151
|
Singh S, Nguyen H, Michels D, Bazinet H, Matkar PN, Liu Z, Esene L, Adam M, Bugyei‐Twum A, Mebrahtu E, Joseph J, Ehsan M, Chen HH, Qadura M, Singh KK. BReast CAncer susceptibility gene 2 deficiency exacerbates oxidized LDL-induced DNA damage and endothelial apoptosis. Physiol Rep 2020; 8:e14481. [PMID: 32638521 PMCID: PMC7340845 DOI: 10.14814/phy2.14481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/18/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Mutations in the tumor suppressor gene BRCA2 (BReast CAncer susceptibility gene 2) predispose carriers to breast, ovarian, and other cancers. In response to DNA damage, BRCA2 participates in homology-directed DNA damage repair to maintain genome stability. Genome-wide association studies have identified an association between BRCA2 single nucleotide polymorphisms and plasma-lipid levels and lipid deregulation in humans. To date, DNA damage, apoptosis, and lipid deregulation are recognized as central pathways for endothelial dysfunction and atherosclerosis; however, the role of BRCA2 in endothelial dysfunction remains to be elucidated. To determine the role of BRCA2 in endothelial dysfunction, BRCA2 was silenced in human umbilical vein endothelial cells (ECs) and assessed for markers of DNA damage, apoptosis, and endothelial function following oxidized low-density lipoprotein (oxLDL) treatment. OxLDL was found to induce significant reactive oxygen species (ROS) production in BRCA2-silenced ECs. This increase in ROS production was associated with exacerbated DNA damage evidenced by increased expression and activation of DNA double-stranded break (DSB) marker γH2AX and reduced RAD51-foci formation-an essential regulator of DSB repair. Increased DSBs were associated with enhanced expression and activation of pro-apoptotic p53 and significant apoptosis in oxLDL-treated BRCA2-silenced ECs. Loss of BRCA2 in ECs was further associated with oxLDL-induced impaired tube-forming potential and eNOS expression. Collectively, the data reveals, for the first time, a novel role of BRCA2 as a regulator of EC survival and function in the setting of oxLDL treatment in vitro. Additionally, the data provide important clues regarding the potential susceptibility of BRCA2 mutation carriers to endothelial dysfunction, atherosclerosis, and other cardiovascular diseases.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Hien Nguyen
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Anatomy and Cell BiologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - David Michels
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Hannah Bazinet
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Pratiek N. Matkar
- Division of CardiologyKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
| | - Zongyi Liu
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Lilian Esene
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Mohamed Adam
- Division of CardiologyKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
| | - Antoinette Bugyei‐Twum
- Division of CardiologyKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
| | - Elizabeth Mebrahtu
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Jameela Joseph
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Department of BiologyUniversity of Western OntarioLondonONCanada
| | - Mehroz Ehsan
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Hao H. Chen
- Division of CardiologyKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
| | - Mohammad Qadura
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Vascular SurgeryKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoONCanada
- Department of SurgeryUniversity of TorontoTorontoONCanada
| | - Krishna K. Singh
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Anatomy and Cell BiologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Vascular SurgeryKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoONCanada
- Department of SurgeryUniversity of TorontoTorontoONCanada
- Pharmacology and ToxicologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
152
|
Zhang S, Cheng M, Wang Z, Liu Y, Ren Y, Rong S, Wang X. Secoisolariciresinol Diglucoside Exerts Anti-Inflammatory and Antiapoptotic Effects through Inhibiting the Akt/I κB/NF- κB Pathway on Human Umbilical Vein Endothelial Cells. Mediators Inflamm 2020; 2020:3621261. [PMID: 32684834 PMCID: PMC7333043 DOI: 10.1155/2020/3621261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a key regulator in the progression of atherosclerosis (AS) which extremely affects people's health. Secoisolariciresinol diglucoside (SDG), a plant lignan, is relevant to angiogenesis and cardioprotection against ischemia-reperfusion injury and improves vascular disorders. However, the effect of SDG on cardiovascular disorder is not clear. In the present study, we aimed to investigate the effects of SDG on lipopolysaccharide- (LPS-) stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and elucidate the underlying mechanism. The LPS-stimulated HUVEC cellular model was established. The cell viability, the cell tube formation activity, the nitric oxide (NO) release, the levels of inflammatory cytokine interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), the activation of nuclear factor kappa-B (NF-κB) pathway, and the expression of protein kinase B (Akt) were determined using Cell Counting Kit-8, cell tube-formation assay, western blotting, and enzyme-linked immunosorbent assay. Our results revealed that SDG reduces the angiogenic capacity of HUVECs and inhibited LPS-mediated HUVEC injury and apoptosis. In addition, SDG increased NO release and decreased the levels of IL-1β, IL-6, and TNF-α in LPS-treated HUVECs. Meanwhile, SDG inhibited the NF-κB pathway and downregulated Akt expression in LPS-induced HUVECs. Our results indicated that SDG relieves LPS-mediated HUVEC injury by inhibiting the NF-κB pathway which is partly dependent on the disruption of Akt activation. Therefore, SDG exerts its cytoprotective effects in the context of LPS-treated HUVECs via regulation of the Akt/IκB/NF-κB pathway and may be a potential treatment drug for cardiovascular disease.
Collapse
Affiliation(s)
- Shaoyang Zhang
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Meili Cheng
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zhen Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuzhi Liu
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuhua Ren
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Shikuo Rong
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of General Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xue Wang
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
153
|
Hu J, Liu Z, Tong Y, Mei Z, Xu A, Zhou P, Chen X, Tang W, Zhou Z, Xiao Y. Fibroblast Growth Factor 19 Levels Predict Subclinical Atherosclerosis in Men With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:282. [PMID: 32528406 PMCID: PMC7258879 DOI: 10.3389/fendo.2020.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Fibroblast growth factor 19 (FGF19) plays an indispensable role in regulating bile acid, glucose, and lipid metabolism, and alterations of its circulating concentration is associated with the development of type 2 diabetes (T2D). Atherosclerosis is directly related to the death-deriving diabetic macroangiopathy in T2D, yet relationships between FGF19 and atherosclerosis in T2D remain unclear. The aim of this study was to investigate the association of circulating FGF19 levels with the development of subclinical atherosclerosis (subAS) in patients with T2D in a 3-year prospective study. Methods: In the present study, 153 newly diagnosed T2D patients without subAS were recruited at baseline, and 137 of them completed a 3-year follow-up. FGF19 levels were measured in fasting serum samples collected at baseline and the third-year visits. Carotid, femoral, and iliac intima-media thickness (IMT) were detected by high-resolution B-mode ultrasound to determine the presence of subAS. Logistic regression analysis was applied to assess the relationship between serum FGF19 and subAS in patients with T2D. Results: At baseline, serum FGF19 levels were positively correlated with carotid IMT and iliac IMT in men (r = 0.239, P = 0.036; r = 0.309, P = 0.006). At the 3-year follow-up, 25 out of 153 patients developed subAS, and FGF19 levels in men were higher in the subAS group than in the non-subAS group [202.7 (177.9-373.6) vs. 133.4 (85.6-171.3) pg/ml, P = 0.028]. Furthermore, in men, higher baseline levels of FGF19 were independently associated with a greater risk of subAS at year 3 in patients with T2D with an odds ratio (OR) of 4.798 per 1 standard deviation (SD) of the FGF19 concentration [OR = 4.798 (95% CI, 1.680-13.706), P = 0.003]. Baseline FGF19 levels yielded an area under the receiver operating characteristic curve of 0.769 to predict the development of subAS at year 3 in men with T2D. Conclusions: Serum FGF19 levels could help in predicting the development of atherosclerosis in men with T2D.
Collapse
Affiliation(s)
- Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai, China
| | - Yue Tong
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Center of Heart, Brain, Hormone, and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Pengcheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Center of Heart, Brain, Hormone, and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weili Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
154
|
Gou L, Liu G, Ma R, Regmi A, Zeng T, Zheng J, Zhong X, Chen L. High fat-induced inflammation in vascular endothelium can be improved by Abelmoschus esculentus and metformin via increasing the expressions of miR-146a and miR-155. Nutr Metab (Lond) 2020; 17:35. [PMID: 32467714 PMCID: PMC7222555 DOI: 10.1186/s12986-020-00459-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Obesity is associated with chronic inflammation, which contributes to cardiovascular diseases. MicroRNAs (miRNAs) are reported to be involved in vascular inflammation and atherosclerosis. Abelmoschus esculentus (AE) and metformin have been suggested to improve inflammation in vascular system. The aim of this study is to evaluate whether miRNAs are involved in high fat induced endothelial inflammation, and whether AE and metformin improve endothelial inflammation by regulating miRNAs. Methods We established high fat treated rats and human aortic endothelial cells (HAECs). AE and metformin were added to explore their effects on endothelial inflammation induced by high fat and the possible mechanism. Results The vascular inflammatory genes were increased in rats treated with high fat diet. The decreased miR-146a and miR-155 were involved in endothelial inflammation induced by high fat through targeting IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6) and nuclear factor-κB p65 (NF-κB p65), respectively. While AE and metformin could ameliorate the endothelial inflammation by increasing miR-146a and miR-155. Conclusions These results indicate that miR-146a and miR-155 play roles in the high fat induced endothelial inflammation, which could be potential therapeutic targets. AE and metformin can attenuate endothelial inflammation through regulating miR-146a and miR-155.
Collapse
Affiliation(s)
- Luoning Gou
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,2Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Geng Liu
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Rong Ma
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Anita Regmi
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Tianshu Zeng
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyu Zhong
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- 1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Hubei provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
155
|
Holm Nielsen S, Jonasson L, Kalogeropoulos K, Karsdal MA, Reese-Petersen AL, Auf dem Keller U, Genovese F, Nilsson J, Goncalves I. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J Intern Med 2020; 287:493-513. [PMID: 32012358 DOI: 10.1111/joim.13034] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the most common cause of death in industrialized countries. One underlying cause is atherosclerosis, which is a systemic disease characterized by plaques of retained lipids, inflammatory cells, apoptotic cells, calcium and extracellular matrix (ECM) proteins in the arterial wall. The biologic composition of an atherosclerotic plaque determines whether the plaque is more or less vulnerable, that is prone to rupture or erosion. Here, the ECM and tissue repair play an important role in plaque stability, vulnerability and progression. This review will focus on ECM remodelling in atherosclerotic plaques, with focus on how ECM biomarkers might predict plaque vulnerability and outcome.
Collapse
Affiliation(s)
- S Holm Nielsen
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - L Jonasson
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - K Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M A Karsdal
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - U Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - F Genovese
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - J Nilsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - I Goncalves
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
156
|
Chen Q, Zhang Y, Meng Q, Wang S, Yu X, Cai D, Cheng P, Li Y, Bian H. Liuwei Dihuang prevents postmenopausal atherosclerosis and endothelial cell apoptosis via inhibiting DNMT1-medicated ERα methylation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112531. [PMID: 31926314 DOI: 10.1016/j.jep.2019.112531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/13/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The classical and traditional Chinese medicine prescription, Liuwei Dihuang (LWDH), has been commonly used to treat the menopausal syndrome. It has been reported that LWDH could improve estrogen receptor α (ERα) expression to prevent atherosclerosis (AS), while the mechanism of LWDH on regulating ERα expression was still unknown. AIM OF THE STUDY To reveal the mechanism of LWDH on regulating the ERα expression. MATERIALS AND METHODS The protective effect of LWDH on Hcy-induced apoptosis of human umbilical vein endothelial cells (HUVECs) was examined. The expression of ERα and DNA methyltransferases 1 (DNMT1) were detected by Western blot and real-time polymerase chain reaction (RT-PCR). The methylation rate of the ERα gene was assayed by the bisulfite sequencing PCR (BSP). High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) was applied to determine the level of S-Adenosyl methionine (SAM) and S-Adenosyl homocysteine (SAH). In vivo, the ApoE-/- mice were ovariectomized to establish postmenopausal atherosclerosis (AS) model. RESULTS In vitro study showed that LWDH protects HUVECs from Hcy-induced apoptosis. Treatment with LWDH significantly increased the ERα expression and reduced the methylation rate of the ERα gene by inhibiting the DNMT1 expression. The level of main methyl donor SAM and the ration of SAM/SAH were reduced by LWDH. In vivo, LWDH prevented the formation of plaque and reduced the concentration of Hcy. In addition, LWDH upregulated the ERα expression, as well as inhibiting the expression of DNMT1 in atherosclerotic mice. CONCLUSIONS LWDH exerted protective effects on postmenopausal AS mice, and HUVECs treated with Hcy. LWDH increased of ERα expression via inhibiting DNMT1-dependent ERα methylation.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Suyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xichao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Danfeng Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
157
|
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
158
|
Tarbell J, Mahmoud M, Corti A, Cardoso L, Caro C. The role of oxygen transport in atherosclerosis and vascular disease. J R Soc Interface 2020; 17:20190732. [PMID: 32228404 PMCID: PMC7211472 DOI: 10.1098/rsif.2019.0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis and vascular disease of larger arteries are often associated with hypoxia within the layers of the vascular wall. In this review, we begin with a brief overview of the molecular changes in vascular cells associated with hypoxia and then emphasize the transport mechanisms that bring oxygen to cells within the vascular wall. We focus on fluid mechanical factors that control oxygen transport from lumenal blood flow to the intima and inner media layers of the artery, and solid mechanical factors that influence oxygen transport to the adventitia and outer media via the wall's microvascular system-the vasa vasorum (VV). Many cardiovascular risk factors are associated with VV compression that reduces VV perfusion and oxygenation. Dysfunctional VV neovascularization in response to hypoxia contributes to plaque inflammation and growth. Disturbed blood flow in vascular bifurcations and curvatures leads to reduced oxygen transport from blood to the inner layers of the wall and contributes to the development of atherosclerotic plaques in these regions. Recent studies have shown that hypoxia-inducible factor-1α (HIF-1α), a critical transcription factor associated with hypoxia, is also activated in disturbed flow by a mechanism that is independent of hypoxia. A final section of the review emphasizes hypoxia in vascular stenting that is used to enlarge vessels occluded by plaques. Stenting can compress the VV leading to hypoxia and associated intimal hyperplasia. To enhance oxygen transport during stenting, new stent designs with helical centrelines have been developed to increase blood phase oxygen transport rates and reduce intimal hyperplasia. Further study of the mechanisms controlling hypoxia in the artery wall may contribute to the development of therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- John Tarbell
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Marwa Mahmoud
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Andrea Corti
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Luis Cardoso
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Colin Caro
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
159
|
Wang Y, Pan W, Wang Y, Yin Y. The GPR55 antagonist CID16020046 protects against ox-LDL-induced inflammation in human aortic endothelial cells (HAECs). Arch Biochem Biophys 2020; 681:108254. [PMID: 31904362 DOI: 10.1016/j.abb.2020.108254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
Abstract
Atherosclerosis is a commonplace cardiovascular disease which affects most people in old age. While its causes are currently poorly understood, continuous study is being performed in order to elucidate both the pathogenesis and treatment of this insidious disease. Atherosclerosis is presently thought to be linked to several factors such as endothelial dysfunction, monocyte adhesion to the intima of the artery, and increased oxidative stress. Oxidized low-density lipoprotein (ox-LDL), colloquially known as the "bad cholesterol", is known to play a critical role in the previously mentioned atherosclerotic processes. In this study, our goal was to elucidate the role of the lysophospholipid receptor G protein-coupled receptor 55 (GPR55) and its antagonist, the cannabinoid CID16020046, in endothelial dysfunction. While their existence and especially their role in atherosclerosis has only semi-recently been elucidated, a growing body of research has begun to link their interaction to antiatherosclerosis. In our research, we found CID16020046 to have distinct atheroprotective properties such as anti-inflammation, antioxidant, and inhibition of monocyte attachment to endothelial cells. While there was previously a small body of research regarding the potential of cannabinoids to treat or prevent atherosclerosis, studies on the treatment potential of CID16020046 were even fewer. Thus, this study is one of the first to explore the effects of cannabinoids in atherosclerosis. Our findings in the present study provide a strong argument for the use of CID16020046 in the treatment of atherosclerosis as well as a basis for further experimentation using cannabinoids as therapy against atherosclerosis.
Collapse
Affiliation(s)
- Yaowen Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China
| | - Wei Pan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China; Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China.
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, 400010, China.
| |
Collapse
|
160
|
Huang H, Liu X, Chen D, Lu Y, Li J, Du F, Zhang C, Lu L. Melatonin prevents endothelial dysfunction in SLE by activating the nuclear receptor retinoic acid-related orphan receptor-α. Int Immunopharmacol 2020; 83:106365. [PMID: 32172204 DOI: 10.1016/j.intimp.2020.106365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). A substantial proportion of patients with SLE display accelerated endothelial dysfunction, which precedes cardiovascular disease. Melatonin and its nuclear receptor retinoid-related orphan receptor alpha (RORα) have been reported to have some protective effects on the development of atherosclerosis. However, the function of melatonin in SLE-induced endothelial dysfunction and the role that RORα plays are still unknown. In this study, we found that RORα protein expression was decreased in aortas of lupus-prone mice and in human umbilical vein endothelial cells (HUVECs) cultured with medium containing sera of patients with SLE. Melatonin-treated HUVECs showed a decrease of pro-inflammatory mRNAs [interleukin-1beta (IL-1β), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)] under the stimulation of SLE medium. Melatonin increased nitric oxide and antioxidant mRNAs (SOD1, GPX1, and CAT) and downregulated reactive oxygen species (ROS) level in HUVECs, which may subsequently delay endothelial senescence and promote HUVEC proliferation and repair after injury. Melatonin inhibited SLE medium-induced RAW264.7 macrophage migration. HUVECs pretreated with melatonin expressed less adhesion-related proteins (ICAM-1 and VCAM-1); as a result, these cells adhered to fewer peripheral blood monocytes. In addition, we also showed that the protective effects of melatonin on endothelial cells were largely diminished when RORα was knockdown in HUVECs. In conclusion, by targeting the nuclear receptor RORα, melatonin preserves normal functions of endothelium in SLE by its anti-inflammatory, antioxidant, and anti-senescence effects. RORα may have the potential to become a prophylactic or therapeutic target in preventing endothelial dysfunction and atherosclerotic cardiovascular disease in patients with SLE.
Collapse
Affiliation(s)
- Huijing Huang
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuesong Liu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ultrasound, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dandan Chen
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yikang Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Du
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunyan Zhang
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Liangjing Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
161
|
Liu J, Meng Z, Gan L, Guo R, Gao J, Liu C, Zhu D, Liu D, Zhang L, Zhang Z, Xie D, Jiao X, Lau WB, Lopez BL, Christopher TA, Ma X, Cao J, Wang Y. C1q/TNF-related protein 5 contributes to diabetic vascular endothelium dysfunction through promoting Nox-1 signaling. Redox Biol 2020; 34:101476. [PMID: 32122792 PMCID: PMC7327962 DOI: 10.1016/j.redox.2020.101476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Dysregulated adipokine profiles contribute to the pathogenesis of diabetic cardiovascular complications. Endothelial cell (EC) dysfunction, a common pathological alteration in cardiovascular disorders, is exaggerated in diabetes. However, it is unclear whether and how dysregulated adipokines may contribute to diabetic EC dysfunction. METHODS AND RESULTS Serum C1q/TNF-Related Protein 5 (CTRP5) were determined in control/diabetes patients, and control/diabetic mice (high-fat diet, HFD). We observed for the first time that serum total CTRP5 was increased, high molecular weight (HMW) form was decreased, but the globular form (gCTRP5) was significantly increased in diabetic patients. These pathological alterations were reproduced in diabetic mice. To determine the pathological significance of increased gCTRP5 in diabetes, in vivo, ex vivo and in vitro experiments were performed. Diabetic atherosclerosis and EC dysfunction were significantly attenuated by the in vivo administration of CTRP5 neutralization antibody (CTRP5Ab). EC apoptosis was significantly increased in diabetic EC (isolated from HFD animal aorta) or high glucose high lipid (HGHL) cultured HUVECs. These pathological alterations were further potentiated by gCTRP5 and attenuated by CTRP5Ab. Pathway specific discovery-driven approach revealed that Nox1 expression was one of the signaling molecules commonly activated by HFD, HGHL, and gCTRP5. Treatment with CTRP5Ab reversed HFD-induced Nox1 upregulation. Finally, Nox1siRNA was used to determine the causative role of Nox1 in gCTRP5 induced EC apoptosis in diabetes. Results showed that gCTRP5 activated the mitochondrial apoptotic signal of EC in diabetes, which was blocked by the silencing Nox1 gene. CONCLUSION We demonstrated for the first time that gCTRP5 is a novel molecule contributing to diabetic vascular EC dysfunction through Nox1-mediated mitochondrial apoptosis, suggesting that interventions blocking gCTRP5 may protect diabetic EC function, ultimately attenuate diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhijun Meng
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rui Guo
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Jia Gao
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Caihong Liu
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ling Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiangying Jiao
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jimin Cao
- Department of Physiology, Shanxi Medical University, Shanxi, China.
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
162
|
Park JY, Jin SJ, Suh HP, Lee SA, Cho C, Yu J, Hwang JH, Hong JP, Kim YK. The role of age in determining the effects of lipo-PGE1 infusion on immediate arterial maximal flow velocity in patients with diabetes undergoing free flap surgery for lower extremity reconstruction: A prospective observational study. J Plast Reconstr Aesthet Surg 2020; 73:885-892. [PMID: 31924534 DOI: 10.1016/j.bjps.2019.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Diabetes mellitus may have a negative effect on free flap perfusion in patients undergoing reconstructive surgery. Little is known of the effects of lipo-prostaglandin E1 (lipo-PGE1) on flap blood flow in diabetes. This study investigated the effects of lipo-PGE1 on maximal blood flow velocity of the free flap arterial pedicle in patients with diabetes. METHODS This prospective observational study assessed maximal blood flow velocity in the arterial pedicle before and 30 min after infusion of 0.4 μg/h lipo-PGE1 in 40 patients with diabetes who received a free flap for lower extremity reconstruction. Multivariate logistic regression analysis was performed to determine whether age, hemoglobin A1c concentration, duration of diabetes, and flap type were significantly associated with increased maximal blood flow velocity after lipo-PGE1 infusion or not. RESULTS The maximal blood flow velocity of the free flap did not differ significantly before and 30 min after lipo-PGE1 infusion. Multivariate logistic regression analysis showed that age <65 years was the only independent factor associated with increased maximal blood flow velocity after lipo-PGE1 infusion (odds ratio = 5.344; p = 0.022). CONCLUSION Assessments of all patients with diabetes undergoing free flap surgery, when age was not taken into consideration, found that lipo-PGE1 did not significantly increase the maximal blood flow velocity of the free flap arterial pedicle. However, when age was taken into consideration, lipo-PGE1 increased blood flow velocity in patients <65 years old, suggesting that age influences the effect of lipo-PGE1 on the blood flow velocity.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Seok-Joon Jin
- Department of Pain, Shinshinplus Clinic, 20, Byeongmogan-ro, Manan-gu, Anyang-si, Gyeonggi-do 14001, Republic of Korea
| | - Hyunsuk Peter Suh
- Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sang-A Lee
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Changhun Cho
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jihion Yu
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jai-Hyun Hwang
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Joon Pio Hong
- Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Young-Kug Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
| |
Collapse
|
163
|
Lay AJ, Coleman PR, Formaz-Preston A, Ting KK, Roediger B, Weninger W, Schwartz MA, Vadas MA, Gamble JR. ARHGAP18: A Flow-Responsive Gene That Regulates Endothelial Cell Alignment and Protects Against Atherosclerosis. J Am Heart Assoc 2020; 8:e010057. [PMID: 30630384 PMCID: PMC6497359 DOI: 10.1161/jaha.118.010057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Vascular endothelial cell (EC) alignment in the direction of flow is an adaptive response that protects against aortic diseases, such as atherosclerosis. The Rho GTPases are known to regulate this alignment. Herein, we analyze the effect of ARHGAP18 on the regulation of EC alignment and examine the effect of ARHGAP18 deficiency on the development of atherosclerosis in mice. Methods and Results We used in vitro analysis of ECs under flow conditions together with apolipoprotein E−/−Arhgap18−/− double‐mutant mice to study the function of ARHGAP18 in a high‐fat diet–induced model of atherosclerosis. Depletion of ARHGAP18 inhibited the alignment of ECs in the direction of flow and promoted inflammatory phenotype, as evidenced by disrupted junctions and increased expression of nuclear factor‐κB and intercellular adhesion molecule‐1 and decreased endothelial nitric oxide synthase. Mice with double deletion in ARHGAP18 and apolipoprotein E and fed a high‐fat diet show early onset of atherosclerosis, with lesions developing in atheroprotective regions. Conclusions ARHGAP18 is a protective gene that maintains EC alignments in the direction of flow. Deletion of ARHGAP18 led to loss of EC ability to align and promoted atherosclerosis development.
Collapse
Affiliation(s)
- Angelina J Lay
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Paul R Coleman
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Ann Formaz-Preston
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Ka Ka Ting
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Ben Roediger
- 2 Immune Imaging Program, Centenary Institute The University of Sydney Newtown Australia
| | - Wolfgang Weninger
- 2 Immune Imaging Program, Centenary Institute The University of Sydney Newtown Australia
| | - Martin A Schwartz
- 3 Department of Internal Medicine Yale Cardiovascular Research Center Yale University New Haven CT
| | - Mathew A Vadas
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Jennifer R Gamble
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| |
Collapse
|
164
|
|
165
|
|
166
|
Königstein K, Klenk C, Appenzeller-Herzog C, Hinrichs T, Schmidt-Trucksäss A. Impact of sedentary behavior on large artery structure and function in children and adolescents: a systematic review. Eur J Pediatr 2020; 179:17-27. [PMID: 31773330 DOI: 10.1007/s00431-019-03497-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 01/25/2023]
Abstract
Sedentary behavior contributes to increased atherosclerotic risk in adults. Whether or not this can be extended to pediatric populations is unclear. This systematic review assessed associations of sedentary behavior with large artery structure and function in pediatric populations. MEDLINE, EMBASE, CENTRAL, and Web of Science were searched from the earliest available date to 31st of December 2018. Analyses of associations of sedentary behavior with large artery structure or function in a pediatric (sub-)population were included, adhering to the PRISMA guidelines. The protocol was published in advance on PROSPERO (CRD42018112996). Study quality and quality of evidence were analyzed using NHLBI Study Quality assessment tools and GRADE. Six observational studies found no association of exposure and outcome variables, and one had contradicting results. One intervention found reduced flow-mediated dilation after 3 h of uninterrupted sitting. Exposure and outcome measures were highly heterogeneous. Study quality was low to moderate. Quality of evidence was very low or low in the observational studies and high in the intervention.Conclusion: In pediatric populations, current evidence is limited and of low quality about how acute effects of sedentary behavior translate into early vascular aging and the long-term development of vascular dysfunction and atherosclerotic risk. Future studies should emphasize a careful choice of the adequate type and measurement site of a biomarker for large artery structure and function as well as conduct a detailed assessment of sedentary behavior patterns.Trial registration: PROSPERO Registration Number: CRD42018112996What is known: • An independent association of sedentary behavior and biomarkers of large artery structure and function has been demonstrated in adults. • In children, sedentary behavior is directly associated with classical cardiovascular risk factors like elevated blood glucose levels, insulin resistance, high blood pressure, obesity, and elevated blood lipids.What is new: • Currently, only few studies of low quality in children and adolescents provide limited evidence about how acute effects of sedentary behavior translate into early vascular aging and the long-term development of atherosclerosis. • The type and measurement site of vascular biomarker need to be chosen carefully, and a detailed assessment of sedentary behavior patterns is important to minimize the methodological bias.
Collapse
Affiliation(s)
- Karsten Königstein
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Birsstr. 320 B, 4052, Basel, Switzerland.
| | - Christopher Klenk
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Birsstr. 320 B, 4052, Basel, Switzerland
| | | | - Timo Hinrichs
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Birsstr. 320 B, 4052, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Birsstr. 320 B, 4052, Basel, Switzerland.
| |
Collapse
|
167
|
Atherosclerosis and the Capillary Network; Pathophysiology and Potential Therapeutic Strategies. Cells 2019; 9:cells9010050. [PMID: 31878229 PMCID: PMC7016600 DOI: 10.3390/cells9010050] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis and associated ischemic organ dysfunction represent the number one cause of mortality worldwide. While the key drivers of atherosclerosis, arterial hypertension, hypercholesterolemia and diabetes mellitus, are well known disease entities and their contribution to the formation of atherosclerotic plaques are intensively studied and well understood, less effort is put on the effect of these disease states on microvascular structure an integrity. In this review we summarize the pathological changes occurring in the vascular system in response to prolonged exposure to these major risk factors, with a particular focus on the differences between these pathological alterations of the vessel wall in larger arteries as compared to the microcirculation. Furthermore, we intend to highlight potential therapeutic strategies to improve microvascular function during atherosclerotic vessel disease.
Collapse
|
168
|
Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci 2019; 20:E5694. [PMID: 31739395 PMCID: PMC6888164 DOI: 10.3390/ijms20225694] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be.
Collapse
Affiliation(s)
- Armand Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Koen Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Abraham Kroon
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
169
|
Knutsson A, Björkbacka H, Dunér P, Engström G, Binder CJ, Nilsson AH, Nilsson J. Associations of Interleukin-5 With Plaque Development and Cardiovascular Events. JACC Basic Transl Sci 2019; 4:891-902. [PMID: 31909299 PMCID: PMC6939009 DOI: 10.1016/j.jacbts.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Experimental studies have suggested an atheroprotective role of interleukin (IL)-5 through the stimulation of natural immunoglobulin M antibody expression. In the present study we show that there are no associations between baseline levels of IL-5 and risk for development of coronary events or stroke during a 15.7 ± 6.3 years follow-up of 696 subjects randomly sampled from the Malmö Diet and Cancer study. However, presence of a plaque at the carotid bifurcation was associated with lower IL-5 and IL-5 deficiency resulted in increased plaque development at sites of oscillatory blood flow in Apoe -/- mice suggesting a protective role for IL-5 in plaque development.
Collapse
Affiliation(s)
- Anki Knutsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
170
|
Chistiakov DA, Kashirskikh DA, Khotina VA, Grechko AV, Orekhov AN. Immune-Inflammatory Responses in Atherosclerosis: The Role of Myeloid Cells. J Clin Med 2019; 8:jcm8111798. [PMID: 31717832 PMCID: PMC6912749 DOI: 10.3390/jcm8111798] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 01/28/2023] Open
Abstract
Inflammation plays a key role in the initiation and progression of atherosclerosis and can be caused by multiple agents, including increased concentration of circulating low-density lipoprotein (LDL) cholesterol. Areas of the arterial wall affected by atherosclerosis are enriched with lymphocytes and dendritic cells (DCs). Atherosclerotic plaques contain a variety of proinflammatory immune cells, such as macrophages, DCs, T cells, natural killer cells, neutrophils and others. Intracellular lipid accumulation in atherosclerotic plaque leads to formation of so-called foam cells, the cytoplasm of which is filled with lipid droplets. According to current understanding, these cells can also derive from the immune cells that engulf lipids by means of phagocytosis. Macrophages play a crucial role in the initial stages of atherogenesis by engulfing oxidized LDL (oxLDL) in the intima that leads to their transformation to foam cells. Dying macrophages inside the plaque form a necrotic core that further aggravates the lesion. Proinflammatory DCs prime differentiation of naïve T cells to proinflammatory Th1 and Th17 subsets. In this review, we discuss the roles of cell types of myeloid origin in atherosclerosis-associated inflammation.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
| | - Dmitry A. Kashirskikh
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
| | - Victoriya A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (D.A.C.); (D.A.K.); (V.A.K.)
- Institute of Human Morphology, Tsyrupa st. 3, 117418 Moscow, Russia
- Correspondence: ; Tel.: +7-903-169-08-66
| |
Collapse
|
171
|
Zhang W, Yang H, Zhu L, Luo Y, Nie L, Li G. Role of EGFR/ErbB2 and PI 3K/AKT/e-NOS in Lycium barbarum polysaccharides Ameliorating Endothelial Dysfunction Induced by Oxidative Stress. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1523-1539. [PMID: 31645123 DOI: 10.1142/s0192415x19500782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lycium barbarum polysaccharides (LBP) are the major ingredients of wolfberry. In this study, we investigated the role of LBP in endothelial dysfunction induced by oxidative stress and the underlying mechanisms using thoracic aortic endothelial cells of rat (RAECs) as a model. We found that Ang II inhibits cell viability of RAECs with 10-6mol/L of Ang II treatment for 24h most potential (P<0.05), the level of reactive oxygen species (ROS) is increased by Ang II treatment (P<0.01), and the expression of Occludin and Zonula occludens-1 (ZO-1) is decreased by Ang II treatment (P<0.05). However, preincubation of cells with LBP could inhibit the changes caused by Ang II, LBP increased cell viability (P<0.05), decreased the level of ROS (P<0.01), and up-regulated the expression of Occludin (P<0.05) and ZO-1. In addition, Ang II treatment increased the expression of EGFR and p-EGFR (Try1172) and which can be inhibited by LBP. On the contrary, expression of ErbB2, p-ErbB2 (Try1248), PI3K, p-e-NOS (Ser1177) (P<0.05), and p-AKT (Ser473) (P<0.05) was inhibited by Ang II treatment and which can be increased by LBP. Treatment of the cells with inhibitors showed that the regulation of p-e-NOS and p-AKT expression by Ang II and LBP can be blocked by PI3K inhibitor wortmannin but not EGFR and ErbB2 inhibitor AC480. Taken together, our results suggested that LBP plays a critical role in maintaining the integrality of blood vessel endothelium through reduced production of ROS via regulating the activity of EGFR, ErbB2, PI3K/AKT/e-NOS, and which may offer a novel therapeutic option in the management of endothelial dysfunction.
Collapse
Affiliation(s)
- Wenjuan Zhang
- School of Public Health and Management, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China
| | - Huifang Yang
- School of Public Health and Management, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China
| | - Lingqin Zhu
- School of Public Health and Management, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China
| | - Yan Luo
- School of Basic Medical Science, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China
| | - Lihong Nie
- School of Basic Medical Science, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China
| | - Guanghua Li
- School of Basic Medical Science, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China.,School of Public Health and Management, Ningxia Medical University, Shengli Street 1160, Yinchuan 750004, P. R. China
| |
Collapse
|
172
|
Patsouras MD, Vlachoyiannopoulos PG. Evidence of epigenetic alterations in thrombosis and coagulation: A systematic review. J Autoimmun 2019; 104:102347. [PMID: 31607428 DOI: 10.1016/j.jaut.2019.102347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Thrombosis in the context of Cardiovascular disease (CVD) affects mainly the blood vessels supplying the heart, brain and peripheries and it is the leading cause of death worldwide. The pathophysiological thrombotic mechanisms are largely unknown. Heritability contributes to a 30% of the incidence of CVD. The remaining variation can be explained by life style factors such as smoking, dietary and exercise habits, environmental exposure to toxins, and drug usage and other comorbidities. Epigenetic variation can be acquired or inherited and constitutes an interaction between genes and the environment. Epigenetics have been implicated in atherosclerosis, ischemia/reperfusion damage and the cardiovascular response to hypoxia. Epigenetic regulators of gene expression are mainly the methylation of CpG islands, histone post translational modifications (PTMs) and microRNAs (miRNAs). These epigenetic regulators control gene expression either through activation or silencing. Epigenetic control is mostly dynamic and can potentially be manipulated to prevent or reverse the uncontrolled expression of genes, a trait that renders them putative therapeutic targets. In the current review, we systematically studied and present available data on epigenetic alterations implicated in thrombosis derived from human studies. Evidence of epigenetic alterations is observed in several thrombotic diseases such as Coronary Artery Disease and Cerebrovascular Disease, Preeclampsia and Antiphospholipid Syndrome. Differential CpG methylation and specific histone PTMs that control transcription of prothrombotic and proinflammatory genes have also been associated with predisposing factors of thrombosis and CVD, such us smoking, air pollution, hypertriglyceridemia, occupational exposure to particulate matter and comorbidities including cancer, Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease. These clinical observations are further supported by in vitro experiments and indicate that epigenetic regulation affects the pathophysiology of thrombotic disorders with potential diagnostic or therapeutic utility.
Collapse
Affiliation(s)
- M D Patsouras
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - P G Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
173
|
Phospholipid packing defects and oxysterols in atherosclerosis: Dietary prevention and the French paradox. Biochimie 2019; 167:145-151. [PMID: 31586653 DOI: 10.1016/j.biochi.2019.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
The research literature on atherosclerosis includes findings investigating the atherosclerotic effect of oxysterols, which are the oxidation products of cholesterol; and the literature on oxysterols refers to mechanisms by which oxysterols cause phospholipid packing defects in cell membranes. This review synthesizes these two bodies of research findings to describe how oxysterols cause phospholipid packing defects within the membranes of vascular endothelial cells, potentially increasing cell permeability of low-density lipoprotein cholesterol which may lead to atheroma formation. Exogenous sources of oxysterols are provided by dietary intake of animal-based foods that contain cholesterol oxidation products. This review proposes an explanation for the anti-atherosclerotic effect of plant-based dietary patterns, which is attributed to restriction or avoidance of dietary oxysterol intake from animal-based foods. Furthermore, raw-milk cheeses play an important role in the traditional French diet-low oxysterol content in these unheated foods may contribute to the French paradox, in which reduced coronary heart disease is associated with a diet high in saturated fat and cholesterol.
Collapse
|
174
|
Libby P, Hansson GK. From Focal Lipid Storage to Systemic Inflammation: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 74:1594-1607. [PMID: 31537270 PMCID: PMC6910128 DOI: 10.1016/j.jacc.2019.07.061] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Concepts of atherogenesis have evolved considerably with time. Early animal experiments showed that a cholesterol-rich diet could induce fatty lesion formation in arteries. The elucidation of lipoprotein metabolism ultimately led to demonstrating the clinical benefits of lipid lowering. The view of atheromata as bland accumulations of smooth muscle cells that elaborated an extracellular matrix that could entrap lipids then expanded to embrace inflammation as providing pathways that could link risk factors to atherogenesis. The characterization of leukocyte adhesion molecules and their control by proinflammatory cytokines, the ability of chemokines to recruit leukocytes, and the identification of inflammatory cell subtypes in lesions spurred the unraveling of innate and adaptive immune pathways that contribute to atherosclerosis and its thrombotic complications. Such pathophysiologic insights have led to the identification of biomarkers that can define categories of risk and direct therapies and to the development of new treatments.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Göran K Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
175
|
Nejabati HR, Samadi N, Roshangar L, Nouri M. N1-methylnicotinamide as a possible modulator of cardiovascular risk markers in polycystic ovary syndrome. Life Sci 2019; 235:116843. [PMID: 31494172 DOI: 10.1016/j.lfs.2019.116843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial disease, which is resulted from the three common features, hyperandrogenism (HA), ovulatory dysfunction (OD), and polycystic ovarian morphology (PCOM). The environmental inducers (like diet, lifestyle, chemicals, drugs, and ageing) and cardiometabolic risk factors (such as insulin resistance, metabolic syndrome, and obesity) are involved in pathogenesis of PCOS. The growing body of evidence has been shown that there exist endothelial cell dysfunction (ECD) in women with PCOS independent of age, weight and metabolic abnormalities. It has been shown that a broad spectrum of cardiovascular risk markers are involved in ECD- induced cardiovascular disease. It is well described that there are no worldwide treatments for PCOS and all of pharmacological treatments are off -label without any approval. MNAM is one of potential therapeutic factor, which produced by nicotinamide N-methyltransferase (NNMT) via consumption of S-adenosyl methionine (SAM) and nicotinamide. Only one study has shown higher expression of its producer enzyme, NNMT, in the cumulus cells of women with PCOS. Therefore, we reviewed beneficial effects of MNAM on modulation of cardiometabolic risk factors, which are associated to PCOS and try to describe possible mode of action of MNAM in the regulation of these markers.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
176
|
Physcion 8-O-β-Glucopyranoside Alleviates Oxidized Low-Density Lipoprotein-Induced Human Umbilical Vein Endothelial Cell Injury by Inducing Autophagy Through AMPK/SIRT1 Signaling[RETRACTED]. J Cardiovasc Pharmacol 2019; 74:53-61. [DOI: 10.1097/fjc.0000000000000680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
177
|
Asami R, Tanaka T, Shimizu M, Seki Y, Nishiyama T, Sakashita H, Okada T. Ultrasonic Vascular Vector Flow Mapping for 2-D Flow Estimation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1663-1674. [PMID: 31003710 DOI: 10.1016/j.ultrasmedbio.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/09/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
A vascular vector flow mapping (VFM) method visualizes 2-D cardiac flow dynamics by estimating the radial component of flow from the Doppler velocities and wall motion velocities using the mass conservation equation. Although VFM provides 2-D flow, the algorithm is applicable only to bounded regions. Here, a modified VFM algorithm, vascular VFM, is proposed so that the velocities are estimated regardless of the flow geometry. To validate the algorithm, a phantom mimicking a carotid artery was fabricated and VFM velocities were compared with optical particle image velocimetry (PIV) data acquired in the same imaged plane. The validation results indicate that given optimal beam angle condition, VFM velocitiy is fairly accurate, where the correlation coefficient R between VFM and PIV velocities is 0.95. The standard deviation of the total VFM error, normalized by the maximum velocity, ranged from 8.1% to 16.3%, whereas the standard deviation of the measured input errors ranged from 8.9% to 12.7% for color flow mapping and from 4.5% to 5.9% for subbeam calculation. These results indicate that vascular VFM is reliable as its accuracy is comparable to that of conventional Doppler-flow images.
Collapse
Affiliation(s)
- Rei Asami
- Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| | | | | | | | | | | | - Takashi Okada
- Healthcare Business Unit, Hitachi, Ltd., Tokyo, Japan
| |
Collapse
|
178
|
Affiliation(s)
- Michel T. Corban
- From the Department of Cardiovascular Diseases (M.T.C., L.O.L., A.L.), Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Lilach O. Lerman
- From the Department of Cardiovascular Diseases (M.T.C., L.O.L., A.L.), Mayo Clinic College of Medicine and Science, Rochester, MN
- Division of Nephrology and Hypertension, Department of Medicine (L.O.L.), Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Amir Lerman
- From the Department of Cardiovascular Diseases (M.T.C., L.O.L., A.L.), Mayo Clinic College of Medicine and Science, Rochester, MN
| |
Collapse
|
179
|
Ribera J, Rodríguez-Vita J, Cordoba B, Portolés I, Casals G, Casals E, Jiménez W, Puntes V, Morales-Ruiz M. Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS One 2019; 14:e0218716. [PMID: 31233564 PMCID: PMC6590813 DOI: 10.1371/journal.pone.0218716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS The occurrence of endothelial alterations in the liver and in the splanchnic vasculature of cirrhotic patients and experimental models of liver diseases has been demonstrated. However, the pathological role of the portal vein endothelium in this clinical context is scarcely studied and, therefore, deserves attention. In this context, we aimed to investigate whether pathological endothelial activation occurs in the portal vein of cirrhotic rats. METHODS Cirrhosis was induced in wistar rats by CCl4 inhalation. We generated immortalized endothelial cells from the portal vein of control (CT-iPVEC) and cirrhotic rats (CH-iPVEC) by retroviral transduction of the SV40 T antigen. We assessed differential gene expression and intracellular reactive oxygen species (ROS) levels in iPVECs and in portal veins of control and cirrhotic rats. Finally, we assessed the therapeutic effectiveness of cerium oxide nanoparticles (CeO2NP) on reversing PVEC activation and macrophage polarization. RESULTS CH-iPVECs overexpressed collagen-I, endothelin-1, TIMP-1, TIMP-2, IL-6 and PlGF genes. These results were consistent with the differential expression showed by whole portal veins from cirrhotic rats. In addition, CH-iPVECs showed a significant increase in intracellular ROS and the capacity of potentiating M1 polarization in macrophages. The treatment of CH-iPVECs with CeO2NPs blocked intracellular ROS formation and IL-6 and TIMP-2 gene overexpression. In agreement with the in vitro results, the chronic treatment of cirrhotic rats with CeO2NPs also resulted in the blockade of both ROS formation and IL-6 gene overexpression in whole portal veins. CONCLUSIONS Endothelial cells from portal vein of cirrhotic rats depicted an abnormal phenotype characterized by a differential gene expression and the induction of M1 polarization in macrophages. We identified the excess of intracellular reactive oxygen species (ROS) as a major contributor to this altered phenotype. In addition, we demonstrated the utility of the nanomaterial cerium oxide as an effective antioxidant capable of reverse some of these pathological features associated with the portal vein in the cirrhosis condition.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan Rodríguez-Vita
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- German Cancer Research Center, Heidelberg, Germany
| | - Bernat Cordoba
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Eudald Casals
- Catalan Institute of Nanotechnology (ICN), Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanotechnology (ICN), Bellaterra, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
180
|
Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol 2019; 42:44-53. [PMID: 31255975 DOI: 10.1016/j.carpath.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official journal of the Society for Cardiovascular Pathology (SCVP). This CVP Special Issue showcases a series of commemorative review articles in celebration of the 25th anniversary of CVP originally published in 2016 and now compiled into a virtual collection with online access for the cardiovascular pathology community. This overview also provides updates on the major categories of cardiovascular diseases from the perspective of cardiovascular pathologists, highlighting publications from CVP, as well as additional important review articles and clinicopathologic references.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Cardiovascular Pathology Research Laboratory, Texas Heart Institute, CHI St. Luke's Hospital, Houston, TX, USA.
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and sudden infant death syndrome, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
181
|
Affiliation(s)
- Ying Jin
- 1 Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Hubei University of Medicine Renmin Hospital Shiyan China.,2 Center for Translational Medicine Hubei University of Medicine Renmin Hospital Shiyan China
| | - Jian Fu
- 1 Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Hubei University of Medicine Renmin Hospital Shiyan China.,2 Center for Translational Medicine Hubei University of Medicine Renmin Hospital Shiyan China
| |
Collapse
|
182
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
183
|
Cheng M, Yang L, Fan M, An S, Li J. Proatherogenic stimuli induce HuR in atherosclerosis through MAPK/ErK pathway. Am J Transl Res 2019; 11:2317-2327. [PMID: 31105838 PMCID: PMC6511797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease inflicting the arterial wall, and endothelial activation and dysfunction play an important role in its pathogenesis. The RNA-binding protein HuR has been associated with events of inflammation and activation in endothelial cells, however, its connection with atherosclerosis remains unclear. Here, we show that the expression and RNA-binding activity of HuR are upregulated in human and mouse atherosclerotic lesions. In addition, proatherogenic stimuli, such as inflammatory lipids (Ox-PAPC) and cytokines (TNF-α and IL-1β), induce HuR in human aortic endothelial cells (HAECs) in vitro. Moreover, HuR is also induced in mouse aorta ECs fed a high-fat diet, and the inducible degree is correlated with proatherogenic hyperlipidemia. We further show that the MAPK/ErK pathway in ECs is activated by proatherogenic stimuli in vitro and by high-fat diet in vivo. Finally, we demonstrate that the MAPK/ErK pathway is required for HuR induction by proatherogenic stimuli. Altogether, our study uncovers the inducible effect of proatherogenic stimuli on HuR in ECs, and connects this effect to the activated MAPK/ErK pathway.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Liguo Yang
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Ming Fan
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Junquan Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
184
|
Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5484138. [PMID: 30962863 PMCID: PMC6431442 DOI: 10.1155/2019/5484138] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
The prevalence of cardiovascular disease (CVD) is increasing over time. CVD is a comorbidity in diabetes and contributes to premature death. Citrus flavonoids possess several biological activities and have emerged as efficient therapeutics for the treatment of CVD. Citrus flavonoids scavenge free radicals, improve glucose tolerance and insulin sensitivity, modulate lipid metabolism and adipocyte differentiation, suppress inflammation and apoptosis, and improve endothelial dysfunction. The intake of citrus flavonoids has been associated with improved cardiovascular outcomes. Although citrus flavonoids exerted multiple beneficial effects, their mechanisms of action are not completely established. In this review, we summarized recent findings and advances in understanding the mechanisms underlying the protective effects of citrus flavonoids against oxidative stress, inflammation, diabetes, dyslipidemia, endothelial dysfunction, and atherosclerosis. Further studies and clinical trials to assess the efficacy and to explore the underlying mechanism(s) of action of citrus flavonoids are recommended.
Collapse
|
185
|
Chen L, Qian H, Luo Z, Li D, Xu H, Chen J, He P, Zhou X, Zhang T, Chen J, Min X. PHACTR1 gene polymorphism with the risk of coronary artery disease in Chinese Han population. Postgrad Med J 2019; 95:67-71. [PMID: 30777881 DOI: 10.1136/postgradmedj-2018-136298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is the most frequent multifactorial disease worldwide and is characterised by endothelial injury, lipid deposition and coronary artery calcification. The purpose of this study was to determine the allelic and genotypic frequencies of two loci (rs2026458 and rs9349379) of phosphatase and actin regulator 1 (PHACTR1) to the risk of developing CAD in the Chinese Han population. METHODS A case-control study was conducted including 332 patients with CAD and 119 controls. Genotype analysis was performed by PCR and Sanger sequencing. Genetic model analysis was performed to evaluate the association between single nucleotide polymorphisms and CAD susceptibility using Pearson's χ2 test and logistic regression analysis. RESULTS The GG genotype of rs9349379 represented 50% and 29% of patients with CAD and controls, respectively (p<0.001). The CC genotype of rs2026458 was more prevalent in the controls than in patients with CAD compared with TT genotype (OR=0.548, 95% CI 0.351 to 0.856, p=0.008). Logistic regression analyses revealed that PHACTR1 rs9349379 GG genotype was significantly associated with increased risk of CAD in the recessive model (OR=2.359, 95% CI 1.442 to 3.862, p=0.001), even after adjusting for age gender, hypertension, type 2 diabetes, hyperlipidaemia and smoking habit. Heterogeneity test proved that rs9349379's risk effects on CAD were more significant among women. CONCLUSIONS Our study indicate that the PHACTR1 rs9349379 polymorphism is associated with the increased risk for CAD in the female Chinese Han population.
Collapse
Affiliation(s)
- Lishan Chen
- Dongfeng Hospital Graduate Training Base, Jinzhou Medical University, Jinzhou, China.,Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Hang Qian
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhihuan Luo
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Dongfeng Li
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Hao Xu
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Jishun Chen
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Peigen He
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Xintao Zhou
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Zhang
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Xinwen Min
- Department of Cardiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
186
|
Ganji M, Khalili S, Mard-Soltani M, Khalesi B, Karkhah A, Amani J. A Precisely Designed Immunotoxin Against VCAM1 Consisting of a Humanized Antibody Variable Domain Fused to Granzyme: An In Silico Approach. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09822-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
187
|
Cui Y, Feng N, Gu X, Fu F, Li J, Guo H, Liu Y, Zhang S, Li J, Wang Y, Jia M, Yang L, Zhang F, Wang Y, Fan R, Pei J. κ-Opioid receptor stimulation reduces palmitate-induced apoptosis via Akt/eNOS signaling pathway. Lipids Health Dis 2019; 18:52. [PMID: 30764838 PMCID: PMC6376663 DOI: 10.1186/s12944-019-0989-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 12/02/2022] Open
Abstract
Background This study was designed to test the hypothesis that κ-opioid receptor (κ-OR) stimulation reduces palmitate-induced HUVECs apoptosis and to investigate its mechanisms. Methods HUVECs were subjected to sodium palmitate, apoptosis and cell viability were determined, HUVECs were treated with specific inhibitors to PI3K, Akt, eNOS and siRNAs targeting κ-OR and Akt. Groups were divided as follows: the control group, the sodium palmitate group, the sodium palmitate+U50,488H (a selective κ-OR agonist) group and the sodium palmitate+U50,488H + nor-BNI (a selective κ-OR antagonist) group. Results Treatment with sodium palmitate significantly reduced cell viability and increased apoptosis rate which were significantly alleviated by pretreatment with U50,488H, the effect of U50,488H was abolished by nor-BNI. Phosphorylation of Akt and eNOS, as well as NO production were attenuated and accompanied by an increased expression of caspase 3 when HUVECs were subjected to sodium palmitate, and all these changes were restored by pretreatment with U50,488H, the effects of U50,488H were abolished by nor-BNI, and specific inhibitors to PI3K, Akt, eNOS, respectively. SiRNAs targeting κ-OR or Akt abolished the effects of U50,488H on phosphorylation of Akt and eNOS as well as the expressions of caspase 3, Bax and Bcl-2. SiRNAs targeting Akt elicited no effect on the expression of κ-OR. Conclusion This study provides the evidence for the first time that κ-OR stimulation possesses anti-palmitate-induced apoptosis effect, which is mediated by PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yan Cui
- Department of Nursing, Medical College of Xi'an Peihua University, Xi'an, 710125, Shaanxi Province, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Haitao Guo
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Yuanbo Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Min Jia
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Lu Yang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Fuyang Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Yuemin Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
188
|
Orekhov AN, Grechko AV, Romanenko EB, Zhang D, Chistiakov DA. Novel Approaches to Anti-atherosclerotic Therapy: Cell-based Models and Herbal Preparations (Review of Our Own Data). Curr Drug Discov Technol 2019; 17:278-285. [PMID: 30621565 DOI: 10.2174/1570163816666190101112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic arterial disease characterized by vascular inflammation, accumulation of lipids in the arterial wall, and formation and growth of atherosclerotic plaques followed by ischemia. In subclinical atherosclerosis, cholesterol retention in subendothelial cells leads to induction of local inflammation, generation of foam cells and lesion formation, followed by a chain of other pathogenic events. Atherosclerotic progression can frequently be fatal, since plaque rupture may lead to thrombosis and acute events, such as myocardial infarction, stroke and sudden death. Traditional anti-atherosclerotic therapy is mainly focused on improving the blood lipid profile and does not target various stages of plaque progression. Obviously, treating the disease at initial stages is better than beginning treatment at advanced stages and, in that regard, current atherosclerosis management can be improved. Cholesterol retention is an important component of atherogenesis that precedes plaque formation. Therapeutic targeting of cholesterol retention may be beneficial for preventing further atherogenic progression. For this purpose, we suggest using herbal preparations due to good tolerability and suitability for long-lasting treatment. We developed test systems based on cultured human intimal aortic cells for rapid screening of potential anti-atherogenic drugs. With the help of these test systems, we selected several natural substances with significant anti-atherogenic activity and further use these compounds to prepare herbal preparations for anti-atherosclerotic therapy. These preparations were clinically tested and showed good safety and a potent anti-atherogenic potential.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia,Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia,Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia
| | - Elena B Romanenko
- Department of Molecular Basis of Ontogenesis, Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, P.R China
| | - Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, 119991 Moscow, Russia
| |
Collapse
|
189
|
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol 2019; 25:227-236. [PMID: 29547400 DOI: 10.1097/moh.0000000000000424] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Since the first discovery of microRNAs (miRNAs) in 1993, the involvement of miRNAs in different aspects of vascular disease has emerged as an important research field. In this review, we summarize the fundamental roles of miRNAs in controlling endothelial cell functions and their implication with several aspects of vascular dysfunction. RECENT FINDINGS MiRNAs have been found to be critical modulators of endothelial homeostasis. The dysregulation of miRNAs has been linked to endothelial dysfunction and the development and progression of vascular disease which and open new opportunities of using miRNAs as potential therapeutic targets for vascular disease. SUMMARY Further determination of miRNA regulatory circuits and defining miRNAs-specific target genes remains key to future miRNA-based therapeutic applications toward vascular disease prevention. Many new and unanticipated roles of miRNAs in the control of endothelial functions will assist clinicians and researchers in developing potential therapeutic applications.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
190
|
Yang Z, He LJ, Sun SR. Role of Endothelial Cells in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:145-163. [PMID: 31399965 DOI: 10.1007/978-981-13-8871-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis has been regarded as the common pathway of end-stage renal failure. Understanding the fundamental mechanism that leads to renal fibrosis is essential for developing better therapeutic options for chronic kidney diseases. So far, the main abstractions are on the injury of tubular epithelial cells, activation of interstitial cells, expression of chemotactic factor and adhesion molecule, infiltration of inflammatory cells and homeostasis of ECM. However, emerging studies revealed that endothelial cells (ECs) might happen to endothelial-to-mesenchymal transition (EndMT) dependent and/or independent endothelial dysfunction, which were supposed to accelerate renal fibrosis and are identified as new mechanisms for the proliferation of myofibroblasts as well. In this chapter, we are about to interpret the role of ECs in renal fibrosis and analyze the related molecules and pathways of both EndMT and EndMT independent endothelial dysfunction.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Li-Jie He
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shi-Ren Sun
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
191
|
SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 2018; 116:546-555. [PMID: 30584103 DOI: 10.1073/pnas.1810729116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.
Collapse
|
192
|
Harding IC, Mitra R, Mensah SA, Herman IM, Ebong EE. Pro-atherosclerotic disturbed flow disrupts caveolin-1 expression, localization, and function via glycocalyx degradation. J Transl Med 2018; 16:364. [PMID: 30563532 PMCID: PMC6299559 DOI: 10.1186/s12967-018-1721-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endothelial-dependent atherosclerosis develops in a non-random pattern in regions of vessel bending and bifurcations, where blood flow exhibits disturbed flow (DF) patterns. In contrast, uniform flow (UF), normal endothelium, and healthy vessel walls co-exist within straight vessels. In clarifying how flow protectively or atherogenically regulates endothelial cell behavior, involvement of the endothelial surface glycocalyx has been suggested due to reduced expression in regions of atherosclerosis development. Here, we hypothesized that pro-atherosclerotic endothelial dysfunction occurs as a result of DF-induced reduction in glycocalyx expression and subsequently impairs endothelial sensitivity to flow. Specifically, we propose that glycocalyx degradation can induce pro-atherosclerotic endothelial dysfunction through decreased caveolin-1 and endothelial nitric oxide synthase expression and localization. METHODS We studied endothelial cells in atherosclerotic-prone DF and atherosclerotic-resistant UF conditions in parallel plate flow culture and in C57Bl/6 mice. The effects of flow conditioning on endothelial cell behavior were quantified using immunocytochemistry. The glycocalyx was fluorescently labeled for wheat germ agglutinin, which serves as a general glycocalyx label, and heparan sulfate, a major glycocalyx component. Additionally, mechanosensitivity was assessed by immunocytochemical fluorescence expression and function of caveolin-1, the protein that forms the mechanosignaling caveolar invaginations on the endothelial surface, total endothelial-type nitric oxide synthase (eNOS), which synthesizes nitric oxide, and serine 1177 phosphorylated eNOS (eNOS-pS1177), which is the active form of eNOS. Caveolin function and eNOS expression and activation were correlated to glycocalyx expression. Heparinase III enzyme was used to degrade a major glycocalyx component, HS, to identify the role of the glycocalyx in caveoin-1 and eNOS-pS1177 regulation. RESULTS Results confirmed that DF reduces caveolin-1 expression and abolishes most of its subcellular localization preferences, when compared to the effect of UF. DF down-regulates caveolin-1 mechanosignaling, as indicated by its reduced colocalization with serine 1177 phosphorylated endothelial-type nitric oxide synthase (eNOS-pS1177), a vasoregulatory signaling molecule whose activity is regulated by its residence in caveolae. As expected, DF inhibited glycocalyx expression compared to UF. In the absence of heparan sulfate, a major glycocalyx component, UF-conditioned endothelial cells exhibited near DF-like caveolin-1 expression, localization, and colocalization with eNOS-pS1177. CONCLUSIONS This is the first demonstration of a flow-defined role of the glycocalyx in caveolae expression and function related to vasculoprotective endothelial mechanosensitivity that defends against atherosclerosis. The results suggest that a glycocalyx-based therapeutic targeted to areas of atherosclerosis development could prevent disease initiation and progression.
Collapse
Affiliation(s)
- Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Solomon A Mensah
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ira M Herman
- Department of Developmental, Molecular, and Chemical Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA, USA.,Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, USA
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA. .,Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
193
|
A Numerical Model of Blood Flow Velocity Measurement Based on Finger Ring. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:3916481. [PMID: 30402212 PMCID: PMC6192088 DOI: 10.1155/2018/3916481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
Aiming to measure the blood flow velocity in a finger, a novel noninvasive method, i.e., a ring with a heat source chip and a temperature sensor, is designed in this paper. The heat source chip is used to heat the finger and generate heat diffusion between the chip and the temperature sensor. And the temperature sensor is designed to measure the temperature difference. Since the blood flow is the main medium of heat diffusion in bodies, part from the heat energy in the tissue will be taken away by the flowing blood. Therefore, the blood flow velocity can be acquired via its relationship with the temperature difference. Compared to the ultrasound Doppler method and the laser Doppler method, the proposed method guarantees a more convenient operation in more flexible work sites. We also analyze the theory between heat transfer and laminar flow. Finally, several simulations are conducted, and the influence of the relevant factors (i.e., the number of blood vessels, the radius, etc.) corresponding to the simulation results is also discussed.
Collapse
|
194
|
Mojiri A, Alavi P, Jahroudi N. Von Willebrand factor contribution to pathophysiology outside of von Willebrand disease. Microcirculation 2018; 26:e12510. [PMID: 30365187 DOI: 10.1111/micc.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
VWF is a procoagulant protein that plays a central role in the initiation of platelets aggregate formation and thrombosis. While von Willebrand disease has long been known to result from qualitative and quantitative deficiencies of VWF, it is recently that contribution of elevated levels of VWF to various pathological conditions including thrombosis, inflammation, angiogenesis, and cancer metastasis has been appreciated. Here, we discuss contribution of elevated levels of VWF to various thrombotic and nonthrombotic pathological conditions.
Collapse
Affiliation(s)
- Anahita Mojiri
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Parnian Alavi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
195
|
Shabir O, Berwick J, Francis SE. Neurovascular dysfunction in vascular dementia, Alzheimer's and atherosclerosis. BMC Neurosci 2018; 19:62. [PMID: 30333009 PMCID: PMC6192291 DOI: 10.1186/s12868-018-0465-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
Efficient blood supply to the brain is of paramount importance to its normal functioning and improper blood flow can result in potentially devastating neurological consequences. Cerebral blood flow in response to neural activity is intrinsically regulated by a complex interplay between various cell types within the brain in a relationship termed neurovascular coupling. The breakdown of neurovascular coupling is evident across a wide variety of both neurological and psychiatric disorders including Alzheimer’s disease. Atherosclerosis is a chronic syndrome affecting the integrity and function of major blood vessels including those that supply the brain, and it is therefore hypothesised that atherosclerosis impairs cerebral blood flow and neurovascular coupling leading to cerebrovascular dysfunction. This review will discuss the mechanisms of neurovascular coupling in health and disease and how atherosclerosis can potentially cause cerebrovascular dysfunction that may lead to cognitive decline as well as stroke. Understanding the mechanisms of neurovascular coupling in health and disease may enable us to develop potential therapies to prevent the breakdown of neurovascular coupling in the treatment of vascular brain diseases including vascular dementia, Alzheimer’s disease and stroke.
Collapse
Affiliation(s)
- Osman Shabir
- The Neurovascular and Neuroimaging Research Group, Alfred Denny Building, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jason Berwick
- The Neurovascular and Neuroimaging Research Group, Alfred Denny Building, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sheila E Francis
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
196
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
197
|
Khamehgir-Silz P, Schnitter F, Wagner AH, Gerbig S, Schulz S, Hecker M, Spengler B. Strategy for marker-based differentiation of pro- and anti-inflammatory macrophages using matrix-assisted laser desorption/ionization mass spectrometry imaging. Analyst 2018; 143:4273-4282. [PMID: 30027181 DOI: 10.1039/c8an00659h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Macrophages are large phagocytes playing a crucial role in the development and progression of atherosclerosis. The phenotypic polarization and activation of macrophages in atherosclerotic plaques depends on their complex micro-environment and at the same time has a major impact on the vulnerability or stability of advanced atherosclerotic lesions. Many in vitro and in vivo studies have been designed to define markers for macrophage subtypes to better understand the mechanism of plaque progression but they have rather added to the confusion. Nonetheless, some of the in vitro defined macrophage subtypes, like the pro-inflammatory M1 or the anti-inflammatory M2a/b/c macrophage, have been shown to be present in atherosclerotic plaques. Herein, we developed a comprehensive workflow to distinguish between human in vitro differentiated pro-inflammatory M1 and anti-inflammatory M2a and M2c macrophages. The cells were analyzed using qPCR and FACS analyses for defining suitable markers on the transcript (mRNA) and protein level as well as MALDI MSI for the assignment of metabolic markers, which can be used for the identification of the corresponding macrophage subtypes in atherosclerotic plaques. Data obtained using both qPCR and FACS analyses were in agreement with the literature. For the analysis of the macrophages with MALDI MSI, a comprehensive workflow was developed and the obtained data were subjected to different statistical analysis methods like principal component analysis (PCA) to define markers for each macrophage type. Our MALDI MSI results revealed that the method produces reliable and reproducible results but that the heterogeneity of the monocytes derived from different donors is too high to define universal markers on the metabolic level. Moreover, the results show that a sample set of three biological replicates is not sufficient to obtain representative data and therefore we recommend performing ring experiments in which the samples are measured by different laboratories.
Collapse
Affiliation(s)
- Pegah Khamehgir-Silz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
198
|
Pan H, Palekar RU, Hou KK, Bacon J, Yan H, Springer LE, Akk A, Yang L, Miller MJ, Pham CT, Schlesinger PH, Wickline SA. Anti-JNK2 peptide-siRNA nanostructures improve plaque endothelium and reduce thrombotic risk in atherosclerotic mice. Int J Nanomedicine 2018; 13:5187-5205. [PMID: 30233180 PMCID: PMC6135209 DOI: 10.2147/ijn.s168556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A direct and independent role of inflammation in atherothrombosis was recently highlighted by the Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) trial, showing the benefit of inhibiting signaling molecules, eg, interleukins. Accordingly, we sought to devise a flexible platform for preventing the inflammatory drivers at their source to preserve plaque endothelium and mitigate procoagulant risk. METHODS p5RHH-siRNA nanoparticles were formulated through self-assembly processes. The therapeutic efficacy of p5RHH-JNK2 siRNA nanoparticles was evaluated both in vitro and in vivo. RESULTS Because JNK2 is critical to macrophage uptake of oxidized lipids through scavenger receptors that engender expression of myriad inflammatory molecules, we designed an RNA-silencing approach based on peptide-siRNA nanoparticles (p5RHH-siRNA) that localize to atherosclerotic plaques exhibiting disrupted endothelial barriers to achieve control of JNK2 expression by macrophages. After seven doses of p5RHH-JNK2 siRNA nanoparticles over 3.5 weeks in ApoE-/- mice on a Western diet, both JNK2 mRNA and protein levels were significantly decreased by 26% (P=0.044) and 42% (P=0.042), respectively. Plaque-macrophage populations were markedly depleted and NFκB and STAT3-signaling pathways inhibited by 47% (P<0.001) and 46% (P=0.004), respectively. Endothelial barrier integrity was restored (2.6-fold reduced permeability to circulating 200 nm nanoparticles in vivo, P=0.003) and thrombotic risk attenuated (200% increased clotting times to carotid artery injury, P=0.02), despite blood-cholesterol levels persistently exceeding 1,000 mg/dL. No adaptive or innate immunoresponses toward the nanoparticles were observed, and blood tests after the completion of treatment confirmed the largely nontoxic nature of this approach. CONCLUSION The ability to formulate these nanostructures rapidly and easily interchange or multiplex their oligonucleotide content represents a promising approach for controlling deleterious signaling events locally in advanced atherosclerosis.
Collapse
Affiliation(s)
- Hua Pan
- Department of Cardiovascular Sciences, USF Health, Morsani College of Medicine, The USF Health Heart Institute, University of South Florida, Tampa, FL, USA, ,
| | - Rohun U Palekar
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Kirk K Hou
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - John Bacon
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Huimin Yan
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Luke E Springer
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Antonina Akk
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Lihua Yang
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Mark J Miller
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Christine Tn Pham
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Paul H Schlesinger
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, USF Health, Morsani College of Medicine, The USF Health Heart Institute, University of South Florida, Tampa, FL, USA, ,
| |
Collapse
|
199
|
Novikova OA, Laktionov PP, Karpenko AA. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction. Vascular 2018; 27:98-109. [PMID: 30157718 DOI: 10.1177/1708538118796063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This paper describes and analyzes the cellular and molecular mechanisms underlying atherosclerosis development. In particular, the roles of monocytes/macrophages, smooth muscle cells, and vascular endothelium in the formation of stable/unstable atheromatous plaques, and the contributions of some processes to atheroma formation. METHODS AND RESULTS In this study we analyzed endothelium: function, dysfunction, and involvement into atherogenesis; cell proteins mediating mechanotransduction; proatherogenic role of monocytes; the role of macrophages in the development of unstable atheromatous plaques and smooth muscle cell origin in atherosclerosis. Smooth muscle cell phenotypic switching; their functioning; the ability to retain cholesterol and lipoproteins as well as secretion of pro- and anti-inflammatory molecules and extracellular matrix proteins, their response to extracellular stimuli secreted by other cells, and the effect of smooth muscle cells on the cells surrounding atheromatous plaques are fundamentally important for the insight into atherosclerosis molecular basis. CONCLUSION Atheromatous plaque transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Pavel P Laktionov
- 2 Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.,3 E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
200
|
Sánchez PF, Brey EM, Briceño JC. Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 2018; 12:2164-2178. [PMID: 30079631 DOI: 10.1002/term.2747] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Despite the wide variety of tissue-engineered vascular grafts that are currently being developed, autologous vessels, such as the saphenous vein, are still the gold standard grafts for surgical treatment of vascular disease. Recently developed technologies have shown promising results in preclinical studies, but they still do not overcome the issues that native vessels present, and only a few have made the transition into clinical use. The endothelial lining is a key aspect for the success or failure of the grafts, especially on smaller diameter grafts (<5 mm). However, during the design and evaluation of the grafts, the mechanisms for the formation of this layer are not commonly examined. Therefore, a significant amount of established research might not be relevant to the clinical context, due to important differences that exist between the vascular regeneration mechanisms found in animal models and humans. This article reviews current knowledge about endothelialization mechanisms that have been so far identified: in vitro seeding, transanastomotic growth, transmural infiltration, and fallout endothelialization. Emphasis is placed on the models used for study of theses mechanisms and their effects on the development of tissue-engineering vascular conduits.
Collapse
Affiliation(s)
- Paolo F Sánchez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Eric M Brey
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas.,Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois.,Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| | - Juan Carlos Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.,Research Department, Fundación Cardioinfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|