151
|
Spencer NJ, Bayguinov P, Hennig GW, Park KJ, Lee HT, Sanders KM, Smith TK. Activation of neural circuitry and Ca2+ waves in longitudinal and circular muscle during CMMCs and the consequences of rectal aganglionosis in mice. Am J Physiol Gastrointest Liver Physiol 2007; 292:G546-55. [PMID: 17023548 DOI: 10.1152/ajpgi.00352.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammals that develop rectal aganglionosis, the aganglionic segment still exhibits spontaneous phasic contractions that contribute to dysmotility and pseudoobstruction in this region. However, almost nothing is known about the mechanisms that generate these myogenic contractions or the effects of aganglionosis on the generation of Ca(2+) waves that underlie contractions of the longitudinal muscle (LM) and circular muscle (CM). In a mouse model of Hirschsprung's disease [endothelin type B receptor-deficient (Ednrb(s-l)/Ednrb(s-l)) mice], the Ca(2+) indicator fluo-4 was used to simultaneously monitor the temporal activation and spread of intercellular Ca(2+) waves in the LM and CM during spontaneous colonic motor activities. During the intervals between colonic migrating motor complexes (CMMCs) in control mice, Ca(2+) waves discharged asynchronously between the LM and CM. However, in these same mice, during CMMCs, a burst of discreet Ca(2+) waves fired simultaneously in both muscle layers, where the propagation velocity of Ca(2+) waves significantly increased, as did the rate of initiation and number of collisions between Ca(2+) waves. Hexamethonium (300 microM) or atropine (1 microM) prevented synchronized firing of Ca(2+) waves. In the aganglionic distal colon of Ednrb(s-l)/Ednrb(s-l) mice, not only were CMMCs absent, but Ca(2+) waves between the two muscle layers fired asynchronously, despite increased propagation velocity. The generation of CMMCs in control mice involves synchronized firing of enteric motor nerves to both the LM and CM, explaining the synchronized firing of discreet Ca(2+) waves between the two muscle layers. Aganglionosis results in a sporadic and sustained asynchrony in Ca(2+) wave firing between the LM and CM and an absence of CMMCs.
Collapse
Affiliation(s)
- Nick J Spencer
- Dept of Physiology and Cell Biology, Univ of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | | | |
Collapse
|
152
|
Reed DE, Vanner S. Mucosal stimulation activates secretomotor neurons via long myenteric pathways in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2007; 292:G608-14. [PMID: 17008553 DOI: 10.1152/ajpgi.00364.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulated by a large bipolar stimulating electrode. In control preparations, a single stimulus pulse evoked a fast excitatory postsynaptic potential (EPSP) in 86% of neurons located 0.7-1.0 cm anal to the stimulus site. A stimulus train evoked multiple fast EPSPs, but slow EPSPs were not observed. To examine whether mucosal stimulation specifically activated mucosal sensory nerve terminals, the mucosa/submucosa was severed from the underlying layers and repositioned. In these preparations, fast EPSPs could not be elicited in 89% of cells. Superfusion with phorbol dibutyrate enhanced excitability of sensory neurons and pressure-pulse application of serotonin to the mucosa increased the fast EPSPs evoked by mucosal stimulation, providing further evidence that sensory neurons were involved. To determine whether these reflexes projected through the myenteric plexus, this plexus was surgically lesioned between the stimulus site and the impaled neuron. No fast EPSPs were recorded in these preparations following mucosal stimulation whereas lesioning the submucosal plexus had no effect. These results demonstrate that mucosal stimulation triggers a long myenteric pathway that activates submucosal secretomotor neurons. This pathway projects in parallel with motor and vasodilator reflexes, and this common pathway may enable coordination of intestinal secretion, blood flow, and motility.
Collapse
Affiliation(s)
- David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
153
|
Cserni T, Paran S, Puri P. The effect of age on colocalization of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining in enteric neurons in an experimental model. J Pediatr Surg 2007; 42:300-4. [PMID: 17270539 DOI: 10.1016/j.jpedsurg.2006.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Cholinergic and nitrergic neurons form 2 main subpopulations of the myenteric neurons, and they have been the targets of detailed morphological investigations in bowel motility disorders. However, little is known regarding the colocalization of neurotransmitters within the same enteric neurons. The aim of this study was to determine the histochemical colocalization of cholinergic and nitrergic neurons in the porcine distal large bowel myenteric plexus from fetal to adulthood. METHODS Distal large bowel specimens were taken from 6 randomly selected age groups (3 animals in each group) from midway of gestation to adulthood. The myenteric plexus was exposed using whole-mount technique. After nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) staining, cells per ganglion were counted. Then the specimens were stained with acetylcholinesterase (AChE), and the cells that were stained with individual enzymes and with both enzymes were counted. RESULTS Colocalization of AChE and NADPH-d was seen in all age groups, and it was highest during the mid part of gestation (30%) and decreased steadily thereafter into adulthood (8%). The individual number of NADPH-d- and AChE-positive neurons per ganglion remained constant till 4 weeks of age and significantly increased thereafter into adulthood. CONCLUSION The use of double-labeling histochemical technique shows for the first time the colocalization of cholinergic and nitrergic activity in a large population of enteric neurons in the late fetal and newborn period. Age-related loss of cholinergic and nitrergic colocalization in the myenteric plexus is most likely a maturational process.
Collapse
Affiliation(s)
- Tamas Cserni
- Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | | | | |
Collapse
|
154
|
Murphy EMA, Defontgalland D, Costa M, Brookes SJH, Wattchow DA. Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil 2007; 19:126-34. [PMID: 17244167 DOI: 10.1111/j.1365-2982.2006.00843.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An accurate method to count human enteric neurons is essential to develop a comprehensive account of the classes of nerve cells responsible for gut function and dysfunction. The majority of cells in the enteric nervous system utilize acetyl choline, or nitric oxide, or a combination of these, as neurotransmitters. Antisera raised against the RNA-binding protein Hu, were used to identify nerve cell bodies in whole mounts of the myenteric plexus of human colon, and then were utilized to analyse cells immunoreactive for combinations of choline acetyltransferase and nitric oxide synthase. Antisera to Hu provided a reliable means to count apparently all enteric nerve cell bodies, revealing 10% more cell bodies than labelling with neuron specific enolase, and no labelling of glial cells as revealed by S100. ChAT+/NOS- neurons accounted for 48% (+/-3%) of myenteric neurons and ChAT-/NOS+ neurons accounted for 43% (+/-2.5%). ChAT+/NOS+ neurons comprised 4% (+/-0.5) of the total number of neurons, and a novel class of small ChAT-/NOS- neurons, making up 5% (+/-0.9%) of all cells, was described for the first time.
Collapse
Affiliation(s)
- E M A Murphy
- Departments of Human Physiology and of Surgery, Flinders University, Adelaide, SA 5001, Australia
| | | | | | | | | |
Collapse
|
155
|
Wolf M, Schrödl F, Neuhuber W, Brehmer A. Calcitonin Gene-Related Peptide: A Marker for Putative Primary Afferent Neurons in the Pig Small Intestinal Myenteric Plexus? Anat Rec (Hoboken) 2007; 290:1273-9. [PMID: 17763367 DOI: 10.1002/ar.20577] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For years, calcitonin gene-related peptide (CGRP) has been used as a marker peptide for Dogiel type II neurons, putative intrinsic primary afferent neurons, in the pig enteric nervous system. Recently, some studies showed CGRP-positive neurons displaying distinctly different shapes. The aims of this study were to evaluate (1) the proportion of myenteric type II neurons that contain CGRP and (2) the proportion of myenteric CGRP-positive neurons that display type II vs. non-type II morphologies and to conclude if this peptide could be suited as a marker for type II neurons. For this purpose, nine myenteric whole-mounts (each one from duodenum, jejunum, and ileum, respectively, derived from three pigs) were triple-immunostained for CGRP, neurofilaments (NF), and choline acetyl transferase (ChAT). Each whole-mount was evaluated twice. First, 50 NF-stained type II neurons were selected randomly and their coreactivities for CGRP and ChAT were observed. Second, 50 CGRP-positive neurons were located randomly and their NF morphology and ChAT coreactivity were observed. Altogether, 92% of all type II neurons investigated displayed CGRP immunoreactivity, whereas 94.9% of all CGRP-reactive neurons recorded displayed type II morphology. We observed three further shapes of CGRP-positive neurons: 7 type V neurons (all were ChAT-positive; mainly in the ileal whole-mounts), 6 type I-like neurons (all were ChAT-positive), and 14 type III-like neurons (mostly ChAT-negative; mainly in duodenal and jejunal specimens). We conclude that CGRP-antibodies can be used as markers for type II neurons in the pig small intestinal myenteric plexus in quantitative studies but it should be kept in mind that up to one-tenth of CGRP-reactive neurons may be non-type II neurons. In case of single cell evaluation, CGRP-immunoreactivity alone is not suited as a marker. In such cases additional, morphological analysis is necessary.
Collapse
|
156
|
Fruhwald S, Holzer P, Metzler H. Intestinal motility disturbances in intensive care patients pathogenesis and clinical impact. Intensive Care Med 2007; 33:36-44. [PMID: 17115132 DOI: 10.1007/s00134-006-0452-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 10/17/2006] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastrointestinal motility disturbances in critically ill patients are frequent in the ICU setting, causing considerable discomfort and are associated with increased rates of morbidity and mortality. This review focuses on the pathophysiological basis of intestinal motility, the major patterns of pathological motility alterations, the impact on patient outcome, and current therapeutic options. DISCUSSION Intestinal motility is controlled by the enteric nervous system, modulated by hormones and extrinsic afferent and efferent neurons. Pathological motility disturbances can affect the stomach, small bowel, and colon separately or in combination. Changes in esophageal motor activity contribute to the aspiration of gastric juice, whereas early enteral feeding most frequently fails due to gastric intolerance. Disturbances in digestive and interdigestive motility patterns and the inability to switch motor activity from the interdigestive to the digestive pattern also contribute to feeding disability and thus to increased morbidity and mortality as well. CONCLUSIONS The therapeutic options for motility disturbances in critically ill patients include the adjustment of electrolyte imbalances, tailored fluid management, early enteral feeding, appropriate management of catecholamines and drugs used for analgosedation, and prokinetic drugs. Unfortunately, the therapeutic options for treating motility disturbances in ICU patients are still limited. This situation requires careful assessment of ICU patients with respect to gut motility disturbances and their pathophysiological mechanisms and an individually tailored treatment to prevent further aggravation of existing motility disturbances.
Collapse
Affiliation(s)
- Sonja Fruhwald
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.
| | | | | |
Collapse
|
157
|
Harrington AM, Hutson JM, Southwell BR. High affinity choline transporter immunoreactivity in rat ileum myenteric nerves. Cell Tissue Res 2006; 327:421-31. [PMID: 17093920 DOI: 10.1007/s00441-006-0332-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/16/2006] [Indexed: 11/24/2022]
Abstract
Recently, an antibody against the choline transporter (CHT), an essential molecule involved in ACh uptake, was used to label cholinergic nerves in the central nervous system; however, the enteric nervous system (ENS) was not examined. The present study localised CHT immunoreactivity (CHT-IR) within the rat ileum ENS and determined whether it colocalised with immunoreactivity for markers of cholinergic, tachykinergic and nitrergic circuitry. Segments of rat ileum were fixed, prepared for sectioning or whole-mounts and incubated with anti-CHT antisera followed by a fluorescent secondary antibody. Samples were double-labelled with antibodies to nitric oxide synthase, substance P (SP), common choline acetyltransferase (cChAT) and vesicular acetylcholine transporter (VAChT). CHT-IR was present in varicosities of nerve fibres in the myenteric plexus and muscle layers of rat ileum. In the myenteric ganglia, CHT-IR was found in nerve fibres and the cytoplasm of some nerve cell bodies. In the myenteric ganglia, no CHT/cChAT-immunoreactive neurons were present. A small number of CHT/SP-immunoreactive neurons and CHT/SP-immunoreactive nerve fibres clustered around unlabelled neurons. CHT-IR colocalised with VAChT-IR in the myenteric plexus but only half of the CHT-immunoreactive myenteric nerve fibres were VAChT-immunoreactive and half of VAChT-immunoreactive fibres were CHT-immunoreactive. In the circular muscle, 75% of CHT-immunoreactive fibres were VAChT-immunoreactive. Thus, the anti-CHT antiserum labels neurons and nerve fibres in the rat ENS. It does not label cholinergic cChAT-immunoreactive neurons, although it does immunostain cholinergic VAChT-immunoreactive nerve fibres and a population of nerves that are not VAChT-immunoreactive.
Collapse
Affiliation(s)
- Andrea M Harrington
- Gut Motility Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | |
Collapse
|
158
|
Hayakawa T, Kuwahara S, Maeda S, Tanaka K, Seki M. Direct synaptic contacts on the myenteric ganglia of the rat stomach from the dorsal motor nucleus of the vagus. J Comp Neurol 2006; 498:352-62. [PMID: 16871527 DOI: 10.1002/cne.21069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The myenteric ganglia regulate not only gastric motility but also secretion, because a submucous plexus is sparsely developed in the rodent stomach. We have examined whether the neurons of the dorsal motor nucleus of the vagus (DMV) have direct synaptic contacts on the myenteric ganglia and the ultrastructure of the vagal efferent terminals by using wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). The myenteric ganglia of the rat were composed of four types of neurons, i.e., small, medium-sized, large, and elongated neurons. The average numbers of axosomatic terminals per profile were 2.0 on the small neurons, 3.1 on the medium-sized neurons, 1.2 on the large neurons, and 4.2 on the elongated neuron. More than half of the axosomatic terminals contained round vesicles and formed asymmetric synaptic contacts on the small, medium-sized, and large neurons. About 80% of the axosomatic terminals on the elongated neurons contained pleomorphic vesicles and formed asymmetric synaptic contacts. When WGA-HRP was injected into the DMV, many anterogradely labeled terminals were found around the myenteric neurons. The labeled terminals were large (3.16 +/- 0.10 microm) and contacted exclusively the somata. Most of them (about 90%) contained round vesicles and formed asymmetric synaptic contacts. Serial ultrathin sections revealed that almost all neurons in a ganglion received projections from the DMV. The vagal axon terminals generally contacted the medium-sized or the elongated neurons, whereas a few labeled terminals contacted the small and the large neurons. The present results indicate that the DMV projects to all types of neurons and that their axon terminals contain mostly round synaptic vesicles and form asymmetric synaptic contacts.
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | |
Collapse
|
159
|
Sanger GJ, Tuladhar BR, Bueno L, Furness JB. Defensive and pathological functions of the gastrointestinal NK3 receptor. Vascul Pharmacol 2006; 45:215-20. [PMID: 16901762 DOI: 10.1016/j.vph.2005.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 10/24/2022]
Abstract
In general, normal gut functions are unaffected by selective NK(3) receptor antagonists such as talnetant (SB-223412), osanetant (SR 142901) or SB-235375. However, NK(3) receptors may mediate certain defensive or pathological intestinal processes. The precise mechanisms, by which this role is achieved, are not fully understood. In summary, intense stimulation of the intrinsic primary afferent neurones (IPANs) of the enteric nervous system is thought to release tachykinins from these neurones, to induce slow excitation (slow EPSPs) of connecting IPANs. This is hypothesised to cause hypersensitivity and disrupt intestinal motility, at least partly explaining why NK(3) receptor antagonism can reduce the level of disruption caused by supramaximal distension pressures in vitro. Tachykinin release from IPANs may also increase C-fibre sensitivity, directly or indirectly. Thus, NK(3) receptor antagonists can inhibit nociception associated with intestinal distension, in normal animals or after pre-sensitisation by restraint stress. Importantly, such inhibition has been found with SB-235375, a peripherally restricted antagonist. SB-235375 can also reduce a visceromotor response to brief colorectal distension without affecting similar responses to skin pinch, providing additional evidence for intestinal-specific activity. NK(3) receptor biology is, therefore, revealing a novel pathway by which disruptions in intestinal motility and nociception can be induced.
Collapse
|
160
|
Phillips RJ, Rhodes BS, Powley TL. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. ACTA ACUST UNITED AC 2006; 211:673-83. [PMID: 17024301 DOI: 10.1007/s00429-006-0123-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2006] [Indexed: 01/26/2023]
Abstract
Loss of myenteric neurons with age is well documented, however little is known about age-related changes of the sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle. The goal of the present study, therefore, was to evaluate the influence of age on the sympathetic innervation of the myenteric plexus throughout the gastrointestinal tract. Ad libitum fed virgin male Fischer 344 rats at 3, 15-16, 24, and 27-28 months of age were sampled. Whole mounts of the stomach, small intestine, and large intestine were processed with an antibody to tyrosine hydroxylase (TH). Additionally, some specimens labeled for TH were stained for NADPH-diaphorase to selectively label the nitrergic subpopulation of neurons in the myenteric plexus. Age-related changes in the TH-positive axons occurred as early as 15-16 months and became more pronounced by 27-28 months. Changes included markedly swollen axons and terminals and a decrease in the intensity of TH staining in some of the surviving processes. Similarly, swollen NADPH-diaphorase-positive axons were found in the myenteric ganglia and secondary plexus between ganglia in the whole mounts of rats 15-28 months of age, but swollen nitrergic axons and dystrophic TH-positive axons were never present in the same ganglion or connective. Therefore, in the aged rat, deterioration of the sympathetic innervation of the myenteric plexus could be one possible mechanism for the age-related decline in gastrointestinal motor function evidenced in the elderly.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
161
|
El-Yazbi AF, Schulz R, Daniel EE. Differential inhibitory control of circular and longitudinal smooth muscle layers of Balb/C mouse small intestine. Auton Neurosci 2006; 131:36-44. [PMID: 16844426 DOI: 10.1016/j.autneu.2006.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/02/2006] [Accepted: 06/08/2006] [Indexed: 12/27/2022]
Abstract
We examined the inhibitory mediators acting on each of the longitudinal (LM) and circular muscle (CM) layers of mouse small intestine in the presence of atropine, prazosin and timolol. Nitric oxide (NO) and apamin-sensitive mediators exerted an inhibitory tone on pacing frequency in CM, observed as an increased frequency upon treatment with N-omega-nitro-l-arginine (LNNA) or apamin. This effect was not seen in LM. 1H-(1,2,4)oxadiazolo(4,3-A)quinazoline-1-one (ODQ) abolished the relaxation in response to electric field stimulation (EFS) in LM in a manner similar to LNNA indicating that the inhibitory mediator in this layer in NO acting via soluble guanylate cyclase. On the other hand, in CM neither LNNA nor apamin was capable of reducing the inhibition in response to EFS and their combination left a residual relaxation of 25%. ODQ reduced the EFS-evoked relaxation more effectively than LNNA at higher frequencies indicating that another ODQ-sensitive mediator was active in CM. ODQ also blocked the relaxation to exogenous vasoactive intestinal peptide in CM. In LM, the relaxation due to sodium nitroprusside was equally blocked by ODQ and apamin, while in CM, its effects were only reduced by ODQ and not apamin. These results indicate that there are differences in the inhibitory mediators and the mechanisms of action involved in LM and CM relaxation.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, 9-10 Medical Sciences Building, University of Alberta, Edmonton, Canada AB T6G 2H7
| | | | | |
Collapse
|
162
|
Poole DP, Xu B, Koh SL, Hunne B, Coupar IM, Irving HR, Shinjo K, Furness JB. Identification of neurons that express 5-hydroxytryptamine4 receptors in intestine. Cell Tissue Res 2006; 325:413-22. [PMID: 16628410 DOI: 10.1007/s00441-006-0181-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 02/01/2006] [Indexed: 01/14/2023]
Abstract
5-Hydroxytryptamine (5-HT) is an endogenous stimulant of intestinal propulsive reflexes. It exerts its effects partly through 5-HT4 receptors; 5-HT4 receptor agonists that are stimulants of intestinal transit are in clinical use. Both pharmacological and recent immunohistochemical studies indicate that 5-HT4 receptors are present on enteric neurons but the specific neurons that express the receptors have not been determined. In the present work, we describe the characterization of an anti-5-HT4 receptor antiserum that reveals immunoreactivity for enteric neurons and other cell types in the gastrointestinal tract. With this antiserum, 5-HT4 receptor immunoreactivity has been found in the muscularis mucosae of the rat oesophagus, a standard assay tissue for 5-HT4 receptors. It is also present in the muscularis mucosae of the guinea-pig and mouse oesophagus. In guinea-pig small intestine and rat and mouse colon, 5-HT4 receptor immunoreactivity occurs in subpopulations of enteric neurons, including prominent large neurons. Double-staining has shown that these large neurons in the guinea-pig small intestine are also immunoreactive for two markers of intrinsic primary afferent neurons, cytoplasmic NeuN and calbindin. Some muscle motor neurons in the myenteric ganglia are immunoreactive for this receptor, whereas it is rarely expressed by secretomotor neurons. Immunoreactivity also occurs in the interstitial cells of Cajal but is faint in the external muscle. Expression of the protein and mRNA has been confirmed in extracts containing enteric neurons. The observations suggest that one site of action of 5-HT4 receptor agonists is the intrinsic primary afferent neurons.
Collapse
Affiliation(s)
- Daniel P Poole
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Rodriguez R, Ventura-Martinez R, Santiago-Mejia J, Avila-Costa MR, Fortoul TI. Altered responsiveness of the guinea-pig isolated ileum to smooth muscle stimulants and to electrical stimulation after in situ ischemia. Br J Pharmacol 2006; 147:371-8. [PMID: 16341232 PMCID: PMC1616997 DOI: 10.1038/sj.bjp.0706618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We evaluated changes in contractility of the guinea-pig isolated ileum, using intact segments and myenteric plexus-longitudinal muscle (MPLM) preparations, after several times (5-160 min) of ischemia in situ. 2. Intestinal ischemia was produced by clamping the superior mesenteric artery. Ischemic and nonischemic segments, obtained from the same guinea-pig, were mounted in organ baths containing Krebs-bicarbonate (K-B) solution, maintained at 37 degrees C and gassed with 95% O2/5% CO2. The preparations were allowed to equilibrate for 60 min under continuous superfusion of warm K-B solution and then electrically stimulated at 40 V (0.3 Hz, 3.0 ms). Thereafter, complete noncumulative concentration-response curves were constructed for acetylcholine (ACh), histamine (HIS), potassium chloride (KCl), and barium chloride (BaCl2). Mean Emax (maximal response) values were calculated for each drug. 3. Our study shows that alterations of chemically and electrically evoked contractions are dependent on ischemic periods. It also demonstrates that contractile responses of ischemic tissues to neurogenic stimulation decreases earlier and to a significantly greater extent than the non-nerve mediated responses of the intestinal smooth muscle. Contractile responses to smooth muscle stimulants were all similarly affected by ischemia. Electron microscopy images indicated necrotic neuronal death. The decrease in reactivity of ischemic tissues to electrical stimulation was ameliorated by dexrazoxane, an antioxidant agent. 4. We consider the guinea-pig isolated ileum as a useful model system to study the processes involved in neuronal ischemia, and we propose that the reduction in maximal responses to electrical stimulation is a useful parameter to study neuroprotection.
Collapse
Affiliation(s)
- Rodolfo Rodriguez
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City C.P. 04510, Mexico.
| | | | | | | | | |
Collapse
|
164
|
Rendeli C, Ausili E, Tabacco F, Focarelli B, Pantanella A, Di Rocco C, Genovese O, Fundarò C. Polyethylene glycol 4000 vs. lactulose for the treatment of neurogenic constipation in myelomeningocele children: a randomized-controlled clinical trial. Aliment Pharmacol Ther 2006; 23:1259-65. [PMID: 16611288 DOI: 10.1111/j.1365-2036.2006.02872.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To compare the therapeutic effectiveness and tolerability of low daily doses of polyethylene glycol 4000 vs. lactulose in the treatment of neurogenic constipation in children with myelomeningocele. METHODS Sixty-seven children with chronic neurogenic constipation were randomized allocated to receive either polyethylene glycol 4000 (0.50 g/kg) or lactulose (1.5 g/kg) for 6 months. Patients or their parents reported frequency and modality of evacuation and side effects on a diary card. Primary outcome was bowel frequency > or =3/week, and the second one was side effects at the end of treatment. RESULTS Complete remission of constipation was reported by a significantly (P < 0.01) higher number of patients treated with polyethylene glycol compared with lactulose. At the end of the study, 46% patients of polyethylene glycol group and 22% of the lactulose group were asymptomatic. Compared with lactulose, patients treated with polyethylene glycol reported higher bowel frequency (5.1 vs. 2.9 bowel movements/week, P < 0.01) and reduction of encopresis. Neither lactulose nor polyethylene glycol caused clinically-significant serious side effects and palatability was similar. CONCLUSIONS Polyethylene glycol 4000 compared with lactulose provided a higher success rate, without significant side effects, for the treatment of constipation in myelomeningocele children.
Collapse
Affiliation(s)
- C Rendeli
- Department of Paediatric Science, Catholic University Medical School, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Obaid AL, Nelson ME, Lindstrom J, Salzberg BM. Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system. ACTA ACUST UNITED AC 2006; 208:2981-3001. [PMID: 16043603 DOI: 10.1242/jeb.01732] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nicotinic transmission in the enteric nervous system (ENS) is extensive, but the role of individual nicotinic acetylcholine receptor (nAChR) subtypes in the functional connectivity of its plexuses has been elusive. Using monoclonal antibodies (mAbs) against neuronal alpha3-, alpha4-, alpha3/alpha5-, beta2-, beta4- and alpha7-subunits, combined with radioimmunoassays and immunocytochemistry, we demonstrate that guinea-pig enteric ganglia contain all of these nAChR-subunits with the exception of alpha4, and so, differ from mammalian brain. This information alone, however, is insufficient to establish the functional role of the identified nAChR-subtypes within the enteric networks and, ultimately, their specific contributions to gastrointestinal physiology. We have used voltage-sensitive dyes and a high-speed CCD camera, in conjunction with specific antagonists to various nAChRs, to elucidate some of the distinct contributions of the individual subtypes to the behaviour of enteric networks. In the guinea-pig, the submucous plexus has the extraordinary advantage that it is virtually two-dimensional, permitting optical recording, with single cell resolution, of the electrical activity of all of its neurones. In this plexus, the block of alpha3beta2-, alpha3beta4- and/or alpha7-nAChRs always results in a decrease in the magnitude of the synaptic response. However, the magnitude of the fast excitatory post-synaptic potentials (epsps) evoked by electrical stimulation of a neighbouring ganglion varies from cell to cell, reflecting the differential expression of subunits already observed using mAbs, as well as the strengths of the activated synaptic inputs. At the same time, we observe that submucous neurones have a substantial mecamylamine (Mec)-insensitive (non-nicotinic) component to their fast epsps, which may point to the presence of purinergic or serotonergic fast epsps in this system. In the myenteric plexus, on the other hand, the antagonist-induced changes in the evoked synaptic response vary depending upon the location of the stimulating electrode with respect to the ganglion under study. The range of activity patterns that follows sequential pharmacological elimination of individual subtypes suggests that nAChRs may be capable of regulating the activity of both excitatory and inhibitory pathways, in a manner similar to that described in the central nervous system.
Collapse
Affiliation(s)
- A L Obaid
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA
| | | | | | | |
Collapse
|
166
|
Herrera-Ruiz M, Jiménez-Ferrer JE, De Lima TCM, Avilés-Montes D, Pérez-García D, González-Cortazar M, Tortoriello J. Anxiolytic and antidepressant-like activity of a standardized extract from Galphimia glauca. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13:23-8. [PMID: 16360929 DOI: 10.1016/j.phymed.2005.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 03/04/2005] [Indexed: 05/05/2023]
Abstract
An infusion prepared with aerial parts from Galphimia glauca has been widely used in Mexican traditional medicine as a remedy for nervous excitement. The sedative activity of a methanolic extract from this plant has been demonstrated by neuropharmacological tests. This effect was attributed to the nor-secotriterpene named galphimine B (GB). In the present work, the anxiolytic and antidepressant-like effects of G. glauca methanolic extract (standardized on GB content, 8.3mg/g) were assayed by using the elevated plus-maze, light-dark test and the forced swimming paradigm, on ICR albino mice. This extract, administered orally, three times (24, 18 and 1h before the test), and in different doses (125, 250, 500, 1,000 and 2,000 mg/kg) was able to increase significantly (p<0.05) the number of entries, as well as the time spent in the open arms of the elevated plus-maze, indicating an anxiolytic-like effect. A similar effect was observed in the light-dark paradigm test, the time spent in the light box was increased in treated mice. Nevertheless, this treatment was unable to change any parameter in the forced swimming test. Altogether, these results suggest an anxiolytic-like effect to the methanolic standardized extract of G. glauca on ICR inbred mice.
Collapse
Affiliation(s)
- M Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina 1, Xochitepec, Morelos, México 62790
| | | | | | | | | | | | | |
Collapse
|
167
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of the sodium channel Nav1.2 in chemically identified myenteric neurons in the guinea pig. Cell Tissue Res 2005; 324:25-32. [PMID: 16372194 DOI: 10.1007/s00441-005-0107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Our purpose was to identify Na(v)1.2-expressing myenteric neurons of the small and large intestine of the guinea pig by using antibodies directed against Na(v)1.2 and selected neurochemical markers. Na(v)1.2-like immunoreactivity (-li) co-localized with immunoreactivity for choline acetyltransferase in all regions, representing 45%-67% of Na(v)1.2-positive neurons. Na(v)1.2-li co-localized with immunoreactivity for the neural form of nitric oxide synthase more frequently in the colon (20% of neurons exhibiting Na(v)1.2-li) than in the ileum (8%). Co-localization of Na(v)1.2-li with immunoreactivity for a form of neurofilament (NF145) was infrequently observed in the ileum and colon. Enkephalin-immunoreactive cell bodies co-localized with Na(v)1.2-li in all regions. Few myenteric cell bodies immunoreactive for neuropeptide Y were observed in the ileum, but all co-localized with Na(v)1.2-li. This and our previous data suggest that Na(v)1.2 is widely expressed within the guinea pig enteric nervous system, including the three main classes of myenteric neurons (sensory, motor, and interneurons), and is involved in both excitatory and inhibitory pathways. Notable exceptions include the excitatory motor neurons to the longitudinal smooth muscle, the ascending interneurons of the ileum, and the myenteric neurons immunoreactive for NF145, few of which are immunoreactive for Na(v)1.2.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
168
|
Calcina F, Barocelli E, Bertoni S, Furukawa O, Kaunitz J, Impicciatore M, Sternini C. Effect of N-methyl-d-aspartate receptor blockade on neuronal plasticity and gastrointestinal transit delay induced by ischemia/reperfusion in rats. Neuroscience 2005; 134:39-49. [PMID: 15939544 DOI: 10.1016/j.neuroscience.2005.03.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 03/01/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Intestinal ischemia impairs gastrointestinal motility. The aims of this study were to investigate the effect of intestinal ischemia on gastrointestinal transit and on the expression of enteric transmitters in the rat, and whether the glutamate N-methyl-d-aspartate receptors influence these effects. Ischemia (1 h), induced by occluding the superior mesenteric artery, was followed by 0 or 24 h of reperfusion. Normal and sham-operated rats served as controls. Serosal blood flow was measured with laser Doppler flow meter. Gastrointestinal transit was measured as time of appearance of a marker in fecal pellets. Immunohistochemistry was used to evaluate the number of neurons immunoreactive for neuronal nitric oxide synthase (NOS) or vasoactive intestinal polypeptide and the density of substance P immunoreactive fibers in the myenteric plexus. The N-methyl-d-aspartate receptors antagonist, (+)-5-methyl-10,11-dihydro-5HT-[a,b] cyclohepten-5,10-imine (MK-801) (1 mg/kg i.v.) or the NOS inhibitor, N-nitro-l-arginine (10 mg/kg i.v.) was administered prior to ischemia. Serosal blood flow was decreased by 70% during ischemia, but it was not altered in sham-operated rats. Gastrointestinal transit was significantly prolonged in ischemic/reperfused rats compared with controls. There was a significant increase in the number of vasoactive intestinal polypeptide and neuronal nitric oxide synthase immunoreactive neurons, and a marked decrease of substance P immunoreactive fibers in ischemia followed by 24 h of reperfusion animals compared with controls. These alterations were not observed in ischemia without reperfusion. A significant delay of gastrointestinal transit and increase of vasoactive intestinal polypeptide neurons were also observed in sham-operated rats. The changes in transmitter expression and gastrointestinal transit in ischemic/reperfused rats were prevented by pre-treatment with the NOS inhibitor, N-nitro-l-arginine or the N-methyl-d-aspartate receptors antagonist, MK-801. This study suggests an involvement of the glutamatergic system and its interaction with nitric oxide in intestinal ischemia/reperfusion. Ischemia/reperfusion might induce local release of glutamate that activates N-methyl-d-aspartate receptors leading to increased production of nitric oxide and adaptive changes in enteric transmitters that might contribute to gastrointestinal dysmotility.
Collapse
Affiliation(s)
- F Calcina
- CURE Digestive Diseases Research Center, Division of Digestive Diseases, Building 115, Room 224, Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Tsukamoto K, Hayakawa T, Maeda S, Tanaka K, Seki M, Yamamura T. Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat. Auton Neurosci 2005; 123:12-8. [PMID: 16213798 DOI: 10.1016/j.autneu.2005.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/29/2005] [Accepted: 07/30/2005] [Indexed: 12/01/2022]
Abstract
The motility of the alimentary canal is regulated not only by neurons that contain acetylcholine or adrenaline, but also by nonadrenergic noncholinergic neurons. There are many neurons containing dopamine in the dorsal motor nucleus of the vagus (DMV). We examined the projections of these dopaminergic neurons to the alimentary canal with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b following its injection into the subdiaphragmatic esophagus, the cardia, the pylorus, the duodenum, the jejunum, and the ascending colon. Almost all double-labeled neurons were found in the half of the DMV caudal to the area postrema. In the caudal half of the DMV, about 58% of the TH-immunoreactive neurons projected to the cardia, about 36% projected to the pylorus, and about 28% projected to the subdiaphragmatic esophagus. Only a few TH-immunoreactive neurons projected to the duodenum, the jejunum, or the ascending colon. As a whole, less than 10% of the neurons in the DMV that projected to the alimentary canal showed TH-like immunoreactivity. These results suggest that some of the dopaminergic neurons in the DMV might regulate the activities of the stomach and the subdiaphragmatic esophagus.
Collapse
Affiliation(s)
- Kiyoshi Tsukamoto
- Second Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | |
Collapse
|
170
|
Brehmer A, Schrödl F, Neuhuber W. Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut. Histochem Cell Biol 2005; 125:557-65. [PMID: 16328433 DOI: 10.1007/s00418-005-0107-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2005] [Indexed: 12/16/2022]
Abstract
In this study, we characterized human myenteric neurons co-immunoreactive for neuronal nitric oxide synthase (nNOS) and vasoactive intestinal peptide (VIP) by their morphology and their proportion as related to the putative entire myenteric neuronal population. Nine wholemounts (small and large intestinal samples) from nine patients were triple-stained for VIP, neurofilaments (NF) and nNOS. Most neurons immunoreactive for all three markers displayed radially emanating, partly branching dendrites with spiny endings. These neurons were called spiny neurons. The spiny character of their dendrites was more pronounced in the small intestinal specimens and differed markedly from enkephalinergic stubby neurons described earlier. Exclusively in the duodenum, some neurons displayed prominent main dendrites with spiny side branches. Of the axons which could be followed from the ganglion of origin within primary strands of the myenteric plexus beyond the next ganglion (70 out of 140 traced neurons), 94.3% run anally and 5.7% orally. Very few neurons reactive for both VIP and nNOS could not be morphologically classified due to weak or absent NF-immunoreactivity. Another six wholemounts were triple-stained for VIP, nNOS and Hu proteins (HU). The proportion of VIP/nNOS-coreactive neurons in relation to the number of HU-reactive neurons was between 5.8 and 11.5% in the small and between 10.6 and 17.5% in the large intestinal specimens. We conclude that human myenteric spiny neurons co-immunoreactive for VIP and nNOS represent either inhibitory motor or descending interneurons.
Collapse
Affiliation(s)
- A Brehmer
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054, Erlangen, Germany.
| | | | | |
Collapse
|
171
|
Tonini M, Vicini R, Cervio E, De Ponti F, De Giorgio R, Barbara G, Stanghellini V, Dellabianca A, Sternini C. 5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology 2005; 129:1557-66. [PMID: 16285955 DOI: 10.1053/j.gastro.2005.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 07/27/2005] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The 5-hydroxytryptamine 7 (5-HT7) receptors mediate intestinal smooth muscle relaxation. In this study, we evaluated the expression of 5-HT7 receptors in the guinea pig ileum and their role in peristalsis and accommodation of the circular muscle. METHODS We used immunohistochemistry and confocal microscopy with whole tissue and cultured myenteric neurons. Peristalsis was induced by delivering a solution into the oral end of an isolated ileal segment. The effect of the selective 5-HT7 receptor antagonist SB-269970 (100 nmol/L) on peristaltic activity was evaluated at 30, 60, and 90 minutes and compared with control. RESULTS 5-HT7 receptor immunoreactivity was localized to numerous myenteric neurons, a few submucosal neurons, and a few smooth muscle cells of the ileum. In enteric cultured neurons, 5-HT7 receptor immunoreactivity was observed in subpopulations of after hyperpolarizing neurons and descending neurons as identified by neuron-specific nuclear protein or calbindin and neuronal nitric oxide synthase or vasoactive intestinal peptide antibodies, respectively. SB-269970 significantly increased the threshold pressure by 33.3% +/- 2.2% (P < .001) and by 27.2% +/- 1.6% (P < .05) at 60 and 90 minutes, respectively, without modifying the threshold volume. The accommodation significantly decreased by 27.5% both at 60 and 90 minutes (P < .05). CONCLUSIONS Our results indicate that endogenous 5-HT is involved in the modulation of circular muscle accommodation during the preparatory phase of peristalsis via the activation of 5-HT7 receptors expressed by neurons in addition to smooth muscle cells. Overstimulation of these receptors leading to an exaggerated accommodation of circular muscle might contribute to abdominal symptoms in functional bowel disorders.
Collapse
Affiliation(s)
- Marcello Tonini
- Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Harrington AM, Hutson JM, Southwell BR. Immunohistochemical localization of substance P NK1 receptor in guinea pig distal colon. Neurogastroenterol Motil 2005; 17:727-37. [PMID: 16185312 DOI: 10.1111/j.1365-2982.2005.00680.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neurokinin receptors facilitate tachykinin mediated intestinal motility and secretion. Distribution of Substance P (SP) neurokinin 1 receptor (NK1r) immunoreactivity (IR) has been previously characterized in guinea pig ileum, but not colon. This study localizes NK1rs in guinea pig distal colon. METHODS Neurons were double labelled for NK1r and either acetylcholine transferase (ChAT), calbindin (calb), neuropeptide Y (NPY), nitric oxide synthase (NOS) or SP. The NK1r endocytosis was induced by 10(-5) mol L(-1) SP, septide, [SarMet] SP or neurokinin A. RESULTS In guinea pig distal colon, NK1r-IR was present on 70% of submucosal neurons. Sixty-threepercent of the NK1r-IR submucosal neurons were ChAT-IR, 16% calb/SP-IR, 19% NPY-IR and 14% NOS-IR neurons. The NK1r-IR was present on 5% of myenteric neurons. Of these 63% were ChAT-IR, 16% calb-IR neurons and 25% NOS-IR. The NK1rs were also on myenteric plexus interstitial cells of Cajal and on circular muscle. CONCLUSION In guinea pig distal colon, NK1rs were on 70% of submucosal neurons including all three secretomotor neuron subtypes and sensory neurons, suggesting NK1rs have a major role in neuronal control of mucosal reflexes. The NK1rs were on few myenteric neurons but were dense on muscle cells, suggesting NK1rs affect motility through neuro-muscular rather than neuro-neuronal transmission.
Collapse
Affiliation(s)
- A M Harrington
- Gut Motility Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | |
Collapse
|
173
|
Xiang Z, Burnstock G. Distribution of P2Y6 and P2Y12 receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system. Histochem Cell Biol 2005; 125:327-36. [PMID: 16195889 DOI: 10.1007/s00418-005-0071-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2005] [Indexed: 12/31/2022]
Abstract
The distribution of P2Y(6) and P2Y(12) receptor-immunoreactive (ir) neurons and fibers and their coexistence with calbindin, calretinin and nitric oxide synthase (NOS) has been investigated with single and double labeling immunostaining methods. The results showed that 30-36% of the ganglion cells in the myenteric plexus are strongly P2Y(6) receptor-ir neurons; they are distributed widely in the myenteric plexus of stomach, jejunum, ileum and colon, but not in the submucosal plexus, with a typical morphology of multipolar neurons with a long axon-like process. About 42-46% of ganglion cells in both the myenteric and submucosal plexuses show P2Y(12) receptor-ir. About 28-35% of P2Y(6) receptor-ir neurons were found to coexist with NOS and 41-47% of them coexist with calretinin, but there was no coexistence of P2Y(6) receptor-ir with calbindin. In contrast, all P2Y(12) receptor-ir neurons were immunopositive for calbindin, although occasionally P2Y(12) receptor-ir neurons without calbindin immunoreactivity were found, while none of the P2Y(12) receptor-ir neurons were found to coexist with calretinin or NOS in the gastrointestinal system of guinea pig. The P2Y(12) receptor-ir neurons coexpressing calbindin-ir in the small intestine are Dogiel type II/AH, intrinsic primary afferent neurons.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 200433, Shanghai, People's Republic of China
| | | |
Collapse
|
174
|
Toda N, Herman AG. Gastrointestinal function regulation by nitrergic efferent nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
175
|
Abalo R, Rivera AJ, Vera G, Suardíaz M, Martín MI. Evaluation of the effect of age on cannabinoid receptor functionality and expression in guinea-pig ileum longitudinal muscle–myenteric plexus preparations. Neurosci Lett 2005; 383:176-81. [PMID: 15936532 DOI: 10.1016/j.neulet.2005.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/17/2022]
Abstract
Cannabinoid drugs exert a wide range of biological effects and are currently under study for their multiple potential therapeutic uses. Cannabinoids reduce gastrointestinal (GI) motility and this is mediated by the CB1 cannabinoid receptor (CB1R) present in the myenteric neurones. GI motility can also be affected by a variety of pathophysiological situations, including ageing. The purpose of this work was to study the influence of age on the functionality and expression of CB1R in the myenteric plexus. Ileal longitudinal muscle-myenteric plexus (LMMP) preparations from young, adult and old guinea-pigs were used in two sets of experiments: in vitro assessment of the inhibitory cannabinoid effect upon electrically stimulated contractions and immunohistochemical quantification of myenteric neurones expressing CB1R. LMMP preparations responded to the synthetic cannabinoid WIN 55,212-2, and the endogenous cannabinoid ligand anandamide in an age-independent manner. The total number of CB1R-immunoreactive (IR) myenteric neurones, which included at least part of the motor neurones to the longitudinal smooth muscle, decreased in proportion to the general neuronal population; however, the proportion of CB1R-IR neurones was preserved in old animals. These data may justify the preservation of the effectiveness of the cannabinoids in the isolated guinea-pig ileum. This age-related independency of CB1R expression and effect on GI motility could be of interest if cannabinoids are to be used therapeutically.
Collapse
Affiliation(s)
- Raquel Abalo
- Departamento de Ciencias de la Salud III, Health Sciences III, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.
| | | | | | | | | |
Collapse
|
176
|
Sayegh AI, Reeve JR, Lampley ST, Hart B, Gulley S, Esdaile AR, Sharma SK, Webb T, Williams CS, Pruitt F. Role for the enteric nervous system in the regulation of satiety via cholecystokinin-8. J Am Vet Med Assoc 2005; 226:1809-16. [PMID: 15938055 DOI: 10.2460/javma.2005.226.1809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Patierno S, Zellalem W, Ho A, Parsons CG, Lloyd KCK, Tonini M, Sternini C. N-methyl-D-aspartate receptors mediate endogenous opioid release in enteric neurons after abdominal surgery. Gastroenterology 2005; 128:2009-19. [PMID: 15940633 DOI: 10.1053/j.gastro.2005.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS We tested the hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate surgery-induced opioid release in enteric neurons. METHODS We used mu opioid receptor (muOR) internalization as a measure of opioid release with immunohistochemistry and confocal microscopy. MuOR internalization was quantified in enteric neurons from nondenervated and denervated ileal segments of guinea pig after abdominal laparotomy with and without pretreatment with NMDA-receptor antagonists acting at different recognition sites (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,b] cyclohepten-5,10-imine (MK-801) or (D) 2-amino-5-phosphopenoic acid (AP-5) at .5, 1 mg/kg; 8-chloro-4-hydroxy-1-oxo-1,2-dihydropyridazinol [4,5-]quinoline-5-oxide choline (MRZ 2/576) or 8-chloro-1,4-dioxo-1,2,3,4-tetrahydropyridazinol [4,5-]quinoline choline salt (MRZ 2/596) at .3, 1 mg/kg, or with an antagonist for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (1, 3 mg/kg). To determine whether NMDA stimulation induces opioid release, (1) ilea were exposed to NMDA (100 micromol/L) and D-serine (10 micromol/L) with or without the antagonist MK-801 or AP-5 (50 micromol/L); and (2) neuromuscular preparations of the ileum were stimulated electrically (20 Hz, 20 min) with or without MK-801 or AP-5 (50 micromol/L). RESULTS MuOR endocytosis induced by abdominal laparotomy was inhibited significantly by NMDA-receptor antagonists in nondenervated and denervated ileal segments, but not by the AMPA-receptor antagonist. MuOR endocytosis in neurons exposed to NMDA or electrical stimulation was prevented by NMDA-R antagonists. CONCLUSIONS Abdominal laparotomy evokes local release of glutamate that results in endogenous opioid release through the activation of peripheral NMDA receptors. This suggests an interaction between the glutamatergic and opioid systems in response to the noxious and perhaps mechanosensory stimulation of surgery.
Collapse
Affiliation(s)
- Simona Patierno
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
178
|
Liu S, Gao X, Gao N, Wang X, Fang X, Hu HZ, Wang GD, Xia Y, Wood JD. Expression of type 1 corticotropin-releasing factor receptor in the guinea pig enteric nervous system. J Comp Neurol 2005; 481:284-98. [PMID: 15593376 DOI: 10.1002/cne.20370] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiological recording, and intraneuronal injection of the neuronal tracer biocytin were integrated in a study of the functional expression of corticotropin-releasing factor (CRF) receptors in the guinea pig enteric nervous system. RT-PCR revealed expression of CRF1 receptor mRNA, but not CRF2, in both myenteric and submucosal plexuses. Immunoreactivity for the CRF1 receptor was distributed widely in the myenteric plexus of the stomach and small and large intestine and in the submucosal plexus of the small and large intestine. CRF1 receptor immunoreactivity was coexpressed with calbindin, choline acetyltransferase, and substance P in the myenteric plexus. In the submucosal plexus, CRF1 receptor immunoreactivity was found in neurons that expressed calbindin, substance P, choline acetyltransferase, or neuropeptide Y. Application of CRF evoked slowly activating depolarizing responses associated with elevated excitability in both myenteric and submucosal neurons. Histological analysis of biocytin-filled neurons revealed that both uniaxonal neurons with S-type electrophysiological behavior and neurons with AH-type electrophysiological behavior and Dogiel II morphology responded to CRF. The CRF-evoked depolarizing responses were suppressed by the CRF1/CRF2 receptor antagonist astressin and the selective CRF1 receptor antagonist NBI27914 and were unaffected by the selective CRF2 receptor antagonist antisauvagine-30. The findings support the hypothesis that the CRF1 receptor mediates the excitatory actions of CRF on neurons in the enteric nervous system. Actions on enteric neurons might underlie the neural mechanisms by which stress-related release of CRF in the periphery alters intestinal propulsive motor function, mucosal secretion, and barrier functions.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210-1218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Anselmi L, Cervio E, Guerrini S, Vicini R, Agazzi A, Dellabianca A, Reeve JR, Tonini M, Sternini C. Identification of galanin receptor 1 on excitatory motor neurons in the guinea pig ileum. Neurogastroenterol Motil 2005; 17:273-80. [PMID: 15787947 DOI: 10.1111/j.1365-2982.2004.00590.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exogenously administered galanin inhibits cholinergic transmission to the longitudinal muscle and reduces peristaltic efficiency in the guinea pig ileum with a mechanism partially mediated by galanin receptor 1 (GAL-R1). We investigated the effect of exogenous galanin 1-16, which has high affinity for GAL-R1, on the ascending excitatory reflex of the circular muscle elicited by radial distension in isolated segments of guinea pig ileum. We used a three-compartment bath that allows dissecting the ascending pathway into the oral (site of excitatory motor neurons), intermediate (site of ascending interneurons) and caudal compartment (site of intrinsic primary afferent neurons). Galanin 1-16 (0.3-3 micromol L(-1)) applied to the oral compartment inhibited in a concentration-dependent manner the ascending excitatory reflex elicited by the wall distension in the caudal compartment. This effect was antagonized by the GAL-R1 antagonist, RWJ-57408 (1 and 10 micromol L(-1)). By contrast, galanin 1-16 was ineffective when added to the intermediate or caudal compartment up to 3 micromol L(-1). GAL-R1 immunoreactive neurons did not contain neuron-specific nuclear protein, a marker for intrinsic primary afferent neurons. These findings indicate that GAL-R1s are present on motor neurons responsible for the ascending excitatory reflex, but not on ascending interneurons and intrinsic primary afferent neurons.
Collapse
Affiliation(s)
- L Anselmi
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Veterans Administration Greater Los Angeles Healthcare System, Bldg. 115, Room 224, Vaglahs, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Ren J, Galligan JJ. Dynamics of fast synaptic excitation during trains of stimulation in myenteric neurons of guinea-pig ileum. Auton Neurosci 2005; 117:67-78. [PMID: 15664559 PMCID: PMC2680311 DOI: 10.1016/j.autneu.2004.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/17/2004] [Accepted: 10/24/2004] [Indexed: 11/24/2022]
Abstract
Fast excitatory postsynaptic potentials (fEPSPs) occur in bursts in the myenteric plexus during evoked motor reflexes in the guinea-pig ileum in vitro. This study used electrophysiological methods to study fEPSPs during stimulus trains to mimic bursts of synaptic activity in vitro. The amplitude of fEPSPs or fast excitatory postsynaptic currents (EPSCs) declined (rundown) during stimulus trains at frequencies of 0.5, 5, 10 and 20 Hz. At 0.5 Hz, fEPSP or fEPSC amplitude declined by 50% after the first stimulus but remained constant for the remainder of the train. At 5, 10 and 20 Hz, synaptic responses ran down completely with time constants of 0.35, 0.21 and 0.11 s, respectively. Recovery from rundown occurred with a time constant of 7 s. Mecamylamine, a nicotinic cholinergic receptor antagonist, or PPADS, a P2X receptor antagonist, reduced fEPSP amplitude, but they had no effect on rundown. Responses caused by trains of ionophoretically applied ATP or ACh (to mimic fEPSPs) did not rundown. Blockade of presynaptic inhibitory muscarinic, adenosine A1, opioid, alpha2-adrenergic and 5-HT1A receptors or pertussis toxin (PTX) treatment did not alter rundown. Antidromic action potentials followed a 10-Hz stimulus train. Iberiotoxin (100 nM), a blocker of large conductance calcium activated K+ (BK) channels, did not alter rundown. These data suggest that synaptic rundown is not due to: (a) action potential failure; (b) nicotinic or P2X receptor desensitization; (c) presynaptic inhibition mediated by pertussis-toxin sensitive G-proteins, or (d) BK channel activation. Synaptic rundown is likely due to depletion of a readily releasable pool (RRP) of neurotransmitter.
Collapse
Affiliation(s)
- Jianhua Ren
- The Neuroscience Program and the Department of Pharmacology and Toxicology, Life Science B308, Michigan State University, East Lansing, MI 48824, United States.
| | | |
Collapse
|
181
|
Brehmer A, Lindig TM, Schrödl F, Neuhuber W, Ditterich D, Rexer M, Rupprecht H. Morphology of enkephalin-immunoreactive myenteric neurons in the human gut. Histochem Cell Biol 2005; 123:131-8. [PMID: 15776249 DOI: 10.1007/s00418-005-0757-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2004] [Indexed: 11/29/2022]
Abstract
The aim of this study was the morphological and further chemical characterisation of neurons immunoreactive for leu-enkephalin (leuENK). Ten wholemounts of small and large intestinal segments from nine patients were immunohistochemically triple-stained for leuENK/neurofilament 200 (NF)/substance P (SP). Based on their simultaneous NF-reactivity and 3D reconstruction of single NF-reactive cells, 97.5% of leuENK-positive neurons displayed the appearance of stubby neurons: small somata; short, stubby dendrites and one axon. Of these leuENK-reactive stubby neurons, 91.3% did not display co-reactivity for SP whereas 8.7% were SP-co-reactive. As to their axonal projection pattern, 50.4% of the recorded leuENK stubby neurons had axons running orally whereas in 29.4% they ran anally; the directions of the remaining 20.2% could not be determined. No axons were seen to enter into secondary strands of the myenteric plexus. Somal area measurements revealed clearly smaller somata of leuENK-reactive stubby neurons (between 259+/-47 microm(2) and 487+/-113 microm(2)) than those of putative sensory type II neurons (between 700+/-217 microm(2) and 1,164+/-396 microm(2)). The ratio dendritic field area per somal area of leuENK-reactive stubby neurons was between 2.0 and 2.8 reflecting their short dendrites. Additionally, we estimated the proportion of leuENK-positive neurons in comparison to the putative whole myenteric neuron population in four leuENK/anti-Hu doublestained wholemounts. This proportion ranged between 5.9% and 8.3%. We suggest leuENK-reactive stubby neurons to be muscle motor neurons and/or ascending interneurons. Furthermore, we explain why we do not use the term "Dogiel type I neurons" for this population.
Collapse
Affiliation(s)
- A Brehmer
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
182
|
Horie S, Tsurumaki Y, Someya A, Hirabayashi T, Saito T, Okuma Y, Nomura Y, Murayama T. Involvement of cyclooxygenase-dependent pathway in contraction of isolated ileum by urotensin II. Peptides 2005; 26:323-9. [PMID: 15629545 DOI: 10.1016/j.peptides.2004.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/15/2004] [Accepted: 09/20/2004] [Indexed: 11/30/2022]
Abstract
We previously reported that urotensin II induced biphasic (brief- and long-lasting) contractions and the brief contraction was mediated by acetylcholine release from ganglionic cholinergic neurons in a segment of guinea-pig ileum. In the present work, we studied the mechanism contributing to long-lasting contractions induced by urotensin II. Treatment with 0.1 microM tetrodotoxin, 300 nM omega-conotoxin GVIA (an inhibitor of N-type Ca2+ channels) and 10 microM indomethacin (an inhibitor of cyclooxygenases) markedly inhibited 100 nM urotensin II-induced long-lasting contractions. The addition of 1 microM prostaglandin F2alpha (PGF2alpha) caused a limited brief contraction following long-lasting contraction, while 1 microM PGE2 induced marked biphasic contractions. Treatment with neurotoxins inhibited the long-lasting contractions induced by PGF2alpha and PGE2 without changing the PGE2-induced brief contractions. Treatment with 1 microM atropine markedly inhibited the urotensin II- and PGF2alpha-induced long-lasting contractions, but was less effective on the PGE2 responses. Treatment with a phospholipase A2 inhibitor decreased the urotensin II-induced contractions. These findings suggest that urotensin II induces, at least partially, long-lasting contractions via PG-sensitive cholinergic neurons and muscarinic acetylcholine receptors in the ileum.
Collapse
Affiliation(s)
- Syunji Horie
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Abalo R, José Rivera A, Vera G, Isabel Martín M. Ileal myenteric plexus in aged guinea-pigs: loss of structure and calretinin-immunoreactive neurones. Neurogastroenterol Motil 2005; 17:123-32. [PMID: 15670272 DOI: 10.1111/j.1365-2982.2004.00612.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myenteric plexus controls gastrointestinal motility by means of well organized circuits which are comprised of sensory neurones, interneurones and motor neurones to the muscular layers. Calretinin (CR) is a calcium-binding protein that, in guinea-pig ileum, has only been found in ascending interneurones, which also express neurofilament triplet proteins (NFT), and excitatory longitudinal muscle motor neurones, which do not. In spite of some evidence that age affects both function and structure of the myenteric plexus, little is known about the possible selectivity of the process regarding specific myenteric neuronal phenotypes. The influence of age on both the structure of the myenteric plexus and the presence of CR-immunoreactive (CR-IR) neurones was studied using conventional immunohistochemical procedures applied to ileal whole-mount preparations from guinea-pigs. Both a reduction in ganglionic size and changes in the distribution of neurones inside and outside the ganglia, together with a general neuronal loss were found in preparations from aged guinea-pigs. More interestingly, a relatively more pronounced age-related loss of CR-IR neurones, especially those lacking of NFT expression, was found. Specific myenteric neuronal phenotypes may show differential sensitivity to ageing, and this could, under certain circumstances, alter the functional balance of gastrointestinal motility in aged individuals.
Collapse
Affiliation(s)
- Raquel Abalo
- Area Farmacología, Depto. Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | | | | | | |
Collapse
|
184
|
Sayegh AI, Covasa M, Ritter RC. Intestinal infusions of oleate and glucose activate distinct enteric neurons in the rat. Auton Neurosci 2005; 115:54-63. [PMID: 15507406 DOI: 10.1016/j.autneu.2004.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 08/18/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
Nutrients entering the small intestine trigger a variety of neural and endocrine reflexes that involve specific afferents, efferents and interneurons, many of which are located within the enteric nervous system (ENS). We hypothesized that intestinal nutrient stimuli might activate specific subpopulations of these neurons. To test this hypothesis, we utilized immunohistochemical detection of nuclear c-fos expression in the myenteric and submucosal plexuses of the rat small intestine following intraintestinal infusions of oleate or glucose. Additionally, we used dual label methods to detect both Fos-immunoreactivity and immunoreactivity for five phenotypic neuronal markers: neurokinin-1 receptor (NK-1R), neurofilament-M (NF-M), neuronal nitric oxide synthase (NOS), calbindin (Cal) and calretinin (Calr), to characterize neurons that were activated by intestinal infusion of oleate and glucose. We found that oleate and glucose activated myenteric neurons in the duodenum and jejunum, but not the ileum. Oleate and glucose infusions significantly increased the number of Fos-immunoreactive nuclei in the submucosal plexus of the duodenum and jejunum, however, only glucose increased Fos-immunoreactivity in the ileum. Oleate and glucose infusions were associated with a small increase in Fos-immunoreactivity in NOS-immunoreactive neurons in the myenteric plexus. In the submucosal plexus, the majority of neurons activated by intestinal infusion of oleate or glucose were immunoreactive to Cal and Calr. In the rat, many of these neurons have Dogiel Type II-like morphology, which is consistent with the possibility that these neurons function as mucosal afferents in reflexes activated by nutrient stimuli.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| | | | | |
Collapse
|
185
|
Bartoo AC, Sprunger LK, Schneider DA. Expression and distribution of TTX-sensitive sodium channel alpha subunits in the enteric nervous system. J Comp Neurol 2005; 486:117-31. [PMID: 15844213 DOI: 10.1002/cne.20541] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression and distribution of TTX-sensitive voltage-gated sodium channel (VGSC) alpha subunits in the enteric nervous system (ENS) has not been described. Using RT-PCR, expression of Na(v)1.2, Na(v)1.3, Na(v)1.6, and Na(v)1.7 mRNA was detected in small and large intestinal preparations from guinea pigs. Expression of Na(v)1.1 mRNA as well as Na(v)1.1-like immunoreactivity (-li) were not observed in any intestinal region investigated. Na(v)1.2-li was primarily observed within the soma of the majority of myenteric and submucosal neurons, although faint immunoreactivity was occasionally observed in ganglionic and internodal fibers. Na(v)1.3-li was observed in dendrites, soma, and axons in a small group of myenteric neurons, as well as in numerous myenteric internodal fibers; immunoreactivity was rarely observed in the submucosal plexus. Na(v)1.6-li was primarily observed in the initial axonal segment of colonic myenteric neurons. Na(v)1.7-li was observed in dorsal root ganglia neurons but not in the myenteric plexus of the small and large intestine. In the ileum, 37% of Na(v)1.2-li cell bodies colocalized with calbindin-li while colocalization with calretinin-li was rare. In contrast, 22% of Na(v)1.3-li cell bodies colocalized with calretinin-li but colocalization with calbindin-li was not observed. In the colon, both Na(v)1.2-li and Na(v)1.3-li cell bodies frequently colocalized with either calretinin-li or calbindin-li. Na(v)1.2-li cell bodies also colocalized with the majority of NeuN-li cells in the small and large intestine. These data suggest that Na(v)1.1 may not be highly expressed in the ENS, but that Na(v)1.2, Na(v)1.3, and Na(v)1.6, and possibly Na(v)1.7, have broadly important and distinct functions in the ENS.
Collapse
Affiliation(s)
- Aaron C Bartoo
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington 99164-6520, USA
| | | | | |
Collapse
|
186
|
Ruan HZ, Burnstock G. The distribution of P2X5 purinergic receptors in the enteric nervous system of mouse. Cell Tissue Res 2004; 319:191-200. [PMID: 15551155 DOI: 10.1007/s00441-004-1002-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 09/10/2004] [Indexed: 12/31/2022]
Abstract
The distribution of the P2X(5) purinoceptor in the enteric nervous system of the mouse was studied by immunohistochemistry. P2X(5) receptor immunoreactivity was widely distributed in myenteric and submucosal plexuses throughout the gastrointestinal tract. In myenteric plexuses, immunoreactivity for the P2X(5) receptor was observed in nerve fibres that enveloped ganglion cell bodies, and possibly on glial cell processes. P2X(5) receptor immunoreactivity was colocalised with vasoactive intestinal peptide and surrounded ganglion cells that contained calretinin, calbindin or nitric oxide synthase. In the submucous plexus, P2X(5) receptor immunoreactivity occurred throughout the cytoplasm and on the surface membranes of the nerve cells. Double-labelling studies showed that 22%, 9%, 6% and 68% of P2X(5) receptor-immunoreactive neurones were also immunoreactive for calretinin, calbindin, nitric oxide synthase and vasoactive intestinal peptide, respectively. Thus, the P2X(5) receptor subunit is expressed in specific functional groups of neurones. P2X(2) and P2X(3) receptors were also present in the mouse enteric plexuses but no immunoreactivity for P2X(1), P2X(4) or P2X(6) receptors was found.
Collapse
Affiliation(s)
- Huai Zhen Ruan
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | | |
Collapse
|
187
|
Bertrand PP, Thomas EA. MULTIPLE LEVELS OF SENSORY INTEGRATION IN THE INTRINSIC SENSORY NEURONS OF THE ENTERIC NERVOUS SYSTEM. Clin Exp Pharmacol Physiol 2004; 31:745-55. [PMID: 15566388 DOI: 10.1111/j.1440-1681.2004.04092.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. The enteric nervous system (ENS) is present in the wall of the gastrointestinal tract and contains all the functional classes of neuron required for complete reflex arcs. One of the most important and intriguing classes of neuron is that responsive to sensory stimuli: sensory neurons with cell bodies intrinsic to the ENS. 2. These neurons have three outstanding and interrelated features: (i) reciprocal connections with each other; (ii) a slow excitatory post-synaptic potential (EPSP) resulting from high-speed firing in other sensory neurons; and (iii) a large after-hyperpolarizing potential (AHP) at the soma. Slow EPSP depolarize the cell body, generate action potentials (APs) and reduce the AHP. Conversely, the AHP limits the firing rate and, hence, reduces transmission of slow EPSP. 3. Processing of sensory information starts at the input terminals as different patterns of APs depending on the sensory modality and recent sensory history. At the soma, the ability to fire APs and, hence, drive outputs is also strongly determined by the recent firing history of the neuron (through the AHP) and network activity (through the slow EPSP). Positive feedback within the population of intrinsic sensory neurons means that the network is able to drive outputs well beyond the duration of the stimuli that triggered them. 4. Thus, sensory input and subsequent reflex generation are integrated over several hierarchical levels within the network on intrinsic sensory neurons.
Collapse
Affiliation(s)
- Paul P Bertrand
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
188
|
Abstract
Mu-, delta- and kappa-opioid receptors (ORs) mediate the effects of endogenous opioids and opiate drugs. Here we report (1) the distribution of muOR in the guinea-pig and human gastrointestinal tract in relation to endogenous ligands, to functionally distinct structures in the gut and to deltaOR and kappaOR; and (2) the ligand-induced muOR endocytosis in enteric neurones using in vitro and in vivo models. In the guinea pig, muOR immunoreactivity is confined mainly to the myenteric plexus. MuOR myenteric neurones are most numerous in the small intestine, followed by the stomach and the proximal colon. MuOR immunoreactive fibres are dense in the muscle layer and the deep muscular plexus, where they are in close association with interstitial cells of Cajal. This distribution closely matches the pattern of enkephalin. MuOR enteric neurones comprise functionally distinct populations of neurones of the ascending and descending pathways of the peristaltic reflex. In human gut, muOR immunoreactivity is localized to myenteric and submucosal neurones and to immune cells of the lamina propria. DeltaOR immunoreactivity is located in both plexuses where it is predominantly in varicose fibres in the plexuses, muscle and mucosa, whereas kappaOR immunoreactivity appears to be confined to the myenteric plexus and to bundles of fibres in the muscle. MuOR undergoes endocytosis in a concentration-dependent manner, in vitro and in vivo. Pronounced muOR endocytosis is observed in neurones from animals that underwent abdominal surgery that has been shown to induce delay in gastrointestinal transit. We can conclude that all three ORs are localized to the enteric nervous system with differences among species, and that muOR endocytosis can be utilized as a means to visualize enteric neurones activated by opioids and sites of opioid release.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Division of Digestive Diseases, Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
189
|
Young HM, Anderson RB, Anderson CR. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 2004; 112:1-14. [PMID: 15233925 DOI: 10.1016/j.autneu.2004.02.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 02/25/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
All peripheral autonomic neurons arise from neural crest cells that migrate away from the neural tube and navigate to the location where ganglia will form. After differentiating into neurons, their axons then navigate to a variety of targets. During the development of the enteric nervous system, GDNF appears to play a role in inducing vagal neural crest cells to enter the gut, in retaining neural crest cells within the gut and in promoting the migration of neural crest cells along the gut. Sema3A regulates the entry of extrinsic axons into the distal hindgut, netrin-DCC signaling is responsible for the centripetal migration of cells to form the submucosal ganglia within the gut, Slit-Robo signaling prevents trunk level neural crest cells from entering the gut, and neurturin plays a role in the innervation of the circular muscle layer. During the development of the sympathetic nervous system, the migration of trunk neural crest cells through the somites is influenced by ephrin-Bs, Sema3A and F-spondin. The migration of neural crest cells ventrally beyond the somites requires neuregulin signaling and the clumping of cells into columns adjacent to the dorsal aorta is regulated by Sema3A. The rostral migration of cells to form the superior cervical ganglion (SCG) and the extension of axons along blood vessels involves artemin signaling through Ret and GFRalpha3, and the entry of sympathetic axons into target tissues involves neurotrophins and GDNF. Relatively little is known about the development of parasympathetic ganglia, but GDNF appears to play a role in the migration of some cranial ganglion precursors to their correct location, and both GDNF and neurturin are involved in the growth of parasympathetic axons into particular targets.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010 VIC, Australia
| | | | | |
Collapse
|
190
|
Dénes V, Gábriel R. Calbindin-immunopositive cells are cholinergic interneurons in the myenteric plexus of rabbit ileum. Cell Tissue Res 2004; 318:465-72. [PMID: 15378349 DOI: 10.1007/s00441-004-0931-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 05/24/2004] [Indexed: 12/22/2022]
Abstract
The 28-kDa calcium-binding protein (calbindin) is a widely studied neuronal marker in the enteric nervous system of numerous species. Calbindin has previously been detected in myenteric neurons of rabbit ileum in which 3% of all myenteric neurons are calbindin-immunopositive. We have studied the detailed morphology and chemical coding of calbindin-immunopositive neurons in this segment of the gut. We have found calbindin immunoreactivity in both strongly and weakly stained neurons. Of these, the strongly immunoreactive neurons belong to the Dogiel type I category. These neurons project only to other ganglia and primary strands of the plexus and their processes never run to the muscle or mucosal layers. The neurons within this group are 29.5+/-6.6 microm in length and 14.7+/-3.8 microm in width. The second smaller group of immunoreactive cells (27%) label faintly and have different morphological properties. They are characterized by their round medium-sized cell bodies (long axis: 24.4+/-5.2 microm; short axis: 15.5+/-2.9 microm) and do not exhibit immunoreactivity either in their dendrites or in their axonal processes. Double-label studies show that all calbindin-immunopositive neurons lack immunoreactivity for nitric oxide synthase, vasoactive intestinal peptide and substance P but all are immunoreactive for the synthesizing enzyme of acetylcholine, choline acetyltransferase. Thus, populations of neurons containing calbindin are cholinergic interneurons in the myenteric plexus of rabbit ileum.
Collapse
Affiliation(s)
- Viktória Dénes
- Department of General Zoology and Neurobiology, University of Pécs, Ifjúság u. 6, 7601 Pécs, Hungary
| | | |
Collapse
|
191
|
Holzer P. Opioids and opioid receptors in the enteric nervous system: from a problem in opioid analgesia to a possible new prokinetic therapy in humans. Neurosci Lett 2004; 361:192-5. [PMID: 15135926 DOI: 10.1016/j.neulet.2003.12.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The gut is a neurological organ, which implies that many neuroactive drugs such as opioid analgesics can seriously disturb gastrointestinal function, because many of the transmitters and transmitter receptors present in the brain are also found in the enteric nervous system. One of the most common manifestations of opioid-induced bowel dysfunction is constipation which results from blockade of peristalsis and intestinal fluid secretion. The discovery of opioid receptor antagonists with a peripherally restricted site of action, such as N-methylnaltrexone and alvimopan, makes it possible to normalize bowel function in opiate-treated patients without compromising central opioid analgesia. There is emerging evidence that opioid receptor antagonists may also have prokinetic actions, reversing pathological states of gastrointestinal hypomotility that are due to overactivity of the enteric opioid system.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
192
|
Kashiba H, Uchida Y, Takeda D, Nishigori A, Ueda Y, Kuribayashi K, Ohshima M. TRPV2-immunoreactive intrinsic neurons in the rat intestine. Neurosci Lett 2004; 366:193-6. [PMID: 15276245 DOI: 10.1016/j.neulet.2004.05.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/14/2004] [Accepted: 05/15/2004] [Indexed: 10/26/2022]
Abstract
Transient receptor potential channel vanilloid subfamily 2 (TRPV2) was shown to receive noxious thermal stimuli (>52 degrees C), and to be expressed in fine myelinated afferent neurons. The mRNA and the immunoreactivity have also been detected in several peripheral tissues. We examined the expression of TRPV2 in the rat intestine. An analysis by transcriptase-polymerase chain reaction (RT-PCR) demonstrated TRPV2 gene expression in the intestine. Many TRPV2-positive neurons were observed in the myenteric plexus by immunohistochemistry. Some of these neurons were positive for calbindin D-28K (CaBP), which is present in intrinsic afferent neurons. TRPV2 immunoreactivity was also observed in nodose ganglion neurons (vagal afferents). These findings suggest that TRPV2 is expressed not only in sensory ganglion neurons, but also in enteric neurons, including primary afferent neurons.
Collapse
Affiliation(s)
- Hitoshi Kashiba
- Department of Physiology, Kansai College of Oriental Medicine, 2-11-1 Wakaba, Kumatori, Sennan-gun, Osaka 590-0433, Japan.
| | | | | | | | | | | | | |
Collapse
|
193
|
Furness JB, Jones C, Nurgali K, Clerc N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 2004; 72:143-64. [PMID: 15063530 DOI: 10.1016/j.pneurobio.2003.12.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Accepted: 12/03/2003] [Indexed: 02/08/2023]
Abstract
Intrinsic primary afferent neurons (IPANs) of the enteric nervous system are quite different from all other peripheral neurons. The IPANs are transducers of physiological stimuli, including movement of the villi or distortion of the mucosa, contraction of intestinal muscle and changes in the chemistry of the contents of the gut lumen. They are the first neurons in intrinsic reflexes that influence the patterns of motility, secretion of fluid across the mucosal epithelium and local blood flow in the small and large intestines. In the guinea pig small intestine, where they have been characterized in detail, IPANs have Dogiel type II morphology, that is they are large round or oval neurons with multiple processes, some of which end close to the luminal surface of the intestine, and some of which form synapses with enteric interneurons, motor neurons and with other IPANs. The IPANs have well-defined ionic currents through which their excitability, and their functions in enteric nerve circuits, is determined. These include voltage-gated Na(+) and Ca(2+) currents, a long lasting calcium-activated K(+) current, and a hyperpolarization-activated cationic current. The IPANs exhibit long-term changes in their states of excitation that can be induced by extended periods of low frequency activity in synaptic inputs and by inflammatory mediators, either applied directly or released during an inflammatory challenge. The IPANs may be involved in pathological changes in enteric function following inflammation.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | | | |
Collapse
|
194
|
Sternini C, Anselmi L, Guerrini S, Cervio E, Pham T, Balestra B, Vicini R, Baiardi P, D'agostino GL, Tonini M. Role of galanin receptor 1 in peristaltic activity in the guinea pig ileum. Neuroscience 2004; 125:103-12. [PMID: 15051149 DOI: 10.1016/j.neuroscience.2003.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 11/23/2022]
Abstract
Galanin effects are mediated by distinct receptors, galanin receptor 1 (GAL-R1), GAL-R2 and GAL-R3. Here, we analyzed 1) the role of GAL-R1 in cholinergic transmission and peristalsis in the guinea-pig ileum using longitudinal muscle-myenteric plexus preparations and intact segments of the ileum in organ bath, and 2) the distribution of GAL-R1 immunoreactivity in the myenteric plexus with immunohistochemistry and confocal microscopy. Galanin inhibited electrically stimulated contractions of longitudinal muscle-myenteric plexus preparations with a biphasic curve. Desensitization with 1 microM galanin suppressed the high potency phase of the curve, whereas the GAL-R1 antagonist, RWJ-57408 (1 microM), inhibited the low potency phase. Galanin (3 microM) reduced the longitudinal muscle contraction and the peak pressure, and decreased the compliance of the circular muscle. All these effects were antagonized by RWJ-57408 (1 or 10 microM). RWJ-57408 (10 microM) per se did not affect peristalsis parameters in normal conditions, nor when peristalsis efficiency was reduced by partial nicotinic transmission blockade with hexamethonium. In the myenteric plexus, GAL-R1 immunoreactivity was localized to neurons and to fibers projecting within the plexus and to the muscle. GAL-R1 was expressed mostly by cholinergic neurons and by some neurons containing vasoactive intestinal polypeptide or nitric oxide synthase. This study indicates that galanin inhibits cholinergic transmission to the longitudinal muscle via two separate receptors; GAL-R1 mediates the low potency phase. The reduced peristalsis efficiency could be explained by inhibition of the cholinergic drive, whereas the decreased compliance is probably due to inhibition of descending neurons and/or to the activation of an excitatory muscular receptor. Endogenous galanin does not appear to affect neuronal pathways subserving peristalsis in physiologic conditions via GAL-R1.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Spencer NJ, Smith TK. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol 2004; 558:577-96. [PMID: 15146052 PMCID: PMC1664963 DOI: 10.1113/jphysiol.2004.063586] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Simultaneous intracellular recordings were made from myenteric neurons and circular muscle (CM) cells in isolated, stretched segments of guinea-pig distal colon. We have shown previously that maintained stretch generates a repetitive and coordinated discharge of ascending excitatory and descending inhibitory neuronal reflex pathways in the distal colon. In the presence of nifedipine (1-2 microm) to paralyse the muscle, simultaneous recordings were made from 25 pairs of AH (after-hyperpolarization)-neurons and CM cells separated by 100-500 microm. In all 25 AH-neurons, proximal process potentials (PPPs) were never recorded, even though at the same time, all recordings from neighbouring CM cells showed an ongoing discharge of inhibitory junction potentials (IJPs) anally, or excitatory junction potentials (EJPs) orally. In fact, 24 of 25 AH-neurons were totally silent, while in one AH-cell, some spontaneous fast excitatory postsynaptic potentials (FEPSPs) were recorded. All 10 electrically silent AH-cells that were injected with neurobiotin were found to be multipolar Dogiel type II neurons. In contrast, when recordings were made from myenteric S-neurons, two distinct electrical patterns of electrical activity were recorded. Recordings from 25 of 48 S-neurons showed spontaneous FEPSPs, the majority of which (22 of 25) showed periods when discrete clusters of FEPSPs (mean duration 88 ms) could be temporally correlated with the onset of EJPs or anal IJPs in the CM. Nine S-neurons were electrically quiescent. The second distinct electrical pattern in 14 S-neurons consisted of bursts, or prolonged trains of action potentials, which could be reduced to proximal process potentials (PPPs) in six of these 14 neurons during membrane hyperpolarization. Unlike FEPSPs, PPPs were resistant to a low Ca(2+)-high Mg(2+) solution and did not change in amplitude during hyperpolarizing pulses. Mechanosensory S-neurons were found to be uniaxonal or pseudounipolar filamentous neurons, with morphologies consistent with interneurons. No slow EPSPs were ever recorded from AH- or S-type neurons when IJPs or EJPs occurred in the CM. In summary, we have identified a population of mechanosensory S-neurons in the myenteric plexus of the distal colon which appear to be largely stretch sensitive, rather than muscle-tension sensitive, since they generate ongoing trains of action potentials in the presence of nifedipine. No evidence was found to suggest that in paralysed preparations, the repetitive firing in ascending excitatory or descending inhibitory nerve pathways was initiated by myenteric AH-neurons, or slow synaptic transmission.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
196
|
Brehmer A, Croner R, Dimmler A, Papadopoulos T, Schrödl F, Neuhuber W. Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. Auton Neurosci 2004; 112:49-59. [PMID: 15233930 DOI: 10.1016/j.autneu.2004.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/01/2004] [Accepted: 03/16/2004] [Indexed: 11/18/2022]
Abstract
Pseudouni- or multiaxonal Dogiel type II neurons are the intrinsic primary afferent (sensory) neurons (IPANs) in the guinea pig small intestine. Our aim was to decipher the chemical code of human myenteric type II neurons and to establish their putative vertical projections, i.e., from the myenteric plexus to the submucosa/mucosa. Additionally, we tried to distinguish them chemically from uniaxonal, dendritic type V neurons displaying, at first glance, similar shapes, i.e., smoothly contoured cell bodies with several long processes. Wholemount preparations of the myenteric plexus were immunohistochemically double or triple stained for neurofilaments (NF) and one or two of the following peptides: calbindin, calretinin (CR), calcitonin gene-related peptide (CGRP), somatostatin (SOM) and substance P (SP). In each triple stained wholemount three counts were conducted: (1) NF-positive pseudouni- or multiaxonal (type II) neurons including their reactivities for the above peptides, (2) uniaxonal or NF-negative neurons displaying coreactivities for the above peptides and (3) NF-reactive type V neurons taking into account their reactivities for the above markers. Additionally, type II neurons, which had an axon leading into (disrupted) interconnecting strands towards the submucosa were counted and somal areas of types II and V neurons were measured. The majority of myenteric type II neurons displayed coreactivities for SOM/CR (89.6%), SOM/SP (86.6%) and SP/CR (81.6%), respectively. A minority of type II neurons was positive for CGRP or calbindin. A small population with type III morphology (uniaxonal, long and slender dendrites) displayed the same coreactivities as type II neurons. In contrast, not one single type V neuron was coreactive for SOM/CR, SOM/SP or SP/CR. Out of 627 type II neurons counted in six wholemounts, 84 type II neurons displayed an axon which could be followed into disrupted interconnecting strands indicating a vertical projection pattern. Somal areas of type II neurons were twice as big as those of type V neurons (904+/-210 versus 449+/-110 microm(2)). In conclusion, most human myenteric type II neurons contain SOM, SP and CR. We suggest they are the human IPANs. Type V neurons are both morphologically and chemically distinctly different from type II neurons and may represent descending interneurons. Further studies have to decipher the type-specific chemical code of type II neurons distinguishing them also from type III neurons.
Collapse
Affiliation(s)
- Axel Brehmer
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, Erlangen D-91054, Germany.
| | | | | | | | | | | |
Collapse
|
197
|
Galligan JJ, North RA. Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. Neurogastroenterol Motil 2004; 16 Suppl 1:64-70. [PMID: 15066008 DOI: 10.1111/j.1743-3150.2004.00478.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are many cell surface receptors expressed by neurones in the enteric nervous system (ENS). Ligand-gated ion channels are an important class of receptors expressed by enteric neurones. This review will focus on nicotinic acetylcholine receptors (nAChRs) and P2X receptors for ATP, as these receptors contribute to fast synaptic transmission in identified pathways in the ENS. There are multiple subunit proteins that compose nAChRs and P2X receptors in the nervous system. Functional and pharmacological studies indicate that the predominant class of nAChR mediating fast synaptic transmission in enteric neurones is composed of alpha3 and beta4 subunits. P2X receptors mediating fast synaptic excitation are predominately P2X2 homomeric receptors.
Collapse
Affiliation(s)
- J J Galligan
- Department of Pharmacology and Toxicology and the Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
198
|
Lecci A, Capriati A, Maggi CA. Tachykinin NK2 receptor antagonists for the treatment of irritable bowel syndrome. Br J Pharmacol 2004; 141:1249-63. [PMID: 15037522 PMCID: PMC1574903 DOI: 10.1038/sj.bjp.0705751] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/12/2004] [Accepted: 02/19/2004] [Indexed: 01/15/2023] Open
Abstract
Tachykinin NK2 receptors are expressed in the gastrointestinal tract of both laboratory animals and humans. Experimental data indicate a role for these receptors in the regulation of intestinal motor functions (both excitatory and inhibitory), secretions, inflammation and visceral sensitivity. In particular, NK2 receptor stimulation inhibits intestinal motility by activating sympathetic extrinsic pathways or NANC intramural inhibitory components, whereas a modulatory effect on cholinergic nerves or a direct effect on smooth muscle account for the NK2 receptor-mediated increase in intestinal motility. Accordingly, selective NK2 receptor antagonists can reactivate inhibited motility or decrease inflammation- or stress-associated hypermotility. Intraluminal secretion of water is increased by NK2 receptor agonists via a direct effect on epithelial cells, and this mechanism is active in models of diarrhoea since selective antagonists reverse the increase in faecal water content in these models. Hyperalgesia in response to intraluminal volume signals is possibly mediated through the stimulation of NK2 receptors located on peripheral branches of primary afferent neurones. NK2 receptor antagonists reduce the hyper-responsiveness that occurs following intestinal inflammation or application of stressful stimuli to animals. Likewise, NK2 receptor antagonists reduce intestinal tissue damage induced by chemical irritation of the intestinal wall or lumen. In healthy volunteers, the selective NK2 antagonist nepadutant reduced the motility-stimulating effects and irritable bowel syndrome-like symptoms triggered by intravenous infusion of neurokinin A, and displayed other characteristics that could support its use in patients. It is concluded that blockade of peripheral tachykinin NK2 receptors should be considered as a viable mechanism for decreasing the painful symptoms and altered bowel habits of irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Alessandro Lecci
- Clinical Research Department, Menarini Ricerche via Sette Santi 1, 50131 Florence, Italy.
| | | | | |
Collapse
|
199
|
Abstract
The enteric nervous system regulates intestinal motility. It contains intrinsic sensory neurones, several types of interneurones and excitatory and inhibitory motor neurones. This review summarizes our knowledge of motor neurones and interneurones in simple motility reflex pathways (ascending and descending excitation, descending inhibition) and it focuses on guinea-pig ileum. Excitatory circular muscle motor neurones contain choline acetyltransferase (ChAT) and tachykinins and project orally 0.5-10 mm. They transmit via muscarinic acetylcholine receptors and tachykinins acting at NK1 and NK2 receptors. Inhibitory circular muscle motor neurones contain nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP), project anally up to 25 mm and transmit via ATP, nitric oxide and/or VIP. Ascending interneurones project up to 10 mm orally and contain ChAT and tachykinins. They transmit to each other via ACh at nicotinic receptors (nAChR), but to excitatory motor neurones via both nAChR and NK3 receptors. There are at least three types of descending interneurones and one transmits to inhibitory motor neurones via ATP acting at P2X receptors. NOS-containing descending interneurones receive input via P2Y receptors from other interneurones. Transmission to and from the other descending interneurones (ChAT/5-HT, ChAT/somatostatin) is yet to be characterized.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
200
|
Sanger GJ. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain. Br J Pharmacol 2004; 141:1303-12. [PMID: 15023866 PMCID: PMC1574901 DOI: 10.1038/sj.bjp.0705742] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.
Collapse
Affiliation(s)
- Gareth J Sanger
- Gastrointestinal Research Department, Neurology-Gastroenterology CEDD, GlaxoSmithKline, Harlow, Essex, CM19 5AW, UK.
| |
Collapse
|