151
|
Olds ME, Jacques DB, Kopyov O. Relation between rotation in the 6-OHDA lesioned rat and dopamine loss in striatal and substantia nigra subregions. Synapse 2006; 59:532-44. [PMID: 16565974 DOI: 10.1002/syn.20270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The relation between the rotation response to drug-induced activation of the dopamine (DA) receptor in the rat unilaterally lesioned with 6-hydroxydopamine (6-OHDA) in the substantia nigra (SN) and the loss of DA in subregions of the SN and caudate-putamen (C/PUT) is not clear. Here this relation was examined in 23 rats classified as rotators to amphetamine (5 mg/kg). After their response was characterized in terms of ipsilateral rotation, contralateral rotation, and oral stereotypy in one place, they were divided into high, medium, low, and very low rotators. The loss of DA in each group was visualized on brain sections immunoreacted to tyrosine hydroxylase (TH). The density of the TH label on the side of the lesion was compared to that on the intact side. In the ventral midbrain, the density was determined in the SN subdivided into far lateral, lateral, central, and medial subregions and also in the ventral tegmental area (VTA). In the forebrain, it was determined in the C/PUT subdivided into lateral, central, and medial subregions and also in the nucleus accumbens (ACC). These measurements led to three principal findings. The first was a positive overall correlation between rotation and loss of TH label. The second was a correlation between rotation and penetration of the loss from the lateral subregions into more medial areas. The third was a larger loss in SN and VTA (midbrain) than in C/PUT and ACC (forebrain). These findings show that rotation depended not only on the overall loss of DA but also on its distribution across subregions. The loss in the lateral subregion, always the largest regardless of the rate of rotation, may have been the first step in inducing the motor abnormality, and the loss in the central and medial subregions may have served to enhance the abnormality due to the loss in the lateral subregion.
Collapse
Affiliation(s)
- M E Olds
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
152
|
De Gaspari D, Siri C, Di Gioia M, Antonini A, Isella V, Pizzolato A, Landi A, Vergani F, Gaini SM, Appollonio IM, Pezzoli G. Clinical correlates and cognitive underpinnings of verbal fluency impairment after chronic subthalamic stimulation in Parkinson's disease. Parkinsonism Relat Disord 2006; 12:289-95. [PMID: 16554183 DOI: 10.1016/j.parkreldis.2006.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/16/2005] [Accepted: 01/04/2006] [Indexed: 11/18/2022]
Abstract
A decline in verbal fluency is the most consistent neuropsychological sequela of deep brain stimulation (DBS) for Parkinson's disease. We assessed clinical correlates and switching and clustering subcomponents in 26 parkinsonians undergoing subthalamic DBS. Post-surgical motor improvement was accompanied by worsening at both letter and category fluency tasks. Total number of words and switches decreased, while average cluster size was unchanged. Worsening tended to be prominent in patients with baseline poorer cognitive status and more depressed mood. Impairment of shifting suggests prefrontal dysfunction, possibly due to disruption of fronto-striatal circuits along the surgical trajectory and/or to high frequency stimulation itself.
Collapse
Affiliation(s)
- D De Gaspari
- Department of Neuroscience, Center for Parkinson's Disease, Istituti Clinici di Perfezionamento, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Yano M, Beverley JA, Steiner H. Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 dopamine receptors: interhemispheric effects. Neuroscience 2006; 140:699-709. [PMID: 16549270 DOI: 10.1016/j.neuroscience.2006.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 02/02/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
Psychostimulants change the function of cortico-basal ganglia circuits. Some of these effects are mediated by altered gene regulation in projection neurons of the striatum which participate in these circuits. Psychostimulant-induced changes in gene expression in these neurons are a consequence of excessive stimulation of G-protein-coupled receptors, particularly the D1 dopamine receptor subtype. Recent findings show that the psychostimulant methylphenidate, which causes dopamine overflow in the striatum, produces changes in striatal gene regulation similar, but not identical, to those induced by psychostimulants such as cocaine and amphetamine. We investigated, in rats, the role of striatal D1 receptors in methylphenidate-induced gene expression, by intrastriatal administration of the D1 receptor antagonist SCH-23390. Effects on the expression of two plasticity-related molecules, the transcription factor zif 268 and the synaptic plasticity factor Homer 1a, in the striatum and cortex were assessed. Intrastriatal infusion of SCH-23390 (2-10 microg) attenuated zif 268 and Homer 1a mRNA expression induced by methylphenidate (10 mg/kg, i.p.) in a dose-dependent manner. Moreover, this unilateral SCH-23390 infusion not only inhibited gene induction at the infusion site in the central striatum, but also in distant striatal regions including the nucleus accumbens, as well as throughout the entire contralateral striatum. These results indicate that striatal D1 receptors are critical for gene induction by methylphenidate. Moreover, the ipsilateral and contralateral effects of local SCH-23390 administration suggest that D1 receptor-stimulated striatal output exerts robust control over widespread striatal activities/gene expression via regulation of input to the striatum.
Collapse
Affiliation(s)
- M Yano
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
154
|
Raeva SN. The Role of the Parafascicular Complex (CM-Pf) of the Human Thalamus in the Neuronal Mechanisms of Selective Attention. ACTA ACUST UNITED AC 2006; 36:287-95. [PMID: 16465496 DOI: 10.1007/s11055-006-0015-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 06/15/2004] [Indexed: 11/30/2022]
Abstract
The reactions of 93 neurons in the parafascicular complex (CM-Pf) of the human thalamus were studied by microelectrode recording during stereotaxic neurosurgical operations in patients with spastic torticollis. High reactivity was demonstrated for two previously classified types of neurons with identical irregular (type A) and bursting Ca2+ -dependent (type B) activities in response to presentation of relevant verbal stimuli evoking selective attention in humans. Concordant changes in the network activity of A and B neurons were observed, in the form of linked activatory-inhibitory patterns of responses and the appearance, at the moment of presentation of an imperative morpheme of the command stimulus, of rapidly occurring intercellular interactions consisting of local synchronization with simultaneously developing rhythmic oscillatory (3-4 Hz) activity. Data are presented on the existence of a direct connection between these neuronal rearrangements and activation of selective attention, providing evidence for the involvement of the thalamic parafascicular complex (CM-Pf) in the mechanisms of selective attention and processing of relevant verbal information during the preparative period of voluntary actions.
Collapse
Affiliation(s)
- S N Raeva
- Laboratory of Hunan Cellular Neurophysiology, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119991, Moscow, Russia
| |
Collapse
|
155
|
O’Connor J, Muly EC, Hemby SE. Molecular mapping of striatal subdivisions in juvenile Macaca Mulata. Exp Neurol 2006; 198:326-37. [PMID: 16455077 PMCID: PMC5076375 DOI: 10.1016/j.expneurol.2005.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 11/21/2022]
Abstract
The striatum of the primate brain can be subdivided into three distinct anatomical subregions: caudate (CAU), putamen (PUT), and ventral striatum (VS). Although these subregions share several anatomical connections, cell morphological, and histochemical features, they differ considerably in their vulnerability to different neurological and psychiatric diseases, and these brain regions have significantly different functions in health and disease. In order to better understand the molecular underpinnings of the different disease and functional vulnerabilities, transcriptional profiles were generated from the CAU, PUT, and VS of five juvenile rhesus macaques (Macaca mulatta) using human cDNA neuromicroarrays containing triplicate spots of 1227 cDNAs. Differences in microarray gene expression were assessed using z score analysis and 1.5-fold change between paired subregions. Clustering of genes based on dissimilarity of expression patterns between regions revealed subregion specific expression profiles encoding G-protein-coupled receptor signaling transcripts, transcription factors, kinases and phosphatases, and cell signaling and signal transduction transcripts. Twelve transcripts were examined using quantitative real-time PCR (qPCR), and 81% demonstrated alterations similar to those seen with microarray analysis, some of which were statistically significant. Subregion specific transcription profiles support the anatomical differentiation and potential disease vulnerabilities of the respective subregions.
Collapse
Affiliation(s)
- Joann O’Connor
- Molecular and Systems Pharmacology Program, Graduate Division of Biological and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - Emil C. Muly
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Division of Neuroscience, Emory University, Atlanta, GA 30329, USA
| | - Scott E. Hemby
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Corresponding author. Fax: +1 336 716 8501. (S.E. Hemby)
| |
Collapse
|
156
|
Hadj-Bouziane F, Frankowska H, Meunier M, Coquelin PA, Boussaoud D. Conditional visuo-motor learning and dimension reduction. Cogn Process 2006; 7:95-104. [PMID: 16683172 DOI: 10.1007/s10339-005-0028-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/03/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Conditional visuo-motor learning consists in learning by trial and error to associate visual cues with correct motor responses, that have no direct link. Converging evidence supports the role of a large brain network in this type of learning, including the prefrontal and the premotor cortex, the basal ganglia BG and the hippocampus. In this paper we focus on the role of a major structure of the BG, the striatum. We first present behavioral results and electrophysiological data recorded from this structure in monkeys engaged in learning new visuo-motor associations. Visual stimuli were presented on a video screen and the animals had to learn, by trial and error, to select the correct movement of a joystick, in order to receive a liquid reward. Behavioral results revealed that the monkeys used a sequential strategy, whereby they learned the associations one by one although they were presented randomly. Human subjects, tested on the same task, also used a sequential strategy. Neuronal recordings in monkeys revealed learning-related modulations of neural activity in the striatum. We then present a mathematical model inspired by viability theory developed to implement the use of strategies during learning. This model complements existing models of the BG based on reinforcement learning RL, which do not take into account the use of strategies to reduce the dimension of the learning space.
Collapse
Affiliation(s)
- Fadila Hadj-Bouziane
- INCM UMR6193, CNRS& Aix-Marseille Université, 31 Chemin Jospeh Aiguier, 13402, Marseille, France.
| | | | | | | | | |
Collapse
|
157
|
Marceglia S, Foffani G, Bianchi AM, Baselli G, Tamma F, Egidi M, Priori A. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease. J Physiol 2006; 571:579-91. [PMID: 16410285 PMCID: PMC1805793 DOI: 10.1113/jphysiol.2005.100271] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.
Collapse
Affiliation(s)
- S Marceglia
- Dipartimento di Scienze Neurologiche, Università di Milano, Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
158
|
Devos D, Defebvre L. Effect of deep brain stimulation and l-Dopa on electrocortical rhythms related to movement in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2006; 159:331-49. [PMID: 17071241 DOI: 10.1016/s0079-6123(06)59022-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In the early stages of Parkinson's disease (PD), impaired motor preparation has been related to a decrease in the latency of mu rhythm event-related desynchronisation (ERD) compared with control subjects, suggesting hypo activation of the contralateral, primary sensorimotor (PSM) cortex. Following movement, a decrease in amplitude of beta rhythm ERS was observed over the same region and thought to be related to impairment in cortical deactivation. By monitoring ERD/ERS, we aimed (i) to extend to advanced PD the observations made in less-advanced parkinsonism and (ii) to test the effect of acute L-Dopa, internal pallidal or subthalamic stimulation on these abnormalities. For the clinical evaluation the motor score of UPDRS decreased by about 60% under subthalamic stimulation and following acute L-Dopa administration and by 40% under internal pallidal stimulation. The following concurrent ERD/ERS changes under subthalamic stimulation and L-Dopa were observed: a marked increase in mu ERD latency during movement preparation over contralateral central region; an increase in mu ERD during movement execution over bilateral central regions; a decrease in mu ERD latency over bilateral frontocentral region and an increase in beta ERS over contralateral central region after movement. On the contrary, mu ERD latency was not improved under internal pallidal stimulation. Changes of mu and beta rhythm parameters seemed to be inversely correlated with bradykinesia. Mu rhythm ERD latency and the beta ERS amplitude further decreased in advanced PD compared with early stages, suggesting greater impairment of cortical activation/deactivation as the disease progresses and a partial restoration in relation to clinical improvement under treatments. Consequently, it appears that L-Dopa and deep brain stimulation partially restored the normal patterns of cortical oscillatory activity in PD, possibly by decreasing the low frequency hyper synchronisation at rest. This mechanism could be involved at the basal ganglia level in the sensorimotor integration implicated in the movement control.
Collapse
Affiliation(s)
- D Devos
- Department of Neurology and Movement Disorders, EA2683, IFR114, CHRU of Lille, Lille, France.
| | | |
Collapse
|
159
|
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw 2006; 19:31-61. [PMID: 16153803 DOI: 10.1016/j.neunet.2005.06.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 06/09/2005] [Indexed: 11/20/2022]
Abstract
The existence of multiple parallel loops connecting sensorimotor systems to the basal ganglia has given rise to proposals that these nuclei serve as a selection mechanism resolving competitions between the alternative actions available in a given context. A strong test of this hypothesis is to require a computational model of the basal ganglia to generate integrated selection sequences in an autonomous agent, we therefore describe a robot architecture into which such a model is embedded, and require it to control action selection in a robotic task inspired by animal observations. Our results demonstrate effective action selection by the embedded model under a wide range of sensory and motivational conditions. When confronted with multiple, high salience alternatives, the robot also exhibits forms of behavioral disintegration that show similarities to animal behavior in conflict situations. The model is shown to cast light on recent neurobiological findings concerning behavioral switching and sequencing.
Collapse
Affiliation(s)
- Tony J Prescott
- Adaptive Behavior Research Group, Department of Psychology, University of Sheffield, Sheffield, Western Bank, South Yorkshire, Sheffield S10 2TN, UK.
| | | | | | | | | |
Collapse
|
160
|
Tarrasch R, Goelman G, Joel D, Daphna J, Weiner I. Long-term functional consequences of quinolinic acid striatal lesions and their alteration following an addition of a globus pallidus lesion assessed using pharmacological magnetic resonance imaging. Exp Neurol 2005; 196:244-53. [PMID: 16236282 DOI: 10.1016/j.expneurol.2005.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/21/2022]
Abstract
The present study tested the hypothesis that lesion to the rat globus pallidus (GP) can "normalize" the functioning of the basal ganglia-thalamocortical circuits in striatal-lesioned rats by assessing the functional connectivity of these regions using functional magnetic resonance imaging (fMRI). Changes in brain activation following systemic administration of amphetamine were assessed in (1) rats sustaining a unilateral lesion to the striatum, (2) rats sustaining a combined striatal and pallidal lesion, and (3) control rats. Striatal-lesioned rats showed attenuated cortical activation following amphetamine administration and lower correlations between the responses to amphetamine in different brain regions compared to control rats. Although the addition of an excitotoxic GP lesion failed to prevent striatal lesion-induced attenuation of cortical activation by amphetamine, it was effective in "normalizing" the correlations between the responses to amphetamine in the different areas. These results suggest that, although the GP lesion is ineffective in correcting the global changes in activity caused by the striatal lesion, it may have the capacity to partially restore alterations in functional connectivity resulting from the striatal lesion. These results are further discussed in view of our previous demonstration that lesions to the GP can reverse several behavioral deficits produced by a striatal lesion.
Collapse
|
161
|
Devos D, Labyt E, Cassim F, Bourriez JL, Blond S, Destée A, Derambure P, Defebvre L. [Pathophysiological mechanisms implicated by high-frequency stimulation in Parkinson's disease: the restoration of high and low frequency oscillatory systems]. Rev Neurol (Paris) 2005; 161:1029-43. [PMID: 16288169 DOI: 10.1016/s0035-3787(05)85171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Increased neuronal activity in the internal pallidum (GPi) and the subthalamic nucleus (STN) has been clearly demonstrated in Parkinsonian models, and the two structures have thus been selected as therapeutic targets for functional neurosurgery. High-frequency electrical stimulation of the GPi or the STN improves the parkinsonian symptoms but also dyskinesias directly by GPi stimulation or indirectly by reduction of L-Dopa associated with STN stimulation. According to Alexander's model of the organisation of the basal ganglia, electrical stimulation of GPi or STN should have led to uncontrolled hyperkinesia. This apparent paradox could be explained on one hand by the involvement of different anatomo-functional areas within these structures and on the other by spatial and temporal changes in neuronal discharge patterns in the basal ganglia which in turn produce variations in synchronisation. RESULTS Event-related (de)synchronisation (ERD) has enabled us to study variations in subcortico-cortical oscillatory activity: it has been shown that high-frequency electrical stimulation of the GPi/STN increases desynchronisation of low frequency rhythms (mu and beta,<30 Hz) during movement preparation and execution and augments post-movement synchronisation. Stimulation also decreases the abnormal frontocentral spreading of desynchronisation during movement preparation. CONCLUSIONS In accordance with previous coherence analyses, electrical stimulation of STN is likely to restore the activity of high-frequency and low-frequency systems, as evidenced by a decrease in the hypersynchronisation of low-frequency rhythms at rest and restoral of a high-frequency rhythm during movement. Stimulation may improve spatial selectivity by activating the selected programs in conjunction with the primary sensorimotor cortex, whilst inhibiting competitive programs represented by abnormal spreading outside the primary sensorimotor cortex.
Collapse
Affiliation(s)
- D Devos
- Service de Neurologie et Pathologie du Mouvement, Centre Hospitalier Universitaire, Lille.
| | | | | | | | | | | | | | | |
Collapse
|
162
|
van Dongen YC, Deniau JM, Pennartz CMA, Galis-de Graaf Y, Voorn P, Thierry AM, Groenewegen HJ. Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens. Neuroscience 2005; 136:1049-71. [PMID: 16226842 DOI: 10.1016/j.neuroscience.2005.08.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/05/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The nucleus accumbens is thought to subserve different aspects of adaptive and emotional behaviors. The anatomical substrates for such actions are multiple, parallel ventral striatopallidal output circuits originating in the nucleus accumbens shell and core subregions. Several indirect ways of interaction between the two subregions and their associated circuitry have been proposed, in particular through striato-pallido-thalamic and dopaminergic pathways. In this study, using anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine as well as single-cell juxtacellular filling with neurobiotin, we investigated the intra-accumbens distribution of local axon collaterals for the identification of possible direct connections between the shell and core subregions. Our results show widespread intra-accumbens projection patterns, including reciprocal projections between specific parts of the shell and core. However, fibers originating in the core reach more distant areas of the shell, including the rostral pole (i.e. the calbindin-poor part of the shell anterior to the core) and striatal parts of the olfactory tubercle, than those arising in the shell and projecting to the core. The latter projections are more restricted to the border region between the shell and core. The density of the fiber labeling within both the shell and core was very similar. Moreover, specific intrinsic projections within shell and core were identified, including a relatively strong projection from the rostral pole to the rostral shell, reciprocal projections between the rostral and caudal shell, as well as projections within the core that have a caudal-to-rostral predominance. The results of the juxtacellular filling experiments show that medium-sized spiny projection neurons and medium-sized aspiny neurons (most likely fast-spiking) contribute to these intra-accumbens projections. While such neurons are GABAergic, the intrastriatal projection patterns indicate the existence of lateral inhibitory interactions within, as well as between, shell and core subregions of the nucleus accumbens.
Collapse
Affiliation(s)
- Y C van Dongen
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, VU University Medical Center, Department of Anatomy, P.O. Box 7057, MF-G102, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
163
|
Steiniger-Brach B, Kretschmer BD. Different function of pedunculopontine GABA and glutamate receptors in nucleus accumbens dopamine, pedunculopontine glutamate and operant discriminative behavior. Eur J Neurosci 2005; 22:1720-30. [PMID: 16197512 DOI: 10.1111/j.1460-9568.2005.04361.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus accumbens, as the main input structure of the ventral basal ganglia loop, is described as a limbic-motor interface. Dopamine input to nucleus accumbens modulates processing of concurrent glutamate input from limbic structures carrying motor and motivational information. There is evidence that these dopamine/glutamate interactions are fundamentally involved in response selection processes. However, the pedunculopontine tegmental nucleus (PPTg) in the brainstem is connected with limbic structures as well as dopaminergic midbrain areas, which also project to the nucleus accumbens. Furthermore, behavioral studies implicate the PPTg in complex, motivated behavior. Thus, the PPTg might be involved in motivated behavior by influencing response selection processes in the nucleus accumbens. In this study we used in vivo microdialysis in freely moving rats in order to inhibit (100, 200, 300 and 400 microm baclofen) or stimulate [5, 12.5, 25 or 50 micromalpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)] the PPTg in animals that are performing an operant discrimination task for food reward. The behavioral consequences were correlated with dopamine and glutamate levels in nucleus accumbens and PPTg, respectively. PPTg inhibition by local GABAB receptors impaired the response rate and accuracy of performance in the operant discrimination task. PPTg stimulation by local AMPA receptors exclusively impaired the response rate. Both treatments blocked the performance-driven dopamine signal in nucleus accumbens, whereas glutamate in PPTg was enhanced after AMPA administration only. The data indicate that the PPTg functionally participates in a network of subcortical and cortical structures, which is responsible for the execution of motivated behavior and response selection processes.
Collapse
|
164
|
Heimer L, Van Hoesen GW. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 2005; 30:126-47. [PMID: 16183121 DOI: 10.1016/j.neubiorev.2005.06.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
Current dissatisfaction with the limbic system concept reflects a desire to move beyond the limbic system in efforts to explain key facets of emotional functions and motivational behavior. This review promotes an anatomical viewpoint, which originated as a result of histotechnical advances. These improvements paved the way for anatomical discoveries, which in turn led to the concepts of the ventral striatopallidal system and extended amygdala. These two systems, together with the basal nucleus of Meynert and the septum-diagonal band system, serve as output channels for an expanded version of the classic limbic lobe of Broca, which contains all non-isocortical parts of the cortical mantle together with the large laterobasal-cortical amygdaloid complex. Thus defined, the limbic lobe contains all of the major cortical (e.g. orbitofrontal, cingulate and insular cortices in addition to the hippocampal formation) and cortical-like (laterobasal-cortical amygdala) structures known to be especially important for emotional and motivational functions. In their role as output channels for the limbic lobe, the basal forebrain functional-anatomical systems contribute to the establishment of a number of cortico-subcortical circuits, which provide an important part of the anatomical substrate for the elaboration of emotional functions and adaptive behavior.
Collapse
Affiliation(s)
- Lennart Heimer
- Department of Neurosurgery and Neuroscience, University of Virginia, Box 800212, Charlottesville, VA 22908, USA
| | | |
Collapse
|
165
|
De Leonibus E, Oliverio A, Mele A. A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learn Mem 2005; 12:491-503. [PMID: 16166396 PMCID: PMC1240061 DOI: 10.1101/lm.94805] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is now accumulating evidence that the striatal complex in its two major components, the dorsal striatum and the nucleus accumbens, contributes to spatial memory. However, the possibility that different striatal subregions might modulate specific aspects of spatial navigation has not been completely elucidated. Therefore, in this study, two different learning procedures were used to determine whether the two striatal components could be distinguished on the basis of their involvement in spatial learning using different frames of reference: allocentric and egocentric. The task used involved the detection of a spatial change in the configuration of four objects placed in an arena, after the mice had had the opportunity to experience the objects in a constant position for three previous sessions. In the first part of the study we investigated whether changes in the place where the animals were introduced into the arena during habituation and testing could induce a preferential use of an egocentric or an allocentric frame of reference. In the second part of the study we performed focal injections of the N-methyl-d-aspartate (NMDA) receptors' antagonist, AP-5, within the two subregions immediately after training. The results indicate that using the two behavioral procedures, the animals rely on an egocentric and an allocentric spatial frame of reference. Furthermore, they demonstrate that AP-5 (37.5, 75, and 150 ng/side) injections into the dorsal striatum selectively impaired consolidation of spatial information in the egocentric but not in the allocentric procedure. Intra-accumbens AP-5 administration, instead, impaired animals trained using both procedures.
Collapse
Affiliation(s)
- Elvira De Leonibus
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, 00185 Rome, Italy.
| | | | | |
Collapse
|
166
|
Zhang Y, Bailey KR, Toupin MM, Mair RG. Involvement of ventral pallidum in prefrontal cortex-dependent aspects of spatial working memory. Behav Neurosci 2005; 119:399-409. [PMID: 15839786 DOI: 10.1037/0735-7044.119.2.399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ventral pallidum (VP) is an important source of limbic input to medial thalamus. Three studies examined the role of VP in spatial memory tasks impaired by medial thalamic lesions. In the 1st study, rats with VP lesions were impaired performing delayed matching trained with retractable levers (DMRL), a measure sensitive to prefrontal (but not hippocampal) damage. The 2nd study demonstrated dose-dependent DMRL impairment following microinjection of gamma-aminobutyric acidA, glutamate, or mu-opioid agonists in VP. In the 3rd study, VP lesions had no effect on varying choice radial-maze delayed nonmatching, a measure sensitive to hippocampal (but not prefrontal) lesions. These results suggest a common role in spatial memory for VP and other components of prefrontal-ventral striatopallidothalamic circuits distinct from hippocampal function.
Collapse
Affiliation(s)
- Yueping Zhang
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | |
Collapse
|
167
|
Abstract
Rats were used in a successive negative contrast procedure to determine which brain structures were activated by sucrose concentration downshifts, and on what day this occurred. Subjects were given preshift solutions for 12 days before being shifted to their postshift concentrations. Groups included 2 unshifted controls (32%-32% and 4%-4%) and 1 shifted group (32%-4%). Half of each group was killed 1 hr after the first exposure to the shifted solution (Shift 1), and half after the second exposure (Shift 2). Brains were processed for c-Fos-like immunoreactivity (FLI). Two major patterns emerged. Terminal drinking of 32% sucrose activated minimal brainstem regions involved in palatable taste, visceral feedback, and fluid homeostasis. In contrast, shifted subjects showed extensive cortical activation with selective activation in cerebral nuclei and brainstem. Robust FLI on Shift 1 was absent on Shift 2, consistent with evidence for rapid (1-trial) changes in all major motor outputs mediated by expectancy.
Collapse
Affiliation(s)
- Norman Pecoraro
- Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
168
|
Fagergren P, Overstreet DH, Goiny M, Hurd YL. Blunted response to cocaine in the Flinders hypercholinergic animal model of depression. Neuroscience 2005; 132:1159-71. [PMID: 15857718 DOI: 10.1016/j.neuroscience.2005.01.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/18/2005] [Accepted: 01/26/2005] [Indexed: 11/16/2022]
Abstract
The Flinders sensitive line (FSL) rat is a proposed genetic hypercholinergic animal model of human depression. Considering the strong comorbidity between depression and cocaine dependence we investigated the well-documented behavioral and molecular effects of cocaine in the FSL and their control Flinders resistant line (FRL) rats. First, we found no difference between the two lines to establish cocaine self-administration; both lines reached stable responding within 10 days of training at a fixed ratio-1 schedule of reinforcement (1.5 mg/kg/injection). However, the FSL rats exhibited reduced cocaine intake at a dose of 0.09 mg/kg/injection in a within-session dose-response curve (0.02, 0.09, 0.38, 1.5 mg/kg/injection). Second, we examined the effects of repeated cocaine administration on locomotor activity, dopamine overflow and striatal prodynorphin mRNA expression. We found the FSL rats to be low responders to novelty and to exhibit less locomotor activation after repeated cocaine administration (30 mg/kg, i.p., daily injections for 10 days) than their controls. Microdialysis sampling from the nucleus accumbens shell revealed no significant difference in the dopamine overflow between the rat lines, neither during baseline nor after cocaine stimulation. Postmortem analyses of striatal prodynorphin mRNA expression (using in situ hybridization histochemistry) revealed a differentiated response to the cocaine exposure. In contrast to control FRL rats, the FSL rats showed no typical cocaine-evoked elevation of prodynorphin mRNA levels in rostral subregions of the striatum whereas both strains expressed increased prodynorphin mRNA levels in the caudal striatum after cocaine administration. In conclusion, the FSL animal model of depression demonstrates marked blunting of the locomotor and dynorphin neuroadaptative responses to cocaine in accordance with its enhanced cholinergic sensitivity.
Collapse
Affiliation(s)
- P Fagergren
- Karolinska Institute, Department of Clinical Neuroscience, Psychiatry section, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|
169
|
Tisch S, Silberstein P, Limousin-Dowsey P, Jahanshahi M. The basal ganglia: anatomy, physiology, and pharmacology. Psychiatr Clin North Am 2004; 27:757-99. [PMID: 15550292 DOI: 10.1016/j.psc.2004.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal ganglia are perceived as important nodes in cortico-subcortical networks involved in the transfer, convergence, and processing of information in motor, cognitive, and limbic domains. How this integration might occur remains a matter of some debate, particularly given the consistent finding in anatomic and physiologic studies of functional segregation in cortico-subcortical loops. More recent theories, however, have raised the notion that modality-specific information might be integrated not spatially, but rather temporally, by coincident processing in discrete neuronal populations. Basal ganglia neurotransmitters, given their diverse roles in motor performance, learning, working memory, and reward-related activity are also likely to play an important role in the integration of cerebral activity. Further work will elucidate this to a greater extent, but for now, it is clear that the basal ganglia form an important nexus in the binding of cognitive, limbic, and motor information into thought and action.
Collapse
Affiliation(s)
- Stephen Tisch
- Sobell Department of Motor Neuroscience & Movement Disorders Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
170
|
Wiesendanger E, Clarke S, Kraftsik R, Tardif E. Topography of cortico-striatal connections in man: anatomical evidence for parallel organization. Eur J Neurosci 2004; 20:1915-22. [PMID: 15380013 DOI: 10.1111/j.1460-9568.2004.03640.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tracing studies in non-human primates support the existence of several parallel neuronal circuits involving cerebral cortex, basal ganglia and thalamus. Distinct functional loops were proposed to underlie multiple aspects of normal and pathological behaviour in man. We present here the first anatomical evidence for separate corticostriatal systems in humans. Neural connections of the sensorimotor and prefrontal cortex to the striatum were studied in one human brain using the Nauta method for anterogradely degenerating axons. Axons originating from a lesion in the left sensorimotor cortex, including the face area, were found to terminate in the superolateral part of the ipsilateral putamen, forming a narrow band in its posterior part. Inside the band, the distribution of degenerating axons was inhomogeneous; high-density clusters of approximately 2.5 mm in diameter were separated by regions with less dense cortical projections. Axons originating from a small lesion in the fundus of the right superior frontal sulcus were found in the upper part of the ipsilateral caudate nucleus. The existence of discrete and anatomically segregated terminal patches originating from distinct cortical regions suggests parallel organization of cortico-striatal connections in man.
Collapse
Affiliation(s)
- E Wiesendanger
- Institut de Physiologie, Université de Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
171
|
Whelan BM, Murdoch BE, Theodoros D, Silburn P, Hall B. Re-appraising contemporary theories of subcortical participation in language: proposing an interhemispheric regulatory function for the subthalamic nucleus (STN) in the mediation of high-level linguistic processes. Neurocase 2004; 10:345-52. [PMID: 15788272 DOI: 10.1080/13554790490893742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Apropos the basal ganglia, the dominant striatum and globus pallidus internus (GPi) have been hypothesized to represent integral components of subcortical language circuitry. Working subcortical language theories, however, have failed thus far to consider a role for the STN in the mediation of linguistic processes, a structure recently defined as the driving force of basal ganglia output. The aim of this research was to investigate the impact of surgically induced functional inhibition of the STN upon linguistic abilities, within the context of established models of basal ganglia participation in language. Two males with surgically induced'lesions'of the dominant and non-dominant dorsolateral STN, aimed at relieving Parkinsonian motor symptoms, served as experimental subjects. General and high-level language profiles were compiled for each subject up to 1 month prior to and 3 months following neurosurgery, within the drug-on state (i.e., when optimally medicated). Comparable post-operative alterations in linguistic performance were observed subsequent to surgically induced functional inhibition of the left and right STN. More specifically, higher proportions of reliable decline as opposed to improvement in post-operative performance were demonstrated by both subjects on complex language tasks, hypothesised to entail the interplay of cognitive-linguistic processes. The outcomes of the current research challenge unilateralised models of functional basal ganglia organisation with the proposal of a potential interhemispheric regulatory function for the STN in the mediation of high-level linguistic processes.
Collapse
Affiliation(s)
- Brooke-Mai Whelan
- Motor Speech/ Neurogenic Language Research Centre, School of Health and Rehabilitation Sciences, Division of Speech Pathology, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
172
|
Abstract
The involvement of different subregions of the striatum in place and response learning was examined using a T-maze. Rats were given NMDA lesions of the dorsolateral striatum (DLS), anterior dorsomedial striatum (ADMS), posterior dorsomedial striatum (PDMS), or sham surgery. They were then trained to retrieve food from the west arm of the maze, starting from the south arm, by turning left at the choice point. After 7 d of training, with four trials a day, a probe test was given in which the starting arm is inserted as the north arm, at the opposite side of the maze. A left turn would indicate a "response" strategy; a right turn, a "place" strategy. The rats were then trained for 7 more days, followed by a second probe test. Unlike rats in the other groups, most of the rats in the PDMS group turned left, using the response strategy on both probe tests. These results suggest that the PDMS plays a role in spatially guided behavior.
Collapse
Affiliation(s)
- Henry H Yin
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095-1563, USA.
| | | |
Collapse
|
173
|
Hadj-Bouziane F, Meunier M, Boussaoud D. Conditional visuo-motor learning in primates: a key role for the basal ganglia. ACTA ACUST UNITED AC 2004; 97:567-79. [PMID: 15242666 DOI: 10.1016/j.jphysparis.2004.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sensory guidance of behavior often involves standard visuo-motor mapping of body movements onto objects and spatial locations. For example, looking at and reaching to grasp a glass of wine requires the mapping of the eyes and hand to the location of the glass in space, as well as the formation of a hand configuration appropriate to the shape of the glass. But our brain is far more than just a standard sensorimotor mapping machine. Through evolution, the brain of advanced mammals, in particular human and non-human primates, has acquired a formidable capacity to construct non-standard, arbitrary mapping using associations between external events and behavioral responses that bear no direct relationship. For example, we have all learned to stop at a red traffic light and to go at a green one, or to wait for a specific tone before dialing a phone number and to hang up when hearing a busy signal. These arbitrary associations are acquired through experience, thereby providing primates with a rich and flexible sensorimotor repertoire. Understanding how they are learned, and how they are recalled and used when the context requires them, has been one of the challenging issues for cognitive neuroscience. Valuable insights have been gained over the last two decades through the convergence of multiple complementary approaches. Human neuropsychology and experimental lesions in monkeys have identified a network of brain structures important for conditional sensorimotor associations, whereas imaging studies in healthy human subjects and electrophysiological recordings in awake monkeys have sought to identify the different functional processes underlying the overall function. The present review focuses on the contribution of a network linking the prefrontal cortex, basal ganglia, and dorsal premotor cortex, with special emphasis on results from recording experiments in monkeys. We will first review data pointing to a specific contribution of each component of the network to the performance of well-learned arbitrary visuo-motor associations, as well as data suggesting how novel associations are formed. Then we will propose a model positing that each component of the fronto-striatal network makes a specific contribution to the formation and/or execution of sensorimotor associations. In this model, the basal ganglia are thought to play a key role in linking the sensory, motor, and reward information necessary for arbitrary mapping.
Collapse
Affiliation(s)
- Fadila Hadj-Bouziane
- Institut des Sciences Cognitives, CNRS UMR 5015, 67 Boulevard Pinel, 69675 Bron , France
| | | | | |
Collapse
|
174
|
Morris G, Nevet A, Bergman H. Anatomical funneling, sparse connectivity and redundancy reduction in the neural networks of the basal ganglia. ACTA ACUST UNITED AC 2004; 97:581-9. [PMID: 15242667 DOI: 10.1016/j.jphysparis.2004.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The major anatomical characteristics of the main axis of the basal ganglia are: (1) Numerical reduction in the number of neurons across layers of the feed-forward network, (2) lateral inhibitory connections within the layers, and (3) neuro-modulatory effects of dopamine and acetylcholine, both on the basal ganglia neurons and on the efficacy of information transmission along the basal ganglia axis. We recorded the simultaneous activity of neurons in the output stages of the basal ganglia as well as the activity of dopaminergic and cholinergic neurons during the performance of a probability decision-making task. We found that the functional messages of the cholinergic and dopaminergic neurons differ, and that the cholinergic message is less specific than that of the dopaminergic neurons. The output stage of the basal ganglia showed uncorrelated neuronal activity. We conclude that despite the huge numerical reduction from the cortex to the output nuclei of the basal ganglia, the activity of these nuclei represents an optimally compressed (uncorrelated) version of distinctive features of cortical information.
Collapse
Affiliation(s)
- Genela Morris
- Department of Physiology, the Interdisciplinary Center for Neural Computation and the Eric Roland Center for Neurodegenerative Diseases, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
175
|
Ferrarelli F, Haraldsson HM, Barnhart TE, Roberts AD, Oakes TR, Massimini M, Stone CK, Kalin NH, Tononi G. A [17F]-fluoromethane PET/TMS study of effective connectivity. Brain Res Bull 2004; 64:103-13. [PMID: 15342097 DOI: 10.1016/j.brainresbull.2004.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/18/2022]
Abstract
We used transcranial magnetic stimulation (TMS) in combination with positron emission tomography (PET) to investigate the effective connectivity of four cortical regions within the same study. By employing [17F]-[CH3F] ([17F]-fluoromethane) as a radiotracer of blood-flow, we were able to obtain increased sensitivity compared to [15O]-H2O for both cortical and subcortical structures. The brain areas investigated were left primary motor cortex, right primary visual cortex, and left and right prefrontal areas. We found that each site of stimulation yielded a different pattern of activation/deactivation consistent with its anatomical connectivity. Moreover, we found that TMS of prefrontal and motor cortical areas gave rise to trans-synaptic activation of subcortical circuits.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Wisconsin, Madison, 6001 Research Park Blvd., Madison, WI 53719, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Stefurak T, Mikulis D, Mayberg H, Lang AE, Hevenor S, Pahapill P, Saint-Cyr J, Lozano A. Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits: a functional MRI case study. Mov Disord 2004; 18:1508-16. [PMID: 14673888 DOI: 10.1002/mds.10593] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Behavioral disturbances have been reported with subthalamic (STN) deep brain stimulation (DBS) treatment in Parkinson's disease (PD). We report correlative functional imaging (fMRI) of mood and motor responses induced by successive right and left DBS. A 36-year-old woman with medically refractory PD and a history of clinically remitted depression underwent uncomplicated implantation of bilateral STN DBS. High-frequency stimulation of the left electrode improved motor symptoms. Unexpectedly, right DBS alone elicited several reproducible episodes of acute depressive dysphoria. Structural and functional magnetic resonance imaging (fMRI) imaging was carried out with sequential individual electrode stimulation. The electrode on the left was within the inferior STN, whereas the right electrode was marginally superior and lateral to the intended STN target within the Fields of Forel/zona incerta. fMRI image analysis (Analysis of Functional NeuroImages, AFNI) contrasting OFF versus ON stimulation identified significant lateralized blood oxygen level-dependent (BOLD) signal changes with DBS (P < 0.001). Left DBS primarily showed changes in motor regions: increases in premotor and motor cortex, ventrolateral thalamus, putamen, and cerebellum as well as decreases in sensorimotor/supplementary motor cortex. Right DBS showed similar but less extensive change in motor regions. More prominent were the unique increases in superior prefrontal cortex, anterior cingulate (Brodmann's area [BA] 24), anterior thalamus, caudate, and brainstem, and marked widespread decreases in medial prefrontal cortex (BA 9/10). The mood disturbance resolved spontaneously in 4 weeks despite identical stimulation parameters. Transient depressive mood induced by subcortical DBS stimulation was correlated with changes in mesolimbic cortical structures. This case provides new evidence supporting cortical segregation of motor and nonmotor cortico-basal ganglionic systems that may converge in close proximity at the level of the STN and the adjacent white matter tracts (Fields of Forel/zona incerta).
Collapse
Affiliation(s)
- Taresa Stefurak
- Rotman Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Joel D, Ayalon L, Tarrasch R, Weiner I. Deficits induced by quinolinic acid lesion to the striatum in a position discrimination and reversal task are ameliorated by permanent and temporary lesion to the globus pallidus: a potential novel treatment in a rat model of Huntington's disease. Mov Disord 2004; 18:1499-507. [PMID: 14673887 DOI: 10.1002/mds.10622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Symptoms in the early stages of Huntington's disease (HD) are assumed to reflect basal ganglia circuit dysfunction secondary to degeneration of striatal projections to the external segment of the globus pallidus (GPe). The hypothesis that GPe lesion would ameliorate HD symptoms by "normalizing" the circuit's functioning was tested in a rat model of this disease. The performance of rats sustaining quinolinic acid lesion to the striatum (a rat model of HD) in a position discrimination and reversal task was compared with the performance of rats sustaining in addition a bilateral excitotoxic lesion to the globus pallidus (GP) carried out simultaneously with the striatal lesion (Experiment 1) or 1 month after the striatal lesion (Experiment 2), as well as a unilateral temporary lesion of the GP (Experiment 3). The striatal lesion-induced deficit in the task was effectively reversed by a bilateral excitotoxic GP lesion carried out simultaneously or 1 month after the striatal lesion, as well as by a temporary unilateral GP inactivation. Given that a similar dysfunction of basal ganglia circuitry is thought to subserve the behavioral alterations seen in quinolinic acid lesioned rats and some of the symptoms in HD, these results raise the possibility that lesion or inactivation of the GPe may alleviate some of HD symptoms.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
178
|
Abstract
The authors hypothesize that the symptoms of obsessive-compulsive disorder (OCD), despite their apparent nonrationality, have what might be termed an epistemic origin--that is, they stem from an inability to generate the normal "feeling of knowing" that would otherwise signal task completion and terminate the expression of a security motivational system. The authors compare their satiety-signal construct, which they term yedasentience, to various other senses of the feeling of knowing and indicate why OCD-like symptoms would stem from the abnormal absence of such a terminator emotion. In addition, they advance a tentative neuropsychological model to explain its underpinnings. The proposed model integrates many previous disparate observations and concepts about OCD and embeds it within the broader understanding of normal motivation.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | | |
Collapse
|
179
|
|
180
|
Ayalon L, Doron R, Weiner I, Joel D. Amelioration of behavioral deficits in a rat model of Huntington's disease by an excitotoxic lesion to the globus pallidus. Exp Neurol 2004; 186:46-58. [PMID: 14980809 DOI: 10.1016/s0014-4886(03)00312-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Revised: 06/03/2003] [Accepted: 06/16/2003] [Indexed: 11/25/2022]
Abstract
Four groups of rats, sustaining a striatal quinolinic acid (QA) lesion, a pallidal QA lesion, a combined striatal + pallidal lesion, or sham operation, were tested in spontaneous and amphetamine-induced activity, spatial navigation in a water maze, position discrimination and reversal in a wet T maze, and food manipulation. The striatal lesion markedly impaired rats' performance on the motor and cognitive tasks. In contrast, rats sustaining a bilateral lesion to the GP in addition to the striatal lesion performed similarly to sham-operated rats on the motor and cognitive tasks, although they showed a transient decrease in activity levels. Given that a similar dysfunction of basal ganglia circuitry is thought to subserve the behavioral alterations seen in QA-lesioned rats and Huntington's disease (HD) patients, the present results raise the possibility that manipulations of the external segment of the globus pallidus (the primate analogue of the rat GP) could ameliorate some of HD symptoms.
Collapse
Affiliation(s)
- Liat Ayalon
- Department of Psychology, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
181
|
Abstract
The basal ganglia and frontal cortex operate together to execute goal directed behaviors. This requires not only the execution of motor plans, but also the behaviors that lead to this execution, including emotions and motivation that drive behaviors, cognition that organizes and plans the general strategy, motor planning, and finally, the execution of that plan. The components of the frontal cortex that mediate these behaviors, are reflected in the organization, physiology, and connections between areas of frontal cortex and in their projections through basal ganglia circuits. This comprises a series of parallel pathways. However, this model does not address how information flows between circuits thereby developing new learned behaviors (or actions) from a combination of inputs from emotional, cognitive, and motor cortical areas. Recent anatomical evidence from primates demonstrates that the neuro-networks within basal ganglia pathways are in a position to move information across functional circuits. Two networks are: the striato-nigral-striatal network and the thalamo-cortical-thalamic network. Within each of these sets of connected structures, there are both reciprocal connections linking up regions associated with similar functions and non-reciprocal connections linking up regions that are associated with different cortical basal ganglia circuits. Each component of information (from limbic to motor outcome) sends both feedback connection, and also a feedforward connection, allowing the transfer of information. Information is channeled from limbic, to cognitive, to motor circuits. Action decision-making processes are thus influenced by motivation and cognitive inputs, allowing the animal to respond appropriate to environmental cues.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
182
|
Abstract
The term "executive functions" refers to a range of cognitive processes, their common feature being the coordination of information processing and action control. Cortico-subcortical circuits which connect the prefrontal cortex (PFC), the basal ganglia and the cerebellum via the thalamus are believed to serve as neuroanatomical substrates of executive processing. This paper focuses on information processing related to executive functions by the PFC and related subcortical regions. Findings are mainly derived from neuropsychological investigations of brain-damaged patients but also from imaging studies in healthy subjects. There is evidence for subtle differences between these regions with respect to the cognitive mechanisms contributing to inhibition of habitual responses, task management/multitasking and set shifting, although the data base is sparse so far.
Collapse
Affiliation(s)
- Katrin Heyder
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University of Bochum, 44780 Bochum, Germany
| | | | | |
Collapse
|
183
|
Pessiglione M, Guehl D, Jan C, François C, Hirsch EC, Féger J, Tremblay L. Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism: II. Effects of reward preference. Eur J Neurosci 2004; 19:437-46. [PMID: 14725638 DOI: 10.1111/j.0953-816x.2003.03089.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The motor and cognitive symptoms of Parkinson's disease (PD) are well documented, but little is known about the functionality of motivational processes mediated by the limbic circuits of basal ganglia. The aim of this study was to test the ability of motivational processes to direct and to urge behaviour, in four vervet monkeys (Cercopithecus aethiops) progressively intoxicated with systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections (0.3-0.4 mg/kg every 4-7 days). In the food preference task, the monkeys had to retrieve two types of directly visible food, simultaneously available in the wells of a reward board. At all stages of MPTP-induced parkinsonism, the monkeys continued to take their favourite food first. In the symbol discrimination task, the wells were covered with sliding plaques cued by symbols indicating the absence or presence of a reward, and the different types of food were blocked in separate sessions. Monkeys with mild or moderate parkinsonism made fewer attempts and took longer to retrieve non-preferred compared with preferred rewards. These results indicate that motivational processes are still able to direct (food preference task) and to urge (symbol discrimination task) behaviour in MPTP-lesioned monkeys. Such a functional preservation may be related to the relatively spared dopaminergic innervation of the limbic circuits that we found in our monkeys, in agreement with the literature on humans. Furthermore, the frequency of executive disorders (such as hesitations and freezing) appeared to be much lower with the preferred rewards. Thus, the preserved motivational processes may help to overcome executive dysfunction in the early stages of human PD.
Collapse
Affiliation(s)
- Mathias Pessiglione
- Neurologie et Thérapeutique expérimentale (INSERM U289), Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
184
|
Cromwell HC, King BH. The Role of the Basal Ganglia in the Expression of Stereotyped, Self-Injurious Behaviors in Developmental Disorders. INTERNATIONAL REVIEW OF RESEARCH IN MENTAL RETARDATION 2004. [DOI: 10.1016/s0074-7750(04)29004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
185
|
Whelan BM, Murdoch BE, Theodoros DG, Darnell R, Silburn P, Hall B. Redefining functional models of basal ganglia organization: Role for the posteroventral pallidum in linguistic processing? Mov Disord 2004; 19:1267-78. [PMID: 15390054 DOI: 10.1002/mds.20252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traditionally the basal ganglia have been implicated in motor behavior, as they are involved in both the execution of automatic actions and the modification of ongoing actions in novel contexts. Corresponding to cognition, the role of the basal ganglia has not been defined as explicitly. Relative to linguistic processes, contemporary theories of subcortical participation in language have endorsed a role for the globus pallidus internus (GPi) in the control of lexical-semantic operations. However, attempts to empirically validate these postulates have been largely limited to neuropsychological investigations of verbal fluency abilities subsequent to pallidotomy. We evaluated the impact of bilateral posteroventral pallidotomy (BPVP) on language function across a range of general and high-level linguistic abilities, and validated/extended working theories of pallidal participation in language. Comprehensive linguistic profiles were compiled up to 1 month before and 3 months after BPVP in 6 subjects with Parkinson's disease (PD). Commensurate linguistic profiles were also gathered over a 3-month period for a nonsurgical control cohort of 16 subjects with PD and a group of 16 non-neurologically impaired controls (NC). Nonparametric between-groups comparisons were conducted and reliable change indices calculated, relative to baseline/3-month follow-up difference scores. Group-wise statistical comparisons between the three groups failed to reveal significant postoperative changes in language performance. Case-by-case data analysis relative to clinically consequential change indices revealed reliable alterations in performance across several language variables as a consequence of BPVP. These findings lend support to models of subcortical participation in language, which promote a role for the GPi in lexical-semantic manipulation mechanisms. Concomitant improvements and decrements in postoperative performance were interpreted within the context of additive and subtractive postlesional effects. Relative to parkinsonian cohorts, clinically reliable versus statistically significant changes on a case by case basis may provide the most accurate method of characterizing the way in which pathophysiologically divergent basal ganglia linguistic circuits respond to BPVP.
Collapse
Affiliation(s)
- Brooke-Mai Whelan
- School of Health and Rehabilitation Sciences, Division of Speech Pathology, Motor Speech Research Unit, University of Queensland, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
186
|
Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 2003; 71:439-73. [PMID: 15013228 DOI: 10.1016/j.pneurobio.2003.12.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 12/01/2003] [Indexed: 11/17/2022]
Abstract
Modeling of the basal ganglia has played a major role in our understanding of this elusive group of nuclei. Models of the basal ganglia have undergone evolutionary and revolutionary changes over the last 20 years, as new research in the fields of anatomy, physiology and biochemistry of these nuclei has yielded new information. Early models dealt with a single pathway through the nuclei and focused on the nature of the processing performed within it, convergence of information versus parallel processing of information. Later, the Albin-DeLong "box-and-arrow" model characterized the inter-nuclei interaction as multiple pathways while maintaining a simplistic scalar representation of the nuclei themselves. This model made a breakthrough by providing key insights into the behavior of these nuclei in hypo- and hyper-kinetic movement disorders. The next generation of models elaborated the intra-nuclei interactions and focused on the role of the basal ganglia in action selection and sequence generation which form the most current consensus regarding basal ganglia function in both normal and pathological conditions. However, new findings challenge these models and point to a different neural network approach to information processing in the basal ganglia. Here, we take an in-depth look at the reinforcement driven dimensionality reduction (RDDR) model which postulates that the basal ganglia compress cortical information according to a reinforcement signal using optimal extraction methods. The model provides new insights and experimental predictions on the computational capacity of the basal ganglia and their role in health and disease.
Collapse
Affiliation(s)
- Izhar Bar-Gad
- Center for Neural Computation, The Hebrew University, Jerusalem, Israel.
| | | | | |
Collapse
|
187
|
Groenewegen HJ, van den Heuvel OA, Cath DC, Voorn P, Veltman DJ. Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette's syndrome? A neuronal circuit approach. Brain Dev 2003; 25 Suppl 1:S3-S14. [PMID: 14980365 DOI: 10.1016/s0387-7604(03)90001-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tourette's syndrome is characterized by simple, involuntary muscle contractions and/or more complex movements or stereotyped behaviors, including vocalizations. There are strong indications that the basal ganglia play an important role in the pathophysiology of Tourette's syndrome. The present account reviews the functional anatomy of the basal ganglia, with an emphasis on the prefrontal cortex-ventral striatopallidal system. Different parts of the basal ganglia and thalamocortical system, with a focus on the premotor and prefrontal cortices, are connected with each other via parallel, functionally segregated basal ganglia-thalamocortical systems. These parallel circuits, representing sensorimotor, cognitive and emotional-motivational behavioral processes, are connected with each other through specific pathways that serve to integrate these various functions. In the context of the discussion on the pathophysiological mechanisms that lead to the expression of tics, emphasis is placed on the pathways that lead from the ventral striatum via the dopaminergic substantia nigra to the dorsal striatum. The dorsal striatum is crucial for habit formation. A conclusion of this overview of the anatomical organization of the basal ganglia is that via dopaminergic pathways limbic-relation information can influence the expression of (fragments of) motor and behavioral repertoires. Whether such mechanisms indeed play a role in the expression of tics in Tourette's syndrome remains to be established.
Collapse
Affiliation(s)
- Henk J Groenewegen
- Department of Anatomy, Research Institute Neurosciences Vrije Universitei, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
188
|
Kobayashi S, Nakamura Y. Synaptic organization of the rat parafascicular nucleus, with special reference to its afferents from the superior colliculus and the pedunculopontine tegmental nucleus. Brain Res 2003; 980:80-91. [PMID: 12865161 DOI: 10.1016/s0006-8993(03)02921-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synaptic organization of afferents to the parafascicular nucleus (Pf) of the thalamus was studied in rats. In the Pf, three types of axon terminals were identified: the first type was a small terminal with round synaptic vesicles forming an asymmetric synapse, the second type was a large terminal with round synaptic vesicles forming an asymmetric synapse, and the third type was a terminal with pleomorphic vesicles forming a symmetric synapse. They were named SR, LR and P boutons, respectively. In order to determine the origin of these axon terminals, biotinylated dextran amine (BDA) was injected into the main afferent sources of the Pf, the superior colliculus (SC) and the pedunculopontine tegmental nucleus (PPN). Axon terminals from the SC were both SR and LR boutons which made synaptic contacts with somata and dendrites. PPN afferents were SR boutons, which made synaptic contacts with somata and smaller dendrites. Double-labeled electron microscopic studies, in which a retrograde tracer (wheat germ agglutinin conjugated to horseradish peroxidase: WGA-HRP) was injected into the striatum and an anterograde tracer (BDA) into the SC revealed that SC afferent terminals made synapses directly with Pf neurons that projected to the striatum. Another experiment was performed to find out whether two different afferents converged onto a single Pf neuron. To address this question, two different tracers were injected into the SC and PPN in a rat. Electron microscopically, both afferent terminals from the SC and PPN made synaptic contacts with the same dendrite. Our results prove that a single neuron of the rat Pf received convergent projections from two different sources.
Collapse
Affiliation(s)
- Shigeo Kobayashi
- Section of Neuroanatomy, Graduate School of Medical and Dental Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | |
Collapse
|
189
|
Hatanaka N, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Nambu A, Takada M. Thalamocortical and intracortical connections of monkey cingulate motor areas. J Comp Neurol 2003; 462:121-38. [PMID: 12761828 DOI: 10.1002/cne.10720] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although there has been an increasing interest in motor functions of the cingulate motor areas, data concerning their input organization are still limited. To address this issue, the patterns of thalamic and cortical inputs to the rostral (CMAr), dorsal (CMAd), and ventral (CMAv) cingulate motor areas were investigated in the macaque monkey. Tracer injections were made into identified forelimb representations of these areas, and the distributions of retrogradely labeled neurons were analyzed in the thalamus and the frontal cortex. The cells of origin of thalamocortical projections to the CMAr were located mainly in the parvicellular division of the ventroanterior nucleus and the oral division of the ventrolateral nucleus (VLo). On the other hand, the thalamocortical neurons to the CMAd/CMAv were distributed predominantly in the VLo and the oral division of the ventroposterolateral nucleus-the caudal division of the ventrolateral nucleus. Additionally, many neurons in the intralaminar nuclear group were seen to project to the cingulate motor areas. Except for their well-developed interconnections, the corticocortical projections to the CMAr and CMAd/CMAv were also distinctively preferential. Major inputs to the CMAr arose from the presupplementary motor area and the dorsal premotor cortex, whereas inputs to the CMAd/CMAv originated not only from these areas but also from the supplementary motor area and the primary motor cortex. The present results indicate that the CMAr and the caudal cingulate motor area (involving both the CMAd and the CMAv) are characterized by distinct patterns of thalamocortical and intracortical connections, reflecting their functional differences.
Collapse
Affiliation(s)
- Nobuhiko Hatanaka
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Fallon JH, Opole IO, Potkin SG. The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-2772(03)00022-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
191
|
Merello M, Balej J, Leiguarda R. Pallidotomy in Parkinson's disease improves single-joint, repetitive, ballistic movements, but fails to modify multijoint, repetitive, gestural movements. Mov Disord 2003; 18:280-286. [PMID: 12621631 DOI: 10.1002/mds.10336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We studied 12 non-demented PD patients in on state before and 3 months after posteroventral pallidotomy (PVP), in order to evaluate the effects of surgery upon an unconstrained, multijoint skilled movement as well as a single joint, repetitive, ballistic movement. A Selspot II System was used for three-dimensional data acquisition, processing and reconstruction of limb trajectories. Specific wrist kinematic features of spatial accuracy (linearity and planarity), temporal attributes (acceleration and velocity), spatiotemporal relationships (velocity-curvature coupling), and joint kinematic variables (relationships between wrist and elbow velocities and relative arm angle amplitudes) for each cycle of movement were graphically and numerically analysed. QMC was applied to single joint, repetitive, ballistic movements. QMC significantly improved after PVP (P < 0.0006). However, wrist as well as joint kinematic variables of the gestural movements failed to change significantly after PVP. The lack of improvement of the kinematic abnormalities of the gestural movement in PD patients would indicate that they are unrelated to the basic motor deficit; most likely they are the result of a disruption of a complex of sensorimotor integration processes due to abnormal parieto-frontal basal ganglia interaction.
Collapse
Affiliation(s)
- Marcelo Merello
- Neurology Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Jorge Balej
- Neurology Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Ramon Leiguarda
- Neurology Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| |
Collapse
|
192
|
Abstract
The basal ganglia is a group of subcortical nuclei involved in motor control, cognition, and emotion. Basal ganglia disorders are manifested by abnormal movement and a number of neuropsychiatric disorders. Basal ganglia nuclei are organized into sensorimotor, associative, and limbic territories based on their connectivity and function. The caudate nucleus, putamen, and subthalamic nucleus comprise the input nuclei of the basal ganglia. The internal segment of globus pallidus and substantia nigra reticulata are the output nuclei. The input and output nuclei are interconnected by direct and indirect pathways. The cerebral cortex, basal ganglia, and thalamus communicate with each other via closed (segregated) parallel as well as open (split) loops. Recent anatomic, functional, and clinical data have necessitated modifications in the classical models of local connectivity between input and output nuclei of the basal ganglia as well as in the corticobasal ganglia-thalamus-cortical loops.
Collapse
Affiliation(s)
- Adel K Afifi
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
193
|
Keating GL, Winn P. Examination of the role of the pedunculopontine tegmental nucleus in radial maze tasks with or without a delay. Neuroscience 2002; 112:687-96. [PMID: 12074910 DOI: 10.1016/s0306-4522(02)00108-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two radial maze tasks, random foraging and delayed spatial win-shift, have been used to investigate, in rats, the functions and inter-relationships of structures connected through the corticostriatal loops, such as the prelimbic cortex, nucleus accumbens, ventral pallidum and mediodorsal thalamus. The random foraging task is designed to investigate animals' ability to use spatial information to guide foraging on-line. The delayed spatial win-shift task requires, in addition, that animals hold spatially relevant information in working memory across a delay period. The pedunculopontine tegmental nucleus receives direct output from ventral striatal systems and might therefore be expected to share functional properties with them. In the present experiments we have examined the performance of rats bearing bilateral excitotoxic lesions of the pedunculopontine tegmental nucleus on both of these tasks. In acquisition tests rats were given bilateral lesions before any training took place, while in retention tests appropriate training to predetermined criterion levels of performance took place before lesions were made. In both tasks, and in both acquisition (no prelesion training) and retention (prelesion training) tests, rats with pedunculopontine lesions made significantly more errors in selecting arms to enter than did control rats. There was no motor impairment present in pedunculopontine tegmental nucleus-lesioned rats - on the contrary, on measures of speed (latency to make first arm choice and the mean time for subsequent choices) pedunculopontine-lesioned rats were slightly faster than control rats. We suggest that the pedunculopontine tegmental nucleus shares functional properties with frontostriatal systems and that it forms part of a brainstem-directed stream of striatal outflow different to the cortical re-entrant system via the thalamus.
Collapse
Affiliation(s)
- G L Keating
- School of Psychology, University of St Andrews, St Andrews, Fife, UK
| | | |
Collapse
|
194
|
Ruskin DN, Bergstrom DA, Walters JR. Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. J Neurophysiol 2002; 88:487-96. [PMID: 12091570 DOI: 10.1152/jn.00844.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered activity of the entopeduncular nucleus, the rodent homologue of the globus pallidus internal segment in primates, is thought to mediate behavioral consequences of midbrain dopamine depletion in rodents. Few studies, however, have examined dopaminergic modulation of spiking activity in this nucleus. This study characterizes changes in entopeduncular neuronal activity after nigrostriatal dopaminergic lesion and the effects of systemic treatment with selective D(1) (SKF 38393) and D(2) (quinpirole) agonists in lesioned rats. Extracellular single-unit recordings were performed in awake immobilized rats, either in neurologically intact animals (n = 42) or in animals that had received unilateral 6-hydroxydopamine infusion into the medial forebrain bundle several weeks previously (n = 35). Nigrostriatal lesion altered baseline activity of entopeduncular neurons in several ways. Interspike interval distributions had significantly decreased modes and significantly increased coefficient of variation, skewness and kurtosis; yet interspike interval mean (the inverse of firing rate) was not affected. Also, spectral analysis of autocorrelograms indicated that lesion significantly reduced the incidence of regular-spiking neurons and increased the incidence of neurons with 4-18 Hz oscillations. Dopamine agonist treatment reversed some lesion-induced effects: quinpirole reversed changes in interspike interval distribution mode and coefficient of variation, while combined quinpirole and SKF 38393 blocked the appearance of 4-18 Hz oscillations. However, no agonist treatment normalized all aspects of entopeduncular activity. Additionally, inhibition of firing rates by D(1) or combined D(1)/D(2) receptor activation indicated that dopamine agonists affected the overall level of entopeduncular activity in a manner similar to that found in the substantia nigra pars reticulata and globus pallidus internal segment after dopamine neuron lesion. These data demonstrate that lesion of the nigrostriatal tract leads to modifications of several aspects of firing pattern in the rodent entopeduncular nucleus and so expand on similar findings in the rodent substantia nigra pars reticulata and in the globus pallidus internal segment in humans and nonhuman primates. The results support the view that dysfunction in the basal ganglia after midbrain dopamine neuron loss relates more consistently to abnormal activity patterns than to net changes in firing rate in the basal ganglia output nuclei, while overall decreases in firing rate in these structures may play a more important role in adverse motor reactions to dopamine agonist treatments.
Collapse
Affiliation(s)
- David N Ruskin
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
195
|
Joel D, Niv Y, Ruppin E. Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 2002; 15:535-47. [PMID: 12371510 DOI: 10.1016/s0893-6080(02)00047-3] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in these are actor-critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the temporal difference prediction error signal in the critic, and between dopamine-dependent long-term synaptic plasticity in the striatum and learning guided by a prediction error signal in the actor. We selectively review several actor-critic models of the basal ganglia with an emphasis on two important aspects: the way in which models of the critic reproduce the temporal dynamics of dopamine firing, and the extent to which models of the actor take into account known basal ganglia anatomy and physiology. To complement the efforts to relate basal ganglia mechanisms to reinforcement learning (RL), we introduce an alternative approach to modeling a critic network, which uses Evolutionary Computation techniques to 'evolve' an optimal RL mechanism, and relate the evolved mechanism to the basic model of the critic. We conclude our discussion of models of the critic by a critical discussion of the anatomical plausibility of implementations of a critic in basal ganglia circuitry, and conclude that such implementations build on assumptions that are inconsistent with the known anatomy of the basal ganglia. We return to the actor component of the actor-critic model, which is usually modeled at the striatal level with very little detail. We describe an alternative model of the basal ganglia which takes into account several important, and previously neglected, anatomical and physiological characteristics of basal ganglia-thalamocortical connectivity and suggests that the basal ganglia performs reinforcement-biased dimensionality reduction of cortical inputs. We further suggest that since such selective encoding may bias the representation at the level of the frontal cortex towards the selection of rewarded plans and actions, the reinforcement-driven dimensionality reduction framework may serve as a basis for basal ganglia actor models. We conclude with a short discussion of the dual role of the dopamine signal in RL and in behavioral switching.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel-Aviv University, Ramat-Aviv, Israel.
| | | | | |
Collapse
|
196
|
Abstract
Four organizational levels of the basal ganglia that could be particularly determinant in terms of functional properties are reviewed: (1) macroscopic anatomy, which is characterized by a dramatic decrease of cerebral tissue volume from the cerebral cortex to the deepest portions of the basal ganglia; (2) connectivity, which consists of both complex loops and a partition into three territories, sensorimotor, associative, and limbic (which process motor, cognitive, and emotional information, respectively); (3) neuronal morphology, characterized by a dramatic numeric and geometric convergence of striatal neurons onto pallidonigral neurons; and (4) dopaminergic innervation of the basal ganglia, which is organized as a dual system that is supposed to have opposite effects on the activity of the system. Current models of the basal ganglia are discussed.
Collapse
Affiliation(s)
- J Yelnik
- Institut National de la Santé et de la Recherche Médicale U289, Hôpital de la Salpêtrière, Paris, France.
| |
Collapse
|
197
|
Ballmaier M, Casamenti F, Zoli M, Pepeu G, Spano P. Selective immunolesioning of cholinergic neurons in nucleus basalis magnocellularis impairs prepulse inhibition of acoustic startle. Neuroscience 2002; 108:299-305. [PMID: 11734362 DOI: 10.1016/s0306-4522(01)00413-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information processing and attentional abnormalities are prominent in neuropsychiatric disorders. Since the cholinergic neurons located in the nucleus basalis magnocellularis have been shown to be involved in attentional performance and information processing, recent efforts to analyze the significance of the basal forebrain in the context of schizophrenia have focused on this nucleus and its projections to the cerebral cortex. We report here that bilateral selective immunolesioning of the cholinergic neurons in the nucleus basalis magnocellularis is followed by significant deficits in sensorimotor gating measured by prepulse inhibition of the startle reflex in adult rats. This behavioral approach is used in both humans and rodents and has been proposed as a valuable model contributing to the understanding of the neurobiological substrates of schizophrenia. The disruption of prepulse inhibition persisted over repeated testing. The selective lesions were induced by bilateral intraparenchymal infusions of 192 IgG saporin at a concentration having minimal diffusion into adjacent nuclei of the basal forebrain. The infusions were followed by extensive loss of choline acetyltransferase-immunopositive neurons. Our results show that the cholinergic neurons of the nucleus basalis magnocellularis represent a critical station of the startle gating circuitry and suggest that dysfunction of these neurons may result in impaired sensorimotor gating characteristic of schizophrenia.
Collapse
Affiliation(s)
- M Ballmaier
- Department of Biomedical Sciences and Biotechnologies, Brescia University Mecial School, Italy.
| | | | | | | | | |
Collapse
|
198
|
Scott RB, Harrison J, Boulton C, Wilson J, Gregory R, Parkin S, Bain PG, Joint C, Stein J, Aziz TZ. Global attentional-executive sequelae following surgical lesions to globus pallidus interna. Brain 2002; 125:562-74. [PMID: 11872613 DOI: 10.1093/brain/awf046] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been demonstrated that selective unilateral surgical ablation of posteroventral globus pallidus interna relieves the movement disorders associated with advanced Parkinson's disease, without necessarily incurring the executive cognitive sequelae that have been observed following gross pathological lesions to this brain region. This finding is consistent with established theory that underlying neuronal circuitry is functionally segregated into parallel cortico-striatal-pallidal-thalamo-cortical 'loops'. We have studied a series of 12 patients with advanced Parkinson's disease at baseline, and then following bilateral pallidotomy, with a battery of neuropsychological tests including the Cambridge Neuro psychological Test Automated Battery. We identified a selective and universal loss of individual patients' ability to shift attention to novel dimensions in a test of abstract rule-learning following surgery, which was not reliably associated with any other change in cognition, personality, mood or medication. This finding is rare in its specificity and has implications for theoretical models of the functional architecture and pathophysiology of the globus pallidus, and the clinical practice of pallidotomy.
Collapse
|
199
|
Jahanshahi M, Rowe J, Saleem T, Brown RG, Limousin-Dowsey P, Rothwell JC, Thomas DGT, Quinn NP. Striatal contribution to cognition: working memory and executive function in Parkinson's disease before and after unilateral posteroventral pallidotomy. J Cogn Neurosci 2002; 14:298-310. [PMID: 11970793 DOI: 10.1162/089892902317236911] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The basal ganglia are intimately connected to the frontal cortex via five fronto-striatal circuits. While the role of the frontal cortex in cognition has been extensively studied, the contribution of the basal ganglia to cognition has remained less clear. In Parkinson's disease, posteroventral pallidotomy (PVP) involves surgical lesioning of the internal section of the globus pallidus (GPi, the final output pathway from the basal ganglia) to relieve the motor symptoms of the disorder. PVP in Parkinson's disease provides a unique opportunity to investigate the impact of disruption of striatal outflow to the frontal cortex on cognition. We assessed executive function and working memory after withdrawal of medication in 13 patients with Parkinson's disease before and 3 months after unilateral PVP compared to 12 age- and IQ-matched normals assessed twice with an interval of 3 months. The tests used were: Wisconsin Card Sorting (WCST), Self-Ordered Random Number Sequences, Missing Digit Test, Paced Visual Serial Addition Test (PVSAT), and Visual Conditional Associative Learning Test (VCALT). After PVP, the patients performed significantly better on the Self-Ordered Random Number Sequences and the WCST, an improvement that was also observed in the normals across the two assessment and is therefore likely to reflect practice effects. Relative to the normals, the patients showed significant differential change following PVP on the Missing Digit Test and PVSAT, on which they performed worse after compared to before surgery, while the controls performed better on the second assessment. For the patients, performance on the VCALT also indicated deterioration after PVP, but the changes approached significance. The side of PVP had no effect on the results. The pattern of change observed 3 months after PVP was maintained at 15-month follow-up. The results suggest that striatal outflow to the frontal cortex may be essential for those aspects of executive function that showed deterioration after PVP.
Collapse
Affiliation(s)
- M Jahanshahi
- Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Riedel A, Härtig W, Seeger G, Gärtner U, Brauer K, Arendt T. Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling. J Chem Neuroanat 2002; 23:75-104. [PMID: 11841914 DOI: 10.1016/s0891-0618(01)00142-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, we introduce new views on neuro- and chemoarchitectonics of the rat forebrain subcortex deduced from traditional and current concepts of anatomical organization and from our own results. It is based on double and triple immunofluorescence of markers for transmitter-related enzymes, calcium-binding proteins, receptor proteins, myelin basic protein (MBP) and neuropeptides, and on histological cell/myelin stains. The main findings can be summarized as follows: (i) the dorsal striatum of rat and other myomorph rodents reveals a small caudate equivalent homotopic to the caudate nucleus (C) of other mammals, and a large putamen (Pu). (ii) Shell and core can be distinguished also in the 'rostral pole' of nucleus accumbens (ACC) with the calretinin/calbindin and neuropeptide Y (NPY) immunostaining. The shell reveals characteristics of a genuine striatal but not of an extended amygdala (EA) subunit. (iii) EA and lateral septum show striking similarities in structure and fiber connections and may therefore represent a separate parastriatal complex. (iv) The meandering dense layer (DL) of olfactory tubercle (OT) forms longitudinal gyrus- and sulcus-like structures converging in its rostral pole. (v) The core regions of the islands of Calleja that border the ventral pallidum (VP) sharing some of its features are invaded by myelinated fibers of the medial forebrain bundle (MFB). The island of Calleja magna is also apposed to an inconspicuous, slender dorsal appendage of VP. (vi) The VP is composed of a large dorsal reticulated part traversed by the myelinated GABAergic parvalbumin-immunoreactive axons of the MFB and a slender ventral non-reticulate part close to the islands of Calleja. (vii) Considering their close association to the limbic system, ventral striatum (VS) and VP may represent the oldest part of basal ganglia, whereas dorsal striatopallidal subunits were progressively developed in parallel to the growing neocortical influence on motor behavior.
Collapse
Affiliation(s)
- A Riedel
- Department of Neuroanatomy, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|