151
|
Chandika P, Heo SY, Kim TH, Oh GW, Kim GH, Kim MS, Jung WK. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int J Biol Macromol 2020; 164:2329-2357. [DOI: 10.1016/j.ijbiomac.2020.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
|
152
|
Hajiabbas M, Alemzadeh I, Vossoughi M. Hybrid silk fibroin–gelatin nanofibrous sheet for drug delivery and regenerative medicine: In‐vitro characterization and controlled release of simvastatin/protein. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maryam Hajiabbas
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| |
Collapse
|
153
|
Electrospinning of PVA-carboxymethyl cellulose nanofibers for flufenamic acid drug delivery. Int J Biol Macromol 2020; 163:1780-1786. [PMID: 32971166 DOI: 10.1016/j.ijbiomac.2020.09.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
A prominent medical application of nanotechnology is represented in drug delivery. In this work, carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) were used for producing CMC/PVA aqueous-based nanofibers loaded with flufenamic acid (FFA) as a drug containing amine groups. The CMC/PVA solutions with 90/10, 80/20, 70/30, 60/40 and 50/50 ratios were considered for electrospinning. Two integration methods were studied for loading FFA on the nanofibers during the electrospinning process. The characterization techniques of SEM, AFM, fluorescence microscopy and FT-IR spectroscopy were used to study the produced nanofibers, indicating a uniform distribution of FFA throughout the samples. The resulting nanofibers were formed in a diameter range of 176-285 nm and exhibited a 5 h degradation time in the PBS buffer solution. A standard diagram of drug loading was obtained for the samples. The drug release pattern was examined using a dialysis tube method. UV-visible spectroscopy revealed a time-dependent drug release behavior in CMC/PVA/FFA nanofibers where a sharp release occurred over the first 20 min. However, a prolonged release time of 10 h was achieved using a cross-linker (EDC).
Collapse
|
154
|
Alonso-González M, Corral-González A, Felix M, Romero A, Martin-Alfonso J. Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging. Int J Biol Macromol 2020; 162:913-921. [DOI: 10.1016/j.ijbiomac.2020.06.217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 01/16/2023]
|
155
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
156
|
Caro‐Briones R, García‐Pérez BE, Báez‐Medina H, San Martín‐Martínez E, Martínez‐Mejía G, Jiménez‐Juárez R, Martínez‐Gutiérrez H, Corea M. Influence of monomeric concentration on mechanical and electrical properties of poly(styrene‐
co
‐acrylonitrile) and poly(styrene‐
co
‐acrylonitrile/acrylic acid) yarns electrospun. J Appl Polym Sci 2020. [DOI: 10.1002/app.49166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rubén Caro‐Briones
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco Ciudad de México México
| | - Blanca Estela García‐Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas Ciudad de México México
| | - Héctor Báez‐Medina
- Centro de Investigación en ComputaciónInstituto Politécnico Nacional, Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo Ciudad de México México
| | - Eduardo San Martín‐Martínez
- Centro de Investigación en Ciencia Aplicada y Tecnología AvanzadaInstituto Politécnico Nacional Ciudad de México México
| | - Gabriela Martínez‐Mejía
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas Ciudad de México México
| | - Rogelio Jiménez‐Juárez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas Ciudad de México México
| | - Hugo Martínez‐Gutiérrez
- Centro de Nanociencias y Micro‐NanotecnologíasInstituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco Ciudad de México México
| | - Mónica Corea
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco Ciudad de México México
| |
Collapse
|
157
|
Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45673-45701. [PMID: 32937068 DOI: 10.1021/acsami.0c12410] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), Cidade Universitária, 58.051-900, João Pessoa, Paraiba, Brazil
| | - Juliano E Oliveira
- Department of Engineering, Federal University of Lavras (UFLA), 37200-900, Lavras, Minas Gerais, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
158
|
Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020; 8:5804-5823. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, peptide/protein drugs have attracted considerable attention owing to their superior targeting and therapeutic effect and fewer side effects compared with chemical drugs. Oral administration modality with enhanced patient compliance is increasingly being recognized as an ideal route for peptide/protein delivery. However, the limited permeation efficiency and low oral bioavailability of peptide/protein drugs significantly hinder therapeutic advances. To address these problems, various nano and microscale delivery platforms have been developed, which offer significant advantages in oral peptide/protein delivery. In this review, we briefly introduce the transport mechanisms of oral peptide/protein delivery and the primary barriers to this delivery process. We also highlight the recent advances in various nano and microscale delivery platforms designed for oral peptide/protein delivery. We then summarize the existing strategies used in these delivery platforms to improve the oral bioavailability and permeation efficiency of peptide/protein therapeutics. Finally, we discuss the major challenges faced when nano and microscale systems are used for oral peptide/protein delivery. This review is expected to provide critical insight into the design and development of oral peptide/protein delivery systems with significant therapeutic advances.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | |
Collapse
|
159
|
Xue J, Wu T, Qiu J, Rutledge S, Tanes ML, Xia Y. Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002031. [PMID: 33343274 PMCID: PMC7743995 DOI: 10.1002/adfm.202002031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 05/05/2023]
Abstract
A simple method based upon masked electrospray is reported for directly generating both unidirectional and bidirectional density gradients of biomacromolecular particles on uniaxially aligned nanofibers. The method has been successfully applied to different types of biomacromolecules, including collagen and a mixture of collagen and fibronectin or laminin, to suit different types of applications. Collagen particles in a unidirectional or bidirectional gradient are able to promote the linear migration of bone marrow stem cells or NIH-3T3 fibroblasts along the direction of increasing particle density. In the case of particles made of a mixture of collagen and fibronectin, their deposition in a bidirectional gradient promotes the migration of Schwann cells from two opposite sides toward the center, matching the scenario in peripheral nerve repair. As for a mixture of collagen and laminin, the particles in a unidirectional gradient promote the extension of neurites from embryonic chick dorsal root ganglion in the direction of increasing particle density. Taken together, the scaffolds featuring a combination of uniaxially aligned nanofibers and biomacromolecular particles in density gradient can be applied to a range of biological studies and biomedical applications.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sarah Rutledge
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Michael L Tanes
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
160
|
Zhu Y, Liu S, Feng C, Liu C, Wang Z, Yu K, Wang J, Zeng X. The Delivery Materials with Chemotherapy Drugs for Treatment of the Positive Margin in Solid Tumors. Tissue Eng Part A 2020; 27:536-548. [PMID: 32762299 DOI: 10.1089/ten.tea.2020.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The positive surgical margins in solid tumors has been a disturbing issue for clinicians. Chemotherapy is an important method to deal with the positive margin. However, systemic chemotherapy is required for long-term administration and has great side effects on health, which cause great pain to the patients. Local administration of slow-release materials provides an opportunity to improve the situation. In this study, we utilized electrospinning technology to create the drug sustained-release materials with nanofibrous structure, which were made from polylactic acid and a certain proportion of chemotherapy drugs (gemcitabine and cisplatin). In vitro release behavior of the drug sustained-release materials were explored by the high-performance liquid chromatography. The antitumor efficacy of the drug sustained-release materials was preliminarily verified in prostate cancer and breast cancer in vitro. Through animal models of breast cancer, the drug sustained-release materials in the treatment of the positive margin has been well documented in vivo, and we also found that the drug sustained-release materials could definitely reduce the liver damage and myelosuppression compared with systemic chemotherapy. In summary, the experimental results showed that the local administration of the drug sustained-release materials could effectively inhibit the growth of the positive incision margins and definitely reduce the partial side effects associated with systemic chemotherapy.
Collapse
Affiliation(s)
- Yunpeng Zhu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiliang Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiang Feng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixian Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Yu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyong Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
161
|
Li H, Cheng F, Li W, Cao X, Wang Z, Wang M, Robledo-Lara JA, Liao J, Chávez-Madero C, Hassan S, Xie J, Trujillo-de Santiago G, Álvarez MM, He J, Zhang YS. Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication 2020; 12:045027. [PMID: 32945271 DOI: 10.1088/1758-5090/abb11e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a method for expanding microchannel-embedded paper devices using a precisely controlled gas-foaming technique for the generation of volumetric tissue models in vitro. We successfully fabricated hollow, perfusable microchannel patterns contained in a densely entangled network of bacterial cellulose nanofibrils using matrix-assisted sacrificial three-dimensional printing, and demonstrated the maintenance of their structural integrity after gas-foaming-enabled expansion in an aqueous solution of NaBH4. The resulting expanded microchannel-embedded paper devices showed multilayered laminar structures with controllable thicknesses as a function of both NaBH4 concentration and expansion time. With expansion, the thickness and porosity of the bacterial cellulose network were significantly increased. As such, cellular infiltration was promoted comparing to as-prepared, non-expanded devices. This simple technique enables the generation of truly volumetric, cost-effective human-based tissue models, such as vascularized tumor models, for potential applications in preclinical drug screening and personalized therapeutic selection.
Collapse
Affiliation(s)
- Hongbin Li
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, United States of America. College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, People's Republic of China. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
163
|
Gao S, Liu Y, Jiang J, Li X, Zhao L, Fu Y, Ye F. Encapsulation of thiabendazole in hydroxypropyl-β-cyclodextrin nanofibers via polymer-free electrospinning and its characterization. PEST MANAGEMENT SCIENCE 2020; 76:3264-3272. [PMID: 32378331 DOI: 10.1002/ps.5885] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Thiabendazole (TBZ) is a poorly water-soluble benzimidazole fungicide. However, the water solubility of TBZ can be significantly enhanced by inclusion complexation with cyclodextrins. In this study, a thiabendazole/hydroxypropyl-β-cyclodextrin (TBZ/HPβCD) complex was synthesized and electrospinning was performed to produce a TBZ/HPβCD nanofibrous (TBZ/HPβCD-NF) complex that improved water solubility and antifungal activity. RESULTS The formation of TBZ/HPβCD-NF was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and nuclear magnetic resonance. The morphology of TBZ/HPβCD-NF was studied by scanning electron microscopy. A phase solubility experiment showed that HPβCD exerted a great solubilization effect on TBZ, and TBZ/HPβCD-NF had better antifungal activity compared to that of TBZ alone. CONCLUSIONS In summary, the solid fungicidal nanodispersion prepared in the present study is a new type of formulation that can enhance the water solubility of TBZ. This formulation, which demonstrated potential as a new fast dissolving formulation type with increased efficacy, is expected to be conducive to the sustainable development of agriculture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Jingyu Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Xiaoming Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Lixia Zhao
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
164
|
Maharjan B, Kaliannagounder VK, Jang SR, Awasthi GP, Bhattarai DP, Choukrani G, Park CH, Kim CS. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111056. [DOI: 10.1016/j.msec.2020.111056] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022]
|
165
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
166
|
Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
167
|
Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020; 326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Electrospinning has emerged as most viable approach for the fabrication of nanofibers with several beneficial features that are essential to various applications ranging from environment to biomedicine. The electrospun nanofiber based drug delivery systems have shown tremendous advancements over the controlled and sustained release complemented from their high surface area, tunable porosity, mechanical endurance, offer compatible environment for drug encapsulation, biocompatibility, high drug loading and tailorable release characteristics. The dosage formulation of poorly water-soluble drugs often faces several challenges including complete dissolution with maximum therapeutic efficiency over a short period of time especially through oral administration. In this context, challenges associated with the dosage formulation of poorly-water soluble drugs can be addressed through combining the beneficial features of electrospun nanofibers. This review describes major developments progressed in the preparation of electrospun nanofibers based "fast dissolving" drug delivery systems by employing variety of polymers, drug molecules and encapsulation approaches with primary focus on oral delivery. Furthermore, the review also highlights current scientific challenges and provide an outlook with regard to future prospectus.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| | - Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
168
|
Karakaş CY, Özçimen D. A novel approach to production of Chlorella protothecoides oil-loaded nanoparticles via electrospraying method: Modeling of critical parameters for particle sizing. Biotechnol Appl Biochem 2020; 68:659-668. [PMID: 32592598 DOI: 10.1002/bab.1977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/20/2020] [Indexed: 11/11/2022]
Abstract
Bioactive compounds in algae have chain rings that protect the tissue from chemical damage and disease symptoms. In addition, algal bioactive agents have the ability to stimulate the immune system, protective and therapeutic effects against many diseases, including various types of cancers, coronary heart disease, premature aging, and arthritis. These bioactive compounds also have antioxidant, anticoagulant, antiviral, and anti-inflammatory properties. It is very important to encapsulate these algal compounds for preserving bioactive properties. Two of the most efficient methods used for encapsulation are electrospraying and microemulsion techniques. Although electrospraying is a novel technique to produce nanoparticles in recent years, microemulsion is more conventional method compared with electrospraying. In this study, Chlorella protothecoides oil was encapsulated by using sodium alginate and chitosan biopolymers, and the effects of production parameters of electrospraying and microemulsion methods on the particle size and loading efficiency were investigated. Statistical modeling of critical parameters for particle sizing in microemulsion method and electrospraying technique, which is a novel approach to obtain microalgal oil-loaded nanoparticles, was also presented. It was seen that electrospraying is suitable for obtaining smaller nanoparticles (123.9-610 nm), homogeneous distribution, and higher oil loading efficiency (60%-77%) compared with microemulsion method (756.9-1128.2 nm and 57%-73%).
Collapse
Affiliation(s)
- Canan Yağmur Karakaş
- Food Engineering Department, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Esenler, Istanbul, Turkey
| | - Didem Özçimen
- Bioengineering Department, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
169
|
Wen M, Yan H, Shi X, Zhao Y, Wang K, Kong D, Yuan X. Modulation of vascular endothelial cells under shear stress on electrospun membranes containing REDV and microRNA-126. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meiling Wen
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
170
|
Isoda K, Tanaka A, Fuzimori C, Echigoya M, Taira Y, Taira I, Shimizu Y, Akimoto Y, Kawakami H, Ishida I. Toxicity of Gold Nanoparticles in Mice due to Nanoparticle/Drug Interaction Induces Acute Kidney Damage. NANOSCALE RESEARCH LETTERS 2020; 15:141. [PMID: 32617798 PMCID: PMC7332653 DOI: 10.1186/s11671-020-03371-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials are innovative materials with many useful properties, but there is concern regarding their many unknown effects on living organisms. Gold nanoparticles are widely used as industrial materials because of their excellent properties. The potential biological hazards of gold nanoparticles are unknown, and thus, here we examined the in vivo effects of gold nanoparticles 10, 50, and 100 nm in diameter (GnP10, GnP50, and GnP100, respectively) and their interactions with drugs in mice to clarify their safety in mammals. Cisplatin, paraquat, and 5-aminosalicylic acid cause side-effect damage to the liver and kidney in mice. No hepatotoxicity or nephrotoxicity was observed when any of the gold nanoparticles alone were administered via the tail vein. In contrast, co-administration of GnP-10 with cisplatin, paraquat, or 5-aminosalicylic acid caused side-effect damage to the kidney. This suggests that gold nanoparticles with a particle size of 10 nm are potentially nephrotoxic due to their interaction with drugs.
Collapse
Affiliation(s)
- Katsuhiro Isoda
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan.
| | - Anju Tanaka
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Chisaki Fuzimori
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Miyuki Echigoya
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yuichiro Taira
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Ikuko Taira
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yoshimi Shimizu
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Isao Ishida
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| |
Collapse
|
171
|
Hugenberg NR, Dong L, Cooper JA, Corr DT, Oberai AA. Characterization of Spatially Graded Biomechanical Scaffolds. J Biomech Eng 2020; 142:071010. [PMID: 31913457 DOI: 10.1115/1.4045905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 07/25/2024]
Abstract
Advances in fabrication have allowed tissue engineers to better mimic complex structures and tissue interfaces by designing nanofibrous scaffolds with spatially graded material properties. However, the nonuniform properties that grant the desired biomechanical function also make these constructs difficult to characterize. In light of this, we developed a novel procedure to create graded nanofibrous scaffolds and determine the spatial distribution of their material properties. Multilayered nanofiber constructs were synthesized, controlling spatial gradation of the stiffness to mimic the soft tissue gradients found in tendon or ligament tissue. Constructs were characterized using uniaxial tension testing with digital image correlation (DIC) to measure the displacements throughout the sample, in a noncontacting fashion, as it deformed. Noise was removed from the displacement data using principal component analysis (PCA), and the final denoised field served as the input to an inverse elasticity problem whose solution determines the spatial distribution of the Young's modulus throughout the material, up to a multiplicative factor. Our approach was able to construct, characterize, and determine the spatially varying moduli, in four electrospun scaffolds, highlighting its great promise for analyzing tissues and engineered constructs with spatial gradations in modulus, such as those at the interfaces between two disparate tissues (e.g., myotendinous junction, tendon- and ligament-to-bone entheses).
Collapse
Affiliation(s)
- Nicholas R Hugenberg
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Li Dong
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712
| | - James A Cooper
- Musculoskeletal & Translational Tissue Engineering Research (MATTER), Philadelphia PA 19150
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Assad A Oberai
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
172
|
Martins A, Reis RL, Neves NM. Biofunctional nanostructured systems for regenerative medicine. Nanomedicine (Lond) 2020; 15:1545-1549. [PMID: 32576102 DOI: 10.2217/nnm-2020-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
173
|
Bonadies I, Di Cristo F, Valentino A, Peluso G, Calarco A, Di Salle A. pH-Responsive Resveratrol-Loaded Electrospun Membranes for the Prevention of Implant-Associated Infections. NANOMATERIALS 2020; 10:nano10061175. [PMID: 32560209 PMCID: PMC7353298 DOI: 10.3390/nano10061175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
To date, the implant-associated infections represent a worldwide challenge for the recently reported bacterial drug resistance that can lead to the inefficacy or low efficacy of conventional antibiotic therapies. Plant polyphenolic compounds, including resveratrol (RSV), are increasingly gaining consensus as valid and effective alternatives to antibiotics limiting antibiotic resistance. In this study, electrospun polylactic acid (PLA) membranes loaded with different concentrations of RSV are synthesized and characterized in their chemical, morphological, and release features. The obtained data show that the RSV release rate from the PLA-membranes is remarkably higher in acidic conditions than at neutral pH. In addition, a change in pH from neutral to slightly acidic triggers a significant increase in the RSV release. This behavior indicates that the PLA-RSV membranes can act as drug reservoir when the environmental pH is neutral, starting to release the bioactive molecules when the pH decreases, as in presence of oral bacterial infection. Indeed, our results demonstrate that PLA-RSV2 displays a significant antibacterial and antibiofilm activity against two bacterial strains, Pseudomonas aeruginosa PAO1, and Streptococcus mutans, responsible for both acute and chronic infections in humans, thus representing a promising solution for the prevention of the implant-associated infections.
Collapse
Affiliation(s)
- Irene Bonadies
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy;
| | - Francesca Di Cristo
- Elleva Pharma S.R.L. Via Pietro Castellino, 111, 80131 Naples, Italy; (F.D.C.); (A.V.)
| | - Anna Valentino
- Elleva Pharma S.R.L. Via Pietro Castellino, 111, 80131 Naples, Italy; (F.D.C.); (A.V.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (G.P.); (A.D.S.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (G.P.); (A.D.S.)
- Correspondence:
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (G.P.); (A.D.S.)
| |
Collapse
|
174
|
Li Z, Mei S, Dong Y, She F, Li Y, Li P, Kong L. Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery-A Critical Review. Pharmaceutics 2020; 12:pharmaceutics12060522. [PMID: 32521627 PMCID: PMC7355603 DOI: 10.3390/pharmaceutics12060522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Nanofibrous biomaterials have huge potential for drug delivery, due to their structural features and functions that are similar to the native extracellular matrix (ECM). A wide range of natural and polymeric materials can be employed to produce nanofibrous biomaterials. This review introduces the major natural and synthetic biomaterials for production of nanofibers that are biocompatible and biodegradable. Different technologies and their corresponding advantages and disadvantages for manufacturing nanofibrous biomaterials for drug delivery were also reported. The morphologies and structures of nanofibers can be tailor-designed and processed by carefully selecting suitable biomaterials and fabrication methods, while the functionality of nanofibrous biomaterials can be improved by modifying the surface. The loading and releasing of drug molecules, which play a significant role in the effectiveness of drug delivery, are also surveyed. This review provides insight into the fabrication of functional polymeric nanofibers for drug delivery.
Collapse
Affiliation(s)
- Zhen Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
| | - Shunqi Mei
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
- Correspondence: (S.M.); (L.K.)
| | - Yajie Dong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
| | - Fenghua She
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
| | - Yongzhen Li
- Key laboratory of Tropical Crop Products Processing, Ministry of Agriculture and Rural Affairs, Agriculture Products Processing Research Institute, CATAS, Zhanjiang 524001, China; (Y.L.); (P.L.)
| | - Puwang Li
- Key laboratory of Tropical Crop Products Processing, Ministry of Agriculture and Rural Affairs, Agriculture Products Processing Research Institute, CATAS, Zhanjiang 524001, China; (Y.L.); (P.L.)
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- Correspondence: (S.M.); (L.K.)
| |
Collapse
|
175
|
Rostamabadi H, Assadpour E, Tabarestani HS, Falsafi SR, Jafari SM. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
176
|
Chen S, John JV, McCarthy A, Carlson MA, Li X, Xie J. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications. APPLIED PHYSICS REVIEWS 2020; 7:021406. [PMID: 32494338 PMCID: PMC7233601 DOI: 10.1063/1.5144808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
The ability to transform two-dimensional (2D) structures into three-dimensional (3D) structures leads to a variety of applications in fields such as soft electronics, soft robotics, and other biomedical-related fields. Previous reports have focused on using electrospun nanofibers due to their ability to mimic the extracellular matrix. These studies often lead to poor results due to the dense structures and small poor sizes of 2D nanofiber membranes. Using a unique method of combining innovative gas-foaming and molding technologies, we report the rapid transformation of 2D nanofiber membranes into predesigned 3D scaffolds with biomimetic and oriented porous structure. By adding a surfactant (pluronic F-127) to poly(ε-caprolactone) (PCL) nanofibers, the rate of expansion is dramatically enhanced due to the increase in hydrophilicity and subsequent gas bubble stability. Using this novel method together with molding, 3D objects with cylindrical, hollow cylindrical, cuboid, spherical, and irregular shapes are created. Interestingly, these 3D shapes exhibit anisotropy and consistent pore sizes throughout entire object. Through further treatment with gelatin, the scaffolds become superelastic and shape-recoverable. Additionally, gelatin-coated, cube-shaped scaffolds were further functionalized with polypyrrole coatings and exhibited dynamic electrical conductivity during cyclic compression. Cuboid-shaped scaffolds have been demonstrated to be effective for compressible hemorrhage in a porcine liver injury model. In addition, human neural progenitor cells can be uniformly distributed and differentiated into neurons throughout the cylinder-shaped nanofiber scaffolds, forming ordered 3D neural tissue constructs. Taken together, the approach presented in this study is very promising in the production of pre-molded 3D nanofiber scaffolds for many biomedical applications.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Mark A. Carlson
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198 and Department of Surgery, Omaha VA Medical Center, Omaha, Nebraska 68105, USA
| | - Xiaowei Li
- Department of Neurological Sciences and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
177
|
Kato M, Athumi Y, Yamaguchi M, Date H, Yamamoto E, Murayama S, Karasawa K. Trimethylammonium modification of a polymer-coated monolith column for rapid and simultaneous analysis of nanomedicines. J Chromatogr A 2020; 1617:460826. [PMID: 31902575 DOI: 10.1016/j.chroma.2019.460826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Drug-containing nanoparticles (nanomedicine) are ideal targeted-drug-delivery systems. However, methods for the simultaneous analysis of the drug within the nanoparticle and free drug in a short time are rather limited. In this study, we developed a polymer-modified monolithic column with cationic groups (trimethylammonium) for the simultaneous analysis of the drug within the nanoparticle and the free drug. The use of the acrylamide group was determined as the optimum connecting group, and the optimum concentration of the modifier was 6%. The prepared column retained the drug within the nanoparticle by anion exchange, and its elution time was controlled by the ionic concentration (tris(hydroxymethyl)aminomethane, Tris) of the mobile phase. The separation of two typical nanomedicines was studied on the prepared column. For DOXIL and Abraxane, the drugs within the nanoparticle were well separated from the free drugs, on the developed column. The developed polymer-coated monolithic column with trimethylammonium modification is expected to enable the rapid analysis of various nanomedicines.
Collapse
Affiliation(s)
- Masaru Kato
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Yukino Athumi
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Misa Yamaguchi
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Haruka Date
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Shuhei Murayama
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koji Karasawa
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
178
|
Comparative Analysis on Dielectric Gold and Aluminium Triangular Junctions: Impact of Ionic Strength and Background Electrolyte by pH Variations. Sci Rep 2020; 10:6783. [PMID: 32321969 PMCID: PMC7176652 DOI: 10.1038/s41598-020-63831-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Field of generating a surface thin film is emerging broadly in sensing applications to obtain the quick and fast results by forming the high-performance sensors. Incorporation of thin film technologies in sensor development for the better sensing could be a promising way to attain the current requirements. This work predominantly delineates the fabrication of the dielectric sensor using two different sensing materials (Gold and Aluminium). Conventional photolithography was carried out using silicon as a base material and the photo mask of the dielectric sensor was designed by AutoCAD software. The physical characterization of the fabricated sensor was done by Scanning Electron Microscope, Atomic Force Microscope, High Power Microscope and 3D-nano profiler. The electrical characterization was performed using Keithley 6487 picoammeter with a linear sweep voltage of 0 to 2 V at 0.01 V step voltage. By pH scouting, I-V measurements on the bare sensor were carried out, whereby the gold electrodes conducts a least current than aluminium dielectrodes. Comparative analysis with pH scouting reveals that gold electrode is suitable under varied ionic strengths and background electrolytes, whereas aluminium electrodes were affected by the extreme acid (pH 1) and alkali (pH 12) solutions.
Collapse
|
179
|
Ariga K, Ishii M, Mori T. 2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry 2020; 26:6461-6472. [PMID: 32159246 DOI: 10.1002/chem.202000789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Soft and flexible two-dimensional (2D) systems, such as liquid interfaces, would have much more potentials in dynamic regulation on nano-macro connected functions. In this Minireview article, we focus especially on dynamic motional functions at liquid dynamic interfaces as 2D material systems. Several recent examples are selected to be explained for overviewing features and importance of dynamic soft interfaces in a wide range of action systems. The exemplified research systems are mainly classified into three categories: (i) control of microobjects with motional regulations; (ii) control of molecular machines with functions of target discrimination and optical outputs; (iii) control of living cells including molecular machine functions at cell membranes and cell/biomolecular behaviors at liquid interface. Sciences on soft 2D media with motional freedom and their nanoarchitectonics constructions will have increased importance in future technology in addition to popular rigid solid 2D materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Ishii
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Pure and Applied Chemistry, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
180
|
Study on the release behaviors of berberine hydrochloride based on sandwich nanostructure and shape memory effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110541. [DOI: 10.1016/j.msec.2019.110541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 01/21/2023]
|
181
|
Asghari S, Rezaei Z, Mahmoudifard M. Electrospun nanofibers: a promising horizon toward the detection and treatment of cancer. Analyst 2020; 145:2854-2872. [PMID: 32096500 DOI: 10.1039/c9an01987a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the increase in the number of cancer patients, because of environmental parameters, high stress, low immunity, etc., there is an urgent need to develop cost-effective sensors for early targeted detection of cancerous cells with adequate selectivity and efficiency. Early disease diagnosis is important, as it is necessary to start treatments before disease progression. On the other hand, we need new, more efficient cancer treatment approaches with minimized side effects, more biocompatibility, and easy disposal. Nanobiotechnology is a field that can assist in developing new diagnostic and treatment approaches, specifically in fatal cancers. Herein, a study on the different applications of nanofibers in cancer detection as well as its treatment has been done. Here, a very brief survey on the main structure of biosensors and their different categories has been conducted and will precede the discussion of the study to serve as a reference and guide the reader's understanding.
Collapse
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | |
Collapse
|
182
|
Wen M, Zhi D, Wang L, Cui C, Huang Z, Zhao Y, Wang K, Kong D, Yuan X. Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6863-6875. [PMID: 31958006 DOI: 10.1021/acsami.9b19452] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Globally growing problems related to cardiovascular diseases lead to a considerable need for synthetic vascular grafts. For small-caliber vascular prosthesis, it remains essential to fulfill rapid endothelialization, inhibit intimal hyperplasia, and prevent calcification for keeping patency. To modulate vascular regeneration, herein, we developed a bioactive trilayered tissue-engineered vascular graft encapsulating both microRNA-126 and microRNA-145 in the fibrous inner and middle layers, respectively. In vitro cell activities demonstrated that the trilayered electrospun membranes had significant biological advantages in enhanced growth and intracellular nitric oxide production of vascular endothelial cells, modulation of phenotypes of vascular smooth muscle cells (SMCs), and restraint of calcium deposition through fast-releasing microRNA-126 and slow-releasing microRNA-145. Histological and immunofluorescent analyses of in vivo implantation in a rat abdominal aorta interposition model suggested that the dual-microRNA-loading trilayered electrospun graft exerted a positive effect on accelerating endothelialization, improving contractile SMC regeneration, and promoting normal extracellular matrix formation. Meanwhile, the local bioactivity of microRNA-126 and microRNA-145 in the trilayered vascular graft could regulate inflammation and depress calcification possibly by facilitating transformation of macrophages into the anti-inflammatory M2 phenotype. These findings indicated that the trilayered electrospun graft by local delivery of dual microRNAs could be possibly used as a bioactive substitute for replacement of artificial small-caliber blood vessels.
Collapse
Affiliation(s)
- Meiling Wen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Lina Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Ce Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Ziqi Huang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
183
|
Wang P, Li M, Wei D, Ding M, Tao L, Liu X, Zhang F, Tao N, Wang X, Gao M, Zhong J. Electrosprayed Soft Capsules of Millimeter Size for Specifically Delivering Fish Oil/Nutrients to the Stomach and Intestines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6536-6545. [PMID: 31940164 DOI: 10.1021/acsami.9b23623] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contrasting to the traditional centimeter-sized soft capsules that are difficult to swallow or micro/nanometer-sized soft capsules that suffer from limited loading capacity for fish oil/nutrients and lowered stability, the millimeter-sized soft capsules with good enough stability could be a potential solution in solving these problems. Herein, we report millimeter-sized soft core-shell capsules of 0.42-1.85 mm with an inner diameter of 0.36-1.75 mm, for fish oil/nutrients, obtained through an electrospray approach upon optimization of different fabrication parameters such as applied voltage, sodium alginate concentration, shell/core feeding rate ratio, times of feeding rate, and types of coaxial needles. Further in vitro and in vivo studies reveal that the resulting soft capsules were apparently weakened and became mechanically destructive in the simulated small intestine solution and were totally destroyed in the simulated small intestine solution if they were first treated in the simulated stomach solution but not in the simulated stomach solution, which makes the millimeter-sized capsules useful as containers for specific delivery of fish oils and lipophilic nutrients to the stomach and intestines with excellent in vivo bioavailability (>90%). The whole fabrication approach is very facile with no complicated polymer modification and formulations involved, which endows the resulting soft capsules with broad application prospect in food and drug industries.
Collapse
Affiliation(s)
- Panpan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Min Li
- Department of Medical Image , 960 Hospital of PLA (Jinan Military General Hospital) , No. 25, Shifan Road , Jinan City , Shandong Province 250031 , People's Republic of China
| | - Daixu Wei
- College of Life Sciences and Medicine , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Lina Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xunwei Liu
- Department of Medical Image , 960 Hospital of PLA (Jinan Military General Hospital) , No. 25, Shifan Road , Jinan City , Shandong Province 250031 , People's Republic of China
| | - Fengping Zhang
- Sichuan Willtest Technology Co., Ltd., Chengdu, Sichuan Province, China,Key Laboratory of Nutritional and Healty Cultivation of Aquatic-Product and Livestock-Poultry, Ministry of Agriculture and Rural Affairs of the People's Republic of China , Tongwei Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| |
Collapse
|
184
|
Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4343-4357. [PMID: 31909967 DOI: 10.1021/acsami.9b22062] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix, while the nanofiller is based on graphene oxide to enhance the printability and cell proliferation. Our results show that the incorporation of graphene oxide into the hydrogel inks considerably improved the shape fidelity and resolution of 3D printed scaffolds because of a faster viscosity recovery post extrusion of the ink. Moreover, the nanocomposite inks produce anisotropic threads after the 3D printing process because of the templating of the graphene oxide liquid crystal. The in vitro proliferation assay of human adipose tissue-derived mesenchymal stem cells (hADMSCs) shows that bioconjugated scaffolds present higher cell proliferation than pure alginate, with the nanocomposites presenting the highest values at long times. Live/Dead assay otherwise displays full viability of hADMSCs adhered on the different scaffolds at day 7. Notably, the scaffolds produced with nanocomposite hydrogel inks were able to guide the cell proliferation following the direction of the 3D printed threads. In addition, the bioconjugated alginate hydrogel matrix induced chondrogenic differentiation without exogenous pro-chondrogenesis factors as concluded from immunostaining after 28 days of culture. This high cytocompatibility and chondroinductive effect toward hADMSCs, together with the improved printability and anisotropic structures, makes these nanocomposite hydrogel inks a promising candidate for cartilage tissue engineering based on 3D printing.
Collapse
Affiliation(s)
- Felipe Olate-Moya
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , 8370456 Santiago , Chile
| | - Lukas Arens
- Institute for Technical Chemistry and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76131 Karlsruhe , Germany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76131 Karlsruhe , Germany
| | - Miguel Angel Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Monforte de Lemos, 3-5 , 28029 Madrid , Spain
- Department of Materials Science, EEBE , Technical University of Catalonia (UPC) , d'Eduard Maristany 16 , 08019 Barcelona , Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Monforte de Lemos, 3-5 , 28029 Madrid , Spain
- Department of Materials Science, EEBE , Technical University of Catalonia (UPC) , d'Eduard Maristany 16 , 08019 Barcelona , Spain
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , 8370456 Santiago , Chile
- Millennium Nuclei in Soft Smart Mechanical Metamaterials , Beauchef 851 , 8370456 Santiago , Chile
| |
Collapse
|
185
|
Bil M, Kijeńska-Gawrońska E, Głodkowska-Mrówka E, Manda-Handzlik A, Mrówka P. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110675. [PMID: 32204102 DOI: 10.1016/j.msec.2020.110675] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Integration of multiple features including shape memory, biodegradation, and sustained drug delivery in a single material offers the opportunity to significantly improve the abilities of implantable devices for cardiovascular system regeneration. Two types of shape memory polyurethanes (SMPUs): PU-PLGA and PU-PLLA/PEG differing in soft segments composition that comprising blends of various biodegradable polyols, i.e. D,l-lactide-co-glycolide diol (o-PLGA), poly(e-caprolactone) diols (o-PCL) with various molecular weights, poly-l-lactide diol (o-PLLA), polyethylene glycol (o-PEG) were synthesized and further utilized to electrospun nanofibrous - rapamycin (Rap) delivery system. Structure characterization by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DCS) and hydrophilicity measurements were performed to gain more insights on the influence of the particular units of the softs segments on the transition temperature (Ttrans), shape recovery, degradation profile, and drug release kinetics. In vitro study in PBS solution revealed that incorporation of o-PLGA segments to SMPUs is favorable over o-PEG as increased shape memory performance was observed. Moreover, presence of PLGA in PU-PLGA gave more predictable degradation profile in comparison to PU-PLLA/PEG system. Human Cardiac Fibroblasts (HCF) viability tests in vitro confirmed that the amount of Rap released from evaluated PU-PLLA/PEG/Rap and PU-PLGA/Rap drug delivery systems was sufficient to inhibit cells growth on the surface of the tested materials.
Collapse
Affiliation(s)
- Monika Bil
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02-507 Warsaw, Poland.
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02-507 Warsaw, Poland
| | - Eliza Głodkowska-Mrówka
- Department of Experimental Hematology, Department of Laboratory Medicine, Institute of Hematology and Transfusion Medicine, 5 Indiry Gandhi Str, 02-776 Warsaw, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Piotr Mrówka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland
| |
Collapse
|
186
|
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020; 378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.
Collapse
Affiliation(s)
- Viviana Negri
- Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Jesús Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, c/Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
187
|
dos Santos DM, Chagas PA, Leite IS, Inada NM, de Annunzio SR, Fontana CR, Campana-Filho SP, Correa DS. Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. Int J Biol Macromol 2020; 142:521-534. [DOI: 10.1016/j.ijbiomac.2019.09.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
|
188
|
Liu Y, Yang Y, Qu Y, Li YQ, Zhao M, Li W. Mild lipid extraction and anisotropic cell membrane penetration of α-phase phosphorene carbide nanoribbons by molecular dynamics simulation studies. Phys Chem Chem Phys 2020; 22:23268-23275. [DOI: 10.1039/d0cp04145a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-PC penetrates the interior of membrane efficiently only along its zigzag direction rather than its armchair direction.
Collapse
Affiliation(s)
- Yang Liu
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Yanmei Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Shandong Normal University
| | - Yuanyuan Qu
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Yong-Qiang Li
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Weifeng Li
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| |
Collapse
|
189
|
Fang X, Guo H, Zhang W, Fang H, Li Q, Bai S, Zhang P. Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration. J Mater Chem B 2020; 8:10593-10601. [DOI: 10.1039/d0tb00779j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide is currently used in peripheral nerve engineering but has certain limitations, such as cytotoxicity and lack of electrical conductivity, both of which are crucial in regulating nerve-associated cell behaviors.
Collapse
Affiliation(s)
- Xingxing Fang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- Department of Spine Surgery
| | - Haichang Guo
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Wei Zhang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| | - Haoming Fang
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Qicheng Li
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| | - Shulin Bai
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Peixun Zhang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| |
Collapse
|
190
|
Hamedani Y, Chakraborty S, Sabarwal A, Pal S, Bhowmick S, Balan M. Novel Honokiol-eluting PLGA-based scaffold effectively restricts the growth of renal cancer cells. PLoS One 2020; 15:e0243837. [PMID: 33332399 PMCID: PMC7746163 DOI: 10.1371/journal.pone.0243837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Renal Cell Carcinoma (RCC) often becomes resistant to targeted therapies, and in addition, dose-dependent toxicities limit the effectiveness of therapeutic agents. Therefore, identifying novel drug delivery approaches to achieve optimal dosing of therapeutic agents can be beneficial in managing toxicities and to attain optimal therapeutic effects. Previously, we have demonstrated that Honokiol, a natural compound with potent anti-tumorigenic and anti-inflammatory effects, can induce cancer cell apoptosis and inhibit the growth of renal tumors in vivo. In cancer treatment, implant-based drug delivery systems can be used for gradual and sustained delivery of therapeutic agents like Honokiol to minimize systemic toxicity. Electrospun polymeric fibrous scaffolds are ideal candidates to be used as drug implants due to their favorable morphological properties such as high surface to volume ratio, flexibility and ease of fabrication. In this study, we fabricated Honokiol-loaded Poly(lactide-co-glycolide) (PLGA) electrospun scaffolds; and evaluated their structural characterization and biological activity. Proton nuclear magnetic resonance data proved the existence of Honokiol in the drug loaded polymeric scaffolds. The release kinetics showed that only 24% of the loaded Honokiol were released in 24hr, suggesting that sustained delivery of Honokiol is feasible. We calculated the cumulative concentration of the Honokiol released from the scaffold in 24hr; and the extent of renal cancer cell apoptosis induced with the released Honokiol is similar to an equivalent concentration of direct application of Honokiol. Also, Honokiol-loaded scaffolds placed directly in renal cell culture inhibited renal cancer cell proliferation and migration. Together, we demonstrate that Honokiol delivered through electrospun PLGA-based scaffolds is effective in inhibiting the growth of renal cancer cells; and our data necessitates further in vivo studies to explore the potential of sustained release of therapeutic agents-loaded electrospun scaffolds in the treatment of RCC and other cancer types.
Collapse
Affiliation(s)
- Yasaman Hamedani
- Department of Mechanical Engineering, Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, United States of America
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Akash Sabarwal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Soumitro Pal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Sankha Bhowmick
- Department of Mechanical Engineering, Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, United States of America
- * E-mail: (MB); (SB)
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail: (MB); (SB)
| |
Collapse
|
191
|
Scale‐up of electrospinning technology: Applications in the pharmaceutical industry. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1611. [DOI: 10.1002/wnan.1611] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/25/2023]
|
192
|
Nazari K, Mehta P, Arshad MS, Ahmed S, Andriotis EG, Singh N, Qutachi O, Chang MW, Fatouros DG, Ahmad Z. Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches. Pharmaceutics 2019; 12:pharmaceutics12010002. [PMID: 31861296 PMCID: PMC7022274 DOI: 10.3390/pharmaceutics12010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres.
Collapse
Affiliation(s)
- Kazem Nazari
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Prina Mehta
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Muhammad Sohail Arshad
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Shahabuddin Ahmed
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Eleftherios G. Andriotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Neenu Singh
- The School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Omar Qutachi
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, UK;
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Correspondence: (D.G.F.); (Z.A.)
| | - Zeeshan Ahmad
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
- Correspondence: (D.G.F.); (Z.A.)
| |
Collapse
|
193
|
Liu Y, Miao YL, Qin F, Cao C, Yu XL, Wu YH, Wang TL, Xu RG, Zhao L, Wu F, Zhang ZC, Yang JM, Yang Y, Xie X, Zhang LM, Deng FL. Electrospun Poly (Aspartic Acid)-Modified Zein Nanofibers for Promoting Bone Regeneration. Int J Nanomedicine 2019; 14:9497-9512. [PMID: 31819446 PMCID: PMC6898722 DOI: 10.2147/ijn.s224265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023] Open
Abstract
Background Critical-sized bone defects raise great challenges. Zein is of interest for bone regeneration, but it has limited ability to stimulate cell proliferation. In this regard, a poly (aspartic acid) (PAsp)-zein hybrid is promising, as PAsp can promote rat bone marrow stromal cell (rBMSCs) proliferation and osteogenic differentiation. This research aimed to develop electrospun PAsp-modified zein nanofibers to realize critical-sized bone defects repair. Methods Three groups of PAsp-modified zein nanofibers were prepared, they were PAsp grafting percentages of 0% (zein), 5.32% (ZPAA-1), and 7.63% (ZPAA-2). Using rBMSCs as in vitro cell model and SD rats as in vivo animal model, fluorescence staining, SEM, CCK-8, ALP, ARS staining, μCT and histological analysis were performed to verify the biological and osteogenic activities for PAsp-modified zein nanofibers. Results As the Asp content increased from 0% to 7.63%, the water contact angle decreased from 129.8 ± 2.3° to 105.5 ± 2.5°. SEM, fluorescence staining and CCK-8 assay showed that ZPAA-2 nanofibers had a superior effect on rBMSCs spreading and proliferation than did zein and ZPAA-1 nanofibers, ALP activity and ARS staining showed that ZPAA-2 can improve rBMSCs osteogenic differentiation. In vivo osteogenic activities was evaluated by μCT analysis, HE, Masson and immunohistochemical staining, indicating accelerated bone formation in ZPAA-2 SD rats after 4 and 8 weeks treatment, with a rank order of ZPAA-2 > ZPAA-1 > zein group. Moreover, the semiquantitative results of the Masson staining revealed that the maturity of the new bone was higher in the ZPAA-2 group than in the other groups. Conclusion Electrospun PAsp-modified zein can provide a suitable microenvironment for osteogenic differentiation of rBMSCs, as well as for bone regeneration; the optimal membrane appears to have a PAsp grafting percentage of 7.63%.
Collapse
Affiliation(s)
- Yun Liu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Ying-Ling Miao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Qin
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Cen Cao
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Lin Yu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yu-Han Wu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tian-Lu Wang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Ruo-Gu Xu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Liu Zhao
- School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Fan Wu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zheng-Chuan Zhang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jia-Min Yang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yang Yang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Xie
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fei-Long Deng
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
194
|
Li R, McCarthy A, Zhang YS, Xie J. Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering. ADVANCED BIOSYSTEMS 2019; 3:e1900137. [PMID: 32648683 PMCID: PMC7735424 DOI: 10.1002/adbi.201900137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Indexed: 12/21/2022]
Abstract
Repairing large tissue defects often represents a great challenge in clinics due to issues regarding lack of donors, mismatched sizes, irregular shapes, and immune rejection. 3D printed scaffolds are attractive for growing cells and producing tissue constructs because of the intricate control over pore size, porosity, and geometric shape, but the lack of biomimetic surface nanotopography and limited biomolecule presenting capacity render them less efficacious in regulating cell responses. Herein, a facile method for coating 3D printed scaffolds with electrospun nanofiber segments is reported. The surface morphology of modified 3D scaffolds changes dramatically, displaying a biomimetic nanofibrous structure, while the bulk mechanical property, pore size, and porosity are not significantly compromised. The short nanofibers-decorated 3D printed scaffolds significantly promote adhesion and proliferation of pre-osteoblasts and bone marrow mesenchymal stem cells (BMSCs). Further immobilization of bone morphogenetic protein-2 mimicking peptides to nanofiber segments-decorated 3D printed scaffolds show enhanced mRNA expressions of osteogenic markers Runx2, Alp, OCN, and BSP in BMSCs, indicating the enhancement of BMSCs osteogenic differentiation. Together, the combination of 3D printing and electrospinning is a promising approach to greatly expand the functions of 3D printed scaffolds and enhance the efficacy of 3D printed scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Ruiquan Li
- Department of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| |
Collapse
|
195
|
Adeel M, Ma C, Ullah S, Rizwan M, Hao Y, Chen C, Jilani G, Shakoor N, Li M, Wang L, Tsang DCW, Rinklebe J, Rui Y, Xing B. Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: A life cycle study on Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113032. [PMID: 31454581 DOI: 10.1016/j.envpol.2019.113032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Although, health and environmental hazards of Ni are ironclad; however, that of Nickle oxide nanoparticles (NiO-NPs) are still obscure. Therefore, impact of NiO-NPs exposure (0, 5, 50, 200, 500 and 1000 mg kg-1 soil) on the earthworm (Eisenia fetida) survival (at 28th day), reproduction (at 56th day), histopathology, ultrastructures, antioxidant enzymes and oxidative DNA damage was appraised in full life cycle study. Lower concentrations of NiO-NPs (5, 50 and 200) did not influence the survival, reproduction and growth rate of adult worms significantly. However, reproduction reduced by 40-50% with 500 and 1000 mg kg-1 exposure, which also induced oxidative stress leading to DNA damage in earthworms. Ultrastructural observation and histology of earthworms exposed to higher NiO-NPs concentrations revealed abnormalities in epithelium layer, microvilli and mitochondria with underlying pathologies of epidermis and muscles, as well as adverse effects on the gut barrier. To the best of our knowledge, this is the first study unveiling the adverse effects of NiO-NPs on a soil invertebrate (Eisenia fetida). Our findings clue towards looking extensively into the risks of NiO-NPs on soil organisms bearing agricultural and environmental significance.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Sana Ullah
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Noman Shakoor
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
196
|
Sayin S, Ozdemir E, Acar E, Ince GO. Multifunctional one-dimensional polymeric nanostructures for drug delivery and biosensor applications. NANOTECHNOLOGY 2019; 30:412001. [PMID: 31347513 DOI: 10.1088/1361-6528/ab2e2c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in nanotechnology in the last decades have paved the way for significant achievements in diagnosis and treatment of various diseases. Different types of functional nanostructures have been explored and utilized as tools for addressing the challenges in detection or treatment of diseases. In particular, one-dimensional nanostructures hold great promise in theranostic applications due to their increased surface area-to-volume ratios, which allow better targeting, increased loading capacity and improved sensitivity to biomolecules. Stable polymeric nanostructures that are stimuli-responsive, biocompatible and biodegradable are especially preferred for bioapplications. In this review, different synthesis techniques of polymeric one-dimensional nanostructures are explored and functionalization methods of these nanostructures for specific applications are explained. Biosensing and drug delibiovery applications of these nanostructures are presented in detail.
Collapse
Affiliation(s)
- Sezin Sayin
- Materials Science and Nano Engineering, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | | | | | | |
Collapse
|
197
|
Wen M, Zhou F, Cui C, Zhao Y, Yuan X. Performance of TMC-g-PEG-VAPG/miRNA-145 complexes in electrospun membranes for target-regulating vascular SMCs. Colloids Surf B Biointerfaces 2019; 182:110369. [DOI: 10.1016/j.colsurfb.2019.110369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Accepted: 07/14/2019] [Indexed: 12/23/2022]
|
198
|
Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. Int J Pharm 2019; 568:118513. [DOI: 10.1016/j.ijpharm.2019.118513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
|
199
|
Amagat Molas J, Chen M. Injectable PLCL/gelatin core-shell nanofibers support noninvasive 3D delivery of stem cells. Int J Pharm 2019; 568:118566. [DOI: 10.1016/j.ijpharm.2019.118566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/08/2023]
|
200
|
Ko SW, Lee JY, Lee J, Son BC, Jang SR, Aguilar LE, Oh YM, Park CH, Kim CS. Analysis of Drug Release Behavior Utilizing the Swelling Characteristics of Cellulosic Nanofibers. Polymers (Basel) 2019; 11:polym11091376. [PMID: 31438524 PMCID: PMC6780725 DOI: 10.3390/polym11091376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/02/2022] Open
Abstract
It is known that the behavior of a drug released from a supporting carrier is influenced by the surrounding environment and the carrier. In this study, we investigated the drug behavior of a swellable electrospun nanofibrous membrane. Nanofibrous mats with different swelling ratios were prepared by mixing cellulose acetate (CA) and polyurethane (PU). CA has excellent biocompatibility and is capable of high water uptake, while PU has excellent mechanical properties. Paclitaxel (PTX) was the drug of choice for observing drug release behavior, which was characterized by UV-spectroscopy. FE-SEM was used to confirm the morphology of the nanofibrous mats and to measure the average fiber diameters. We observed a noticeable increase in the total volume of the nanofibrous membrane when it was immersed in water. Also, the drug release behavior increased proportionally with increasing swelling rate of the composite nanofibrous mat. Biocompatibility testing of nanofiber materials was confirmed by CCK-8 assay and cell morphology was observed. Based on these results, we propose nanofibrous mats as promising candidates in wound dressing and other drug carrier applications.
Collapse
Affiliation(s)
- Sung Won Ko
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Ji Yeon Lee
- Department of Mechanical Design Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Joshua Lee
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Byeong Cheol Son
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Se Rim Jang
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Young Min Oh
- Department of Neurosurgery, Research institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju 54896, Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea.
- Department of Mechanical Design Engineering, Chonbuk National University, Jeonju 54896, Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 54896, Korea.
- Department of Mechanical Design Engineering, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|