151
|
Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. Dent Mater 2008; 24:1486-94. [DOI: 10.1016/j.dental.2008.02.020] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 12/16/2007] [Accepted: 02/25/2008] [Indexed: 11/20/2022]
|
152
|
Han MJ, Seo YK, Yoon HH, Song KY, Park JK. Effect of mechanical tension on the human dental pulp cells. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0146-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
153
|
Rücker M, Laschke MW, Junker D, Carvalho C, Tavassol F, Mülhaupt R, Gellrich NC, Menger MD. Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds. J Biomed Mater Res A 2008; 86:1002-11. [DOI: 10.1002/jbm.a.31722] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
154
|
Balic A, Rodgers B, Mina M. Mineralization and expression of Col1a1-3.6GFP transgene in primary dental pulp culture. Cells Tissues Organs 2008; 189:163-8. [PMID: 18781059 PMCID: PMC2742957 DOI: 10.1159/000154813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have examined and compared the effects of various differentiation-inducing media on mineralization, cell morphology and expression of pOBCol3.6GFP (3.6-GFP) in primary dental pulp cultures derived from 3.6-GFP transgenic mice. Our results show that media containing ascorbic acid only could not induce mineralization in primary dental pulp cultures. On the other hand, media containing ascorbic acid and beta-glycerophosphate induced formation of mineralized matrix-containing dentin. The amount of mineralized matrix was increased by addition of dexamethasone. Cells treated with ascorbic acid and beta-glycerophosphate were fibroblast like and cells treated with dexamethasone were cuboidal. In all culture conditions, high levels of 3.6-GFP were expressed in areas of mineralization.
Collapse
Affiliation(s)
| | | | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Conn., USA
| |
Collapse
|
155
|
Takamori Y, Suzuki H, Nakakura-Ohshima K, Cai J, Cho SW, Jung HS, Ohshima H. Capacity of dental pulp differentiation in mouse molars as demonstrated by allogenic tooth transplantation. J Histochem Cytochem 2008; 56:1075-86. [PMID: 18765839 DOI: 10.1369/jhc.2008.951558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp elaborates both bone and dentin under pathological conditions such as tooth replantation/transplantation. This study aims to clarify the capability of dental pulp to elaborate bone tissue in addition to dentin by allogenic tooth transplantation using immunohistochemistry and histochemistry. After extraction of the molars of 3-week-old mice, the roots and pulp floor were resected and immediately allografted into the sublingual region in a littermate. In addition, we studied the contribution of donor and host cells to the regenerated pulp tissue using a combination of allogenic tooth transplantation and lacZ transgenic ROSA26 mice. On Days 5-7, tubular dentin formation started next to the preexisting dentin at the pulp horn where nestin-positive odontoblast-like cells were arranged. Until Day 14, bone-like tissue formation occurred in the pulp chamber, where intense tartrate-resistant acid phosphatase-positive cells appeared. Furthermore, allogenic transplantation using ROSA26 mice clearly showed that both donor and host cells differentiated into osteoblast-like cells with the assistance of osteoclast-lineage cells, whereas newly differentiated odontoblasts were exclusively derived from donor cells. These results suggest that the odontoblast and osteoblast lineage cells reside in the dental pulp and that both donor and host cells contribute to bone-like tissue formation in the regenerated pulp tissue.
Collapse
Affiliation(s)
- Yasuhiko Takamori
- DDS, Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
156
|
Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K. Characterization of dental pulp stem cells of human tooth germs. J Dent Res 2008; 87:676-81. [PMID: 18573990 DOI: 10.1177/154405910808700716] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In previous studies, human dental pulp stem cells (hDPSCs) were mainly isolated from adults. In this present study, we characterized hDPSCs isolated from an earlier developmental stage to evaluate the potential usage of these cells for tissue-regenerative therapy. hDPSCs isolated at the crown-completed stage showed a higher proliferation rate than those isolated at a later stage. When the cells from either group were cultured in medium promoting differentiation toward cells of the osteo/odontoblastic lineage, both became alkaline-phosphatase-positive, produced calcified matrix, and were also capable of forming dentin-like matrix on scaffolds in vivo. However, during long-term passage, these cells underwent a change in morphology and lost their differentiation ability. The results of a DNA array experiment showed that the expression of several genes, such as WNT16, was markedly changed with an increasing number of passages, which might have caused the loss of their characteristics as hDPSCs.
Collapse
Affiliation(s)
- T Takeda
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Plasmin is involved in inflammation via protease-activated receptor-1 activation in human dental pulp. Biochem Pharmacol 2008; 75:1974-80. [DOI: 10.1016/j.bcp.2008.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 02/04/2023]
|
158
|
Hoang-Dao BT, Hoang-Tu H, Tran-Hung L, Camps J, Koubi G, About I. Evaluation of a natural resin-based new material (Shellac F) as a potential desensitizing agent. Dent Mater 2008; 24:1001-7. [PMID: 18190956 DOI: 10.1016/j.dental.2007.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 11/15/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the cytotoxicity of Shellac F, a new fluoride varnish, and its effects on human dentin hydraulic conductance. METHODS Shellac F was compared to another fluoride varnish (Duraphat) and a fluoride containing desensitizing agent (Isodan). The cytotoxicity test was performed on human gingival fibroblasts and through dentin slice on human pulp fibroblasts. The hydraulic conductance (Lp) was recorded by fluid filtration with a Flodec device under a constant pressure (15 cm H2O). The treated surface of the dentin disks and their sections were also investigated with SEM. RESULTS The cytotoxicity test on gingival fibroblasts revealed that Duraphat was the least cytotoxic material, followed by Shellac F then Isodan. With dentin slice interposition, a lower level of cytotoxicity was obtained. All of them showed a lower cytotoxicity decreasing on further dilutions (p<0.001). The measurement of hydraulic conductance showed that all materials resulted in a significant decrease in dentin permeability after 24h comprising between 60 and 76%, but there was no statistically significant difference among the materials. This decrease was still over 50% of the initial values after 7 days for all three materials. SEM investigation showed dentin tubules covered with a thick layer of Shellac F or Duraphat whilst no material was observed on dentin surfaces treated with Isodan. SIGNIFICANCE Shellac F showed an adequate cellular compatibility and a significant effect on human dentin hydraulic conductance. This indicates that the new material is safe and seems to be effective as a potential desensitizing agent.
Collapse
Affiliation(s)
- Bao-Tram Hoang-Dao
- Laboratoire IMEB, Faculté d'Odontologie, Université de la Méditerranée, 27 Bd Jean Moulin, 13355 Marseille, Cedex 05, Marseille, France
| | | | | | | | | | | |
Collapse
|
159
|
Téclès O, Laurent P, Aubut V, About I. Human tooth culture: A study model for reparative dentinogenesis and direct pulp capping materials biocompatibility. J Biomed Mater Res B Appl Biomater 2008; 85:180-7. [PMID: 17853422 DOI: 10.1002/jbm.b.30933] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous work, based on an in vitro entire tooth culture model of human immature third molars, we demonstrated that perivascular progenitor cells can proliferate and migrate to the injury site after pulp exposure. In this work, we investigated the differentiation of cells after direct capping with biomaterials classically used in restorative dentistry. Histological staining after direct pulp capping with Calcium Hydroxide XR(R) or MTA revealed early and progressive mineralized foci formation containing BrdU-labeled sequestered cells. The molecular characterization of the matrix and the sequestered cells by immunohistochemistry (Collagene type I, Dentin sialoprotein, and Nestin) clearly demonstrates that these areas share common characteristics of the mineralized matrix of reparative dentin formed by odontoblast-like cells. This reproduces some features of the pulp responses after applying these materials in vivo and demonstrates that the entire tooth culture model reproduces a part of the early steps of dentin regeneration in vivo. Its future development may be useful in studying the effects of biomaterials on this process.
Collapse
Affiliation(s)
- Odile Téclès
- Laboratoire IMEB-ERT 30, Faculté d'Odontologie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13355 Marseille Cedex 05, France
| | | | | | | |
Collapse
|
160
|
Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2007; 331:359-72. [PMID: 17938970 DOI: 10.1007/s00441-007-0467-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/04/2007] [Indexed: 01/09/2023]
Abstract
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Department of Craniofacial Development, Dental Institute, Guy's Hospital, Kings College London, London Bridge, London, SE1 9RT, UK
| | | |
Collapse
|
161
|
Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH. Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 2007; 39:153-60. [PMID: 17929179 DOI: 10.1007/s10735-007-9148-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/27/2007] [Indexed: 11/28/2022]
Abstract
Reparative dentin has a wide variety of manifestations ranging from a regular, tubular form to an irregular, atubular form. However, the characteristics of reparative dentin have not been clarified. This study hypothesized that the level of bone sialoprotein (BSP) expression will increase if the newly formed reparative dentin is bone-like but the dentin sialophosphoprotein (DSPP) level will decrease. In order to test this hypothesis, the expression of BSP and DSP was examined by immunohistochemistry and the expression of BSP was measured by in situ hybridization in an animal model. The pulps of 12 maxillary right first molars from twelve male rats were exposed and capped with MTA. In addition, in order to understand the role of transforming growth factor-beta 1 (TGF-beta1) during reparative dentinogenesis, the expression of BSP and DSPP mRNA was analyzed by RT-PCR in a human dental pulp cell culture, and the transforming growth factor-beta 1 receptors (TbetaRI) and Smad 2/3 were examined by immunofluorescence in an animal model. DSP was expressed in the normal odontoblasts and odontoblast-like cells of the reparative dentin. Interestingly, BSP was strongly expressed in the odontoblast-like cells of reparative dentin. The level of the TbetaRI and Smad 2/3 proteins was higher in the reparative dentin than in the normal dentin. TGF-beta1 up-regulated BSP in the human pulp cell cultures. This suggests that reparative dentin has both dentinogenic and osteogenic characteristics that are mediated by TGF-beta1.
Collapse
Affiliation(s)
- Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol 2007; 53:9-13. [PMID: 17764655 DOI: 10.1016/j.archoralbio.2007.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/03/2007] [Accepted: 07/14/2007] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Angiogenesis is a key step in the dental pulp healing sequence which involves the dentine bridge formation. In a previous work, we showed that dental pulp cells secrete soluble factors which interact with endothelial cells and affect the process of angiogenesis. The objective of this work was to quantify the angiogenic growth factors released by mechanically injured human dental pulp cells and the effect of 2-hydroxyethyl methacrylate (HEMA) on this secretion. DESIGN Pulp cells were prepared from immature third molars explants by the outgrowth method. Cell monolayers were either subjected to mechanical injuries or treated with increasing concentrations of HEMA. ELISA was used to quantify the secreted angiogenic growth factors in the culture media after different time periods of injury and after incubation with different concentrations of HEMA. RESULTS Pulp cells secreted significant levels of PDGF-AB, VEGF and FGF-2. The concentration of these factors increased shortly (5h) after injury and returned to initial values after 1 day. HEMA treatment increased VEGF secretion but decreased that of FGF-2 in a dose-dependent manner while it did not affect PDGF-AB level. CONCLUSIONS Dental pulp cells secrete angiogenic growth factors which play a pivotal role in angiogenesis which precedes the reparative dentine formation. PDGF-AB seems to play a major role because its level showed the highest increase in mechanically injured cells. The presence of HEMA affects both FGF-2 and VEGF levels and may partially explain the lack of dentine bridging after direct pulp capping with an adhesive system.
Collapse
Affiliation(s)
- L Tran-Hung
- Laboratoire IMEB-ERT 30, Faculté d'Odontologie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13355 Marseille Cedex 05, France
| | | | | | | |
Collapse
|
164
|
Abstract
The dentine-pulp complex displays exquisite regenerative potential in response to injury. The postnatal dental pulp contains a variety of potential progenitor/stem cells, which may participate in dental regeneration. A population of multipotent mesenchymal progenitor cells known as dental pulp stem cells with high proliferative potential for self-renewal has been described and may be important to the regenerative capacity of the tissue. The nature of the progenitor/stem cell populations in the pulp is of importance in understanding their potentialities and development of isolation or recruitment strategies, and allowing exploitation of their use in regeneration and tissue engineering. Various strategies will be required to ensure not only effective isolation of these cells, but also controlled signalling of their differentiation and regulation of secretory behaviour. Characterization of these cells and determination of their potentialities in terms of specificity of regenerative response will form the foundation for development of new clinical treatment modalities, whether involving directed recruitment of the cells and seeding of stem cells at sites of injury for regeneration or use of the stem cells with appropriate scaffolds for tissue engineering solutions. Such approaches will provide an innovative and novel biologically based new generation of clinical treatments for dental disease.
Collapse
Affiliation(s)
- A J Sloan
- Oral Surgery, Medicine & Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, UK.
| | | |
Collapse
|
165
|
Abstract
After pulp amputation, complete pulp healing requires not only reparative dentin production but also fibroblast proliferation, nerve fiber growth, and neoangiogenesis. This study was designed to investigate the role of pulp fibroblasts in angiogenesis. Human pulp fibroblasts from third molars co-cultured with human umbilical vein endothelial cells induced the organization of endothelial cells and the formation of tubular structures corresponding to capillaries in vivo. The direct contact between both cells was not necessary to induce angiogenesis, and the observed effect was due to soluble factors. This was confirmed with neutralizing antibodies against FGF-2 and VEGF, which decreased the angiogenic effects of these soluble factors. Immunohistochemistry showed that both FGF-2 and VEGF were expressed in human dental pulp fibroblasts, and this expression increased after injury. These results suggest that the pulp fibroblasts secrete angiogenic factors, which are necessary for complete pulp healing, particularly at the pulp injury site.
Collapse
Affiliation(s)
- L Tran-Hung
- Laboratoire IMEB-ERT 30, Faculté d'Odontologie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13355 Marseille Cedex 05, France
| | | | | |
Collapse
|
166
|
Huang GTJ, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod 2007; 32:1066-73. [PMID: 17055908 DOI: 10.1016/j.joen.2006.05.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/15/2006] [Accepted: 05/17/2006] [Indexed: 01/09/2023]
Abstract
Recent characterization of human dental pulp stem cells has shed new light on the understanding of the odontoblastic lineage. The purpose of the study was to characterize human adult dental pulp cells isolated and cultured in vitro and to examine the cell differentiation potential grown on dentin. We observed that some pulp cells isolated with an enzyme-digestion approach proliferated at a similar rate as the immortal cell line NIH 3T3. Population doubling time (PDt) for pulp cells at passage 3 was 22.6 +/- 0.5 hours and for NIH 3T3 was 23.1 +/- 2.3 hours. The pulp cells formed mineral nodules stimulated with dexamethasone or dexamethasone plus 1,25-dihydroxyvitamin D3. Pulp cells, after being seeded onto mechanically and chemically treated dentin surface, appeared to establish an odontoblast-like morphology with a cytoplasmic process extending into a dentinal tubule revealed by scanning electron microscopy analysis. Our data demonstrated the formation of cells with odontoblastic morphologies on existing dentin, suggesting that isolated human pulp stem cells may differentiate into odontoblasts on dentin in vitro.
Collapse
Affiliation(s)
- George T-J Huang
- University of Maryland, College of Dental Surgery, Dental School, Department of Endodontics, Prosthodontics and Operative Dentistry, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
167
|
Tonomura A, Sumita Y, Ando Y, Iejima D, Kagami H, Honda MJ, Ueda M. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect Tissue Res 2007; 48:229-38. [PMID: 17882698 DOI: 10.1080/03008200701507909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A robust method for generating odontoblasts from cultured dental pulp cells has not been established. In this study, efficient methods for deriving odontoblasts from cultured human and porcine dental pulp-derived cells were investigated with special attention to species differences. Cultured human cells showed relatively low alkaline phosphatase (ALP) activity in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-Gly). In contrast, the addition of 1,25-dihydroxyvitaminD(3) (VitD3) significantly increased the ALP activity. In porcine cells, beta-Gly alone or a combination of Dex and beta-Gly significantly increased ALP activity; however, addition of VitD3 reduced this activity. RT-PCR and Western blotting analysis revealed that the combination of three induction reagents on human cells significantly upregulates the expression of osteocalcin mRNA, and dentin sialoprotein. We propose that the combination of Dex, beta-Gly, and VitD3 is critical for differentiation of human dental pulp-derived cells into odontoblasts. In addition, the inducibility of dental pulp-derived cells presented remarkable species differences.
Collapse
Affiliation(s)
- Akiko Tonomura
- Research & Development Center, Hitachi Medical Corporation, Kashiwa, Japan
| | | | | | | | | | | | | |
Collapse
|
168
|
Histological evaluation of odontoblast-like cells response after capping application of calcium hydroxide and hydroxilapatite in dog’s pulp. ACTA VET-BEOGRAD 2007. [DOI: 10.2298/avb0706573d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
169
|
Garcia-Godoy F, Murray PE. Status and Potential Commercial Impact of Stem Cell-Based Treatments on Dental and Craniofacial Regeneration. Stem Cells Dev 2006; 15:881-7. [PMID: 17253950 DOI: 10.1089/scd.2006.15.881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The projected annual demand for stem cell-based dental treatments in the United States can range from over 290 million tooth restorative treatments to 30,000 patients requiring tissue regeneration following craniofacial cancer surgery. Professional dental treatments cost Americans over $60 billion per year. Scientific advances in stem cell technologies, tissue engineering, and transplantation will provide the basis for the introduction of new treatment technologies into dentistry. This review provides an assessment of how stem cell therapies will likely change dental practice. The problems of introducing stem cell therapies are substantial, but they provide the best hope for many patients with congenital defects, and to regenerate teeth and tissues lost because of disease, cancer, and trauma, or missing because of congenital malformation. The most expensive dental treatments may be the most attractive candidates for stem cell therapies. This would indicate that craniofacial reconstruction, implants, and endodontic treatments are the most valuable applications of dental stem cell therapies, whereas tooth restorations and other dental treatments are the less commercially valuable.
Collapse
Affiliation(s)
- Franklin Garcia-Godoy
- Bioscience Research Center, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| | | |
Collapse
|
170
|
Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res 2006; 85:966-79. [PMID: 17062735 PMCID: PMC2571078 DOI: 10.1177/154405910608501101] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Craniofacial tissue engineering promises the regeneration or de novo formation of dental, oral, and craniofacial structures lost to congenital anomalies, trauma, and diseases. Virtually all craniofacial structures are derivatives of mesenchymal cells. Mesenchymal stem cells are the offspring of mesenchymal cells following asymmetrical division, and reside in various craniofacial structures in the adult. Cells with characteristics of adult stem cells have been isolated from the dental pulp, the deciduous tooth, and the periodontium. Several craniofacial structures--such as the mandibular condyle, calvarial bone, cranial suture, and subcutaneous adipose tissue--have been engineered from mesenchymal stem cells, growth factor, and/or gene therapy approaches. As a departure from the reliance of current clinical practice on durable materials such as amalgam, composites, and metallic alloys, biological therapies utilize mesenchymal stem cells, delivered or internally recruited, to generate craniofacial structures in temporary scaffolding biomaterials. Craniofacial tissue engineering is likely to be realized in the foreseeable future, and represents an opportunity that dentistry cannot afford to miss.
Collapse
Affiliation(s)
- J J Mao
- Columbia University College of Dental Medicine and Biomedical Engineering, 630 W. 168 St.--PH7 CDM, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Sugars R, Karlström E, Christersson C, Olsson ML, Wendel M, Fried K. Expression of HMGB1 during tooth development. Cell Tissue Res 2006; 327:511-9. [PMID: 17043795 DOI: 10.1007/s00441-006-0293-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
High mobility group box 1 (HMGB1) is a nuclear and cytosolic protein that can act as a transcription factor, a growth factor, or a cytokine. To elucidate a possible role for HMGB1 in tooth development, we have studied the expression of HMGB1 and its receptor RAGE (receptor for advanced glycation end-products) during the late fetal and early postnatal period of rat by using light- and electron-microscopic immunohistochemistry. Low HMGB1 protein expression was observed during fetal and newborn stages of tooth development. However, from postnatal day 5 (P5) onward, a marked increase occurred in the levels of the protein in most dental cell types. Expression was particularly high in ameloblasts and odontoblasts at regions of ongoing mineralization. Although most HMGB1 immunoreactivity was confined to cell nuclei, it was also present in odontoblast cytoplasm. At P5, ameloblasts and odontoblasts also showed RAGE immunoreactivity, and reverse transcription-polymerase chain reaction demonstrated both HMGB1 and RAGE mRNA in human dental pulp cells in vitro. Immunoblots performed on extracts from bovine dentin demonstrated a principal band at approximately 27 kDa, indicating that HMGB1 participates in tooth mineralization. The expression of both ligand and receptor suggests an autocrine/paracrine HMGB1 signalling axis in odontoblasts.
Collapse
Affiliation(s)
- R Sugars
- Center for Oral Biology, Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
172
|
Ferreira ANS, Silveira L, Genovese WJ, de Araújo VC, Frigo L, de Mesquita RA, Guedes E. Effect of GaAIAs laser on reactional dentinogenesis induction in human teeth. Photomed Laser Surg 2006; 24:358-65. [PMID: 16875445 DOI: 10.1089/pho.2006.24.358] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study investigated the biomodulatory effect of the gallium- aluminum-arsenate laser (GaAlAs) in pulp cells on reactional dentinogenesis, and on the expression of collagen type III (Col III), tenascin (TN), and fibronectin (FN) in irradiated dental tissues and controls (not irradiated). BACKGROUND DATA Several studies suggest a biomodulatory influence of low-intensity laser radiation in the inflammatory and reparative processes of biological tissues. METHODS Sixteen human premolar teeth were selected (after extraction due to orthodontal reasons) and divided into irradiated and control groups. Black class V cavity preparations were accomplished in both groups. For the irradiated group, GaAlAs laser (670 nm, 50 mW) with an energy density of 4 J/cm2 was used. Soon after, the cavities were restored with a glass ionomer and the extractions made after 14 and 42 days. RESULTS Histological changes were observed by light microscopy; less intense inflammatory reaction in the irradiated group was found when compared to the controls. Only the irradiated group of 42 days exhibited an area associated with reactional dentinogenesis. After immunohistochemical analysis by the streptoavidin-biotin complex (SABC) method, the expression of Col III, TN, and FN was greater in the irradiated groups. CONCLUSION Our results suggest that a GaAlAs laser with energy density of 4 J/cm2 and wavelength of 670 nm caused biomodulation in pulp cells and expression of collagen, but not collagen of the extracellular matrix, after preparation of a cavity.
Collapse
Affiliation(s)
- Adriana Nayme Segovia Ferreira
- Group of Biomolecular Spectroscopy, Institute of Research and Development (IP&D), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil.
| | | | | | | | | | | | | |
Collapse
|
173
|
Lee YL, Liu J, Clarkson BH, Lin CP, Godovikova V, Ritchie HH. Dentin-pulp complex responses to carious lesions. Caries Res 2006; 40:256-64. [PMID: 16707876 DOI: 10.1159/000092235] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 09/13/2005] [Indexed: 11/19/2022] Open
Abstract
To understand the molecular events underlying the dentin-pulp complex responses to carious progression, we systematically analyzed tissue morphology and dentin matrix protein distribution in non-carious teeth and in teeth with enamel and dentin caries. Dentin matrix proteins analyzed included collagen type I, phosphophoryn (PP) and dentin sialoprotein (DSP), all of which play decisive roles in the dentin mineralization process. Human non-carious and carious third molar teeth were freshly collected, demineralized, and processed for hematoxylin and eosin staining. The ABC-peroxidase method was used for immunohistochemical staining of collagen type I, PP and DSP proteins using specific antibodies. In situ hybridization was also performed. In contrast to elongated odontoblasts in non-carious teeth, odontoblasts subjacent to dentin caries were cuboidal and fewer in number. The predentin zone was also dramatically reduced in teeth with dentin caries. The staining intensity for collagen type I, PP and DSP in the dentin-pulp complex increased progressively from non-carious teeth, to teeth with enamel and dentin caries. In situ hybridization studies showed DSP-PP mRNA expression in odontoblasts and dental pulp that was consistent with our immunohistochemical results. These results suggest that carious lesions stimulate the dentin-pulp complex to actively synthesize collagen type I, PP and DSP proteins. This response to carious lesions is likely to provide a basis for reparative and/or reactionary dentin formation.
Collapse
Affiliation(s)
- Y-L Lee
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
174
|
Yen AHH, Sharpe PT. Regeneration of teeth using stem cell-based tissue engineering. Expert Opin Biol Ther 2006; 6:9-16. [PMID: 16370910 DOI: 10.1517/14712598.6.1.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tooth autotransplantation, allotransplantation and dental implants have existed for many years, but have never been totally satisfactory. Thus, the development of new methods of tooth replacement has become desirable, and with the increasing knowledge of stem cell biology becomes a realistic possibility. Stem cell-based tissue engineering involving the recapitulation of the embryonic environment demonstrates that dental, non-dental, embryonic and adult stem cells can contribute to teeth formation in the appropriate setting. Evidence that stem cell populations may be present in human teeth provides the opportunity to consider biological tooth replacement 'new for old'.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Dental Institute, Department of Craniofacial Development, Odontis Ltd, Kings College London, Guy's Hospital, London Bridge, SE1 9RT, UK
| | | |
Collapse
|
175
|
Huang GTJ, Sonoyama W, Chen J, Park SH. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 2006; 324:225-36. [PMID: 16440193 DOI: 10.1007/s00441-005-0117-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Accepted: 11/04/2005] [Indexed: 01/09/2023]
Abstract
Our purpose was to characterize human dental pulp cells isolated by various methods and to examine the behavior of cells grown under various conditions for the purpose of pulp/dentin tissue engineering and regeneration. We compared the growth of human pulp cells isolated by either enzyme digestion or the outgrowth method. Expression of dentin sialophosphoprotein, Cbfa1, and two types of collagen (I and III) in these cells was examined by Western blot or reverse transcription/polymerase chain reaction. Growth of pulp cells on dentin and in collagen gel was also characterized. We found that different isolation methods give rise to different populations or lineages of pulp cells during in vitro passage based on their collagen gene expression patterns. Cells isolated by enzymedigestion had a higher proliferation rate than those isolated by outgrowth. Pulp cells did not proliferate or grew minimally on chemically and mechanically treated dentin surface and appeared to establish an odontoblast-like morphology with a cytoplasmic process extending into a dentinal tubule as revealed by scanning electron microscopy. The contraction of the collagen matrix caused by pulp cells was dramatic: down to 34% on day 14. Our data indicate that (1) the choice of the pulp cell isolation method may affect the distribution of the obtained cell populations, (2) a treated dentin surface might still promote odontoblast differentiation, and (3) a collagen matrix may not be a suitable scaffold for pulp tissue regeneration because of the marked contraction caused by pulp cells in the matrix. The present study thus provides important information and a basis for further investigations pre-requisite to establishing pulp tissue engineering/regeneration protocols.
Collapse
Affiliation(s)
- George T-J Huang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
176
|
Abstract
Postnatal stem cells have been isolated from a variety of tissues. These stem cells are thought to possess great therapeutic potential for repairing damaged and/or defective tissues. Clinically, hematopoietic stem cells have been successfully used for decades in the treatment of various diseases and disorders. However, the therapeutic potential of other postnatal stem cell populations has yet to be realized, because of the lack of detailed understanding of their stem cell characteristics at the cellular and molecular levels. Furthermore, there is limited knowledge of their therapeutic value at the preclinical level. Therefore, it is necessary to develop optimal strategies and approaches to overcome the substantial challenges currently faced by researchers examining the clinical efficacy of different postnatal stem cell populations. In this review, we introduce methodologies for isolating postnatal stem cells from human dental pulp and discuss their potential role in tissue regeneration.
Collapse
Affiliation(s)
- He Liu
- Peking University School of Stomatology, Beijing, China
| | | | | |
Collapse
|
177
|
Liu J, Jin T, Ritchie HH, Smith AJ, Clarkson BH. In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. In Vitro Cell Dev Biol Anim 2005; 41:232-8. [PMID: 16223338 DOI: 10.1290/0502014.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, the progenitor cells isolated from the human dental pulp were used to study the effects of ethylenediaminetetraacetic acid-soluble dentin extract (DE) on their differentiation and mineralization to better understand tissue injury and repair in the tooth. Mineralization of the matrix was increasingly evident at 14, 21, and 28 d after treatment with a mineralization supplement (MS) (ascorbic acid [AA], beta-glycerophosphate [beta-GP]) and MS + DE. Real-time polymerase chain reaction results showed type I collagen upregulation after the addition of MS + DE at 7 d. Alkaline phosphatase was downregulated after the mineralization became obvious at 14 d. Bone sialoprotein was shown to be upregulated in the mineralized cell groups at all time points and dentin sialophosphoprotein after 7 d. Core binding factor a 1 was upregulated by the treatment of MS and DE at 7, 14, and 21 d. These results indicated that the MS of AA, beta-GP, and DE synergistically induced cell differentiation of pulp progenitor cells into odontoblast-like cells and induced in vitro mineralization.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|
178
|
Deng M, Shi J, Smith AJ, Jin Y. Effects of transforming growth factor β1 (TGFβ-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system. Arch Oral Biol 2005; 50:937-45. [PMID: 15871903 DOI: 10.1016/j.archoralbio.2005.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 03/09/2005] [Indexed: 01/09/2023]
Abstract
Cranial neural crest-derived ectomesenchymal cells represent a population of pluripotent stem cells giving rise to many of the various oro-facial and dental tissues. The factors determining the terminal fate of these cells are still unclear. The potentiality of human embryonic ectomesenchymal cells from the first branchial arch have been investigated when isolated and grown in a three-dimensional (3D)-collagen gel culture system in the presence of dentin matrix-derived non-collagenous proteins (DNCP) and TGFbeta-1. Functional differentiation of cells showing some characteristics of odontoblast-like cells could be observed when the cells were cultured with DNCP+TGFbeta-1 or DNCP, however, only cytological differentiation was observed during culture with TGFbeta-1 alone. The characteristics of these cells was assessed by morphological appearance, expression of the odontoblast phenotype marker dentin sialophosphoprotein (DSPP), increased alkaline phosphatase levels and formation of mineralised nodules in vitro. The results indicate that these embryonic cells from the first branchial arch are capable of responding to the inductive stimulus of DNCP or DNCP+TGFbeta-1 when isolated and grown in the 3D collagen gel culture system. The capacity of the isolated cells to differentiate into mineralizing cells showing some characteristics of odontoblast-like cells under these growth conditions highlights the potential of such approaches for tissue engineering strategies for hard-tissue regeneration after injury.
Collapse
Affiliation(s)
- Manjing Deng
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | | | | | | |
Collapse
|
179
|
Liu H, Li W, Shi S, Habelitz S, Gao C, Denbesten P. MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol 2005; 50:923-8. [PMID: 16183369 DOI: 10.1016/j.archoralbio.2005.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 03/01/2005] [Indexed: 01/09/2023]
Abstract
UNLABELLED Previous studies on dental pulp cell culture have described heterogenous mixtures of cells that differentiate into odontoblasts and form mineralized dentin. OBJECTIVE The aim of this study was to characterize the matrix extracellular phosphoglycoprotein (MEPE) expression by dental pulp stem cells (DPSC), related to cell differentiation. DESIGN DPSC differentiation to form mineralized nodules was characterized by Alizarin red staining and micro-Raman spectroscopy. Osteogenesis SuperArray analysis was used to broadly screen for osteogenesis-related genes altered by DPSC differentiation. Relative levels of expression of MEPE and DSP were determined by semiquantitative RT-PCR and Western blot. RESULTS Mineral analysis showed that as DPSC differentiated, they formed a carbonated hydroxyapatite mineral. Differentiation was initially marked by upregulation by Runx2, TGFbeta-related genes, EGFR and genes involved in collagen metabolism. ALP activity first increased, as DPSCs reached confluence but later decreased when cells further differentiated three weeks after confluence. MEPE was the only marker that was downregulated as DPSCs differentiated. CONCLUSION DPSC differentiation can be characterized by downregulation of MEPE as other markers of DPSC differentiation, such as DSP, are upregulated. Expression of MEPE related to DSP and can be used to monitor DPSC as they are used for studies of odontoblast differentiation, tissue engineering or vital pulp therapy. The downregulation of MEPE as DPSC differentiate, suggests that MEPE is an inhibitor of mineralization.
Collapse
Affiliation(s)
- He Liu
- University of California, San Francisco, Growth and Development, 521 Parnassus Avenue, Rm C734, Box 0640, San Francisco, CA 94143-0640, USA
| | | | | | | | | | | |
Collapse
|
180
|
Jones TE, Henderson JS, Johnson RB. Effects of doxorubicin on human dental pulp cells in vitro. Cell Biol Toxicol 2005; 21:207-14. [PMID: 16323057 DOI: 10.1007/s10565-005-0165-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 06/27/2005] [Indexed: 01/09/2023]
Abstract
There is substantial information concerning the effects of continuous exposure to supratherapeutic or therapeutic concentrations of doxorubicin on human molar pulpal cells; the effects of continuous exposure to subtherapeutic concentrations of this agent are undetermined. To this end, we studied the proliferation of human fibroblasts and pulpal cells and their pattern of mineralized nodule deposition in vitro. Cell proliferation was assessed at 1, 3, 5, and 7 days from populations with either no exposure (control) or exposure to 10(-6)-10(-9) mol/L doxorubicin. Mineralized nodule deposition and calcium-45 incorporation were assessed at 7 and 21 days of culture. Data were compared by factorial ANOVA and a post-hoc Tukey test. 10(-6) and 10(-7) mol/L doxorubicin significantly reduced the total number of viable pulpal cells in cultures from days 1 to 3 (p < 0.05); doxorubicin 10(-6)-10(-9) mol/L significantly inhibited cell proliferation (p < 0.05) and DNA synthesis 5 days after plating (p < 0.001). After 21 days, doxorubicin 10(-6)-10(-8) mol/L significantly decreased calcium-45 incorporation into pulpal cultures (p < 0.001); all dilutions significantly reduced the number of mineralized nodules within the 21-day pulpal cultures (p < 0.05). In addition, all dilutions of doxorubicin significantly inhibited fibroblast cell proliferation and incorporation of [(3)H]thymidine. In contrast, the fibroblast cultures did not produce mineralized nodules, suggesting that the mineralized nodules within the pulpal cell cultures did not result from dystrophic calcification. Thus, exposure to subtheraputic doxorubicin concentrations has potential adverse effects on mineralized tissue formation within the pulp, which could affect the rates of reparative dentin deposition within the tooth pulps of patients receiving this chemotherapeutic agent.
Collapse
Affiliation(s)
- T E Jones
- Department of Periodontics and Preventive Sciences, University of Mississippi, Jackson, 39216, USA
| | | | | |
Collapse
|
181
|
Boskey AL, Mendelsohn R. Infrared spectroscopic characterization of mineralized tissues. VIBRATIONAL SPECTROSCOPY 2005; 38:107-114. [PMID: 16691288 PMCID: PMC1459415 DOI: 10.1016/j.vibspec.2005.02.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Vibrational spectroscopy (Infrared and Raman), and in particular micro-spectroscopy and micro-spectroscopic imaging has been used to characterize developmental changes in bone and other mineralized tissues, to monitor these changes in cell cultures, and to detect disease and drug-induced modifications. Examples of the use of infrared micro-spectroscopy and micro-spectroscopic imaging are discussed in this review.
Collapse
|
182
|
Reynolds AJ, Jahoda CAB. Cultured human and rat tooth papilla cells induce hair follicle regeneration and fiber growth. Differentiation 2005; 72:566-75. [PMID: 15617567 DOI: 10.1111/j.1432-0436.2004.07209010.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mesenchymal-epithelial interactions that characterize the early stages of tooth and hair follicle morphogenesis share certain similarities, and there is increasing evidence that mesenchymal cells derived from both mature structures retain interactive and stem cell-like properties. This study aimed to gauge the cross-appendage inductive capabilities of cultured tooth dental papilla (or pulp) cells from different species and ages of donor. Adult human and juvenile rat tooth papilla cells were implanted into surgically inactivated hair follicles within two different microenvironments. The human cells interacted with follicle epithelium to regenerate new end bulbs and create multiple differentiated hair fibers. Rodent tooth dental cells also induced new epithelial matrix structures and stimulated de novo hair formation. However, in many instances they also elicited mineralization and bone formation, a phenomenon that appeared to relate to their donor's age; the type of tooth of origin; and the host environment. Taken together, this study reveals that cultured dental papilla cells from postnatal mammals (adult, juvenile, and newborn) retain inductive molecular signals that must be common to both hair and teeth follicles. It highlights the stem cell-like qualities and morphogenetic abilities of tooth and hair follicle cells from mature humans, and their capacity for cross-appendage and interspecies communication and interaction. Besides the developmental implications, the present findings have relevance for stem cell biology, hair growth, tissue repair, and other biotechnologies. Moreover, the critical importance of considering the local microenvironment in which different cells/tissues are naturally or experimentally engineered is firmly demonstrated.
Collapse
Affiliation(s)
- Amanda J Reynolds
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | | |
Collapse
|
183
|
About I, Camps J, Burger AS, Mitsiadis TA, Butler WT, Franquin JC. Polymerized bonding agents and the differentiation in vitro of human pulp cells into odontoblast-like cells. Dent Mater 2005; 21:156-63. [PMID: 15681014 DOI: 10.1016/j.dental.2004.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 01/09/2004] [Accepted: 02/19/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Odontoblasts are highly differentiated post-mitotic cells, which under pathological conditions such as carious lesions and dental injuries may degenerate and be replaced by other pulp cells. We have recently shown that this physiological event can be reproduced in an in vitro assay system, but is highly modified by the presence of unpolymerized resinous monomers. Our hypothesis was that the photopolymerization of the monomers in the bonding agents might abolish these negative effects. The purpose of this study was to evaluate the effects of polymerized dentin bonding agents, through dentin slices, on odontoblast differentiation in vitro. METHODS Pulp cells were obtained from human third molars. They were used to study the effects of four dentin bonding agents through 0.7 mm dentin slices which served as a barrier between the bonding agents and the culture medium. The media containing the bonding agents' extracts were added at non-toxic concentrations onto the cultured cells. Immunohistochemistry was performed to study the differentiation of pulp fibroblasts into odontoblasts under these conditions by evaluating the expression of several odontoblast specific genes. RESULTS Pulp fibroblasts cultivated under these conditions synthesized type I collagen, osteonectin, dentin sialoprotein and nestin at the same level as in control cultures. Moreover, pulp cells synthesized a mineralized nodular extracellular matrix. Expression of these proteins was higher in the cells contributing to the nodule formation. In addition, except nestin, all these proteins were expressed in the mineral nodules. SIGNIFICANCE This work shows the lack of effects of photopolymerized bonding agents, through dentin slices, on cytodifferentiation of secondary odontoblasts.
Collapse
Affiliation(s)
- Imad About
- Laboratoire IMEB, Faculté d'Odontologie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
184
|
Mathieu S, El-Battari A, Dejou J, About I. Role of injured endothelial cells in the recruitment of human pulp cells. Arch Oral Biol 2005; 50:109-13. [PMID: 15721136 DOI: 10.1016/j.archoralbio.2004.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 11/02/2004] [Indexed: 01/09/2023]
Abstract
In restorative dentistry, deep cavity preparation may lead to partial destruction of the odontoblastic layer. However, newly formed odontoblast-like cells can replace the necrotic odontoblasts and secrete a reparative dentine matrix. While growth factors such as transforming growth factor beta1 (TGFbeta1) and bone morphogenetic proteins (BMP-2 and BMP-4) seem to be involved in the proliferation and differentiation of pulp cells, little is known about the migration of the newly proliferating stem cells to the injury site. Our hypothesis was that endothelial cell injury may be involved in directing these cells towards the injury site. For this study, human pulp fibroblasts and L929 cells were fluorescence-labeled by transduction with the Enhanced Green Fluorescent Protein (EGFP). Similarly, human umbilical vein endothelial cells (HUVEC) were labeled with the Discosoma Red Fluorescent Protein-2 (DsRed2). Cell migration was then studied in an insert cell culture system. The HUVEC cells were cultured in the lower compartment while the human pulp fibroblasts or L929 were in the upper compartment. After artificial injury to the HUVEC cells, only human pulp fibroblasts migrated to the lower compartment. At early time periods (4 days), migrating cells were randomly localized on the HUVEC layer. However, after 14 and 20 days, they were perfectly aligned along the injury site. In the absence of injury, no migration was observed. These results suggest that, the endothelial injury is involved in the recruitment of odontoblast-like cells at the injury site.
Collapse
|
185
|
Téclès O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, About I. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 2005; 50:103-8. [PMID: 15721135 DOI: 10.1016/j.archoralbio.2004.11.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/02/2004] [Indexed: 01/09/2023]
Abstract
In restorative dentistry, whilst moderate carious lesion treatment does not significantly compromise odontoblast cell survival, deep cavity preparation may lead to a partial death of these cells. However, newly formed odontoblast-like cells can replace the necrotic odontoblasts and secrete a reparative dentine matrix. Although several lines of evidence strongly suggest the presence of resting progenitor or stem cells in the dental pulp, little is known about the activation and migration of these cells in response to injury. Human immature third molars extracted for orthodontic reasons were used in this work to study the activation of progenitor/stem cells and their migration after deep cavity preparation involving in pulpal exposure using 5-bromo-2'-deoxyuridine labelling (BrdU). After incubation for 1 day, the BrdU was localised to the nuclei of cells in the perivascular area. The BrdU-immunolabelling exhibited a gradient. It was strong in the blood vessels surrounding the pulpal cavity and decreased in those away from the cavity. After incubation for 2 weeks, labelled cells were seen in the vicinity of the cavity. At 4 weeks, the immunolabelling was localised to the cavity area only. Control teeth without cavities or with shallow dentine cavities did not show any perivascular labelling after culture. These results clearly demonstrate that perivascular progenitor/stem cells can proliferate in response to odontoblast injury. They also show that these proliferating cells can migrate to the pulpal injury site in their tissue of origin simulating the situation in vivo.
Collapse
Affiliation(s)
- Odile Téclès
- Laboratoire IMEB - ERT 30, Faculté d'Odontologie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
186
|
Maurin JC, Couble ML, Didier-Bazes M, Brisson C, Magloire H, Bleicher F. Expression and localization of reelin in human odontoblasts. Matrix Biol 2004; 23:277-85. [PMID: 15464360 DOI: 10.1016/j.matbio.2004.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/21/2004] [Accepted: 06/22/2004] [Indexed: 01/09/2023]
Abstract
Reelin is a large extracellular matrix (ECM) glycoprotein strongly expressed during embryonic development in the central nervous system and involved in architectonic brain development. It could participate in axon plasticity processes or adhesion-recognition between nerve fibers in adulthood. Previously identified from a subtractive cDNA library of fully differentiated human odontoblasts, reelin might be involved in the relationship between dental nerves and odontoblasts in as so far the latter are in close association with pulpal nerve fibers. Here, we show by in situ hybridization and immunohistochemistry that reelin is specifically expressed by human odontoblasts in vivo and in vitro and that an intense expression of the reelin gene is detected in odontoblasts in comparison with pulpal cells (PC). Co-cultures of rat trigeminal ganglion (TG) and odontoblasts allow to mimic odontoblast innervation and demonstrate that neurites contact these cells with reelin molecules as observed in vivo in human dental pulp. Moreover, by RT-PCR, we show that both reelin receptors (namely apolipoprotein E receptor [ApoER-2], very low density lipoprotein receptor [VLDLR] and cadherin-related neuronal receptor [CNR]) and the cytoplasmic adapter Disabled-1 implicated in the reelin signal transduction, were expressed by trigeminal ganglion. On the basis of these data, we suggest that reelin might be an extracellular matrix molecule involved in the terminal innervation of the dentin-pulp complex, promoting adhesion between dental nerve endings and odontoblasts.
Collapse
Affiliation(s)
- Jean-Christophe Maurin
- Laboratoire du Développement des Tissus Dentaires, EA 1892, IFR 62, Faculté d'Odontologie, Rue Guillaume Paradin, 69372 CEDEX08 Lyon, France
| | | | | | | | | | | |
Collapse
|
187
|
Isogawa N, Terashima T, Nakano Y, Kindaichi J, Takagi Y, Takano Y. The induction of enamel and dentin complexes by subcutaneous implantation of reconstructed human and murine tooth germ elements. ACTA ACUST UNITED AC 2004; 67:65-77. [PMID: 15125024 DOI: 10.1679/aohc.67.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tooth induction by xenogenic graft of reconstructed human tooth germ components has never been attempted. Here we report our first attempt at a transplantation of human tooth germ components, heterologously recombined with mouse dental epithelia, into immunocompromised animals. Human third molar tooth germs enucleated from young patients as prophylactic treatment for orthodontic reasons were collected. The whole or minced human dental papilla was reconstructed with human- or mouse molar enamel epithelium, and transplanted in the dorsal aspect of C.B-17/Icr-scid Jcl mice. The transplant of human dental papilla reconstructed with human enamel epithelium formed thin dentin and immature enamel layers by 3 to 4 weeks, but remained extremely small in quantity due to a shortage of epithelial components in the graft. The addition of E16 mouse molar enamel organs (n=10-12) to each graft augmented the formation of tooth germ-like structures, but the differentiation of mouse molar ameloblasts was suppressed. However, once a solid layer of mineralized dentin was established, mouse ameloblasts accelerated their differentiation, and completed the enamel matrix formation and maturation within the following 4 weeks, whereas human ameloblasts, which had interacted with human dental papilla, remained in the stage of matrix formation during the same period. These data imply that, in reconstructed transplants, the differentiation of mouse dental epithelia is restrained by putative suppressive factors derived from human dental papilla until they are separated by mineralized dentin layers that serve as a diffusion barrier. The mouse enamel organ nevertheless retains its own phenotypic characteristics and intrinsic timing of cell differentiation and function.
Collapse
Affiliation(s)
- Nobutaka Isogawa
- Department of Developmental Oral Health Science, Graduate School of Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
188
|
Goldberg M, Smith AJ, Nagai N. Cells and Extracellular Matrices of Dentin and Pulp: A Biological Basis for Repair and Tissue Engineering. J HARD TISSUE BIOL 2004. [DOI: 10.2485/jhtb.13.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
189
|
Goldberg M, Smith AJ. CELLS AND EXTRACELLULAR MATRICES OF DENTIN AND PULP: A BIOLOGICAL BASIS FOR REPAIR AND TISSUE ENGINEERING. ACTA ACUST UNITED AC 2004; 15:13-27. [PMID: 14761897 DOI: 10.1177/154411130401500103] [Citation(s) in RCA: 369] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Odontoblasts produce most of the extracellular matrix (ECM) components found in dentin and implicated in dentin mineralization. Major differences in the pulp ECM explain why pulp is normally a non-mineralized tissue. In vitro or in vivo, some dentin ECM molecules act as crystal nucleators and contribute to crystal growth, whereas others are mineralization inhibitors. After treatment of caries lesions of moderate progression, odontoblasts and cells from the sub-odontoblastic Höhl's layer are implicated in the formation of reactionary dentin. Healing of deeper lesions in contact with the pulp results in the formation of reparative dentin by pulp cells. The response to direct pulp-capping with materials such as calcium hydroxide is the formation of a dentinal bridge, resulting from the recruitment and proliferation of undifferentiated cells, which may be either stem cells or dedifferentiated and transdifferentiated mature cells. Once differentiated, the cells synthesize a matrix that undergoes mineralization. Animal models have been used to test the capacity of potentially bioactive molecules to promote pulp repair following their implantation into the pulp. ECM molecules induce either the formation of dentinal bridges or large areas of mineralization in the coronal pulp. They may also stimulate the total closure of the pulp in the root canal. In conclusion, some molecules found in dentin extracellular matrix may have potential in dental therapy as bioactive agents for pulp repair or tissue engineering.
Collapse
Affiliation(s)
- Michel Goldberg
- Faculté de Chirurgie Dentaire, Université Paris V-René Descartes, Groupe Matrices Extracellulaires et biominéralisations (EA 2496), 1, rue Maurice Arnoux, 92120 Montrouge, France
| | | |
Collapse
|
190
|
About I, Camps J, Mitsiadis TA, Bottero MJ, Butler W, Franquin JC. Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2003; 63:418-23. [PMID: 12115750 DOI: 10.1002/jbm.10253] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Odontoblasts are highly differentiated postmitotic cells, which under pathological conditions such as carious lesions and dental injuries may degenerate and be replaced by other pulp cells. A recent work showed that this physiological event can be reproduced in an in vitro assay system. The purpose of the present study was to evaluate the effects of resinous monomers on odontoblast differentiation in vitro. Pulp cores from extracted human third molars were cultured with beta-glycerophosphate (2 mM) and used to evaluate the effects of TEGDMA, HEMA, UDMA, and Bis-GMA on the differentiation of pulp fibroblasts into odontoblasts. The effect of the monomers was studied by evaluating the expression of several odontoblast specific genes. In the absence of monomers, mineral nodule formation was observed. Pulp cells contributing to the nodule formation synthesized type I collagen, osteonectin, and dentin sialoprotein (DSP). In addition, Fourier transform infrared microspectroscopy showed that the mineral and organic composition of the nodules were characteristic of dentin. When the monomers were added at nontoxic concentrations, the effects of HEMA and Bis-GMA were more evident than that of TEGDMA and UDMA on collagen 1, osteonectin, and DSP expression. However, all monomers significantly decreased DSP expression and completely inhibited the mineral nodule formation.
Collapse
Affiliation(s)
- Imad About
- Laboratoire IMEB, Faculté d'Odontologie, Université de la Méditerranée, 13385 Marseille Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
191
|
About I, Proust JP, Raffo S, Mitsiadis TA, Franquin JC. In vivo and in vitro expression of connexin 43 in human teeth. Connect Tissue Res 2003; 43:232-7. [PMID: 12489165 DOI: 10.1080/03008200290000952] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gap junctions are composed of transmembrane proteins belonging to the connexin family. These proteins permit the exchange of mall regulatory molecules directly between cells for the control of growth, development and differentiation. Although the presence of gap junctions in teeth has been already evidenced, the involved connexins have not yet been identified in human species. Here, we examined the distribution of connexin 43 (Cx43) in embryonic and permanent intact and carious human teeth. During tooth development, Cx43 localized both in epithelial and mesenchymal dental cells, correlated with cytodifferentiation gradients. In adult intact teeth, Cx43 was distributed in odontoblast processes. While Cx43 expression was downregulated in mature intact teeth, Cx43 appeared to be upregulated in odontoblasts facing carious lesions. In cultured pulp cells, Cx43 expression was related to the formation of mineralized nodules. These results indicate that Cx43 expression is developmentally regulated in human dental tissues, and suggest that Cx43 may participate in the processes of dentin formation and pathology.
Collapse
Affiliation(s)
- Imad About
- Laboratoire IMEB, Faculté d'Odontologie, 27 Boulevard Jean Moulin, 13385 Marseille, France.
| | | | | | | | | |
Collapse
|
192
|
Camps J, About I, Thonneman B, Mitsiadis TA, Schmaltz G, Franquin JC. Two- versus three-dimensional in vitro differentiation of human pulp cells into odontoblastic cells. Connect Tissue Res 2003; 43:396-400. [PMID: 12489188 DOI: 10.1080/03008200290001069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spatial organization of the pulp cells may modify the cytodifferentiation process. The purpose of this study was to compare the two- versus three-dimensional cell culture systems for differentiation of human odontoblastic cells in vitro. Pulpal cores from freshly extracted human third molars were cultured in vitro in a perfusion device on two types of membranes: polyester membrane (two-dimensional [2D] cell culture) and nylon mesh (three-dimensional [3D] cell culture). The cells were incubated with minimum essential medium containing (a) substitute serum, (b) 10% fetal calf serum (FCS), (c) 10% fetal calf serum + 2 mM beta-glycerophosphate (beta GP), and (d) 10% fetal calf serum + transforming growth factor (TGF) beta 1. Immunohistochemistry was used to evaluate the expression of collagen I, osteonectin, and nestin. Small differences were observed between 2D and 3D cell culture systems. This was particularly evident in the 10% FCS group. beta-Glycerophosphate in the 3D system seems to stimulate the osteogenic cell phenotype, as a considerable induction of osteonectin is observed.
Collapse
Affiliation(s)
- J Camps
- Laboratoire IMEB, Faculté d'Odontologie, Marseille, France
| | | | | | | | | | | |
Collapse
|
193
|
Murray PE, Windsor LJ, Smyth TW, Hafez AA, Cox CF. Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:509-20. [PMID: 12499243 DOI: 10.1177/154411130201300607] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Every year, despite the effectiveness of preventive dentistry and dental health care, 290 million fillings are placed each year in the United States; two-thirds of these involve the replacement of failed restorations. Improvements in the success of restorative treatments may be possible if caries management strategies, selection of restorative materials, and their proper use to avoid post-operative complications were investigated from a biological perspective. Consequently, this review will examine pulp injury and healing reactions to different restorative variables. The application of tissue engineering approaches to restorative dentistry will require the transplantation, replacement, or regeneration of cells, and/or stimulation of mineralized tissue formation. This might solve major dental problems, by remineralizing caries lesions, vaccinating against caries and oral diseases, and restoring injured or replacing lost teeth. However, until these therapies can be introduced clinically, the avoidance of post-operative complications with conventional therapies requires attention to numerous aspects of treatment highlighted in this review.
Collapse
Affiliation(s)
- Peter E Murray
- Department of Oral Biology, Indiana University School of Dentistry, 1121 West Michigan Street, Indianapolis, IN 46202-5186, USA.
| | | | | | | | | |
Collapse
|
194
|
Murray PE, Hafez AA, Smith AJ, Windsor LJ, Cox CF. Histomorphometric analysis of odontoblast-like cell numbers and dentine bridge secretory activity following pulp exposure. Int Endod J 2003; 36:106-16. [PMID: 12657154 DOI: 10.1046/j.1365-2591.2003.00632.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The purpose of this study was to collect quantitative information about the numbers and dentine bridge secretory activity of odontoblast-like cells following dental pulp exposure. METHODOLOGY The numbers and secretory activity of odontoblast-like cells were measured histomorphometrically between 7 days and 2 years in 161 pulp-exposed nonhuman primate teeth. The area of dentine bridges and the dimensions of cavity preparations were measured. The density of odontoblast-like cells and subjacent reorganizing tissue cells were measured beneath dentine bridge formation. The presence of operative dentine debris and tunnel defects in bridges was noted. Pulp inflammation was categorized according to ISO standards. Bacteria were detected using McKay's stain. RESULTS The area of dentine bridges was mediated by the density and secretory activity of odontoblast-like cells over time. The cell density of subjacent reorganizing tissue was found to be strongly associated with that of odontoblast-like cells. Bacterial microleakage was found to impede dentine bridge secretion by odontoblast-like cells. CONCLUSIONS Pulp reparative activity occurs naturally beneath capping materials in the absence of bacterial microleakage. The outcome of pulp-capping treatments could be beneficially influenced by concentrating attention on limiting the width of pulp exposure, minimizing pulp injury by limiting the creation of operative debris and placing materials which prevent bacterial microleakage.
Collapse
Affiliation(s)
- P E Murray
- Oral Biology, Indiana University School of Dentistry, 1121 West Michigan Street, Indianapolis 46202, USA.
| | | | | | | | | |
Collapse
|
195
|
Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81:531-5. [PMID: 12147742 DOI: 10.1177/154405910208100806] [Citation(s) in RCA: 1414] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, we characterized the self-renewal capability, multi-lineage differentiation capacity, and clonogenic efficiency of human dental pulp stem cells (DPSCs). DPSCs were capable of forming ectopic dentin and associated pulp tissue in vivo. Stromal-like cells were reestablished in culture from primary DPSC transplants and re-transplanted into immunocompromised mice to generate a dentin-pulp-like tissue, demonstrating their self-renewal capability. DPSCs were also found to be capable of differentiating into adipocytes and neural-like cells. The odontogenic potential of 12 individual single-colony-derived DPSC strains was determined. Two-thirds of the single-colony-derived DPSC strains generated abundant ectopic dentin in vivo, while only a limited amount of dentin was detected in the remaining one-third. These results indicate that single-colony-derived DPSC strains differ from each other with respect to their rate of odontogenesis. Taken together, these results demonstrate that DPSCs possess stem-cell-like qualities, including self-renewal capability and multi-lineage differentiation.
Collapse
Affiliation(s)
- S Gronthos
- Craniofacial and Skeletal Diseases Branch, Building 30, Room 228, NIDCR, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Heymann R, About I, Lendahl U, Franquin JC, Obrink B, Mitsiadis TA. E- and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:2123-33. [PMID: 12057916 PMCID: PMC1850842 DOI: 10.1016/s0002-9440(10)61161-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2002] [Indexed: 11/24/2022]
Abstract
Cadherins are calcium-dependent cell adhesion molecules involved in the regulation of various biological processes such as cell recognition, intercellular communication, cell fate, cell polarity, boundary formation, and morphogenesis. Although previous studies have shown E-cadherin expression during rodent or human odontogenesis, there is no equivalent study available on N-cadherin expression in dental tissues. Here we examined and compared the expression patterns of E- and N-cadherins in both embryonic and adult (healthy, injured, carious) human teeth. Both proteins were expressed in the developing teeth during the cap and bell stages. E-cadherin expression in dental epithelium followed an apical-coronal gradient that was opposite to that observed for N-cadherin. E-cadherin was distributed in proliferating cells of the inner and outer enamel epithelia but not in differentiated cells such as ameloblasts, whereas N-cadherin expression was up-regulated in differentiated epithelial cells. By contrast to E-cadherin, N-cadherin was also expressed in mesenchymal cells that differentiate into odontoblasts and produce the hard tissue matrix of dentin. Although N-cadherin was not detected in permanent intact teeth, it was re-expressed during dentin repair processes in odontoblasts surrounding carious or traumatic sites. Similarly, N-cadherin re-expression was seen in vitro, in cultured primary pulp cells that differentiate into odontoblast-like cells. Taken together these results suggest that E- and N-cadherins may play a role during human tooth development and, moreover, indicate that N-cadherin is important for odontoblast function in normal development and under pathological conditions.
Collapse
Affiliation(s)
- Robert Heymann
- Faculté d'Odontologie de Marseille, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
197
|
About I, Mitsiadis TA. Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res 2001; 15:59-62. [PMID: 12640742 DOI: 10.1177/08959374010150011501] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several growth factors and extracellular matrix molecules, which are expressed during embryonic tooth development, are re-expressed in dental tissues under pathological conditions. Pathological conditions such as caries lesions and dental injuries are often lethal to the odontoblasts, which are then replaced by other pulp cells. These cells are able to differentiate into odontoblast-like cells and produce a reparative dentin. Here we demonstrate the in vivo distribution of several molecules in human permanent teeth under normal and pathological conditions. The intermediate filament protein nestin, which is a marker of young odontoblasts, is absent from old permanent teeth. Similarly, the Notch protein, which is involved in cell fate specification and is localized in the sub-odontoblastic cell layer during odontogenesis, is not detected in adult dental tissues. In carious and injured teeth, nestin is expressed in a selective manner in odontoblasts surrounding the injury site, while Notch is expressed in the sub-odontoblastic layer of cells. We reproduced this physiological event in an in vitro culture system. Pulp cells cultured in the presence of beta-glycerophosphate formed mineralization nodules. As odontoblasts, pulp cells contributing to the nodule formation express type I collagen, osteonectin, dentin sialophosphoprotein, and nestin. In this in vitro assay system, nestin is up-regulated after local application of Bone Morphogenetic Protein 2 and 4. Fourier transform infrared microspectroscopy showed that both the organic and the mineral compositions of the nodules have the characteristics of human dentin and differ from those of enamel and bone. These findings show that both the molecular and the mineral characteristics of the human dentin matrix are respected in the in vitro culture conditions.
Collapse
Affiliation(s)
- I About
- Faculté d'Odontologie, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | |
Collapse
|