151
|
Caspase-1 regulates cellular trafficking via cleavage of the Rab7 adaptor protein RILP. Biochem Biophys Res Commun 2018; 503:2619-2624. [PMID: 30100068 DOI: 10.1016/j.bbrc.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Intracellular trafficking is a tightly regulated cellular process, mediated in part by Rab GTPases and their corresponding effector proteins. Viruses have evolved mechanisms to hijack these processes to promote their lifecycles. Here we describe a mechanism by which cleavage of the Rab7 adaptor protein, RILP (Rab interacting lysosomal protein) is induced by viral infection. We report that RILP is directly cleaved by caspase-1 and we have identified a novel caspase-1 recognition site at aspartic acid 75 within the RILP sequence. Alanine substitution at D75 blocks caspase-1-mediated RILP cleavage. Full-length RILP localizes in a tight vesicular structure near the perinuclear region while the cleaved form of RILP re-distributes throughout the cytoplasm. However, cleavage alone was insufficient to re-localize RILP to the cellular periphery and re-localization required specific phosphorylation events near the caspase-1 recognition site. The combination of cleavage and phosphorylation were both needed for release from the dynein component p150Glued and redistribution of CD63+ve intracellular vesicles.
Collapse
|
152
|
Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38:1901-1912. [PMID: 29976772 PMCID: PMC6202190 DOI: 10.1161/atvbaha.118.311150] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1β-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.
Collapse
Affiliation(s)
- Eduardo J Folco
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Thomas L Mawson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Amélie Vromman
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Breno Bernardes-Souza
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Grégory Franck
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Oscar Persson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Momotaro Nakamura
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Gail Newton
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francis W Luscinskas
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| |
Collapse
|
153
|
Chlorogenic Acid Prevents AMPA-Mediated Excitotoxicity in Optic Nerve Oligodendrocytes Through a PKC and Caspase-Dependent Pathways. Neurotox Res 2018; 34:559-573. [PMID: 30006682 DOI: 10.1007/s12640-018-9911-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
Abstract
In the CNS, including the optic nerve, oligodendrocytes play a critical role in the myelination of axons. Oligodendrocytes are exceptionally sensitive to insults to the CNS, such as injury, ischemia, or inflammation, which result in the loss of oligodendrocytes and myelin and eventually secondary axon degeneration. Oligodendrocytes are sensitive to excitotoxic insults mediated by overactivation of their AMPA ionotropic glutamate receptors. Phenolic compounds, which are widely distributed in fruits and vegetables, received the great attention of scientists due to their antioxidant activities and free radical scavenging abilities. Chlorogenic acid (CGA) has been demonstrated to possess potent neuroprotective activities against oxidative stress in various cellular models and pathological conditions. Hence, CGA protect against oxidative stress and excitotoxic insults mediated by AMPA receptors and that the protective mechanisms involve free radical scavenging, Ca2+ handling in the cytosol, and modulating antioxidant enzyme system. CGA was associated with the protein kinase A (PKC) signaling pathways transduction. Caspases and calpains have been studied as apoptotic mediators and cell death in this model of AMPA toxicity. Inhibitors of caspases initiators, caspases 1, 8, and 9, the upstream of caspase 3 effectors, have totally abrogated the protective activity of CGA. Inhibitors of calpains also totally abrogated the protective activity of CGA. In addition, a potential role for the CGA in inhibiting Bax in oligodendrocyte cell model undergoing AMPA is inducing excitotoxic death. Our results indicate that CGA exhibits a protective potential via antioxidant and apoptosis caspases and calpains dependent against AMPA-mediated excitotoxicity, and these finding indicate that CGA is able to be a good candidate for preventive approach for neurodegenerative disorders associated with loss and damage in oligodendrocytes and AMPA-mediated excitotoxicity.
Collapse
|
154
|
Liu BC, Sarhan J, Panda A, Muendlein HI, Ilyukha V, Coers J, Yamamoto M, Isberg RR, Poltorak A. Constitutive Interferon Maintains GBP Expression Required for Release of Bacterial Components Upstream of Pyroptosis and Anti-DNA Responses. Cell Rep 2018; 24:155-168.e5. [PMID: 29972777 PMCID: PMC6063733 DOI: 10.1016/j.celrep.2018.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/19/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila elicits caspase-11-driven macrophage pyroptosis through guanylate-binding proteins (GBPs) encoded on chromosome 3. It has been proposed that microbe-driven IFN upregulates GBPs to facilitate pathogen vacuole rupture and bacteriolysis preceding caspase-11 activation. We show here that macrophage death occurred independently of microbial-induced IFN signaling and that GBPs are dispensable for pathogen vacuole rupture. Instead, the host-intrinsic IFN status sustained sufficient GBP expression levels to drive caspase-1 and caspase-11 activation in response to cytosol-exposed bacteria. In addition, endogenous GBP levels were sufficient for the release of DNA from cytosol-exposed bacteria, preceding the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway for Ifnb induction. Mice deficient for chromosome 3 GBPs were unable to mount a rapid IL-1/chemokine (C-X-C motif) ligand 1 (CXCL1) response during Legionella-induced pneumonia, with defective bacterial clearance. Our results show that rapid GBP activity is controlled by host-intrinsic cytokine signaling and that GBP activities precede immune amplification responses, including IFN induction, inflammasome activation, and cell death.
Collapse
Affiliation(s)
- Beiyun C Liu
- Graduate Program in Immunology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111, USA
| | - Joseph Sarhan
- Graduate Program in Immunology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111, USA; MSTP, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Hayley I Muendlein
- Graduate Program in Genetics, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111, USA
| | - Vladimir Ilyukha
- Petrozavodsk State University, Republic of Karelia, Russian Federation
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Boston MA, USA; Department of Molecular Biology & Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Alexander Poltorak
- Petrozavodsk State University, Republic of Karelia, Russian Federation; Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
155
|
Abstract
Approximately 75% of patients with late-stage breast cancer will develop bone metastasis. This condition is currently considered incurable and patients' life expectancy is limited to 2-3 years following diagnosis of bone involvement. Interleukin (IL)-1B is a pro-inflammatory cytokine whose expression in primary tumours has been identified as a potential biomarker for predicting breast cancer patients at increased risk for developing bone metastasis. In this review, we discuss how IL-1B from both the tumour cells and the tumour microenvironment influence growth of primary breast tumours, dissemination into the bone metastatic niche and proliferation into overt metastases. Recent evidence indicates that targeting IL-1B signalling may provide promising new treatments that can hold tumour cells in a dormant state within bone thus preventing formation of overt bone metastases.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and MetabolismMellanby Centre for Bone Research, University of Sheffield, Medical School, Sheffield, UK
| | - Penelope Ottewell
- Department of Oncology and MetabolismMellanby Centre for Bone Research, University of Sheffield, Medical School, Sheffield, UK
| |
Collapse
|
156
|
Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J Mol Biol 2018; 430:2641-2660. [PMID: 29949751 DOI: 10.1016/j.jmb.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.
Collapse
|
157
|
Fu G, Wang H, Cai Y, Zhao H, Fu W. Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats. Drug Des Devel Ther 2018; 12:1609-1619. [PMID: 29928110 PMCID: PMC6003286 DOI: 10.2147/dddt.s164324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functions including anti-inflammatory activity. In this study, we investigated whether TF could inhibit ICH-induced inflammatory response in rats and explored its mechanism. MATERIALS AND METHODS ICH rat models were induced with type VII collagenase and pretreated with TF by gavage in different doses (25 mg/kg-100 mg/kg). Twenty-four hours after ICH attack, we evaluated the rats' behavioral performance, the blood-brain barrier (BBB) integrity, and the formation of cerebral edema. The levels of reactive oxygen species (ROS) and inflammatory cytokines were examined by 2',7'-dichlorofluorescin diacetate and enzyme-linked immunosorbent assay. Nissl staining and transferase dUTP nick end labeling (TUNEL) were aimed to detect the neuron loss and apoptosis, the mechanism of which was explored by Western blot. RESULTS It was found that in the pretreated ICH rats TF significantly alleviated the behavioral defects, protected BBB integrity, and decreased the formation of cerebral edema and the levels of ROS as well as inflammatory cytokines (including interleukin-1 beta [IL-1β], IL-18, tumor nectosis factor-alpha, interferon-γ, transforming growth factor beta, and (C-X-C motif) ligand 1 [CXCL1]). Nissl staining and TUNEL displayed TF could protect against the neuron loss and apoptosis via inhibiting the activation of nuclear transcription factor kappa-β-p65 (NF-κβ-p65), caspase-1, and IL-1β. We also found that phorbol 12-myristate 13-acetate, a nonspecific activator of NF-κβ-p65, weakened the positive effect of TF on ICH-induced neural defects and neuron apoptosis by upregulating NF-κβ-related signaling pathway. CONCLUSION TF could alleviate ICH-induced inflammatory responses and brain injury in rats via inhibiting NF-κβ-related pathway, which may provide a new way for the therapy of ICH.
Collapse
Affiliation(s)
- Guanglei Fu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Hua Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Youli Cai
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hui Zhao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenjun Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
158
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to highlight developments in autoinflammatory diseases associated with gain-of-function mutations in the gene encoding NLR-family CARD-containing protein 4 (NLRC4), the NLRC4-inflammasomopathies. RECENT FINDINGS Three years since the identification of the first autoinflammation with infantile enterocolitis (AIFEC) patients, there is an improved understanding of how the NLRC4 inflammasome and interleukin 18 (IL-18) contribute to gut inflammation in myeloid and also intestinal epithelial cells. This information has opened new therapeutic avenues to treat AIFEC patients with targeted agents like recombinant IL-18 binding protein and antiinterferon-γ antibodies. Additional phenotypes traditionally associated with NLRP3 mutations like familial cold autoinflammatory syndrome and neonatal onset multisystem inflammatory disease (NOMID), have now also been associated with gain-of-function NLRC4 mutations. Finally, NLRC4 somatic mosaicism has now been identified in a NOMID and an AIFEC patient, a finding emphasizing nontraditional modes of inheritance in autoinflammatory diseases. SUMMARY The NLRC4 inflammasomopathies constitute a growing autoinflammatory disease category that spans a broad clinical spectrum from cold urticaria to NOMID and the often fatal disease AIFEC. Rapid case identification with biomarkers like elevated serum IL-18 concentrations and early intervention with targeted immunomodulatory therapies are key strategies to improving outcomes for AIFEC patients.
Collapse
|
159
|
Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation. J Hepatol 2018; 68:986-995. [PMID: 29366909 DOI: 10.1016/j.jhep.2018.01.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)-1-type cytokines including IL-1α, IL-1β and interleukin-1 receptor antagonist (IL-1Ra) are among the most potent molecules of the innate immune system and exert biological activities through the ubiquitously expressed interleukin-1 receptor type 1 (IL-1R1). The role of IL-1R1 in hepatocytes during acute liver failure (ALF) remains undetermined. METHODS The role of IL-1R1 during ALF was investigated using a novel transgenic mouse model exhibiting deletion of all signaling-capable IL-1R isoforms in hepatocytes (Il1r1Hep-/-). RESULTS ALF induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS) was significantly attenuated in Il1r1Hep-/- mice leading to reduced mortality. Conditional deletion of Il1r1 decreased activation of injurious c-Jun N-terminal kinases (JNK)/c-Jun signaling, activated nuclear factor-kappa B (NF-κB) p65, inhibited extracellular signal-regulated kinase (ERK) and prevented caspase 3-mediated apoptosis. Moreover, Il1r1Hep-/- mice exhibited reduced local and systemic inflammatory cytokine and chemokine levels, especially TNF-α, IL-1α/β, IL-6, CC-chemokine ligand 2 (CCL2), C-X-C motif ligand 1 (CXCL-1) and CXCL-2, and a reduced neutrophil recruitment into the hepatic tissue in response to injury. NLRP3 inflammasome expression and caspase 1 activation were suppressed in the absence of the hepatocellular IL-1R1. Inhibition of IL-1R1 using IL-1ra (anakinra) attenuated the severity of liver injury, while IL-1α administration exaggerated it. These effects were lost ex vivo and at later time points, supporting a role of IL-1R1 in inflammatory signal amplification during acute liver injury. CONCLUSION IL-1R1 in hepatocytes plays a pivotal role in an IL-1-driven auto-amplification of cell death and inflammation in the onset of ALF. LAY SUMMARY Acute liver injury which can cause lethal liver failure is medicated by a class of proteins called cytokines. Among these, interleukin-1 (IL-1) and the corresponding receptor IL-1R1 play a prominent role in the immune system, but their role in the liver is undetermined. In the current study, a novel mouse model with defective IL-1R1 in liver cells was studied. Mice lacking this receptor in liver cells were protected from cell death to a certain extent. This protection occurred only in the presence of other, neighboring cells, arguing for the involvement of proteins derived from these cells. This effect is called paracrine signaling and the current study has for the first time shown that the IL-1R1 receptor on hepatocytes is involved in acute liver failure in this context. The approved drug anakinra - which blocks IL-1R1 - had the same effect, supporting the proposed mechanism of action. The findings of this study suggest new treatment options for patients with acute liver failure by blocking defined signals of the immune system.
Collapse
|
160
|
Zhang SY, Dong YQ, Wang P, Zhang X, Yan Y, Sun L, Liu B, Zhang D, Zhang H, Liu H, Kong W, Hu G, Shah YM, Gonzalez FJ, Wang X, Jiang C. Adipocyte-derived Lysophosphatidylcholine Activates Adipocyte and Adipose Tissue Macrophage Nod-Like Receptor Protein 3 Inflammasomes Mediating Homocysteine-Induced Insulin Resistance. EBioMedicine 2018; 31:202-216. [PMID: 29735414 PMCID: PMC6013933 DOI: 10.1016/j.ebiom.2018.04.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
The adipose Nod-like receptor protein 3 (NLRP3) inflammasome senses danger-associated molecular patterns (DAMPs) and initiates insulin resistance, but the mechanisms of adipose inflammasome activation remains elusive. In this study, Homocysteine (Hcy) is revealed to be a DAMP that activates adipocyte NLRP3 inflammasomes, participating in insulin resistance. Hcy-induced activation of NLRP3 inflammasomes were observed in both adipocytes and adipose tissue macrophages (ATMs) and mediated insulin resistance. Lysophosphatidylcholine (lyso-PC) acted as a second signal activator, mediating Hcy-induced adipocyte NLRP3 inflammasome activation. Hcy elevated adipocyte lyso-PC generation in a hypoxia-inducible factor 1 (HIF1)-phospholipase A2 group 16 (PLA2G16) axis-dependent manner. Lyso-PC derived from the Hcy-induced adipocyte also activated ATM NLRP3 inflammasomes in a paracrine manner. This study demonstrated that Hcy activates adipose NLRP3 inflammasomes in an adipocyte lyso-PC-dependent manner and highlights the importance of the adipocyte NLRP3 inflammasome in insulin resistance.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Yong-Qiang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Pengcheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Xingzhong Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Yu Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Dafang Zhang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Peking University, Beijing 100044, People's Republic of China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China
| | - Gang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Nanjing 210029, Jiangsu, People's Republic of China; Department of Pharmacology, School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China.
| |
Collapse
|
161
|
The NLRP3 and CASP1 gene polymorphisms are associated with developing of acute coronary syndrome: a case-control study. Immunol Res 2018; 65:862-868. [PMID: 28456882 DOI: 10.1007/s12026-017-8924-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The protein products of NLRP3 and CASP1 genes are involved in the cleavage of pro-IL-1B and pro-IL-18 leading to the active cytokines, which play an important role in the development of the acute coronary syndrome (ACS). The aim of the present study was to evaluate whether NLRP3 and CASP1 gene polymorphisms are biomarkers of ACS susceptibility in Mexican population. Two polymorphisms of the CASP1 gene [G+7/in6A (rs501192) and A10370-G Exon-6 (rs580253)] and one of the NLRP3 gene [UTR'3 G37562-C (rs10754558)] were genotyped by 5' exonuclease TaqMan assays in a group of 617 patients with ACS and 609 control individuals. Under recessive model, the CASP1 G+7/in6A polymorphism was associated with an increased risk of developing ACS when compared to healthy controls (OR = 1.76, 95% CI 1.08-2.86, P Res = 0.022). In the same way, under recessive model, the CASP1 A10370-G was associated with increased risk of ACS (OR = 1.75, 95% CI 1.07-2.85, P Res = 0.025). Moreover, under co-dominant, dominant, over-dominant, and additive models, the NLRP3 UTR'3 G37562-C was associated with a decreased risk of ACS (OR = 0.45, 95%CI 0.22-0.92, P Co-dom = 0.006; OR = 0.61, 95%CI 0.44-0.84, P Dom = 0.002; OR = 0.67, 95%CI 0.48-0.94, P Over-dom = 0.02; and OR = 0.65, 95%CI 0.50-0.94, P Add = 0.02, respectively). In summary, this study demonstrates that the G+7/in6A and A10370-G polymorphisms of the CASP1 gene are associated with increased risk of developing ACS, whereas the UTR'3 G37562-C polymorphism of the NLRP3 gene is associated with a decreased risk of developing ACS in Mexican population.
Collapse
|
162
|
Microbiota Normalization Reveals that Canonical Caspase-1 Activation Exacerbates Chemically Induced Intestinal Inflammation. Cell Rep 2018; 19:2319-2330. [PMID: 28614717 DOI: 10.1016/j.celrep.2017.05.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammasomes play a central role in regulating intestinal barrier function and immunity during steady state and disease. Because the discoveries of a passenger mutation and a colitogenic microbiota in the widely used caspase-1-deficient mouse strain have cast doubt on previously identified direct functions of caspase-1, we reassessed the role of caspase-1 in the intestine. To this end, we generated Casp1-/- and Casp11-/- mice and rederived them into an enhanced barrier facility to standardize the microbiota. We found that caspase-11 does not influence caspase-1-dependent processing of IL-18 in homeostasis and during DSS colitis. Deficiency of caspase-1, but not caspase-11, ameliorated the severity of DSS colitis independent of microbiota composition. Ablation of caspase-1 in intestinal epithelial cells was sufficient to protect mice against DSS colitis. Moreover, Casp1-/- mice developed fewer inflammation-induced intestinal tumors than control mice. These data show that canonical inflammasome activation controls caspase-1 activity, contributing to exacerbation of chemical-induced colitis.
Collapse
|
163
|
Macrophage-derived IL-1β/NF-κB signaling mediates parenteral nutrition-associated cholestasis. Nat Commun 2018; 9:1393. [PMID: 29643332 PMCID: PMC5895696 DOI: 10.1038/s41467-018-03764-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/12/2018] [Indexed: 12/15/2022] Open
Abstract
In infants intolerant of enteral feeding because of intestinal disease, parenteral nutrition may be associated with cholestasis, which can progress to end-stage liver disease. Here we show the function of hepatic macrophages and phytosterols in parenteral nutrition-associated cholestasis (PNAC) pathogenesis using a mouse model that recapitulates the human pathophysiology and combines intestinal injury with parenteral nutrition. We combine genetic, molecular, and pharmacological approaches to identify an essential function of hepatic macrophages and IL-1β in PNAC. Pharmacological antagonism of IL-1 signaling or genetic deficiency in CCR2, caspase-1 and caspase-11, or IL-1 receptor (which binds both IL-1α and IL-1β) prevents PNAC in mice. IL-1β increases hepatocyte NF-κB signaling, which interferes with farnesoid X receptor and liver X receptor bonding to respective promoters of canalicular bile and sterol transporter genes (Abcc2, Abcb11, and Abcg5/8), resulting in transcriptional suppression and subsequent cholestasis. Thus, hepatic macrophages, IL-1β, or NF-κB may be targets for restoring bile and sterol transport to treat PNAC.
Collapse
|
164
|
Cody PA, Eles JR, Lagenaur CF, Kozai TDY, Cui XT. Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. Biomaterials 2018; 161:117-128. [PMID: 29421549 PMCID: PMC5817007 DOI: 10.1016/j.biomaterials.2018.01.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4 × 4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type 1, partial fibrous encapsulation, or Type 2, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single-unit amplitude.
Collapse
Affiliation(s)
- Patrick A Cody
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carl F Lagenaur
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
165
|
Leuthard DS, Duda A, Freiberger SN, Weiss S, Dommann I, Fenini G, Contassot E, Kramer MF, Skinner MA, Kündig TM, Heath MD, Johansen P. Microcrystalline Tyrosine and Aluminum as Adjuvants in Allergen-Specific Immunotherapy Protect from IgE-Mediated Reactivity in Mouse Models and Act Independently of Inflammasome and TLR Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 200:3151-3159. [PMID: 29592962 PMCID: PMC5911931 DOI: 10.4049/jimmunol.1800035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Allergen immunotherapy (AIT) is the only modality that can modify immune responses to allergen exposure, but therapeutic coverage is low. One strategy to improve AIT safety and efficacy is the use of new or improved adjuvants. This study investigates immune responses produced by microcrystalline tyrosine (MCT)–based vaccines as compared with conventional aluminum hydroxide (alum). Wild-type, immune-signaling–deficient, and TCR-transgenic mice were treated with different Ags (e.g., OVA and cat dander Fel d 1), plus MCT or alum as depot adjuvants. Specific Ab responses in serum were measured by ELISA, whereas cytokine secretion was measured both in culture supernatants by ELISA or by flow cytometry of spleen cells. Upon initiation of AIT in allergic mice, body temperature and further clinical signs were used as indicators for anaphylaxis. Overall, MCT and alum induced comparable B and T cell responses, which were independent of TLR signaling. Alum induced stronger IgE and IL-4 secretion than MCT. MCT and alum induced caspase-dependent IL-1β secretion in human monocytes in vitro, but inflammasome activation had no functional effect on inflammatory and Ab responses measured in vivo. In sensitized mice, AIT with MCT-adjuvanted allergens caused fewer anaphylactic reactions compared with alum-adjuvanted allergens. As depot adjuvants, MCT and alum are comparably effective in strength and mechanism of Ag-specific IgG induction and induction of T cell responses. The biocompatible and biodegradable MCT seems therefore a suitable alternative adjuvant to alum-based vaccines and AIT.
Collapse
Affiliation(s)
- Deborah S Leuthard
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Sina Weiss
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Isabella Dommann
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthias F Kramer
- Bencard Allergie GmbH, 80992 Munich, Germany; and.,Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthew D Heath
- Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | - Pål Johansen
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland; .,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
166
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
167
|
Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 2018; 27:205-212. [PMID: 27997059 DOI: 10.1111/bpa.12476] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Inflammation plays a key role across the time course of stroke, from onset to the post-injury reparative phase days to months later. Several regulatory molecules are implicated in inflammation, but the most established inflammatory mediator of acute brain injury is the cytokine interleukin-1. Interleukin-1 is regulated by large, macromolecular complexes called inflammasomes, which play a central role in cytokine release and cell death. In this review we highlight recent advances in inflammasome research and propose key roles for inflammasome components in the progression of stroke damage.
Collapse
Affiliation(s)
- Jack Barrington
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Eloise Lemarchand
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
168
|
Intraperitoneal administration of aluminium-based adjuvants produces severe transient systemic adverse events in mice. Eur J Pharm Sci 2018; 115:362-368. [DOI: 10.1016/j.ejps.2018.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 11/19/2022]
|
169
|
Songane M, Khair M, Saleh M. An updated view on the functions of caspases in inflammation and immunity. Semin Cell Dev Biol 2018; 82:137-149. [PMID: 29366812 DOI: 10.1016/j.semcdb.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
The binary classification of mammalian caspases as either apoptotic or inflammatory is now obsolete. Emerging data indicate that all mammalian caspases are intricately involved in the regulation of inflammation and immunity. They participate in embryonic and adult tissue homeostasis, control leukocyte differentiation, activation and effector functions, and mediate innate and adaptive immunity signaling. Caspases also promote host resistance by regulating anti-oxidant defense and pathogen clearance through regulation of phagosomal maturation, actin dynamics and phagosome-lysosome fusion. Beyond apoptosis, they regulate inflammatory cell death, eliciting rapid pyroptosis of infected cells, while inhibiting necroptosis-mediated tissue destruction and chronic inflammation. In this review, we describe the cellular and molecular mechanisms underlying non-apoptotic functions of caspases in inflammation and immunity and provide an updated view of their functions as central regulators of tissue homeostasis and host defense.
Collapse
Affiliation(s)
- Mario Songane
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Mostafa Khair
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
170
|
Wang YC, Liu QX, Liu T, Xu XE, Gao W, Bai XJ, Li ZF. Caspase-1-dependent pyroptosis of peripheral blood mononuclear cells predicts the development of sepsis in severe trauma patients: A prospective observational study. Medicine (Baltimore) 2018; 97:e9859. [PMID: 29465571 PMCID: PMC5841964 DOI: 10.1097/md.0000000000009859] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pyroptosis plays a pivotal role in sepsis and septic shock in animal studies. However, its clinical significance in pathological conditions has not been well elucidated. This study aimed to evaluate the correlation between the percentage of pyroptotic peripheral blood mononuclear cells (PBMCs) and the clinical index and to investigate the relationship between PBMCs pyroptosis and the development of sepsis in trauma patients.This prospective study was conducted from October 2016 to May 2017 in a comprehensive trauma center. Sixty trauma patients and 10 healthy controls were enrolled. Peripheral blood samples were collected from the patients within 24 hours after injury. The percentages of pyroptotic and apoptotic PBMCs were measured using flow cytometry, and plasma levels of cytokines were evaluated using flow cytometric analysis with a human inflammation 13-plex panel.Trauma patients who developed sepsis had higher percentages of pyroptotic and apoptotic PBMCs at admission. Patients who developed sepsis (n = 33) had higher interleukin (IL)-6, IL-18, and monocyte chemotactic protein-1 (MCP-1) concentrations at admission than patients (n = 27) who did not develop sepsis. The percentage of PBMCs pyroptosis was significantly correlated with injury severity score (ISS), acute physiology and chronic health evaluation (APACHE) II score, IL-10, IL-18, and MCP-1 levels in trauma patients. PBMCs pyroptosis is a better biomarker in predicting the development of sepsis after trauma.This study indicates that the percentage of pyroptotic PBMCs increases during the early phase of trauma and that this increase is significantly correlated with the severity and state of inflammation in trauma patients. PBMCs pyroptosis is a potential marker for predicting the development of sepsis after trauma.
Collapse
|
171
|
NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa infection. Inflamm Res 2018; 67:479-493. [PMID: 29353310 DOI: 10.1007/s00011-018-1132-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Molecular mechanisms underlying the interactions between Pseudomonas aeruginosa, the common opportunistic pathogen in cystic fibrosis individuals, and host induce a number of marked inflammatory responses and associate with complex therapeutic problems due to bacterial resistance to antibiotics in chronic stage of infection. METHODS Pseudomonas aeruginosa is recognized by number of pattern recognition receptors (PRRs); NOD-like receptors (NLRs) are a class of PRRs, which can recognize a variety of endogenous and exogenous ligands, thereby playing a critical role in innate immunity. RESULTS NLR activation initiates forming of a multi-protein complex called inflammasome that induces activation of caspase-1 and resulted in cleavage of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. When the IL-1β is secreted excessively, this causes tissue damage and extensive inflammatory responses that are potentially hazardous for the host. CONCLUSIONS Recent evidence has laid out inflammasome-forming NLR far beyond inflammation. This review summarizes current knowledge regarding the various roles played by different NLRs and associated down-signals, either in recognition of P. aeruginosa or may be associated with such bacterial pathogen infection, which may relate to for the complexity of lung diseases caused by P. aeruginosa.
Collapse
|
172
|
Ramirez MLG, Salvesen GS. A primer on caspase mechanisms. Semin Cell Dev Biol 2018; 82:79-85. [PMID: 29329946 DOI: 10.1016/j.semcdb.2018.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Caspases belong to a diverse clan of proteolytic enzymes known as clan CD with highly disparate functions in cell signaling. The caspase members of this clan are only found in animals, and most of them orchestrate the demise of cells by the highly distinct regulated cell death phenotypes known as apoptosis and pyroptosis. This review looks at the mechanistic distinctions between the activity and activation mechanisms of mammalian caspases compared to other members of clan CD. We also compare and contrast the role of different caspase family members that program anti-inflammatory and pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Monica L Gonzalez Ramirez
- Graduate Program in Biomedical Sciences, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guy S Salvesen
- Graduate Program in Biomedical Sciences, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
173
|
Abstract
Whether approaches to chronically increase VEGF-A in the heart may have beneficial effects and prevent the development of heart failure, in part by improving cardiac perfusion, or whether this increase could have detrimental effects on cardiac performance in the aging heart, has not been tested yet. In this study, a genetic mouse model with a chronic increase in VEGF-A in the heart is shown to have increased cardiac angiogenesis and develop cardiac hypertrophy with enhanced basal cardiac performance with age progression. However, in aged hearts, this increase in VEGF-A was associated with higher expression of fetal cardiac genes and reduced cardiac performance after β-agonistic stress, features consistent with pathologic cardiac hypertrophy. Expression of Nod-like receptor protein (NLRP)-3 was increased in the hearts of the mice, and its genetic inactivation prevented increased fetal cardiac gene expression and partially rescued the impaired cardiac performance after β-agonistic stimulation in aged hearts without reducing cardiac angiogenesis or hypertrophy. Thus, although a chronic increase in cardiac VEGF-A may improve cardiac perfusion, long-term upregulation of VEGF-A leads to reduced cardiac performance under stress, an effect that can be partially inhibited by NLRP3 inactivation. Targeting NLRP3 shifts the VEGF-A-induced cardiac hypertrophy from a pathologic toward a more physiologic hypertrophy.-Marneros, A. G. Effects of chronically increased VEGF-A on the aging heart.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
174
|
Abstract
Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut-brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.
Collapse
|
175
|
Xu YJ, Zheng L, Hu YW, Wang Q. Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 2018; 476:28-37. [DOI: 10.1016/j.cca.2017.11.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
|
176
|
Li MX, Zheng HL, Luo Y, He JG, Wang W, Han J, Zhang L, Wang X, Ni L, Zhou HY, Hu ZL, Wu PF, Jin Y, Long LH, Zhang H, Hu G, Chen JG, Wang F. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry 2018; 23:556-568. [PMID: 28416811 PMCID: PMC5822452 DOI: 10.1038/mp.2017.76] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
Both inflammatory processes and glutamatergic systems have been implicated in the pathophysiology of mood-related disorders. However, the role of caspase-1, a classic inflammatory caspase, in behavioral responses to chronic stress remains largely unknown. To address this issue, we examined the effects and underlying mechanisms of caspase-1 on preclinical murine models of depression. We found that loss of caspase-1 expression in Caspase-1-/- knockout mice alleviated chronic stress-induced depression-like behaviors, whereas overexpression of caspase-1 in the hippocampus of wild-type (WT) mice was sufficient to induce depression- and anxiety-like behaviors. Furthermore, chronic stress reduced glutamatergic neurotransmission and decreased surface expression of glutamate receptors in hippocampal pyramidal neurons of WT mice, but not Caspase-1-/- mice. Importantly, pharmacological inhibition of caspase-1-interleukin-1β (IL-1β) signaling pathway prevented the depression-like behaviors and the decrease in surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in stressed WT mice. Finally, the effects of chronic stress on both depression- and anxiety-like behaviors can be mimicked by exogenous intracerebroventricular (i.c.v.) administration of IL-1β in both WT and Caspase-1-/- mice. Taken together, our findings demonstrate that an increase in the caspase-1/IL-1β axis facilitates AMPAR internalization in the hippocampus, which dysregulates glutamatergic synaptic transmission, eventually resulting in depression-like behaviors. These results may represent an endophenotype for chronic stress-induced depression.
Collapse
Affiliation(s)
- M-X Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H-L Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J-G He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H-Y Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z-L Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - P-F Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Y Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - L-H Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - H Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - G Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - J-G Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China,The Collaborative-Innovation Center for Brain Science (HUST), Wuhan, China,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China. E-mail: or
| | - F Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China,The Collaborative-Innovation Center for Brain Science (HUST), Wuhan, China,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China. E-mail: or
| |
Collapse
|
177
|
Ringel-Scaia VM, McDaniel DK, Allen IC. The Goldilocks Conundrum: NLR Inflammasome Modulation of Gastrointestinal Inflammation during Inflammatory Bowel Disease. Crit Rev Immunol 2017; 36:283-314. [PMID: 28322135 DOI: 10.1615/critrevimmunol.2017019158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances have revealed significant insight into inflammatory bowel disease (IBD) pathobiology. Ulcerative colitis and Crohn's disease, the chronic relapsing clinical manifestations of IBD, are complex disorders with genetic and environmental influences. These diseases are associated with the dysregulation of immune tolerance, excessive inflammation, and damage to the epithelial cell barrier. Increasing evidence indicates that pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), function to maintain immune system homeostasis, modulate the gastrointestinal microbiome, and promote proper intestinal epithelial cell regeneration and repair. New insights have revealed that NLR family members are essential components in maintaining this immune system homeostasis. To date, the vast majority of studies associated with NLRs have focused on family members that form a multiprotein signaling platform called the inflammasome. These signaling complexes are responsible for the cleavage and activation of the potent pleotropic cytokines IL-1β and IL-18, and they facilitate a unique form of cell death defined as pyroptosis. In this review, we summarize the current paradigms associated with NLR inflammasome maintenance of immune system homeostasis in the gastrointestinal system. New concepts related to canonical and noncanonical inflammasome signaling, as well as the implications of classical and alternative inflammasomes in IBD pathogenesis, are also reviewed.
Collapse
Affiliation(s)
- Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061; Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
178
|
Measuring NLR Oligomerization I: Size Exclusion Chromatography, Co-immunoprecipitation, and Cross-Linking. Methods Mol Biol 2017; 1417:131-43. [PMID: 27221486 DOI: 10.1007/978-1-4939-3566-6_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Oligomerization of nod-like receptors (NLRs) can be detected by several biochemical techniques dependent on the stringency of protein-protein interactions. Some of these biochemical methods can be combined with functional assays, such as caspase-1 activity assay. Size exclusion chromatography (SEC) allows separation of native protein lysates into different sized complexes by fast protein liquid chromatography (FPLC) for follow-up analysis. Using co-immunoprecipitation (co-IP), combined with SEC or on its own, enables subsequent antibody-based purification of NLR complexes and associated proteins, which can then be analyzed by immunoblot and/or subjected to functional caspase-1 activity assay. Chemical cross-linking covalently joins two or more molecules, thus capturing the oligomeric state with high sensitivity and stability. Apoptosis-associated speck-like protein containing a caspase activation domain (ASC) oligomerization has been successfully used as readout for NLR or AIM2-like receptor (ALR) inflammasome activation in response to various pathogen- or damage-associated molecular patterns (PAMPs or DAMPs) in human and mouse macrophages and THP-1 cells. Here, we provide a detailed description of the methods used for NLRP7 oligomerization in response to infection with Staphylococcus aureus (S. aureus) in primary human macrophages, co-immunoprecipitation and immunoblot analysis of NLRP7 and NLRP3 inflammasome complexes, as well as caspase-1 activity assays. Also, ASC oligomerization is shown in response to dsDNA, LPS/ATP, and LPS/nigericin in mouse bone marrow-derived macrophages (BMDMs) and/or THP-1 cells or human primary macrophages.
Collapse
|
179
|
Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci U S A 2017; 114:13242-13247. [PMID: 29180436 DOI: 10.1073/pnas.1710433114] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that initiate host defense against bacterial pathogens by activating caspase-1-dependent cytokine secretion and cell death. In mice, specific nucleotide-binding domain, leucine-rich repeat-containing family, apoptosis inhibitory proteins (NAIPs) activate the nucleotide-binding domain, leucine-rich repeat-containing family, CARD domain-containing protein 4 (NLRC4) inflammasome upon sensing components of the type III secretion system (T3SS) and flagellar apparatus. NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and NAIP5 and NAIP6 recognize flagellin. In contrast, humans encode a single functional NAIP, raising the question of whether human NAIP senses one or multiple bacterial ligands. Previous studies found that human NAIP detects both flagellin and the T3SS needle protein and suggested that the ability to detect both ligands was achieved by multiple isoforms encoded by the single human NAIP gene. Here, we show that human NAIP also senses the Salmonella Typhimurium T3SS inner rod protein PrgJ and that T3SS inner rod proteins from multiple bacterial species are also detected. Furthermore, we show that a single human NAIP isoform is capable of sensing the T3SS inner rod, needle, and flagellin. Our findings indicate that, in contrast to murine NAIPs, promiscuous recognition of multiple bacterial ligands is conferred by a single human NAIP.
Collapse
|
180
|
Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, Park J, Lee YS, Moon HS, Park CG, Lee MS, Chun T. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy 2017; 12:2326-2343. [PMID: 27780404 DOI: 10.1080/15548627.2016.1235124] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl-/- mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jihye Han
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Joonbeom Bae
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Chang-Yong Choi
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Sang-Pil Choi
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Hyung-Sik Kang
- b School of Biological Sciences and Technology, Biotechnology Research Institute, Chonnam National University , Kwangju , Korea
| | - Eun-Kyeong Jo
- c Infection Signaling Network Research Center , Department of Microbiology , College of Medicine, Chungnam National University , Daejeon , Korea
| | - Jongsun Park
- d Department of Pharmacology , Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University , Daejeon , Korea
| | - Young Sik Lee
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Hyun-Seuk Moon
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Chung-Gyu Park
- e Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Korea
| | - Myung-Shik Lee
- f Severance Biomedical Science Institute , Department of Internal Medicine , College of Medicine, Yonsei University , Seoul , Korea
| | - Taehoon Chun
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| |
Collapse
|
181
|
Cell death and cell lysis are separable events during pyroptosis. Cell Death Discov 2017; 3:17070. [PMID: 29147575 PMCID: PMC5682879 DOI: 10.1038/cddiscovery.2017.70] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome.
Collapse
|
182
|
Ranson N, Kunde D, Eri R. Regulation and Sensing of Inflammasomes and Their Impact on Intestinal Health. Int J Mol Sci 2017; 18:ijms18112379. [PMID: 29120406 PMCID: PMC5713348 DOI: 10.3390/ijms18112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Pattern recognition receptors such as nucleotide-binding oligomerization domain (NOD)-containing protein receptors (NLRs) and the pyrin and hematopoitic interferon-inducible nuclear protein (HIN) domain (PYHIN) receptors initiate the inflammatory response following cell stress or pathogenic challenge. When activated, some of these receptors oligomerize to form the structural backbone of a signalling platform known as an inflammasome. Inflammasomes promote the activation of caspase-1 and the maturation of the proinflammatory cytokines, interleukin (IL)-1β and IL-18. The gut dysregulation of the inflammasome complex is thought to be a contributing factor in the development of inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). The importance of inflammasomes to intestinal health has been emphasized by various inflammasome-deficient mice in dextran sulphate sodium (DSS) models of intestinal inflammation and by the identification of novel potential candidate genes in population-based human studies. In this review, we summarise the most recent findings with regard to the formation, sensing, and regulation of the inflammasome complex and highlight their importance in maintaining intestinal health.
Collapse
Affiliation(s)
- Nicole Ranson
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
183
|
Liu N, Su H, Zhang Y, Liu Z, Kong J. Cholecalciterol cholesterol emulsion attenuates experimental autoimmune myocarditis in mice via inhibition of the pyroptosis signaling pathway. Biochem Biophys Res Commun 2017; 493:422-428. [DOI: 10.1016/j.bbrc.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
|
184
|
Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. JOURNAL OF BIOPHOTONICS 2017; 10:1502-1513. [PMID: 28164443 DOI: 10.1002/jbio.201600244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Sae-Won Lee
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul 137-867, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul 137-867, Republic of Korea
| | - Byung Tae Choi
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 626-770, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| |
Collapse
|
185
|
Zanoni I, Tan Y, Di Gioia M, Springstead JR, Kagan JC. By Capturing Inflammatory Lipids Released from Dying Cells, the Receptor CD14 Induces Inflammasome-Dependent Phagocyte Hyperactivation. Immunity 2017; 47:697-709.e3. [PMID: 29045901 PMCID: PMC5747599 DOI: 10.1016/j.immuni.2017.09.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 06/20/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023]
Abstract
A heterogeneous mixture of lipids called oxPAPC, derived from dying cells, can hyperactivate dendritic cells (DCs) but not macrophages. Hyperactive DCs are defined by their ability to release interleukin-1 (IL-1) while maintaining cell viability, endowing these cells with potent aptitude to stimulate adaptive immunity. Herein, we found that the bacterial lipopolysaccharide receptor CD14 captured extracellular oxPAPC and delivered these lipids into the cell to promote inflammasome-dependent DC hyperactivation. Notably, we identified two specific components within the oxPAPC mixture that hyperactivated macrophages, allowing these cells to release IL-1 for several days, by a CD14-dependent process. In murine models of sepsis, conditions that promoted cell hyperactivation resulted in inflammation but not lethality. Thus, multiple phagocytes are capable of hyperactivation in response to oxPAPC, with CD14 acting as the earliest regulator in this process, serving to capture and transport these lipids to promote inflammatory cell fate decisions.
Collapse
Affiliation(s)
- Ivan Zanoni
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Yunhao Tan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Marco Di Gioia
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - James R Springstead
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
186
|
Shamsi A, Bano B. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. Int J Biol Macromol 2017; 102:674-693. [PMID: 28445699 PMCID: PMC7112400 DOI: 10.1016/j.ijbiomac.2017.04.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 02/04/2023]
Abstract
Cystatins are thiol proteinase inhibitors (TPI), present ubiquitously in animals, plants and micro-organisms. These are not merely inhibitors rather they are at heart of many pathological conditions ranging from diabetes to renal failure. These are essential for maintenance of protein balance of the cell; once this balance gets disturbed, it may lead to cell death. Thus, cystatins cannot be merely regarded as TPI's as these have been found to play a pivotal role in tumorigenesis and neurodegenerative diseases. Many studies have reported the variation in cystatin level in incidences of different types of cancer; highlighting an important role played by these inhibitors in cancer development and progression. Cystatin C is increasingly replacing creatinine as a biomarker of glomerular filtration rate (GFR) thereby highlighting the importance of this important inhibitor. Some recent studies have also reported the interaction pattern of various anti-cancer drugs with cystatins in a bid to find how these drugs affect this important inhibitors and whether these drugs have any side effect on cystatins. Thus, in this growing disease era it can be said that cystatins are no more just inhibitors blocking the activity of thiol proteases rather they play a pivotal role in variety of pathological conditions.
Collapse
Affiliation(s)
- Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
187
|
Gupta AK, Ghosh K, Palit S, Barua J, Das PK, Ukil A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2. FASEB J 2017; 31:5087-5101. [PMID: 28765172 DOI: 10.1096/fj.201700407r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
In visceral leishmaniasis, we found that the antileishmanial drug Amp B produces a higher level of IL-1β over the infected control. Moreover, administering anti-IL-1β antibody to infected Amp B-treated mice showed significantly less parasite clearance. Investigation revealed that Leishmania inhibits stimuli-induced expression of a multiprotein signaling platform, NLRP3 inflammasome, which in turn inhibits caspase-1 activation mediated maturation of IL-1β from its pro form. Attenuation of NLRP3 and pro-IL-1β in infection was found to result from decreased NF-κB activity. Transfecting infected cells with constitutively active NF-κB plasmid increased NLRP3 and pro-IL-1β expression but did not increase mature IL-1β, suggesting that IL-1β maturation requires a second signal, which was found to be reactive oxygen species (ROS). Decreased NF-κB was attributed to increased expression of A20, a negative regulator of NF-κB signaling. Silencing A20 in infected cells restored NLRP3 and pro-IL-1β expression, but also increased matured IL-1β, implying an NF-κB-independent A20-modulated IL-1β maturation. Macrophage ROS is primarily regulated by mitochondrial uncoupling protein 2 (UCP2), and UCP2-silenced infected cells showed an increased IL-1β level. Short hairpin RNA-mediated knockdown of A20 and UCP2 in infected mice independently documented decreased liver and spleen parasite burden and increased IL-1β production. These results suggest that Leishmania exploits A20 and UCP2 to impair inflammasome activation for disease propagation.-Gupta, A. K., Ghosh, K., Palit, S., Barua, J., Das, P. K., Ukil, A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Kuntal Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shreyasi Palit
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Jayita Barua
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
188
|
Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017; 152:207-217. [PMID: 28695629 DOI: 10.1111/imm.12787] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
Inflammatory responses mediated by macrophages are part of the innate immune system, whose role is to protect against invading pathogens. Lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria stimulates an inflammatory response by macrophages. During the inflammatory response, extracellular LPS is recognized by Toll-like receptor 4, one of the pattern recognition receptors that activates inflammatory signalling pathways and leads to the production of inflammatory mediators. The innate immune response is also triggered by intracellular inflammasomes, and inflammasome activation induces pyroptosis and the secretion of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 by macrophages. Cysteine-aspartic protease (caspase)-11 and the human orthologues caspase-4/caspase-5 were recently identified as components of the 'non-canonical inflammasome' that senses intracellular LPS derived from Gram-negative bacteria during macrophage-mediated inflammatory responses. Direct recognition of intracellular LPS facilitates the rapid oligomerization of caspase-11/4/5, which results in pyroptosis and the secretion of IL-1β and IL-18. LPS is released into the cytoplasm from Gram-negative bacterium-containing vacuoles by small interferon-inducible guanylate-binding proteins encoded on chromosome 3 (GBPchr3 )-mediated lysis of the vacuoles. In vivo studies have clearly shown that caspase-11-/- mice are more resistant to endotoxic septic shock by excessive LPS challenge. Given the evidence, activation of caspase-11 non-canonical inflammasomes by intracellular LPS is distinct from canonical inflammasome activation and provides a new paradigm in macrophage-mediated inflammatory responses.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Korea
| |
Collapse
|
189
|
Inhibition of Inflammasome-Dependent Interleukin 1β Production by Streptococcal NAD +-Glycohydrolase: Evidence for Extracellular Activity. mBio 2017; 8:mBio.00756-17. [PMID: 28720729 PMCID: PMC5516252 DOI: 10.1128/mbio.00756-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group A Streptococcus (GAS) is a common human pathogen and the etiologic agent of a large number of diseases ranging from mild, self-limiting infections to invasive life-threatening conditions. Two prominent virulence factors of this bacterium are the genetically and functionally linked pore-forming toxin streptolysin O (SLO) and its cotoxin NAD+-glycohydrolase (NADase). Overexpression of these toxins has been linked to increased bacterial virulence and is correlated with invasive GAS disease. NADase can be translocated into host cells by a SLO-dependent mechanism, and cytosolic NADase has been assigned multiple properties such as protection of intracellularly located GAS bacteria and induction of host cell death through energy depletion. Here, we used a set of isogenic GAS mutants and a macrophage infection model and report that streptococcal NADase inhibits the innate immune response by decreasing inflammasome-dependent interleukin 1β (IL-1β) release from infected macrophages. Regulation of IL-1β was independent of phagocytosis and ensued also under conditions not allowing SLO-dependent translocation of NADase into the host cell cytosol. Thus, our data indicate that NADase not only acts intracellularly but also has an immune regulatory function in the extracellular niche. In the mid-1980s, the incidence and severity of invasive infections caused by serotype M1 GAS suddenly increased. The results of genomic analyses suggested that this increase was due to the spread of clonal bacterial strains and identified a recombination event leading to enhanced production of the SLO and NADase toxins in these strains. However, despite its apparent importance in GAS pathogenesis, the function of NADase remains poorly understood. In this study, we demonstrate that NADase inhibits inflammasome-dependent IL-1β release from infected macrophages. While previously described functions of NADase pertain to its role upon SLO-mediated translocation into the host cell cytosol, our data suggest that the immune regulatory function of NADase is exerted by nontranslocated enzyme, identifying a previously unrecognized extracellular niche for NADase functionality. This immune regulatory property of extracellular NADase adds another possible explanation to how increased secretion of NADase correlates with bacterial virulence.
Collapse
|
190
|
Zhao Y, Leman LJ, Search DJ, Garcia RA, Gordon DA, Maryanoff BE, Ghadiri MR. Self-Assembling Cyclic d,l-α-Peptides as Modulators of Plasma HDL Function. A Supramolecular Approach toward Antiatherosclerotic Agents. ACS CENTRAL SCIENCE 2017; 3:639-646. [PMID: 28691076 PMCID: PMC5492419 DOI: 10.1021/acscentsci.7b00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 05/26/2023]
Abstract
There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides. We have identified a few distinct sequence motifs that are effective in vitro in remodeling human and mouse plasma HDLs to increase the concentration of lipid-poor pre-beta HDLs, which are key initial acceptors of cholesterol in the reverse cholesterol transport (RCT) process, and concomitantly promote cholesterol efflux from macrophage cells. Functional assays with various control peptides, such as scrambled sequences, linear and enantiomeric cyclic peptide variants, and backbone-modified structures that limit peptide self-assembly, provide strong support for the supramolecular mode of action. Importantly, when the lead cyclic peptide c[wLwReQeR] was administered to mice (ip), it also promoted the formation of small, lipid-poor HDLs in vivo, displayed good plasma half-life (∼6 h), did not appear to have adverse side effects, and exerted potent anti-inflammatory effects in an acute in vivo inflammation assay. Given that previously reported HDL remodeling peptides have been based on α-helical apoA-I mimetic architectures, the present study, involving a new structural class, represents a promising step toward new potential therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke J. Leman
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debra J. Search
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - Ricardo A. Garcia
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - David A. Gordon
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - Bruce E. Maryanoff
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Reza Ghadiri
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
191
|
The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat Commun 2017; 8:15556. [PMID: 28580931 PMCID: PMC5465353 DOI: 10.1038/ncomms15556] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
Inflammasomes are protein platforms linking recognition of microbe, pathogen-associated and damage-associated molecular patterns by cytosolic sensory proteins to caspase-1 activation. Caspase-1 promotes pyroptotic cell death and the maturation and secretion of interleukin (IL)-1β and IL-18, which trigger inflammatory responses to clear infections and initiate wound-healing; however, excessive responses cause inflammatory disease. Inflammasome assembly requires the PYRIN domain (PYD)-containing adaptor ASC, and depends on PYD–PYD interactions. Here we show that the PYD-only protein POP2 inhibits inflammasome assembly by binding to ASC and interfering with the recruitment of ASC to upstream sensors, which prevents caspase-1 activation and cytokine release. POP2 also impairs macrophage priming by inhibiting the activation of non-canonical IκB kinase ɛ and IκBα, and consequently protects from excessive inflammation and acute shock in vivo. Our findings advance our understanding of the complex regulatory mechanisms that maintain a balanced inflammatory response and highlight important differences between individual POP members. Excessive inflammasome activation leads to inflammatory diseases, but how inflammasomes are regulated by PYD-only adaptors is unclear. Here the authors show that the PYD-only protein POP2 inhibits both inflammasome priming and assembly by interfering, respectively, with IκBα activation and NLRP3-ASC interaction.
Collapse
|
192
|
Domingo-Fernández R, Coll RC, Kearney J, Breit S, O'Neill LAJ. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J Biol Chem 2017; 292:12077-12087. [PMID: 28576828 DOI: 10.1074/jbc.m117.797126] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that regulates the activation of caspase-1 leading to the maturation of the proinflammatory cytokines IL-1β and IL-18 and promoting pyroptosis. Classically, the NLRP3 inflammasome in murine macrophages is activated by the recognition of pathogen-associated molecular patterns and by many structurally unrelated factors. Understanding the precise mechanism of NLRP3 activation by such a wide array of stimuli remains elusive, but several signaling events, including cytosolic efflux and influx of select ions, have been suggested. Accordingly, several studies have indicated a role of anion channels in NLRP3 inflammasome assembly, but their direct involvement has not been shown. Here, we report that the chloride intracellular channel proteins CLIC1 and CLIC4 participate in the regulation of the NLRP3 inflammasome. Confocal microscopy and cell fractionation experiments revealed that upon LPS stimulation of macrophages, CLIC1 and CLIC4 translocated into the nucleus and cellular membrane. In LPS/ATP-stimulated bone marrow-derived macrophages (BMDMs), CLIC1 or CLIC4 siRNA transfection impaired transcription of IL-1β, ASC speck formation, and secretion of mature IL-1β. Collectively, our results demonstrate that CLIC1 and CLIC4 participate both in the priming signal for IL-1β and in NLRP3 activation.
Collapse
Affiliation(s)
- Raquel Domingo-Fernández
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Rebecca C Coll
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Samuel Breit
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
193
|
Lee NY, Chung K, Jin JS, Lee Y, An H. The Inhibitory Effect of Nodakenin on Mast‐Cell‐Mediated Allergic Inflammation Via Downregulation of NF‐κB and Caspase‐1 Activation. J Cell Biochem 2017; 118:3993-4001. [DOI: 10.1002/jcb.26055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Na Young Lee
- Department of PharmacologyCollege of Korean MedicineSangji UniversityGangwon‐do 220‐702Republic of Korea
- Department of Herbal Medicine ResourcesChonbuk National UniversityIksan 570‐752Republic of Korea
| | - Kyung‐Sook Chung
- Catholic Precision Medicine Research CenterCollege of MedicineThe Catholic University of Korea222, Banpo‐daero, Seocho‐guSeoul 06591Republic of Korea
| | - Jong Sik Jin
- Department of Herbal Medicine ResourcesChonbuk National UniversityIksan 570‐752Republic of Korea
| | - Young‐Cheol Lee
- Department of HerbologyCollege of Korean MedicineSangji UniversityGangwon‐do 220‐702Republic of Korea
| | - Hyo‐Jin An
- Department of PharmacologyCollege of Korean MedicineSangji UniversityGangwon‐do 220‐702Republic of Korea
| |
Collapse
|
194
|
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277:61-75. [PMID: 28462526 PMCID: PMC5416822 DOI: 10.1111/imr.12534] [Citation(s) in RCA: 1189] [Impact Index Per Article: 148.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
195
|
Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K, Vance RE. NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8. Immunity 2017; 46:649-659. [PMID: 28410991 PMCID: PMC5476318 DOI: 10.1016/j.immuni.2017.03.016] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/09/2016] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
Abstract
Intestinal epithelial cells (IECs) form a critical barrier against pathogen invasion. By generation of mice in which inflammasome expression is restricted to IECs, we describe a coordinated epithelium-intrinsic inflammasome response in vivo. This response was sufficient to protect against Salmonella tissue invasion and involved a previously reported IEC expulsion that was coordinated with lipid mediator and cytokine production and lytic IEC death. Excessive inflammasome activation in IECs was sufficient to result in diarrhea and pathology. Experiments with IEC organoids demonstrated that IEC expulsion did not require other cell types. IEC expulsion was accompanied by a major actin rearrangement in neighboring cells that maintained epithelium integrity but did not absolutely require Caspase-1 or Gasdermin D. Analysis of Casp1-/-Casp8-/- mice revealed a functional Caspase-8 inflammasome in vivo. Thus, a coordinated IEC-intrinsic, Caspase-1 and -8 inflammasome response plays a key role in intestinal immune defense and pathology.
Collapse
Affiliation(s)
- Isabella Rauch
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Katherine A Deets
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daisy X Ji
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jakob von Moltke
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jeannette L Tenthorey
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Angus Y Lee
- Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Janelle S Ayres
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
196
|
Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep 2017; 7:45126. [PMID: 28345580 PMCID: PMC5366862 DOI: 10.1038/srep45126] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Caspase-1, also known as interleukin-1β (IL-1β)-converting enzyme (ICE), regulates antimicrobial host defense, tissue repair, tumorigenesis, metabolism and membrane biogenesis. On activation within an inflammasome complex, caspase-1 induces pyroptosis and converts pro-IL-1β and pro-IL-18 into their biologically active forms. “ICE−/−” or “Casp1−/−” mice generated using 129 embryonic stem cells carry a 129-associated inactivating passenger mutation on the caspase-11 locus, essentially making them deficient in both caspase-1 and caspase-11. The overlapping and unique functions of caspase-1 and caspase-11 are difficult to unravel without additional genetic tools. Here, we generated caspase-1–deficient mouse (Casp1Null) on the C57BL/6 J background that expressed caspase-11. Casp1Null cells did not release IL-1β and IL-18 in response to NLRC4 activators Salmonella Typhimurium and flagellin, canonical or non-canonical NLRP3 activators LPS and ATP, Escherichia coli, Citrobacter rodentium and transfection of LPS, AIM2 activators Francisella novicida, mouse cytomegalovirus and DNA, and the infectious agents Listeria monocytogenes and Aspergillus fumigatus. We further demonstrated that caspase-1 and caspase-11 differentially contributed to the host defense against A. fumigatus infection and to endotoxemia.
Collapse
|
197
|
Liu X, Lieberman J. A Mechanistic Understanding of Pyroptosis: The Fiery Death Triggered by Invasive Infection. Adv Immunol 2017; 135:81-117. [PMID: 28826530 DOI: 10.1016/bs.ai.2017.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immune cells and skin and mucosal epithelial cells recognize invasive microbes and other signs of danger to sound alarms that recruit responder cells and initiate an immediate "innate" immune response. An especially powerful alarm is triggered by cytosolic sensors of invasive infection that assemble into multimolecular complexes, called inflammasomes, that activate the inflammatory caspases, leading to maturation and secretion of proinflammatory cytokines and pyroptosis, an inflammatory death of the infected cell. Work in the past year has defined the molecular basis of pyroptosis. Activated inflammatory caspases cleave Gasdermin D (GSDMD), a cytosolic protein in immune antigen-presenting cells and epithelia. Cleavage separates the autoinhibitory C-terminal fragment from the active N-terminal fragment, which moves to the cell membrane, binds to lipids on the inside of the cell membrane, and oligomerizes to form membrane pores that disrupt cell membrane integrity, causing death and leakage of small molecules, including the proinflammatory cytokines and GSDMD itself. GSDMD also binds to cardiolipin on bacterial membranes and kills the very bacteria that activate the inflammasome. GSDMD belongs to a family of poorly studied gasdermins, expressed in the skin and mucosa, which can also form membrane pores. Spontaneous mutations that disrupt the binding of the N- and C-terminal domains of other gasdermins are associated with alopecia and asthma. Here, we review recent studies that identified the roles of the inflammasome, inflammatory caspases, and GSDMD in pyroptosis and highlight some of the outstanding questions about their roles in innate immunity, control of infection, and sepsis.
Collapse
Affiliation(s)
- Xing Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
198
|
Otsuka M, Okinaga T, Ariyoshi W, Kitamura C, Nishihara T. Ameloblastin Upregulates Inflammatory Response Through Induction of IL-1β in Human Macrophages. J Cell Biochem 2017; 118:3308-3317. [PMID: 28295583 DOI: 10.1002/jcb.25983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
Ameloblastin (AMBN) is an enamel matrix protein that has various biological functions such as healing dental pulp and repairing bone fractures. In the present study, we clarified the effect of AMBN on the expression of an inflammatory cytokine, interleukin-1β (IL-1β) in lipopolysaccharide (LPS)-treated human macrophages. Real-time RT-PCR analysis showed that LPS treatment upregulated expression of the IL-1β gene in U937 cells. Interestingly, AMBN significantly enhanced IL-1β gene expression in LPS-treated U937 cells as well as the secretion of mature IL-1β into culture supernatants by these cells. AMBN also activated caspase-1 p10 expression in LPS-treated U937 cells. Pretreatment with a caspase-1 inhibitor, Z-YVAD-FMK, downregulated the mature IL-1β expression enhanced by AMBN treatment in LPS-treated U937 cells. A co-immunoprecipitation assay showed that treatment with LPS and AMBN upregulated toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) interactions, but there was no significant difference compared with LPS treatment alone in U937 cells. In contrast, western blot analysis revealed that AMBN remarkably prolonged the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase (MAPK) family. An ERK1/2-selective inhibitor, U0126, suppressed expression of the IL-1β gene as well as its protein expression in U937 cells treated with LPS and AMBN. Taken together, these results indicate that AMBN enhances IL-1β production in LPS-treated U937 cells through ERK1/2 phosphorylation and caspase-1 activation, suggesting that AMBN upregulates the inflammatory response in human macrophages and plays an important role in innate immunity. J. Cell. Biochem. 118: 3308-3317, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mai Otsuka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan.,Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| |
Collapse
|
199
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
200
|
de Morais Lima GR, Machado FDF, Périco LL, de Faria FM, Luiz-Ferreira A, Souza Brito ARM, Pellizzon CH, Hiruma-Lima CA, Tavares JF, Barbosa Filho JM, Batista LM. Anti-inflammatory intestinal activity of Combretum duarteanum Cambess. in trinitrobenzene sulfonic acid colitis model. World J Gastroenterol 2017; 23:1353-1366. [PMID: 28293082 PMCID: PMC5330820 DOI: 10.3748/wjg.v23.i8.1353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd).
METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated.
RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase.
CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease.
Collapse
|