizes a novel nuclear structure, the nuclear body; PML, the transcription co-factor. Despite the recent flurry of reports attributing multiple biological roles to the PML protein, PML still lacks a definitive biochemical function. This is probably the reason why PML is so attractive to many investigators. Here, we will summarize the facts and speculations on this puzzling protein.
Collapse
Affiliation(s)
- D Ruggero
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
168
|
Ahn JH, Hayward GS. Disruption of PML-associated nuclear bodies by IE1 correlates with efficient early stages of viral gene expression and DNA replication in human cytomegalovirus infection. Virology 2000; 274:39-55. [PMID: 10936087 DOI: 10.1006/viro.2000.0448] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human cytomegalovirus (HCMV) infection, both of the major immediate-early proteins IE1(IE68, UL123) and IE2(IE86, UL122) target to PML protein-associated nuclear bodies known as PODs or ND10 at very early times after infection. IE1 causes a redistribution of both PML and IE1 from the PODs into a nuclear diffuse form, whereas IE2 initially localizes adjacent to PODs but later associates with viral DNA replication compartments. The peripheries of PODs are also believed to be sites for initiation of both viral IE transcription and DNA replication. However, because IE1 is nonessential at high multiplicity of infection (m.o.i.) in HF cells, the exact role of these processes in viral infection has been enigmatic. Therefore, we investigated the effects of overexpression of PML in the presence or absence of IE1 on the intranuclear distribution of IE2 and formation of viral DNA replication compartments, as well as on the levels of delayed-early and late viral transcription and protein accumulation. Infection with wild-type HCMV(Towne) and the IE1-deleted derivative HCMV(CR208), which fails to disrupt PODs, was compared in a pair of related astrocytoma/glioblastoma cell lines, the U373-Neo control and a variant U373-PML that constitutively overexpresses PML(560) in much larger than normal PODs. IFA studies on the localization patterns for IE1, IE2, and PML showed that, although the numbers of IE2-positive cells were not significantly reduced in either the wild-type virus-infected U373-PML cell line or in DeltaIE1-infected control cells, POD disruption by IE1 in wild-type virus infection was delayed by up to 6 h in U373-PML cells compared to control cells. Furthermore, there was considerable enhancement of IE2 colocalization with PODs in Delta IE1-infected U373-PML cells. Formation of viral DNA replication compartments in the U373-PML cell line was also greatly delayed, measured at fivefold lower after wild-type virus infection and 12-fold lower after infection with Delta IE1 than in the control cell line at 48 h at an m.o.i. of 1.0. The levels of representative early and late viral proteins detected by Western blotting were suppressed by fivefold and 22-fold at 24 and 72 h, respectively, in the U373-PML cell line, even with high m. o.i. wild-type HCMV infection. Decreased viral protein levels also occurred when control cells were infected with the Delta IE1 virus and these two effects were additive in the U373-PML cell line. Similarly, when U373-PML cells were infected with recombinant HCMV expressing an extragenic luciferase reporter gene under the control of viral early (Pol) or late (pp28) promoters, their transcriptional activation was reduced up to fivefold at both high and low m.o.i. compared to that of the control cells. Overall, these results suggest that POD disruption by IE1 and subsequent redistribution of both PML and IE1 at very early times after infection may play an important role in the efficient utilization of cellular transcription and replication machinery by HCMV and contribute to rapid progression of the HCMV lytic cycle.
Collapse
Affiliation(s)
- J H Ahn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
169
|
Zong RT, Das C, Tucker PW. Regulation of matrix attachment region-dependent, lymphocyte-restricted transcription through differential localization within promyelocytic leukemia nuclear bodies. EMBO J 2000; 19:4123-33. [PMID: 10921892 PMCID: PMC306587 DOI: 10.1093/emboj/19.15.4123] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1999] [Revised: 04/25/2000] [Accepted: 06/05/2000] [Indexed: 01/19/2023] Open
Abstract
Bright (B cell regulator of IgH transcription) transactivates the immunoglobulin heavy chain (IgH) intronic enhancer, Emicro, by binding to matrix attachment regions (MARs), sites necessary for DNA attachment to the nuclear matrix. Here we report that Bright interacts with the ubiquitous autoantigen Sp100, a component of promyelocytic leukemia nuclear bodies (PML NBs), and with LYSp100B/Sp140, the lymphoid-restricted homolog of Sp100. Both in intact cells and in nuclear matrix preparations, the majority of Bright and Sp100 colocalize within PML NBs. In contrast, Bright colocalizes with only a small fraction of LYSp100B while inducing a redistribution of the majority of LYSp100B from its associated nuclear domains (LANDs) into nucleoplasm and cytoplasm. Sp100 represses the MAR-binding and transactivation activity of Bright. LYSp100B interacts more weakly with Bright but requires significantly higher levels than Sp100 to inhibit MAR binding. However, it strongly stimulates Bright transactivation through E mu. We suggest that Sp100 and LYSp100B interactions with Bright have different consequences for IgH transcription, potentially through differential association of E mu MARs with nuclear matrix- associated PML NBs and LANDs.
Collapse
Affiliation(s)
- R T Zong
- Department of Molecular Genetics and The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
170
|
Huan SY, Yang CH, Chen YC. Arsenic trioxide therapy for relapsed acute promyelocytic leukemia: an useful salvage therapy. Leuk Lymphoma 2000; 38:283-93. [PMID: 10830735 DOI: 10.3109/10428190009087019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Arsenic trioxide (As2O3) was recently identified as a very potent agent against acute promyelocytic leukemia (APL). Intravenous infusion of 10 mg As2O3 daily for one to two months can induce significant complete remission (CR) of APL, and there is no cross drug-resistance between As2O3 and other antileukemic agents, including all-trans retinoic acid (ATRA). The CR rate of relapsed and/or refractory APL patients who received As2O3 treatment ranged from 52.3% to 93.3%. The median duration to CR ranged from 38 to 51 days, with accumulative As2O3 dosage of 340-430 mg. Although most adverse reactions of As2O3 treatment were tolerable, certain infrequent but severe toxicities related to As2O3 were observed, including renal failure, hepatic damage, cardiac arrhythmia and chronic neuromuscular degeneration, which should be monitored carefully. As2O3 can induce partial differentiation and subsequent apoptosis of APL cells through degradation of wild type PML and PML/RAR alpha chimeric proteins and possible anti-mitochondrial effects. Like the treatment of ATRA in APL, early relapses from As2O3 treatment within a few months were not infrequently seen, indicating that rapid emerging resistance to As2O3 can occur. Nevertheless, the PML/RAR alpha fusion protein was reported to disappear in some APL patients who received As2O3, and who might earn long-survival. However, the follow-up is still too short to draw the conclusion. Intriguingly, it has been shown that As2O3 can also induce apoptosis of other non-APL tumor cells with clinical achievable concentrations. However, the detailed molecular mechanisms are not yet fully understood. Further studies regarding to the pharmacological characters, clinical efficacies, toxicities, apoptogenic mechanisms, and spectrum of anti-tumor activity of As2O3 are warranted.
Collapse
MESH Headings
- Acute Kidney Injury/chemically induced
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Arrhythmias, Cardiac/chemically induced
- Arsenic Trioxide
- Arsenicals/adverse effects
- Arsenicals/pharmacology
- Arsenicals/therapeutic use
- Cell Differentiation/drug effects
- Chemical and Drug Induced Liver Injury/etiology
- Drug Evaluation
- Drug Screening Assays, Antitumor
- Gastrointestinal Neoplasms/drug therapy
- Gastrointestinal Neoplasms/pathology
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/mortality
- Leukemia, Promyelocytic, Acute/pathology
- Life Tables
- Medicine, Chinese Traditional
- Mitochondria/drug effects
- Models, Biological
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neuromuscular Diseases/chemically induced
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Oxides/adverse effects
- Oxides/pharmacology
- Oxides/therapeutic use
- Remission Induction
- Salvage Therapy
- Survival Analysis
- Treatment Outcome
- Tumor Cells, Cultured/drug effects
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- S Y Huan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | | | | |
Collapse
|
171
|
Cao T, Shannon M, Handel MA, Etkin LD. Mouse ret finger protein (rfp) proto-oncogene is expressed at specific stages of mouse spermatogenesis. DEVELOPMENTAL GENETICS 2000; 19:309-20. [PMID: 9023983 DOI: 10.1002/(sici)1520-6408(1996)19:4<309::aid-dvg4>3.0.co;2-d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many proteins involved in the regulation of cell growth and differentiation possess structural motifs that participate in specific molecular interactions. The human rfp (ret finger protein) has a tripartite motif, consisting of two novel zinc fingers (the RING linger and the B box) and a coiled-coil domain, and belongs to the B box zinc finger protein family. Rfp becomes oncogenic when its tripartite motif is recombined with the tyrosine kinase domain from the c-ret proto-oncogene. To further understand the function of rfp during normal development and cellular differentiation, we cloned the mouse rfp cDNA and analyzed its pattern of expression and subcellular distribution. We found that the mouse rfp cDNA shared a 98.4% homology with the human sequence. The gene mapped to human chromosome 6 and mouse chromosome 13 indicating that it was linked to a several other genes encoding proteins that possess common domains. rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos, however, they were restricted in adult mice, with the highest level of expression in pachytene spermatocytes and round spermatids of differentiating sperm. The rfp protein was detected within cell nuclei as nuclear bodies similar to the PODs (PML oncogenic domains) observed with another B box family member, PML (promyelocytic leukemia protein). These results suggest that rfp may function in the regulation of cell growth and differentiation during mouse embryogenesis and sperm differentiation.
Collapse
Affiliation(s)
- T Cao
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
172
|
Alemany M, Levin J. The effects of arsenic trioxide (As2O3) on human megakaryocytic leukemia cell lines. With a comparison of its effects on other cell lineages. Leuk Lymphoma 2000; 38:153-63. [PMID: 10811458 DOI: 10.3109/10428190009060329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Arsenic trioxide (As2O3) has been demonstrated to be effective for the treatment of acute promyelocytic leukemia (APL) and to inhibit proliferation and produce apoptosis in the APL cell line NB4. The effect of this newly utilized chemotherapeutic agent on other lineages is currently under study to evaluate its efficacy for the treatment of other human malignancies and myeloproliferative syndromes. A recent study described the effects of As2O3 upon viability, proliferation, and induction of apoptosis in four different megakaryocytic leukemia cell lines. At pharmacological concentrations (0.5-2 microM) As2O3 selectively inhibits growth and causes apoptosis in the megakaryocytic leukemia cell lines HEL, Meg-01, UT7 and M07e. Pertinently, these concentrations of As2O3 resulted in identical changes in the characteristics of the APL cell line NB4, suggesting that As2O3 could produce its effects in both cellular lineages via a common mechanism of action. Various mechanisms have been proposed for the As2O3-induced changes in NB4 (including modulation of promyelocytic leukemia proteins (PML) and Bcl-2, modification of the glutathione redox system, caspase activation, and cell cycle arrest) and are currently under investigation in the megakaryocytic leukemia cell lines. Recent preliminary results indicate that As2O3 downregulates Bcl-2 expression and induces cell cycle arrest in megakaryocytic cell lines. The use of As2O3 for the treatment of malignant megakaryocytic disorders also has been considered. The in vitro effects of As2O3 on a chronic megakaryocytic proliferative disorder. i.e., Essential Thrombocythemia (ET), have been analyzed and megakaryocyte progenitors have shown an unexpectedly higher resistance to As2O3, in comparison to normal megakaryocyte colony-forming cells. The effects of As2O3 on ET and other megakaryocytic disorders need to be fully examined, in order to determine the clinical efficacy of As2O3 in the treatment of syndromes affecting the megakaryocytic lineage.
Collapse
Affiliation(s)
- M Alemany
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière, Paris, France.
| | | |
Collapse
|
173
|
Bell P, Brazas R, Ganem D, Maul GG. Hepatitis delta virus replication generates complexes of large hepatitis delta antigen and antigenomic RNA that affiliate with and alter nuclear domain 10. J Virol 2000; 74:5329-36. [PMID: 10799610 PMCID: PMC110888 DOI: 10.1128/jvi.74.11.5329-5336.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 02/22/2000] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV), a single-stranded RNA virus, bears a single coding region whose product, the hepatitis delta antigen (HDAg), is expressed in two isoforms, small (S-HDAg) and large (L-HDAg). S-HDAg is required for replication of HDV, while L-HDAg inhibits viral replication and is required for the envelopment of the HDV genomic RNA by hepatitis B virus proteins. Here we have examined the spatial distribution of HDV RNA and proteins in infected nuclei, with particular reference to specific nuclear domains. We found that L-HDAg was aggregated in specific nuclear domains and that over half of these domains were localized beside nuclear domain 10 (ND10). At later times, ND10-associated proteins like PML were found in larger HDAg complexes that had developed into apparently hollow spheres. In these larger complexes, PML was found chiefly in the rims of the spheres, while the known ND10 components Sp100, Daxx, and NDP55 were found in the centers of the spheres. Thus, ND10 proteins that normally are closely linked separate within HDAg-associated complexes. Viral RNA of antigenomic polarity, whether expressed from genomic RNA or directly from introduced plasmids, colocalizes with L-HDAg and the transcriptional repressor PML. In contrast, HDV genomic RNA was distributed more uniformly throughout the nucleus. These results suggest that different host protein complexes may assemble on viral RNA strands of different polarities, and they also suggest that this RNA virus, like DNA viruses, can alter the distribution of ND10-associated proteins. The fact that viral components specifically linked to repression of replication can associate with one of the ND10-associated proteins (PML) raises the possibility that this host protein may play a role in the regulation of HDV RNA synthesis.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
174
|
Abstract
The PML gene encodes a tumour suppressor protein associated with a distinct subnuclear domain, the nuclear body. Various functions have been attributed to the PML nuclear body, but its main biochemical role is still unclear. Recent findings indicate that PML is essential for the proper formation of the nuclear body and can act as a transcriptional co-factor. Here we summarize the current understanding of the biological functions of PML and the nuclear body, and discuss a role for these intra-nuclear structures in the regulation of transcription.
Collapse
Affiliation(s)
- S Zhong
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
175
|
Abstract
The tumor-suppressive promyelocytic leukemia (PML) protein of acute promyelocytic leukemia (APL) has served as one of the defining components of a class of distinctive nuclear bodies (NBs). PML is delocalized from NBs in APL cells and is degraded in cells infected by several viruses. In these cells, NBs are disrupted, leading to the aberrant localization of NB proteins. These results have suggested a critical role for the NB in immune response and tumor suppression and raised the question of whether PML is crucial for the formation or stability of NB. In addition, PML is, among other proteins, covalently modified by SUMO-1. However, the functional relevance of this modification is unclear. Here, we show in primary PML−/− cells of various histologic origins, that in the absence of PML, several NB proteins such as Sp100, CBP, ISG20, Daxx, and SUMO-1 fail to accumulate in the NB and acquire aberrant localization patterns. Transfection of PML in PML−/−cells causes the relocalization of NB proteins. By contrast, a PML mutant that can no longer be modified by SUMO-1 fails to do so and displays an aberrant nuclear localization pattern. Therefore, PML is required for the proper formation of the NB. Conjugation to SUMO-1 is a prerequisite for PML to exert this function. These data shed new light on both the mechanisms underlying the formation of the NBs and the pathogenesis of APL.
Collapse
|
176
|
Nakamura T, Yamazaki Y, Saiki Y, Moriyama M, Largaespada DA, Jenkins NA, Copeland NG. Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol Cell Biol 2000; 20:3178-86. [PMID: 10757802 PMCID: PMC85612 DOI: 10.1128/mcb.20.9.3178-3186.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1999] [Accepted: 01/21/2000] [Indexed: 11/20/2022] Open
Abstract
Evi9 is a common site of retroviral integration in BXH2 murine myeloid leukemias. Here we show that Evi9 encodes a novel zinc finger protein with three tissue-specific isoforms: Evi9a (773 amino acids [aa]) contains two C(2)H(2)-type zinc finger motifs, a proline-rich region, and an acidic domain; Evi9b (486 aa) lacks the first zinc finger motif and part of the proline-rich region; Evi9c (239 aa) lacks all but the first zinc finger motif. Proviral integration sites are located in the first intron of the gene and lead to increased gene expression. Evi9a and Evi9c, but not Evi9b, show transforming activity for NIH 3T3 cells, suggesting that Evi9 is a dominantly acting proto-oncogene. Immunolocalization studies show that Evi9c is restricted to the cytoplasm whereas Evi9a and Evi9b are located in the nucleus, where they form a speckled localization pattern identical to that observed for BCL6, a human B-cell proto-oncogene product. Coimmunoprecipitation and glutathione S-transferase pull-down experiments show that Evi9a and Evi9b, but not Evi9c, physically interact with BCL6, while deletion mutagenesis localized the interaction domains in or near the second zinc finger and POZ domains of Evi9 and BCL6, respectively. These results suggest that Evi9 is a leukemia disease gene that functions, in part, through its interaction with BCL6.
Collapse
Affiliation(s)
- T Nakamura
- The Cancer Institute, Japanese Foundation for Cancer Research, Toshima-ku, Tokyo 170-8455, Japan. ,ac.jp
| | | | | | | | | | | | | |
Collapse
|
177
|
Maul GG, Negorev D, Bell P, Ishov AM. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 2000; 129:278-87. [PMID: 10806078 DOI: 10.1006/jsbi.2000.4239] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear domain 10 (ND10), also referred to as PML bodies or PODs, are discrete interchromosomal accumulations of several proteins including PML and Sp100. We describe here developments in the visualization of ND10 and the mechanism of ND10 assembly made possible by the identification of proteins that are essential for this process using cell lines that lack individual ND10-associated proteins. PML is critical for the proper localization of all other ND10-associated proteins under physiological conditions. Introducing PML into a PML -/- cell line by transient expression or fusion with PML-producing cells recruited ND10-associated proteins into de novo formed ND10, attesting to its essential nature in ND10 formation. This recruitment includes Daxx, a protein that can bind PML and is highly enriched in condensed chromatin in the absence of PML. The segregation of Daxx from condensed chromatin to ND10 by increased accumulation of Sentrin/SUMO-1 modified PML suggests the presence of a variable equilibrium between these two nuclear sites. These findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML. Additional adapter proteins are suggested to exist by the behavior of Sp100, and Sp100 will provide the basis for their identification. Further information about the dynamic balance of proteins between ND10 and the actual site of functional activity of these proteins will establish whether ND10 function as homeostatic regulators or only in storage of excess proteins destined for turnover.
Collapse
Affiliation(s)
- G G Maul
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
178
|
Gordon JA, Pockwinse SM, Stewart FM, Quesenberry PJ, Nakamura T, Croce CM, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Modified intranuclear organization of regulatory factors in human acute leukemias: Reversal after treatment. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000401)77:1<30::aid-jcb4>3.0.co;2-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
179
|
Lai HK, Borden KL. The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 2000; 19:1623-34. [PMID: 10763819 DOI: 10.1038/sj.onc.1203473] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of the promyelocytic leukemia (PML) protein is present in nuclear bodies which are altered in several pathogenic conditions including acute promyelocytic leukemia. PML nuclear bodies are found in nearly all cells yet their function remains unknown. Here, we demonstrate that PML and the eukaryotic initiation factor 4E (elF-4E) co-localize and co-immunopurify. eIF-4E is involved in nucleocytoplasmic transport of specific mRNAs including cyclin D1. eIF-4E overexpression leads to increased cyclin D1 protein levels; whereas, overexpression of PML leads to decreased cyclin D1 levels. Neither PML nor eIF-4E cause significant changes in cyclin D1 mRNA levels. The association with eIF-4E led us to investigate if PML could alter mRNA distribution as a possible post-transcriptional mechanism for suppressing cyclin D1 production. We show that overexpression of PML results in nuclear retention of cyclin D1 mRNA and that intact PML nuclear bodies are required. Addition of eIF-4E overcomes PML induced retention and alters the morphology of PML bodies suggesting a mechanism by which eIF-4E can modulate PML function. These results raise the possibility that PML nuclear bodies may participate in the regulation of nucleocytoplasmic transport of specific mRNAs.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Biological Transport
- Cell Line
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Cytoplasm/chemistry
- Eukaryotic Initiation Factor-4E
- Fibroblasts
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Macromolecular Substances
- Mice
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Neoplasm Proteins/physiology
- Nuclear Proteins
- Organelles/chemistry
- Organelles/physiology
- Peptide Initiation Factors/analysis
- Peptide Initiation Factors/isolation & purification
- Promyelocytic Leukemia Protein
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Recombinant Fusion Proteins/physiology
- Subcellular Fractions/chemistry
- Transcription Factors/chemistry
- Transcription Factors/isolation & purification
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- H K Lai
- Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
180
|
Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ, Chen JD. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 2000; 20:1784-96. [PMID: 10669754 PMCID: PMC85360 DOI: 10.1128/mcb.20.5.1784-1796.2000] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 11/23/1999] [Indexed: 01/16/2023] Open
Abstract
PML fuses with retinoic acid receptor alpha (RARalpha) in the t(15;17) translocation that causes acute promyelocytic leukemia (APL). In addition to localizing diffusely throughout the nucleoplasm, PML mainly resides in discrete nuclear structures known as PML oncogenic domains (PODs), which are disrupted in APL and spinocellular ataxia cells. We isolated the Fas-binding protein Daxx as a PML-interacting protein in a yeast two-hybrid screen. Biochemical and immunofluorescence analyses reveal that Daxx is a nuclear protein that interacts and colocalizes with PML in the PODs. Reporter gene assay shows that Daxx drastically represses basal transcription, likely by recruiting histone deacetylases. PML, but not its oncogenic fusion PML-RARalpha, inhibits the repressor function of Daxx. In addition, SUMO-1 modification of PML is required for sequestration of Daxx to the PODs and for efficient inhibition of Daxx-mediated transcriptional repression. Consistently, Daxx is found at condensed chromatin in cells that lack PML. These data suggest that Daxx is a novel nuclear protein bearing transcriptional repressor activity that may be regulated by interaction with PML.
Collapse
Affiliation(s)
- H Li
- Departments of Pharmacology and Molecular Toxicology and Cell Biology, Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 2000; 191:631-40. [PMID: 10684855 PMCID: PMC2195846 DOI: 10.1084/jem.191.4.631] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1999] [Accepted: 12/24/1999] [Indexed: 12/15/2022] Open
Abstract
The promyelocytic leukemia protein (PML) gene of acute promyelocytic leukemia (APL) encodes a cell growth and tumor suppressor essential for multiple apoptotic signals. Daxx was identified as a molecule important for the cytoplasmic transduction of the Fas proapoptotic stimulus. Here, we show that upon mitogenic activation of mature splenic lymphocytes, Daxx is dramatically upregulated and accumulates in the PML nuclear body (NB) where PML and Daxx physically interact. In the absence of PML, Daxx acquires a dispersed nuclear pattern, and activation-induced cell death of splenocytes is profoundly impaired. PML inactivation results in the complete abrogation of the Daxx proapoptotic ability. In APL cells, Daxx is delocalized from the NB. Upon retinoic acid treatment, which induces disease remission in APL, Daxx relocalizes to the PML NBs. These results indicate that PML and Daxx cooperate in a novel NB-dependent pathway for apoptosis and shed new light in the role of PML in tumor suppression.
Collapse
Affiliation(s)
- Sue Zhong
- From the Department of Human Genetics and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Paolo Salomoni
- From the Department of Human Genetics and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Simona Ronchetti
- From the Department of Human Genetics and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Ailan Guo
- From the Department of Human Genetics and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Davide Ruggero
- From the Department of Human Genetics and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Pier Paolo Pandolfi
- From the Department of Human Genetics and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| |
Collapse
|
183
|
Lehembre F, Badenhorst P, Müller S, Travers A, Schweisguth F, Dejean A. Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol Cell Biol 2000; 20:1072-82. [PMID: 10629064 PMCID: PMC85224 DOI: 10.1128/mcb.20.3.1072-1082.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-related SUMO-1 modifier can be covalently attached to a variety of proteins. To date, four substrates have been characterized in mammalian cells: RanGAP1, IkappaBalpha, and the two nuclear body-associated PML and Sp100 proteins. SUMO-1 modification has been shown to be involved in protein localization and/or stabilization and to require the activity of specialized E1-activating and E2 Ubc9-conjugating enzymes. SUMO-1 homologues have been identified in various species and belong to the so-called Smt3 family of proteins. Here we have characterized the Drosophila homologues of mammalian SUMO-1 and Ubc9 (termed dSmt3 and dUbc9, respectively). We show that dUbc9 is the conjugating enzyme for dSmt3 and that dSmt3 can covalently modify a number of proteins in Drosophila cells in addition to the human PML substrate. The dSmt3 transcript and protein are maternally deposited in embryos, where the protein accumulates predominantly in nuclei. Similar to its human counterpart, dSmt3 protein is observed in a punctate nuclear pattern. We demonstrate that Tramtrack 69 (Ttk69), a repressor of neuronal differentiation, is a bona fide in vivo substrate for dSmt3 conjugation. Finally, we show that both the modified and unmodified forms of Ttk69 can bind to a Ttk69 binding site in vitro. Moreover, dSmt3 and Ttk69 proteins colocalize on polytene chromosomes, indicating that the dSmt3-conjugated Ttk69 species can bind at sites of Ttk69 action in vivo. Altogether, these data indicate a high conservation of the Smt3 conjugation pathway and further suggest that this mechanism may play a role in the transcriptional regulation of cell differentiation in Drosophila flies.
Collapse
Affiliation(s)
- F Lehembre
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
184
|
Boisvert FM, Hendzel MJ, Bazett-Jones DP. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 2000; 148:283-92. [PMID: 10648561 PMCID: PMC2174275 DOI: 10.1083/jcb.148.2.283] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes.
Collapse
Affiliation(s)
| | - Michael J. Hendzel
- Department of Cell Biology and Anatomy, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
185
|
McNeil S, Javed A, Harrington KS, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Leukemia-associated AML1/ETO (8;21) chromosomal translocation protein increases the cellular representation of PML bodies. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(2000)79:1<103::aid-jcb100>3.0.co;2-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
186
|
Peng R, Gordadze AV, Fuentes Pananá EM, Wang F, Zong J, Hayward GS, Tan J, Ling PD. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 2000; 74:379-89. [PMID: 10590127 PMCID: PMC111549 DOI: 10.1128/jvi.74.1.379-389.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA-LP and EBNA2 proteins are the first to be synthesized during establishment of latent infection in B lymphocytes. EBNA2 is a key transcriptional regulator of both viral and cellular gene expression and is essential for EBV-induced immortalization of B lymphocytes. EBNA-LP is also important for EBV-induced immortalization of B lymphocytes, but far less is known about the functional domains and cellular cofactors that mediate EBNA-LP function. While recent studies suggest that serine phosphorylation of EBNA-LP and coactivation of EBNA2-mediated transactivation are important, more detailed mutational and genetic studies are complicated by the repeat regions that comprise the majority of the EBNA-LP sequence. Therefore, we have used a comparative approach by studying the EBNA-LP homologues from baboon and rhesus macaque lymphocryptoviruses (LCVs) (baboon LCV and rhesus LCV). The predicted baboon and rhesus LCV EBNA-LP amino acid sequences are 61 and 64% identical to the EBV EBNA-LP W1 and W2 exons and 51% identical to the EBV EBNA-LP Y1 and Y2 exons. Five evolutionarily conserved regions can be defined, and four of eight potential serine residues are conserved among all three EBNA-LPs. The major internal repeat sequence also revealed a highly conserved Wp EBNA promoter with strong conservation of upstream activating sequences important for Wp transcriptional regulation. To test whether transcriptional coactivating properties were common to the rhesus LCV EBNA-LP, a rhesus LCV EBNA2 homologue was cloned and expressed. The rhesus LCV EBNA2 transcriptionally transactivates EBNA2-responsive promoters through a CBF1-dependent mechanism. The rhesus LCV EBNA-LP was able to further enhance rhesus LCV or EBV EBNA2 transactivation 5- to 12-fold. Thus, there is strong structural and functional conservation among the simian EBNA-LP homologues. Identification of evolutionarily conserved serine residues and regions in EBNA-LP homologues provides important clues for identifying the cellular cofactors and molecular mechanisms mediating these conserved viral functions.
Collapse
Affiliation(s)
- R Peng
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP. A role for PML and the nuclear body in genomic stability. Oncogene 1999; 18:7941-7. [PMID: 10637504 DOI: 10.1038/sj.onc.1203367] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells. The Bloom syndrome gene BLM encodes a RecQ DNA helicase, whose absence from the cell results in genomic instability epitomized by high levels of sister-chromatid exchange (SCE) and cancer predisposition. We show here that BLM co-localizes with PML to the NB. In cells from persons with Bloom syndrome the localization of PML is unperturbed, whereas in APL cells carrying the PML-RARalpha oncoprotein, both PML and BLM are delocalized from the NB into microspeckled nuclear regions. Treatment with retinoic acid (RA) induces the relocalization of both proteins to the NB. In primary PML-/- cells, BLM fails to accumulate in the NB. Strikingly, in PML-/- cells the frequency of SCEs is increased relative to PML+/+ cells. These data demonstrate that BLM is a constituent of the NB and that PML is required for its accumulation in these nuclear domains and for the normal function of BLM. Thus, our findings suggest a role for BLM in APL pathogenesis and implicate the PML NB in the maintenance of genomic stability.
Collapse
Affiliation(s)
- S Zhong
- Laboratory of Molecular and Developmental Biology, Department of Human Genetics, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
188
|
Zhu J, Gianni M, Kopf E, Honoré N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de Thé H. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A 1999; 96:14807-12. [PMID: 10611294 PMCID: PMC24729 DOI: 10.1073/pnas.96.26.14807] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analyzing the pathways by which retinoic acid (RA) induces promyelocytic leukemia/retinoic acid receptor alpha (PML/RARalpha) catabolism in acute promyelocytic leukemia (APL), we found that, in addition to caspase-mediated PML/RARalpha cleavage, RA triggers degradation of both PML/RARalpha and RARalpha. Similarly, in non-APL cells, RA directly targeted RARalpha and RARalpha fusions to the proteasome degradation pathway. Activation of either RARalpha or RXRalpha by specific agonists induced degradation of both proteins. Conversely, a mutation in RARalpha that abolishes heterodimer formation and DNA binding, blocked both RARalpha and RXRalpha degradation. Mutations in the RARalpha DNA-binding domain or AF-2 transcriptional activation region also impaired RARalpha catabolism. Hence, our results link transcriptional activation to receptor catabolism and suggest that transcriptional up-regulation of nuclear receptors by their ligands may be a feedback mechanism allowing sustained target-gene activation.
Collapse
Affiliation(s)
- J Zhu
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9051, Laboratoire associé N degrees 11 du comité de Paris de la ligue nationale contre le cancer, conventionné par l'Université de Paris VII, Hôpital St. Louis, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Kretz-Remy C, Tanguay RM. SUMO/sentrin: protein modifiers regulating important cellular functions. Biochem Cell Biol 1999. [PMID: 10546893 DOI: 10.1139/o99-029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of protein functions can be achieved by posttranslational protein modifications. One of the most studied modifications has been conjugation to ubiquitin, which mainly targets substrate proteins for degradation by the 26 S proteasome. Recently, SUMO/sentrin, a ubiquitin-like protein has been characterized. This evolutionary conserved protein is conjugated to specific proteins in a way similar, but not identical, to ubiquitin and seems also to be involved in the regulation of protein localization or function. An increasing number of SUMO/sentrin substrates are currently described. We focus here on three major substrates of modification by SUMO: RanGAP1, PML, and IkappaBalpha proteins. These different examples illustrate how SUMO conjugation may be involved in the control of the level of critical proteins within the cell or in the modulation of subcellular localization and nucleocytoplasmic trafficking.
Collapse
Affiliation(s)
- C Kretz-Remy
- Laboratoire du stress cellulaire, Centre génétique moleculaire et cellulaire, CNRS-UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, France
| | | |
Collapse
|
190
|
Bruzzoni-Giovanelli H, Faille A, Linares-Cruz G, Nemani M, Le Deist F, Germani A, Chassoux D, Millot G, Roperch JP, Amson R, Telerman A, Calvo F. SIAH-1 inhibits cell growth by altering the mitotic process. Oncogene 1999; 18:7101-9. [PMID: 10597311 DOI: 10.1038/sj.onc.1203187] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SIAH-1, the human homologue of the drosophila seven in absentia gene, is a p53-p21Waf-1 inducible gene. We report that stable transfection with SIAH-1 of the epithelial breast cancer cell line MCF-7 blocks its growth process. The transfectants show a redistribution of SIAH-1 protein within the nucleus, more specifically to the nuclear matrix, associated to dramatic changes in cell morphology and defective mitosis. Multinucleated giant cells (2-12 nuclei in more than 50% cells) were a most striking observation associated with tubulin spindle disorganization and defective cytokinesis. There were also present at high frequency abortive mitotic figures, DNA bridges and persistance of intercellular bridges and midbodies, along with an increased expression of p21Waf-1. These results indicate that the mechanism of growth arrest induced by SIAH-1 in MCF-7 cells involves disorganization of the mitotic program, mainly during nuclei separation and cytokinesis.
Collapse
|
191
|
Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara FF, Bonci D, Grignani F, Nervi C, Pelicci PG. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 1999; 18:6313-21. [PMID: 10597230 DOI: 10.1038/sj.onc.1203029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoic Acid (RA) treatment induces disease remission of Acute Promyelocytic Leukaemia (APL) patients by triggering terminal differentiation of neoplastic cells. RA-sensitivity in APL is mediated by its oncogenic protein, which results from the recombination of the PML and the RA receptor alpha (RAR alpha) genes (PML/RAR alpha fusion protein). Ectopic expression of PML/RAR alpha into haemopoietic cell lines results in increased response to RA-induced differentiation. By structure-function analysis of PML/RAR alpha-mediated RA-differentiation, we demonstrated that fusion of PML and RAR alpha sequences and integrity of the PML dimerization domain and of the RAR alpha DNA binding region are required for the effect of PML/RAR alpha on RA-differentiation. Indeed, direct fusion of the PML dimerization domain to the N- or C-terminal extremities of RAR alpha retained full biological activity. All the biologically active PML/RAR alpha mutants formed high molecular weight complexes in vivo. Functional analysis of mutations within the PML dimerization domain revealed that the capacity to form PML/RAR alpha homodimers, but not PML/RAR alpha-PML heterodimers, correlated with the RA-response. These results suggest that targeting of RAR alpha sequences by the PML dimerization domain and formation of nuclear PML/RAR alpha homodimeric complexes are crucial for the ability of PML/RAR alpha to mediate RA-response.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Binding Sites
- Cell Differentiation/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Dimerization
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells/drug effects
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Molecular Weight
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/physiology
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Structure-Activity Relationship
- Tretinoin/pharmacology
- U937 Cells/drug effects
- U937 Cells/metabolism
- Zinc Fingers
Collapse
Affiliation(s)
- F Grignani
- Istituto di Medicina Interna e Scienze Oncologiche, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Sleeman JE, Lamond AI. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 1999; 9:1065-74. [PMID: 10531003 DOI: 10.1016/s0960-9822(99)80475-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Small nuclear ribonucleoproteins (snRNPs), which are essential components of the mRNA splicing machinery, comprise small nuclear RNAs, each complexed with a set of proteins. An early event in the maturation of snRNPs is the binding of the core proteins - the Sm proteins - to snRNAs in the cytoplasm followed by nuclear import. Immunolabelling with antibodies against Sm proteins shows that splicing snRNPs have a complex steady-state localisation within the nucleus, the result of the association of snRNPs with several distinct subnuclear structures. These include speckles, coiled bodies and nucleoli, in addition to a diffuse nucleoplasmic compartment. The reasons for snRNP accumulation in these different structures are unclear. RESULTS When mammalian cells were microinjected with plasmids encoding the Sm proteins B, D1 and E, each tagged with either the green fluorescent protein (GFP) or yellow-shifted GFP (YFP), a pulse of expression of the tagged proteins was observed. In each case, the newly synthesised GFP/YFP-labelled snRNPs accumulated first in coiled bodies and nucleoli, and later in nuclear speckles. Mature snRNPs localised immediately to speckles upon entering the nucleus after cell division. CONCLUSIONS The complex nuclear localisation of splicing snRNPs results, at least in part, from a specific pathway for newly assembled snRNPs. The data demonstrate that the distribution of snRNPs between coiled bodies and speckles is directed and not random.
Collapse
Affiliation(s)
- J E Sleeman
- Department of Biochemistry University of Dundee Wellcome Trust Building, Dow Street, Dundee, DD1 5EH, UK
| | | |
Collapse
|
193
|
Verschure PJ, van Der Kraan I, Manders EM, van Driel R. Spatial relationship between transcription sites and chromosome territories. J Cell Biol 1999; 147:13-24. [PMID: 10508851 PMCID: PMC2164981 DOI: 10.1083/jcb.147.1.13] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the spatial relationship between transcription sites and chromosome territories in the interphase nucleus of human female fibroblasts. Immunolabeling of nascent RNA was combined with visualization of chromosome territories by fluorescent in situ hybridization (FISH). Transcription sites were found scattered throughout the territory of one of the two X chromosomes, most likely the active X chromosome, and that of both territories of chromosome 19. The other X chromosome territory, probably the inactive X chromosome, was devoid of transcription sites. A distinct substructure was observed in interphase chromosome territories. Intensely labeled subchromosomal domains are surrounded by less strongly labeled areas. The intensely labeled domains had a diameter in the range of 300-450 nm and were sometimes interconnected, forming thread-like structures. Similar large scale chromatin structures were observed in HeLa cells expressing green fluorescent protein (GFP)-tagged histone H2B. Strikingly, nascent RNA was almost exclusively found in the interchromatin areas in chromosome territories and in between strongly GFP-labeled chromatin domains. These observations support a model in which transcriptionally active chromatin in chromosome territories is markedly compartmentalized. Active loci are located predominantly at or near the surface of compact chromatin domains, depositing newly synthesized RNA directly into the interchromatin space.
Collapse
MESH Headings
- Acetylation
- Cells, Cultured
- Centromere/genetics
- Centromere/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromosome Painting
- Chromosomes, Human/genetics
- Chromosomes, Human/metabolism
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/metabolism
- DNA/genetics
- DNA/metabolism
- Dosage Compensation, Genetic
- Female
- Fibroblasts/cytology
- Gene Expression Regulation
- HeLa Cells
- Histones/metabolism
- Humans
- Interphase
- Models, Genetic
- RNA/genetics
- RNA/metabolism
- Recombinant Fusion Proteins/metabolism
- Transcription, Genetic/genetics
- X Chromosome/genetics
- X Chromosome/metabolism
Collapse
Affiliation(s)
- P J Verschure
- E.C. Slater Instituut, BioCentrum Amsterdam, University of Amsterdam, 1018 TV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
194
|
Morris-Desbois C, Bochard V, Reynaud C, Jalinot P. Interaction between the Ret finger protein and the Int-6 gene product and co-localisation into nuclear bodies. J Cell Sci 1999; 112 ( Pt 19):3331-42. [PMID: 10504338 DOI: 10.1242/jcs.112.19.3331] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mouse int-6 gene was identified in mammary tumors as an integration site for the mouse mammary tumor virus. Its human counterpart encodes a product that interacts with the Tax viral oncoprotein of the human T cell leukaemia virus type 1. This interaction impedes the localisation of over-expressed Int-6 in nuclear bodies containing the promyelocytic leukaemia gene product (PML). In this study, Int-6 is characterised as a 52 kDa protein that is localised within nuclear bodies in primary lymphocytes. Screening of a human B cell cDNA library for proteins that interact with Int-6 led to isolation of four clones coding for the p110 subunit of eIF3, in accordance with previous detection of Int-6 in purified forms of this translation initiation factor. Another clone was interesting with respect to the subcellular localisation of Int-6. It encodes the Ret finger protein (Rfp) which interacts with PML and localises within a subset of PML nuclear bodies. The interaction of Rfp with Int-6 is mediated through a region in Rfp designated ‘Rfp domain’, distinct from that involved in the interaction with PML. Int-6 and Rfp are co-localised in certain PML nuclear bodies in lymphocytes and transfection studies in HeLa cells strongly suggest that Rfp triggers translocation of Int-6 to nuclear bodies.
Collapse
Affiliation(s)
- C Morris-Desbois
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR 5665 CNRS-ENSL, Allée d'Italie, France.
| | | | | | | |
Collapse
|
195
|
He LZ, Merghoub T, Pandolfi PP. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 1999; 18:5278-92. [PMID: 10498880 DOI: 10.1038/sj.onc.1203088] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the expansion of malignant myeloid cells blocked at the promyelocytic stage of hemopoietic development, and is associated with reciprocal chromosomal translocations always involving the retinoic acid receptor alpha (RARalpha) gene on chromosome 17. As a consequence of the translocation RARalpha variably fuses to the PML, PLZF, NPM and NUMA genes (X genes), leading to the generation of RARalpha-X and X-RARalpha fusion genes. The aberrant chimeric proteins encoded by these genes may exert a crucial role in leukemogenesis. Retinoic acid (RA), a metabolite of vitamin A, can overcome the block of maturation at the promyelocytic stage and induce the malignant cells to terminally mature into granulocytes resulting in complete albeit transient disease remission. APL has become, for this reason, the paradigm for 'cancer differentiation therapy'. Furthermore, APL associated with translocation between the RARalpha and the PLZF genes (PLZF-RARalpha) shows a distinctly worse prognosis with poor response to chemotherapy and little or no response to treatment with RA, thus defining a new APL syndrome. Here we will focus our attention on the recent progresses made in defining the molecular mechanisms underlying the pathogenesis of this paradigmatic disease in vivo in the mouse. We will review the critical contribution of mouse modeling in unraveling the transcriptional basis for the differential response to RA in APL. We will also discuss how this new understanding has allowed to propose, develop and test in these murine leukemia models as well as in human APL patients novel therapeutic strategies.
Collapse
Affiliation(s)
- L Z He
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
196
|
Affiliation(s)
- S C Kogan
- GW Hooper Foundation, University of California, San Francisco, California, CA 94143-0552, USA
| | | |
Collapse
|
197
|
Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999; 106:591-613. [PMID: 10468848 DOI: 10.1046/j.1365-2141.1999.01501.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D Grimwade
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine,, Department of Haematology, London
| |
Collapse
|
198
|
Chen T, Boisvert FM, Bazett-Jones DP, Richard S. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol Biol Cell 1999; 10:3015-33. [PMID: 10473643 PMCID: PMC25546 DOI: 10.1091/mbc.10.9.3015] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The GSG (GRP33, Sam68, GLD-1) domain is a protein module found in an expanding family of RNA-binding proteins. The numerous missense mutations identified genetically in the GSG domain support its physiological role. Although the exact function of the GSG domain is not known, it has been shown to be required for RNA binding and oligomerization. Here it is shown that the Sam68 GSG domain plays a role in protein localization. We show that Sam68 concentrates into novel nuclear structures that are predominantly found in transformed cells. These Sam68 nuclear bodies (SNBs) are distinct from coiled bodies, gems, and promyelocytic nuclear bodies. Electron microscopic studies show that SNBs are distinct structures that are enriched in phosphorus and nitrogen, indicating the presence of nucleic acids. A GFP-Sam68 fusion protein had a similar localization as endogenous Sam68 in HeLa cells, diffusely nuclear with two to five SNBs. Two other GSG proteins, the Sam68-like mammalian proteins SLM-1 and SLM-2, colocalized with endogenous Sam68 in SNBs. Different GSG domain missense mutations were investigated for Sam68 protein localization. Six separate classes of cellular patterns were obtained, including exclusive SNB localization and association with microtubules. These findings demonstrate that the GSG domain is involved in protein localization and define a new compartment for Sam68, SLM-1, and SLM-2 in cancer cell lines.
Collapse
Affiliation(s)
- T Chen
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology, Medicine, and Microbiology and Immunology, McGill University, Montréal, Québec H3T 1E2
| | | | | | | |
Collapse
|
199
|
Buchner G, Montini E, Andolfi G, Quaderi N, Cainarca S, Messali S, Bassi MT, Ballabio A, Meroni G, Franco B. MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development. Hum Mol Genet 1999; 8:1397-407. [PMID: 10400986 DOI: 10.1093/hmg/8.8.1397] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The B-box family is an expanding new family of genes encoding proteins involved in diverse cellular functions such as developmental patterning and oncogenesis. A member of this protein family, MID1, is the gene responsible for the X-linked form of Opitz G/BBB syndrome, a developmental disorder characterized by defects of the midline structures. We now report the identification of MID2, a new transcript closely related to MID1. MID2 maps to Xq22 in human and to the syntenic region on the mouse X chromosome. The two X-linked genes share the same domains, the same exon-intron organization, a high degree of similarity at the protein level and the same subcellular localization, both being confined to the cytoplasm in association to micro-tubular structures. The expression pattern studied by RNA in situ hybridization in mouse revealed that Mid2 is expressed early in development and the highest level of expression is detected in the heart, unlike Mid1 for which no expression was detected in the developing heart. Together, these data suggest that midin and MID2 have a similar biochemical function but a different physiological role during development.
Collapse
Affiliation(s)
- G Buchner
- Telethon Institute of Genetics and Medicine (TIGEM), San Raffaele Biomedical Science Park, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Zhang TC, Cao EH, Li JF, Ma W, Qin JF. Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur J Cancer 1999; 35:1258-63. [PMID: 10615238 DOI: 10.1016/s0959-8049(99)00106-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arsenic trioxide (As2O3), used to treat human diseases for centuries in traditional Chinese medicine, has been identified as a very effective antileukaemic agent, but its effect on solid tumours which could be more suitable for clinical treatment with arsenic compounds is still unknown. In this study, we investigated the in vitro effect of As2O3 at concentrations of 0.01-1 microM against six human malignant cell lines, MGC-803, HIC, MCF-7, HeLa, BEL-7402 and A549 cells. As2O3 inhibited growth and induced apoptosis in these malignant cells at varying degrees, in a time dose-dependent manner. The most marked effects were seen in the gastric cancer cell line, MGC-803. In contrast, minimal growth inhibition and induction of apoptosis occurred in human embryonic pulmonary cells following treatment with As2O3 found at the same concentrations. Changes in intracellular Ca2+, following As2O3 treatment were measured by Ca2+ sensitive fluorescent probe Indo-1/AM in flow cytometric assays. The increase in intracellular Ca2+ correlated with the sensitivity of these cells to As2O3, possibly indicating that a critical intracellular Ca2+ signal transduction pathway could be involved in As2O3-mediated cell-death and its selectivity. The marked sensitivity of MGC-803 cells in vitro suggests that As2O3 may be a potential antigastric cancer agent.
Collapse
Affiliation(s)
- T C Zhang
- Institute of Biophysics, Academia Sinica, Beijing, P.R. China
| | | | | | | | | |
Collapse
|