151
|
Voss JE, Andrabi R, McCoy LE, de Val N, Fuller RP, Messmer T, Su CY, Sok D, Khan SN, Garces F, Pritchard LK, Wyatt RT, Ward AB, Crispin M, Wilson IA, Burton DR. Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Rep 2018; 21:222-235. [PMID: 28978475 PMCID: PMC5640805 DOI: 10.1016/j.celrep.2017.09.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Recent efforts toward HIV vaccine development include the design of immunogens that can engage B cell receptors with the potential to affinity mature into broadly neutralizing antibodies (bnAbs). V2-apex bnAbs, which bind a protein-glycan region on HIV envelope glycoprotein (Env) trimer, are among the most broad and potent described. We show here that a rare “glycan hole” at the V2 apex is enriched in HIV isolates neutralized by inferred precursors of prototype V2-apex bnAbs. To investigate whether this feature could focus neutralizing responses onto the apex bnAb region, we immunized wild-type rabbits with soluble trimers adapted from these Envs. Potent autologous tier 2 neutralizing responses targeting basic residues in strand C of the V2 region, which forms the core epitope for V2-apex bnAbs, were observed. Neutralizing monoclonal antibodies (mAbs) derived from these animals display features promising for subsequent broadening of the response. Precursor V2-apex bnAb neutralization-sensitive Envs possess a common glycan hole Sensitive Envs can be adapted to SOSIP format as V2-apex-focusing immunogens Immunogens elicit nAbs targeting critical components of the bnAb epitope in rabbits Select nAbs elicited show dependence on V2 lysines and glycans also important for bnAbs
Collapse
Affiliation(s)
- James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E McCoy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infection and Immunity, Faculty of Medical Science, University College London, London WC1E 6BT, UK
| | - Natalia de Val
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta P Fuller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ching-Yao Su
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Salar N Khan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fernando Garces
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Richard T Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ian A Wilson
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02114, USA.
| |
Collapse
|
152
|
Harnessing post-translational modifications for next-generation HIV immunogens. Biochem Soc Trans 2018; 46:691-698. [PMID: 29784645 DOI: 10.1042/bst20170394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
The extensive post-translational modifications of the envelope spikes of the human immunodeficiency virus (HIV) present considerable challenges and opportunities for HIV vaccine design. These oligomeric glycoproteins typically have over 30 disulfide bonds and around a 100 N-linked glycosylation sites, and are functionally dependent on protease cleavage within the secretory system. The resulting mature structure adopts a compact fold with the vast majority of its surface obscured by a protective shield of glycans which can be targeted by broadly neutralizing antibodies (bnAbs). Despite the notorious heterogeneity of glycosylation, rare B-cell lineages can evolve to utilize and cope with viral glycan diversity, and these structures therefore present promising targets for vaccine design. The latest generation of recombinant envelope spike mimetics contains re-engineered post-translational modifications to present stable antigens to guide the development of bnAbs by vaccination.
Collapse
|
153
|
Torrents de la Peña A, Julien JP, de Taeye SW, Garces F, Guttman M, Ozorowski G, Pritchard LK, Behrens AJ, Go EP, Burger JA, Schermer EE, Sliepen K, Ketas TJ, Pugach P, Yasmeen A, Cottrell CA, Torres JL, Vavourakis CD, van Gils MJ, LaBranche C, Montefiori DC, Desaire H, Crispin M, Klasse PJ, Lee KK, Moore JP, Ward AB, Wilson IA, Sanders RW. Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Rep 2018; 20:1805-1817. [PMID: 28834745 PMCID: PMC5590011 DOI: 10.1016/j.celrep.2017.07.077] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 10/29/2022] Open
Abstract
The production of native-like recombinant versions of the HIV-1 envelope glycoprotein (Env) trimer requires overcoming the natural flexibility and instability of the complex. The engineered BG505 SOSIP.664 trimer mimics the structure and antigenicity of native Env. Here, we describe how the introduction of new disulfide bonds between the glycoprotein (gp)120 and gp41 subunits of SOSIP trimers of the BG505 and other genotypes improves their stability and antigenicity, reduces their conformational flexibility, and helps maintain them in the unliganded conformation. The resulting next-generation SOSIP.v5 trimers induce strong autologous tier-2 neutralizing antibody (NAb) responses in rabbits. In addition, the BG505 SOSIP.v6 trimers induced weak heterologous NAb responses against a subset of tier-2 viruses that were not elicited by the prototype BG505 SOSIP.664. These stabilization methods can be applied to trimers from multiple genotypes as components of multivalent vaccines aimed at inducing broadly NAbs (bNAbs).
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Fernando Garces
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Judith A Burger
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charlotte D Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
154
|
Strategies for a multi-stage neutralizing antibody-based HIV vaccine. Curr Opin Immunol 2018; 53:143-151. [PMID: 29775847 DOI: 10.1016/j.coi.2018.04.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
Abstract
A critical property of a prophylactic HIV vaccine is likely to be its ability to elicit broadly neutralizing antibodies (bnAbs). BnAbs typically have multiple unusual features and are generated in a fraction of HIV-infected individuals through complex pathways. Current vaccine design approaches seek to trigger rare B cell precursors and then steer affinity maturation toward bnAbs in a multi-stage multi-component immunization approach. These vaccine design strategies have been facilitated by molecular descriptions of bnAb interactions with stabilized HIV trimers, the use of an array of sophisticated approaches for immunogen design, the development of novel animal models for immunogen evaluation and advanced technologies to interrogate antibody responses. In this review, we will discuss leading HIV bnAb vaccine immunogens, immunization strategies and future improvements.
Collapse
|
155
|
Schiffner T, Pallesen J, Russell RA, Dodd J, de Val N, LaBranche CC, Montefiori D, Tomaras GD, Shen X, Harris SL, Moghaddam AE, Kalyuzhniy O, Sanders RW, McCoy LE, Moore JP, Ward AB, Sattentau QJ. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathog 2018; 14:e1006986. [PMID: 29746590 PMCID: PMC5944921 DOI: 10.1371/journal.ppat.1006986] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine.
Collapse
MESH Headings
- AIDS Vaccines/chemistry
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibody Specificity
- Antigen-Antibody Reactions/immunology
- Cross-Linking Reagents
- Cryoelectron Microscopy
- HIV Antibodies/immunology
- HIV Antigens/chemistry
- HIV Antigens/immunology
- HIV Antigens/ultrastructure
- HIV-1/chemistry
- HIV-1/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Protein Conformation
- Protein Stability
- Protein Structure, Quaternary
- Rabbits
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/ultrastructure
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Jonathan Dodd
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Natalia de Val
- Center for Molecular Microscopy (CMM), National Cancer Institute (NCI), Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Departments of Immunology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scarlett L Harris
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Amin E Moghaddam
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Oleksandr Kalyuzhniy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
156
|
Yu WH, Zhao P, Draghi M, Arevalo C, Karsten CB, Suscovich TJ, Gunn B, Streeck H, Brass AL, Tiemeyer M, Seaman M, Mascola JR, Wells L, Lauffenburger DA, Alter G. Exploiting glycan topography for computational design of Env glycoprotein antigenicity. PLoS Comput Biol 2018; 14:e1006093. [PMID: 29677181 PMCID: PMC5931682 DOI: 10.1371/journal.pcbi.1006093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 05/02/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022] Open
Abstract
Mounting evidence suggests that glycans, rather than merely serving as a “shield”, contribute critically to antigenicity of the HIV envelope (Env) glycoprotein, representing critical antigenic determinants for many broadly neutralizing antibodies (bNAbs). While many studies have focused on defining the role of individual glycans or groups of proximal glycans in bNAb binding, little is known about the effects of changes in the overall glycan landscape in modulating antibody access and Env antigenicity. Here we developed a systems glycobiology approach to reverse engineer the complexity of HIV glycan heterogeneity to guide antigenicity-based de novo glycoprotein design. bNAb binding was assessed against a panel of 94 recombinant gp120 monomers exhibiting defined glycan site occupancies. Using a Bayesian machine learning algorithm, bNAb-specific glycan footprints were identified and used to design antigens that selectively alter bNAb antigenicity as a proof-of concept. Our approach provides a new design strategy to predictively modulate antigenicity via the alteration of glycan topography, thereby focusing the humoral immune response on sites of viral vulnerability for HIV. Carbohydrates on the HIV Env glycoprotein, previously often considered as a “shield” permitting immune evasion, can themselves represent targets for broadly neutralizing antibody (bNAb) recognition. Efforts to define the impact of individual glycans on bNAb recognition have clearly illustrated the critical nature of individual or groups of glycans on bNAb binding. However, glycans represent half the mass of the HIV envelope glycoprotein, representing a lattice of interacting sugars that shape the topographical landscape that alters antibody accessiblity to the underlying protein. However, whether alterations in individual glycans alter the broader interactions among glycans, proximal and distal, has not been heretofore rigorously examined, nor how this lattice may be actively exploited to improve antigenicity. To address this challenge, we describe here a systems glycobiology approach to reverse engineer the complex relationship between bNAb binding and glycan landscape effects on Env proteins spanning across various clades and tiers. Glycan occupancy was interrogated across every potential N-glycan site in 94 recombinant gp120 recombinant antigens. Sequences, glycan occupancy, as well as bNAb binding profiles were integrated across each of the 94-atngeins to generate a machine learning computational model enabling the identification of the glycan site determinants involved in binding to any given bNAb. Moreover, this model was used to generate a panel of novel gp120 variants with augmented selective bNAb binding profiles, further validating the contributions of glycans in Env antigen design. Whether glycan-optimization will additionally influence immunogenicity, particularly on emerging stabilized trimers, is unknown, but this study provides a proof of concept for selectively and agnostically exploiting both proximal and distal viral protein glycosylation in a principled manner to improve target Ab binding profiles.
Collapse
Affiliation(s)
- Wen-Han Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Monia Draghi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Claudia Arevalo
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Christina B Karsten
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Todd J Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Bronwyn Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Douglas A Lauffenburger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
157
|
Gao Y, McKay PF, Mann JFS. Advances in HIV-1 Vaccine Development. Viruses 2018; 10:E167. [PMID: 29614779 PMCID: PMC5923461 DOI: 10.3390/v10040167] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023] Open
Abstract
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, W2 1PG, UK.
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
158
|
Abstract
Vaccine design efforts against the human immunodeficiency virus (HIV) have been greatly stimulated by the observation that many infected patients eventually develop highly potent broadly neutralizing antibodies (bnAbs). Importantly, these bnAbs have evolved to recognize not only the two protein components of the viral envelope protein (Env) but also the numerous glycans that form a protective barrier on the Env protein. Because Env is heavily glycosylated compared to host glycoproteins, the glycans have become targets for the antibody response. Therefore, considerable efforts have been made in developing and validating biophysical methods to elucidate the complex structure of the Env-spike glycoprotein, with its combination of glycan and protein epitopes. We illustrate here how the application of robust biophysical methods has transformed our understanding of the structure and function of the HIV Env spike and stimulated innovation in vaccine design strategies that takes into account the essential glycan components.
Collapse
Affiliation(s)
- Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; ,
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; , .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
159
|
Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. J Virol 2018; 92:JVI.01957-17. [PMID: 29367243 PMCID: PMC5874403 DOI: 10.1128/jvi.01957-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Recombinant soluble HIV-1 envelope glycoprotein (Env) SOSIP trimers are a design platform for inducing broadly neutralizing antibodies (bNAbs) by vaccination. To date, these and alternative designs of native-like trimers, given singly or in pairs, have not induced bNAbs in test animals such as rabbits or macaques. Here, we have evaluated whether trivalent and tetravalent combinations of SOSIP trimers from clades A, B, and C, delivered simultaneously or sequentially, induce better neutralizing antibody responses in rabbits than when given alone. None of the tested formulations led to the induction of bNAbs. We found that BG505 clade A trimers dominated the autologous NAb responses induced by combinations, which probably relates to the presence of immunodominant glycan holes on the BG505 trimer. Furthermore, autologous NAb responses to all individual trimers were reduced when they were delivered in combinations compared with when delivered alone, suggesting that immunogen interference had occurred. Finally, in a sequential regimen, a heterologous clade C trimer cross-boosted NAb responses that were primed by earlier immunizations with clade A and B trimers. Taken together, these findings should allow us to improve the design of immunization regimens based on native-like HIV-1 Env trimers.IMPORTANCE A successful HIV-1 vaccine most probably requires a trimeric envelope glycoprotein (Env) component, as Env is the only viral protein on the surface of the virus and therefore the only target for neutralizing antibodies. Native-like Env trimers can induce strain-specific neutralizing antibodies but not yet broadly neutralizing antibodies. To try to broaden the antibody response, we immunized rabbits with soluble native-like Env trimers from three different clades using monovalent, multivalent, and sequential regimens. We found that the neutralizing antibody response against each immunogen was reduced when the immunogens were delivered in combination or sequentially compared to the monovalent regimen. In contrast, when the Env trimers from different clades were delivered sequentially, the neutralizing antibody response could be cross-boosted. Although the combination of native-like Env trimers from different clades did not induce broadly neutralizing antibodies, the results provide clues on how to use native-like trimers in vaccination experiments.
Collapse
|
160
|
Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathog 2018; 14:e1006913. [PMID: 29474444 PMCID: PMC5841823 DOI: 10.1371/journal.ppat.1006913] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
The native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities. A precise delineation of immunogenic neutralization epitopes on native-like trimers could help strategies to extend the NAb response to heterologous HIV-1 strains. One autologous NAb epitope on the BG505 Env trimer is known to involve residues lining a hole in the glycan shield that is blocked by adding a glycan at either residue 241 or 289. This glycan-hole epitope accounts for the NAb response of most trimer-immunized rabbits but not for that of a substantial subset. Here, we have used a large panel of mutant BG505 Env-pseudotyped viruses to define additional sites. A frequently immunogenic epitope in rabbits is blocked by adding a glycan at residue 465 near the junction of the gp120 V5 loop and β24 strand and is influenced by amino-acid changes in the structurally nearby C3 region. We name this new site the “C3/465 epitope”. Of note is that the C3 region was under selection pressure in the infected infant from whom the BG505 virus was isolated. A third NAb epitope is located in the V1 region of gp120, although it is rarely immunogenic. In macaques, NAb responses induced by BG505 SOSIP trimers are more often directed at the C3/465 epitope than the 241/289-glycan hole. A protective vaccine would constitute a breakthrough in efforts to curb the global spread of HIV. Such a vaccine should induce antibodies inhibiting infection by most strains of the virus that circulate worldwide. Engineered SOSIP trimer mimics of the envelope glycoprotein on the surface of HIV particles, which mediates viral entry into cells, can elicit such neutralizing antibodies in rabbits and rhesus monkeys. These antibodies, however, have a narrow specificity, neutralizing mainly the same virus from which the SOSIP trimer protein was derived. Here, we have mapped the sites on the SOSIP trimer to which these antibodies bind, thereby delineating both an already identified binding site and a previously unknown one. The rabbits produced neutralizing antibodies that recognize both binding sites, but the rhesus monkeys responded predominantly to the newly identified one. As immune responses in monkeys are the more likely to resemble those in humans, the findings described here might aid strategies to steer human antibody responses to sites that are cross-reactive among HIV strains. That outcome would be a major step towards an effective vaccine.
Collapse
|
161
|
Virus-Like-Vaccines against HIV. Vaccines (Basel) 2018; 6:vaccines6010010. [PMID: 29439476 PMCID: PMC5874651 DOI: 10.3390/vaccines6010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8+ and CD4+ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.
Collapse
|
162
|
Behrens AJ, Kumar A, Medina-Ramirez M, Cupo A, Marshall K, Cruz Portillo VM, Harvey DJ, Ozorowski G, Zitzmann N, Wilson IA, Ward AB, Struwe WB, Moore JP, Sanders RW, Crispin M. Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. J Proteome Res 2018; 17:987-999. [PMID: 29420040 DOI: 10.1021/acs.jproteome.7b00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) that target the trimeric HIV-1 envelope glycoprotein spike (Env) are tools that can guide the design of recombinant Env proteins intended to engage the predicted human germline precursors of bNAbs (gl-bNAbs). The protein components of gl-bNAb epitopes are often masked by glycans, while mature bNAbs can evolve to accommodate or bypass these shielding glycans. The design of germline-targeting Env immunogens therefore includes the targeted deletion of specific glycan sites. However, the processing of glycans on Env trimers can be influenced by the density with which they are packed together, a highly relevant point given the essential contributions under-processed glycans make to multiple bNAb epitopes. We sought to determine the impact of the removal of 15 potential N-glycan sites (5 per protomer) from the germline-targeting soluble trimer, BG505 SOSIP.v4.1-GT1, using quantitative, site-specific N-glycan mass spectrometry analysis. We find that, compared with SOSIP.664, there was little overall change in the glycan profile but only subtle increases in the extent of processing at sites immediately adjacent to where glycans had been deleted. We conclude that multiple glycans can be deleted from BG505 SOSIP trimers without perturbing the overall integrity of the glycan shield.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Medina-Ramirez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam , 1105 AZ Amsterdam, The Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Kevin Marshall
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States.,Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Rogier W Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam , 1105 AZ Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,Centre for Biological Sciences and Institute for Life Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
163
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
164
|
Hessell AJ, Malherbe DC, Haigwood NL. Passive and active antibody studies in primates to inform HIV vaccines. Expert Rev Vaccines 2018; 17:127-144. [PMID: 29307225 PMCID: PMC6587971 DOI: 10.1080/14760584.2018.1425619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Prevention of infection remains the ultimate goal for HIV vaccination, and there is compelling evidence that antibodies directed to Envelope are necessary to block infection. Generating antibodies that are sufficiently broad, potent, and sustained to block infection by the diverse HIV-1 strains circulating worldwide remains an area of intense study. AREAS COVERED In this review, we have summarized progress from publications listed as PubMed citations in 2016-17 in the areas of passive antibody studies using human neutralizing monoclonal antibodies in nonhuman primates, HIV Envelope vaccine development and active vaccination studies to generate potent neutralizing antibodies. EXPERT COMMENTARY Passive transfer studies in nonhuman primates using human neutralizing monoclonal antibodies have informed the potency, specificity, and cooperativity of antibodies needed to prevent infection, leading to clinical studies now testing potent antibodies for prevention of HIV. Progress in understanding the structure of Envelope has led to novel vaccine constructs, including mimetics, scaffolds and native-like proteins. As yet, no single approach ensures protection against the circulating global HIV-1 strains, but there is progress in understanding why, and intense research continues in these and other areas for a solution. We offer perspectives on how this knowledge may shape the design of future HIV vaccines.
Collapse
|
165
|
Zhou T, Doria-Rose NA, Cheng C, Stewart-Jones GBE, Chuang GY, Chambers M, Druz A, Geng H, McKee K, Kwon YD, O'Dell S, Sastry M, Schmidt SD, Xu K, Chen L, Chen RE, Louder MK, Pancera M, Wanninger TG, Zhang B, Zheng A, Farney SK, Foulds KE, Georgiev IS, Joyce MG, Lemmin T, Narpala S, Rawi R, Soto C, Todd JP, Shen CH, Tsybovsky Y, Yang Y, Zhao P, Haynes BF, Stamatatos L, Tiemeyer M, Wells L, Scorpio DG, Shapiro L, McDermott AB, Mascola JR, Kwong PD. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Rep 2018; 19:719-732. [PMID: 28445724 DOI: 10.1016/j.celrep.2017.04.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rita E Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy G Wanninger
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Lemmin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
166
|
de Taeye SW, de la Peña AT, Vecchione A, Scutigliani E, Sliepen K, Burger JA, van der Woude P, Schorcht A, Schermer EE, van Gils MJ, LaBranche CC, Montefiori DC, Wilson IA, Moore JP, Ward AB, Sanders RW. Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. J Biol Chem 2017; 293:1688-1701. [PMID: 29222332 PMCID: PMC5798299 DOI: 10.1074/jbc.ra117.000709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
To provide protective immunity against circulating primary HIV-1 strains, a vaccine most likely has to induce broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) spike. Recombinant Env trimers such as the prototype BG505 SOSIP.664 that closely mimic the native Env spike can induce autologous neutralizing antibodies (NAbs) against relatively resistant (tier 2) primary viruses. Ideally, Env immunogens should present broadly neutralizing antibody epitopes but limit the presentation of immunodominant non-NAb epitopes that might induce off-target and potentially interfering responses. The V3 loop in gp120 is such a non-NAb epitope that can effectively elicit non-NAbs when animals are immunized with SOSIP.664 trimers. V3 immunogenicity can be diminished, but not abolished, by reducing the conformational flexibility of trimers via targeted sequence changes, including an A316W substitution in V3, that create the SOSIP.v4.1 and SOSIP.v5.2 variants. Here, we further modified these trimer designs by introducing leucine residues at V3 positions 306 and 308 to create hydrophobic interactions with the tryptophan residue at position 316 and with other topologically proximal sites in the V1V2 domain. Together, these modifications further stabilized the resulting SOSIP.v5.2 S306L/R308L trimers in the prefusion state in which V3 is sequestered. When we tested these trimers as immunogens in rabbits, the induction of V3 non-NAbs was significantly reduced compared with the SOSIP.v5.2 trimers and even more so compared with the SOSIP.664 prototype, without affecting the autologous NAb response. Hence, these additional trimer sequence modifications may be beneficial for immunization strategies that seek to minimize off-target non-NAb responses.
Collapse
Affiliation(s)
- Steven W de Taeye
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Alba Torrents de la Peña
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Andrea Vecchione
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Enzo Scutigliani
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Kwinten Sliepen
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Judith A Burger
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Patricia van der Woude
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Anna Schorcht
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Edith E Schermer
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Marit J van Gils
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Celia C LaBranche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Ian A Wilson
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, California 92037, and
| | - John P Moore
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Andrew B Ward
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, California 92037, and
| | - Rogier W Sanders
- From the Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands, .,the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
167
|
Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. J Virol 2017; 91:JVI.01216-17. [PMID: 28978711 DOI: 10.1128/jvi.01216-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex.IMPORTANCE The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding by narrowly neutralizing antibodies to the V3 crown. Three mutations together increased neutralization by V2 bnAb and eliminated binding by V3 crown antibodies. These results may aid the design of immunogens that elicit antibodies to the trimer apex.
Collapse
|
168
|
Wang H, Chen X, Wang D, Yao C, Wang Q, Xie J, Shi X, Xiang Y, Liu W, Zhang L. Epitope-focused immunogens against the CD4-binding site of HIV-1 envelope protein induce neutralizing antibodies against auto- and heterologous viruses. J Biol Chem 2017; 293:830-846. [PMID: 29187598 DOI: 10.1074/jbc.m117.816447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Recent discoveries of broadly neutralizing antibodies (bnAbs) in HIV-1-infected individuals have led to the identification of several major "vulnerable sites" on the HIV-1 envelope (Env) glycoprotein. These sites have provided precise targets for HIV-1 vaccine development, but identifying and utilizing many of these targets remain technically challenging. Using a yeast surface display-based approach, we sought to identify epitope-focused antigenic domains (EADs) containing one of the "vulnerable sites," the CD4-binding site (CD4bs), through screening and selection of a combinatorial antigen library of the HIV-1 envelope glycoprotein with the CD4bs bnAb VRC01. We isolated multiple EADs and found that their trimeric forms have biochemical and structural features that preferentially bind and activate B cells that express VRC01 in vitro More importantly, these EADs could induce detectable levels of neutralizing antibodies against genetically related autologous and heterologous subtype B viruses in guinea pigs. Our results demonstrate that an epitope-focused approach involving a screen of a combinatorial antigen library is feasible. The EADs identified here represent a promising collection of possible targets in the rational design of HIV-1 vaccines and lay the foundation for harnessing the specific antigenicity of CD4bs for protective immunogenicity in vivo.
Collapse
Affiliation(s)
- Hua Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Yao
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Qian Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Jiayu Xie
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xuanling Shi
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Linqi Zhang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine,
| |
Collapse
|
169
|
Saunders KO, Nicely NI, Wiehe K, Bonsignori M, Meyerhoff RR, Parks R, Walkowicz WE, Aussedat B, Wu NR, Cai F, Vohra Y, Park PK, Eaton A, Go EP, Sutherland LL, Scearce RM, Barouch DH, Zhang R, Von Holle T, Overman RG, Anasti K, Sanders RW, Moody MA, Kepler TB, Korber B, Desaire H, Santra S, Letvin NL, Nabel GJ, Montefiori DC, Tomaras GD, Liao HX, Alam SM, Danishefsky SJ, Haynes BF. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Rep 2017; 18:2175-2188. [PMID: 28249163 DOI: 10.1016/j.celrep.2017.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.
Collapse
Affiliation(s)
- Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nathan I Nicely
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Ryan Meyerhoff
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Baptiste Aussedat
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nelson R Wu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yusuf Vohra
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Peter K Park
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eden P Go
- University of Kansas, Lawrence, KS 66045, USA
| | - Laura L Sutherland
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ruijun Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Glenn Overman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - M Anthony Moody
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
170
|
Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology 2017; 514:106-117. [PMID: 29175625 PMCID: PMC5770335 DOI: 10.1016/j.virol.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022]
Abstract
HIV-1 envelope (Env)-based vaccines have so far largely failed to induce antibodies that prevent HIV-1 infection. One factor proposed to limit the immunogenicity of cell-associated Env is its low level of expression on the cell surface, restricting accessibility to antibodies. Using a vaccinia prime/protein boost protocol in mice, we explored the immunologic effects of mutations in the Env cytoplasmic tail (CT) that increased surface expression, including partial truncation and ablation of a tyrosine-dependent endocytosis motif. After vaccinia primes, CT-modified Envs induced up to 7-fold higher gp120-specific IgG, and after gp120 protein boosts, they elicited up to 16-fold greater Tier-1 HIV-1 neutralizing antibody titers, although results were variable between isolates. These data indicate that the immunogenicity of HIV-1 Env in a prime/boost vaccine can be enhanced in a strain-dependent manner by CT mutations that increase Env surface expression, thus highlighting the importance of the prime in this vaccine format. Novel HIV Env cytoplasmic tail (CT) modifications increase surface expression. Vaccinia vector vaccination with CT-modified Envs induces high gp120-specific IgG. gp120 boosts in mice primed with CT-modified Envs induce high Tier-1 Nabs.
Collapse
|
171
|
Kulp DW, Steichen JM, Pauthner M, Hu X, Schiffner T, Liguori A, Cottrell CA, Havenar-Daughton C, Ozorowski G, Georgeson E, Kalyuzhniy O, Willis JR, Kubitz M, Adachi Y, Reiss SM, Shin M, de Val N, Ward AB, Crotty S, Burton DR, Schief WR. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nat Commun 2017; 8:1655. [PMID: 29162799 PMCID: PMC5698488 DOI: 10.1038/s41467-017-01549-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies (bnAbs) is a primary HIV vaccine goal. Native-like trimers mimicking virion-associated spikes present nearly all bnAb epitopes and are therefore promising vaccine antigens. However, first generation native-like trimers expose epitopes for non-neutralizing antibodies (non-nAbs), which may hinder bnAb induction. We here employ computational and structure-guided design to develop improved native-like trimers that reduce exposure of non-nAb epitopes in the V3-loop and trimer base, minimize both CD4 reactivity and CD4-induced non-nAb epitope exposure, and increase thermal stability while maintaining bnAb antigenicity. In rabbit immunizations with native-like trimers of the 327c isolate, improved trimers suppress elicitation of V3-directed and tier-1 neutralizing antibodies and induce robust autologous tier-2 neutralization, unlike a first-generation trimer. The improved native-like trimers from diverse HIV isolates, and the design methods, have promise to assist in the development of a HIV vaccine. Eliciting broadly neutralizing antibodies (bnAbs) is a primary HIV vaccine goal, but available immunogens expose epitopes for development of non-nAbs. Here, the authors use computational and structure-guided design to develop improved native-like envelope trimers and analyze Ab response in animal models.
Collapse
Affiliation(s)
- Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Vaccine and Immune Therapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Samantha M Reiss
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Mia Shin
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Natalia de Val
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
| |
Collapse
|
172
|
HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates. J Virol 2017; 91:JVI.00910-17. [PMID: 28835491 DOI: 10.1128/jvi.00910-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022] Open
Abstract
Elicitation of broadly neutralizing antibody (bNAb) responses is a major goal for the development of an HIV-1 vaccine. Current HIV-1 envelope glycoprotein (Env) vaccine candidates elicit predominantly tier 1 and/or autologous tier 2 virus neutralizing antibody (NAb) responses, as well as weak and/or sporadic cross-reactive tier 2 virus NAb responses with unknown specificity. To delineate the specificity of vaccine-elicited cross-reactive tier 2 virus NAb responses, we performed single memory B cell sorting from the peripheral blood of a rhesus macaque immunized with YU2gp140-F trimers in adjuvant, using JR-FL SOSIP.664, a native Env trimer mimetic, as a sorting probe to isolate monoclonal Abs (MAbs). We found striking genetic and functional convergence of the SOSIP-sorted Ig repertoire, with predominant VH4 or VH5 gene family usage and Env V3 specificity. Of these vaccine-elicited V3-specific MAbs, nearly 20% (6/33) displayed cross-reactive tier 2 virus neutralization, which recapitulated the serum neutralization capacity. Substantial similarities in binding specificity, neutralization breadth and potency, and sequence/structural homology were observed between selected macaque cross-reactive V3 NAbs elicited by vaccination and prototypic V3 NAbs derived from natural infections in humans, highlighting the convergence of this subset of primate V3-specific B cell repertories. Our study demonstrated that cross-reactive primary virus neutralizing B cell lineages could be elicited by vaccination as detected using a standardized panel of tier 2 viruses. Whether these lineages could be expanded to acquire increased breadth and potency of neutralization merits further investigation.IMPORTANCE Elicitation of antibody responses capable of neutralizing diverse HIV-1 primary virus isolates (designated broadly neutralizing antibodies [bNAbs]) remains a high priority for the vaccine field. bNAb responses were so far observed only in response to natural infection within a subset of individuals. To achieve this goal, an improved understanding of vaccine-elicited responses, including at the monoclonal Ab level, is essential. Here, we isolated and characterized a panel of vaccine-elicited cross-reactive neutralizing MAbs targeting the Env V3 loop that moderately neutralized several primary viruses and recapitulated the serum neutralizing antibody response. Striking similarities between the cross-reactive V3 NAbs elicited by vaccination in macaques and natural infections in humans illustrate commonalities between the vaccine- and infection-induced responses to V3 and support the feasibility of exploring the V3 epitope as a HIV-1 vaccine target in nonhuman primates.
Collapse
|
173
|
Nogal B, Bowman CA, Ward AB. Time-course, negative-stain electron microscopy-based analysis for investigating protein-protein interactions at the single-molecule level. J Biol Chem 2017; 292:19400-19410. [PMID: 28972148 PMCID: PMC5702678 DOI: 10.1074/jbc.m117.808352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Indexed: 12/02/2022] Open
Abstract
Several biophysical approaches are available to study protein–protein interactions. Most approaches are conducted in bulk solution, and are therefore limited to an average measurement of the ensemble of molecular interactions. Here, we show how single-particle EM can enrich our understanding of protein–protein interactions at the single-molecule level and potentially capture states that are unobservable with ensemble methods because they are below the limit of detection or not conducted on an appropriate time scale. Using the HIV-1 envelope glycoprotein (Env) and its interaction with receptor CD4-binding site neutralizing antibodies as a model system, we both corroborate ensemble kinetics-derived parameters and demonstrate how time-course EM can further dissect stoichiometric states of complexes that are not readily observable with other methods. Visualization of the kinetics and stoichiometry of Env–antibody complexes demonstrated the applicability of our approach to qualitatively and semi-quantitatively differentiate two highly similar neutralizing antibodies. Furthermore, implementation of machine-learning techniques for sorting class averages of these complexes into discrete subclasses of particles helped reduce human bias. Our data provide proof of concept that single-particle EM can be used to generate a “visual” kinetic profile that should be amenable to studying many other protein–protein interactions, is relatively simple and complementary to well-established biophysical approaches. Moreover, our method provides critical insights into broadly neutralizing antibody recognition of Env, which may inform vaccine immunogen design and immunotherapeutic development.
Collapse
Affiliation(s)
- Bartek Nogal
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Charles A Bowman
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Andrew B Ward
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
174
|
Pauthner M, Havenar-Daughton C, Sok D, Nkolola JP, Bastidas R, Boopathy AV, Carnathan DG, Chandrashekar A, Cirelli KM, Cottrell CA, Eroshkin AM, Guenaga J, Kaushik K, Kulp DW, Liu J, McCoy LE, Oom AL, Ozorowski G, Post KW, Sharma SK, Steichen JM, de Taeye SW, Tokatlian T, Torrents de la Peña A, Butera ST, LaBranche CC, Montefiori DC, Silvestri G, Wilson IA, Irvine DJ, Sanders RW, Schief WR, Ward AB, Wyatt RT, Barouch DH, Crotty S, Burton DR. Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity 2017. [PMID: 28636956 PMCID: PMC5483234 DOI: 10.1016/j.immuni.2017.05.007] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)-based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head-to-head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non-neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation.
Collapse
Affiliation(s)
- Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Joseph P Nkolola
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Archana V Boopathy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly M Cirelli
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexey M Eroshkin
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Javier Guenaga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kirti Kaushik
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinyan Liu
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laura E McCoy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| | - Aaron L Oom
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriel Ozorowski
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kai W Post
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shailendra K Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Talar Tokatlian
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Salvatore T Butera
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian A Wilson
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Departments of Biological Engineering and Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard T Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan H Barouch
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
175
|
Racine T, Kobinger GP, Arts EJ. Development of an HIV vaccine using a vesicular stomatitis virus vector expressing designer HIV-1 envelope glycoproteins to enhance humoral responses. AIDS Res Ther 2017; 14:55. [PMID: 28893277 PMCID: PMC5594459 DOI: 10.1186/s12981-017-0179-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 11/30/2022] Open
Abstract
Vesicular stomatitis virus (VSV), like many other Rhabdoviruses, have become the focus of intense research over the past couple of decades based on their suitability as vaccine vectors, transient gene delivery systems, and as oncolytic viruses for cancer therapy. VSV as a vaccine vector platform has multiple advantages over more traditional viral vectors including low level, non-pathogenic replication in diverse cell types, ability to induce both humoral and cell-mediate immune responses, and the remarkable expression of foreign proteins cloned into multiple intergenic sites in the VSV genome. The utility and safety of VSV as a vaccine vector was recently demonstrated near the end of the recent Ebola outbreak in West Africa where VSV pseudotyped with the Ebola virus (EBOV) glycoprotein was proven safe in humans and provided protective efficacy against EBOV in a human phase III clinical trial. A team of Canadian scientists, led by Dr. Gary Kobinger, is now working with International AIDS Vaccine Initiative (IAVI) in developing a VSV-based HIV vaccine that will combine unique Canadian research on the HIV-1 Env glycoprotein and on the VSV vaccine vector. The goal of this collaboration is to develop a vaccine with a robust and potent anti-HIV immune response with an emphasis on generating quality antibodies to protect against HIV challenges.
Collapse
|
176
|
Martinez-Murillo P, Tran K, Guenaga J, Lindgren G, Àdori M, Feng Y, Phad GE, Vázquez Bernat N, Bale S, Ingale J, Dubrovskaya V, O'Dell S, Pramanik L, Spångberg M, Corcoran M, Loré K, Mascola JR, Wyatt RT, Karlsson Hedestam GB. Particulate Array of Well-Ordered HIV Clade C Env Trimers Elicits Neutralizing Antibodies that Display a Unique V2 Cap Approach. Immunity 2017; 46:804-817.e7. [PMID: 28514687 DOI: 10.1016/j.immuni.2017.04.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 04/26/2017] [Indexed: 01/22/2023]
Abstract
The development of soluble envelope glycoprotein (Env) mimetics displaying ordered trimeric symmetry has ushered in a new era in HIV-1 vaccination. The recently reported native, flexibly linked (NFL) design allows the generation of native-like trimers from clinical isolates at high yields and homogeneity. As the majority of infections world-wide are of the clade C subtype, we examined responses in non-human primates to well-ordered subtype C 16055 trimers administered in soluble or high-density liposomal formats. We detected superior germinal center formation and enhanced autologous neutralizing antibodies against the neutralization-resistant (tier 2) 16055 virus following inoculation of liposome-arrayed trimers. Epitope mapping of the neutralizing monoclonal antibodies (mAbs) indicated major contacts with the V2 apex, and 3D electron microscopy reconstructions of Fab-trimer complexes revealed a horizontal binding angle to the Env spike. These vaccine-elicited mAbs target the V2 cap, demonstrating a means to accomplish tier 2 virus neutralization by penetrating the dense N-glycan shield.
Collapse
Affiliation(s)
- Paola Martinez-Murillo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Karen Tran
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Guenaga
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gustaf Lindgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yu Feng
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ganesh E Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Néstor Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shridhar Bale
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jidnyasa Ingale
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Viktoriya Dubrovskaya
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lotta Pramanik
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Mats Spångberg
- Astrid Fagraeus Laboratory, Comparative Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Karin Loré
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
177
|
Soldemo M, Karlsson Hedestam GB. Env-Specific Antibodies in Chronic Infection versus in Vaccination. Front Immunol 2017; 8:1057. [PMID: 28928737 PMCID: PMC5591324 DOI: 10.3389/fimmu.2017.01057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
Antibodies are central in vaccine-mediated protection. For HIV-1, a pathogen that displays extreme antigenic variability, B cell responses against conserved determinants of the envelope glycoproteins (Env) are likely required to achieve broadly protective vaccine-induced responses. To understand antibodies in chronic infection, where broad serum neutralizing activity is observed in a subset of individuals, monoclonal antibodies mediating this activity have been isolated. Studies of their maturation pathways reveal that years of co-evolution between the virus and the adaptive immune response are required for such responses to arise. Furthermore, they do so in subjects who display alterations of their B cell subsets caused by the chronic infection, conditions that are distinctly different from those in healthy hosts. So far, broadly neutralizing antibody responses were not induced by vaccination in primates or small animals with natural B cell repertoires. An increased focus on the development vaccine-induced responses in healthy subjects is therefore needed to delineate how the immune system recognizes different forms of HIV-1 Env and to optimize approaches to stimulate antibody responses against relevant neutralizing antibody epitopes. In this review, we describe aspects of Env-directed antibody responses that differ between chronic HIV-1 infection and subunit vaccination for an increased appreciation of these differences; and we highlight the need for an improved understanding of vaccine-induced B cell responses to complex glycoproteins such as Env, in healthy subjects.
Collapse
Affiliation(s)
- Martina Soldemo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
178
|
Abstract
Structure determination of the HIV-1 envelope glycoprotein (Env) presented a number of challenges, but several high-resolution structures have now become available. In 2013, cryo-EM and x-ray structures of soluble, cleaved SOSIP Env trimers from the clade A BG505 strain provided the first glimpses into the Env trimer fold as well as more the variable regions. A recent cryo-EM structure of a native full-length trimer without any stabilizing mutations had the same core structure, but revealed new insights and features. A more comprehensive and higher resolution understanding of the glycan shield has also emerged, enabling a more complete representation of the Env glycoprotein structure. Complexes of Env trimers with broadly neutralizing antibodies have surprisingly illustrated that most of the Env surface can be targeted in natural infection and that the neutralizing epitopes are almost all composed of both peptide and glycan components. These structures have also provided further evidence of the inherent plasticity of Env and how antibodies can exploit this flexibility by perturbing or even stabilizing the trimer to facilitate neutralization. These breakthroughs have stimulated further design and stabilization of Env trimers as well as other platforms to generate trimers that now span multiple subtypes. These Env trimers when used as immunogens, have led to the first vaccine-induced neutralizing antibodies for structural and functional analyses.
Collapse
Affiliation(s)
- Andrew B Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
179
|
Abstract
A key unresolved challenge for developing an effective HIV‐1 vaccine is the discovery of strategies to elicit immune responses that are able to cross‐protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV‐1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine‐elicited T‐cell responses, which contribute to the control of HIV‐1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross‐reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV‐1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage‐based design strategies to illustrate how such in‐depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA.,New Mexico Consortium, Los Alamos, NM, USA
| | - Peter Hraber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
180
|
Karlsson Hedestam GB, Guenaga J, Corcoran M, Wyatt RT. Evolution of B cell analysis and Env trimer redesign. Immunol Rev 2017; 275:183-202. [PMID: 28133805 DOI: 10.1111/imr.12515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HIV-1 and its surface envelope glycoproteins (Env), gp120 and gp41, have evolved immune evasion strategies that render the elicitation of effective antibody responses to the functional Env entry unit extremely difficult. HIV-1 establishes chronic infection and stimulates vigorous immune responses in the human host; forcing selection of viral variants that escape cellular and antibody (Ab)-mediated immune pressure, yet possess contemporary fitness. Successful survival of fit variants through the gauntlet of the human immune system make this virus and these glycoproteins a formidable challenge to target by vaccination, requiring a systematic approach to Env mimetic immunogen design and evaluation of elicited responses. Here, we review key aspects of HIV-1 Env immunogenicity and immunogen re-design, based on experimental data generated by us and others over the past decade or more. We further provide rationale and details regarding the use of newly evolving tools to analyze B cell responses, including approaches to use next generation sequencing for antibody lineage tracing and B cell fate mapping. Together, these developments offer opportunities to address long-standing questions about the establishment of effective B cell immunity elicited by vaccination, not just against HIV-1.
Collapse
Affiliation(s)
| | - Javier Guenaga
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA.,The Scripps CHAVI-ID, La Jolla, CA, USA
| |
Collapse
|
181
|
Havenar-Daughton C, Lee JH, Crotty S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol Rev 2017; 275:49-61. [PMID: 28133798 DOI: 10.1111/imr.12512] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of HIV bnAbs may be one of the greatest feats of the human immune system and our best hope of finally creating an HIV vaccine. The striking amount of somatic hypermutation in HIV bnAbs led to the hypothesis that T follicular helper (Tfh) cells and germinal centers (GC) play a critical role in the ability of the immune system to generate these uncommon antibodies. In this review, we first summarize what is known about the immunological process of HIV bnAb development, the challenges of eliciting bnAbs via immunizations, and the putative central roles of Tfh cells and GC in the generation of HIV bnAbs. Next, we explore factors that have impeded our understanding of the GC and Tfh-cell processes involved in bnAb generation, including the difficulty of quantifying antigen-specific GC Tfh cells and the difficulty of tracking GC in human and non-human primate vaccine studies. Finally, we discuss antibody immunodominance pertaining to neutralizing antibody generation and the GC response, propose models to explain the negative effects of immunodominance on neutralizing antibody generation, and consider means of optimizing Tfh and GC responses to potentially overcome these problems.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Jeong Hyun Lee
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
182
|
Abstract
Beginning in 2009, studies of the humoral responses of HIV‐positive individuals have led to the identification of scores, if not hundreds, of antibodies that are both broadly reactive and potently neutralizing. This development has provided renewed impetus toward an HIV vaccine and led directly to the development of novel immunogens. Advances in identification of donors with the most potent and broad anti‐HIV serum neutralizing responses were crucial in this effort. Equally, development of methods for the rapid generation of human antibodies from these donors was pivotal. Primarily these methods comprise single B‐cell culture coupled to high‐throughput neutralization screening and flow cytometry‐based sorting of single B cells using HIV envelope protein baits. In this review, the advantages and disadvantages of these methodologies are discussed in the context of the specificities targeted by individual antibodies and the need for further improvements to evaluate HIV vaccine candidates.
Collapse
Affiliation(s)
- Laura E McCoy
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Division of Infection & Immunity, University College London, London, UK
| | - Dennis R Burton
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
183
|
Abstract
PURPOSE OF REVIEW Since 2009 many broadly neutralizing antibodies against HIV have been identified, yet there is still no vaccine capable of inducing such antibodies in humans. This review considers the early observations of HIV sera neutralization in light of more recent studies and highlights areas for future research. RECENT FINDINGS Large clinical cohort studies using standardized neutralization assays and pseudoviruses derived from primary isolates have shown that 10-30% of HIV infections result in some level of serum neutralization breadth. However, less than 10% of individuals develop a greater breadth of neutralization and are termed elite neutralizers. SUMMARY During HIV infection, many individuals develop strain-specific neutralization against their viral quasispecies, and similar immunogen-matched activity can now be induced in animal models. However, only in a minority of infections do broadly neutralizing antibodies develop. Therefore, understanding how the viral diversity, host immune environment, and antibody repertoires intersect to support the generation of neutralization breadth in elite neutralizers could provide guidelines as to how to improve immunization responses.
Collapse
|
184
|
Abstract
PURPOSE OF REVIEW It has been demonstrated that extensive virus diversification and antibody coevolution are necessary to give rise to broadly neutralizing antibodies targeting the envelope protein of HIV-1. Here, we discuss recent progress of vaccine design approaches aiming on strategies to initiate and guide B-cell development toward this outcome, as well as their evaluation in mouse models engineered to express human antibodies. RECENT FINDINGS Several specially tailored transgenic mouse strains have been developed to test the concept of engaging and guiding B-cell development by sequential immunizations. Currently available models display prerearranged or nonrearranged germline or mature VDJH and VJL loci of CD4-binding-site-specific (VRC01, 3BNC60) and high-mannose-patch-specific (PGT121) broadly neutralizing antibodies, or even the complete human V(D)J segments. Data generated in these knock-in mouse models elegantly prove the feasibility of the concept when using a carefully selected panel of engineered envelope proteins. SUMMARY Recent studies in knock-in transgenic mouse models provide a proof-of-concept that germline B-cell receptor targeting followed by sequential immunization can engage the respective naïve precursor B cells and guide B-cell receptor development toward broadly neutralizing reactivity.
Collapse
|
185
|
Abstract
Purpose of review To provide an update on the latest developments in the field of HIV-1 antibody-based soluble envelope glycoprotein (Env) trimer design for vaccine use. Recent findings The development of soluble native-like HIV-1 Env trimer immunogens has moved the field of antibody-based vaccine design forward dramatically over the past few years with refinement of various stabilizing approaches. However, despite this progress, significant challenges remain. Firstly, although trimers are relatively stable in solution, they nevertheless sample different conformational states, some of which may be less relevant to binding and induction of broadly neutralizing antibodies (bNAbs). Secondly, these trimers expose unwanted immunodominant surfaces that may distract the adaptive immune response from recognizing more immunorecessive but conserved neutralization-relevant surfaces on the trimer. The availability of atomic-resolution structural information has allowed guided design of mutations that have further stabilized trimers and allowed reduced exposure of unwanted epitopes. Moreover, chemical cross-linking approaches that do not require structural information have also contributed to trimer stabilization and selection of particular conformational forms. However, current knowledge suggests that strategies additional to trimer stabilization will be required to elicit bNAb, including targeting naïve B cell receptors with specific immunogens, and guiding B cell lineages toward recognizing conserved surfaces on Env with high affinity. Summary This review will give a perspective on these challenges, and summarize current approaches to overcoming them with the aim of developing immunogens to elicit bNAb responses in humans by active vaccination.
Collapse
|
186
|
Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 2017; 548:108-111. [PMID: 28726771 PMCID: PMC5812458 DOI: 10.1038/nature23301] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
No immunogen to date has reliably elicited broadly neutralizing antibodies to HIV in humans or animal models. Advances in the design of immunogens that antigenically mimic the HIV envelope glycoprotein (Env), such as the soluble cleaved trimer BG505 SOSIP, have improved the elicitation of potent isolate-specific antibody responses in rabbits and macaques, but so far failed to induce broadly neutralizing antibodies. One possible reason for this failure is that the relevant antibody repertoires are poorly suited to target the conserved epitope regions on Env, which are somewhat occluded relative to the exposed variable epitopes. Here, to test this hypothesis, we immunized four cows with BG505 SOSIP. The antibody repertoire of cows contains long third heavy chain complementary determining regions (HCDR3) with an ultralong subset that can reach more than 70 amino acids in length. Remarkably, BG505 SOSIP immunization resulted in rapid elicitation of broad and potent serum antibody responses in all four cows. Longitudinal serum analysis for one cow showed the development of neutralization breadth (20%, n = 117 cross-clade isolates) in 42 days and 96% breadth (n = 117) at 381 days. A monoclonal antibody isolated from this cow harboured an ultralong HCDR3 of 60 amino acids and neutralized 72% of cross-clade isolates (n = 117) with a potent median IC50 of 0.028 μg ml-1. Breadth was elicited with a single trimer immunogen and did not require additional envelope diversity. Immunization of cows may provide an avenue to rapidly generate antibody prophylactics and therapeutics to address disease agents that have evolved to avoid human antibody responses.
Collapse
|
187
|
Conformational Heterogeneity of the HIV Envelope Glycan Shield. Sci Rep 2017; 7:4435. [PMID: 28667249 PMCID: PMC5493700 DOI: 10.1038/s41598-017-04532-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023] Open
Abstract
To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.
Collapse
|
188
|
Guenaga J, Garces F, de Val N, Stanfield RL, Dubrovskaya V, Higgins B, Carrette B, Ward AB, Wilson IA, Wyatt RT. Glycine Substitution at Helix-to-Coil Transitions Facilitates the Structural Determination of a Stabilized Subtype C HIV Envelope Glycoprotein. Immunity 2017; 46:792-803.e3. [PMID: 28514686 PMCID: PMC5439057 DOI: 10.1016/j.immuni.2017.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022]
Abstract
Advances in HIV-1 envelope glycoprotein (Env) design generate native-like trimers and high-resolution clade A, B, and G structures and elicit neutralizing antibodies. However, a high-resolution clade C structure is critical, as this subtype accounts for the majority of HIV infections worldwide, but well-ordered clade C Env trimers are more challenging to produce due to their instability. Based on targeted glycine substitutions in the Env fusion machinery, we defined a general approach that disfavors helical transitions leading to post-fusion conformations, thereby favoring the pre-fusion state. We generated a stabilized, soluble clade C Env (16055 NFL) and determined its crystal structure at 3.9 Å. Its overall conformation is similar to SOSIP.664 and native Env trimers but includes a covalent linker between gp120 and gp41, an engineered 201-433 disulfide bond, and density corresponding to 22 N-glycans. Env-structure-guided design strategies resulted in multiple homogeneous cross-clade immunogens with the potential to advance HIV vaccine development.
Collapse
Affiliation(s)
- Javier Guenaga
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fernando Garces
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L Stanfield
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Viktoriya Dubrovskaya
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brett Higgins
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Barbara Carrette
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA.
| |
Collapse
|
189
|
Crooks ET, Osawa K, Tong T, Grimley SL, Dai YD, Whalen RG, Kulp DW, Menis S, Schief WR, Binley JM. Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology 2017; 505:193-209. [PMID: 28279830 PMCID: PMC5895097 DOI: 10.1016/j.virol.2017.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022]
Abstract
Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits (PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb specificity using rational heterologous boosts.
Collapse
Affiliation(s)
- Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Samantha L Grimley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Yang D Dai
- The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert G Whalen
- Altravax, Inc., 725 San Aleso Avenue, Suite 2, Sunnyvale, CA 94085, USA
| | - Daniel W Kulp
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - William R Schief
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA.
| |
Collapse
|
190
|
Pancera M, Changela A, Kwong PD. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Curr Opin HIV AIDS 2017; 12:229-240. [PMID: 28422787 PMCID: PMC5557343 DOI: 10.1097/coh.0000000000000360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. RECENT FINDINGS Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. SUMMARY A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
191
|
Falkenhagen A, Joshi S. Further Characterization of the Bifunctional HIV Entry Inhibitor sCD4-FI T45. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624214 PMCID: PMC5432676 DOI: 10.1016/j.omtn.2017.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV entry into target cells is a highly sequential and time-sensitive process. In recent years, potent HIV Env-targeting antibodies, such as VRC01, have been identified. However, antibodies bind only to a single epitope, and mutations that confer resistance to antibody-mediated inhibition of HIV entry have been detected. In contrast, HIV cannot escape from binding to soluble CD4 (sCD4) without a fitness disadvantage. sCD4 has the unique ability to induce conformational changes within the HIV envelope glycoproteins (Env) that allow fusion inhibitors to bind. We have previously linked sCD4 to the fusion inhibitor FIT45 (sCD4-FIT45) and examined delivery of the bifunctional entry inhibitor via gene therapy. Here, we extend our studies and analyze the ability of sCD4-FIT45 to inhibit HIV Env-mediated cell fusion and HIV entry of several primary isolates. sCD4-FIT45 inhibited both cell fusion and HIV entry with remarkable antiviral activity. The mean 50% inhibitory concentrations (IC50) for sCD4-FIT45 were <0.2 μg/mL in both assays. Importantly, inhibition by sCD4-FIT45 was more potent than by VRC01, sCD4, or the previously described bifunctional protein sCD4-scFv17b. In contrast to sCD4, sCD4-FIT45 as well as VRC01 and sCD4-scFv17b did not mediate cell fusion between HIV Env+ and CD4−CCR5+ cells. The results presented here provide further evidence for the testing of sCD4-FIT45 and development of bifunctional proteins based on the sCD4-fusion inhibitor architecture.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 150 College Street, Rm. 210, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 150 College Street, Rm. 210, Toronto, ON M5S 3E2, Canada; Department of Molecular Genetics, University of Toronto, 150 College Street, Rm. 210, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
192
|
Karsten CB, Alter G. The HIV-1 Glycan Shield: Strategically Placed Kinks in the Armor Improve Antigen Design. Cell Rep 2017; 19:669-670. [DOI: 10.1016/j.celrep.2017.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
193
|
Behrens AJ, Crispin M. Structural principles controlling HIV envelope glycosylation. Curr Opin Struct Biol 2017; 44:125-133. [PMID: 28363124 DOI: 10.1016/j.sbi.2017.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
The heavily glycosylated, trimeric HIV-1 envelope (Env) protein is the sole viral protein exposed on the HIV-1 virion surface and is thus a main focus of antibody-mediated vaccine development. Dense glycosylation at the outer domain of Env constrains normal enzymatic processing, stalling the glycans at immature oligomannose-type structures. Furthermore, native trimerization imposes additional steric constraints, which generate an extensive 'trimer-induced mannose patch'. Importantly, the immature glycans present a highly conserved feature of the virus that is targeted by broadly neutralizing antibodies. Quantitative mass spectrometry of glycopeptides together with structures of the trimeric viral-spike define the steric principles controlling processing and provide a detailed map of the glycan shield.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
194
|
Wibmer CK, Gorman J, Ozorowski G, Bhiman JN, Sheward DJ, Elliott DH, Rouelle J, Smira A, Joyce MG, Ndabambi N, Druz A, Asokan M, Burton DR, Connors M, Abdool Karim SS, Mascola JR, Robinson JE, Ward AB, Williamson C, Kwong PD, Morris L, Moore PL. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathog 2017; 13:e1006074. [PMID: 28076415 PMCID: PMC5226681 DOI: 10.1371/journal.ppat.1006074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel J. Sheward
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Julie Rouelle
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Ashley Smira
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - M. Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nonkululeko Ndabambi
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mangai Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, CHAVI-ID and IAVI Neutralizing Antibody Centre, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James E. Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
195
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
196
|
Abstract
We describe the development and potential use of various designs of recombinant HIV-1 envelope glycoprotein trimers that mimic the structure of the virion-associated spike, which is the target for neutralizing antibodies. The goal of trimer development programs is to induce broadly neutralizing antibodies with the potential to intervene against multiple circulating HIV-1 strains. Among the topics we address are the designs of various constructs; how native-like trimers can be produced and purified; the properties of such trimers in vitro and their immunogenicity in various animals; and the immunization strategies that may lead to the eventual elicitation of broadly neutralizing antibodies. In summary, native-like trimers are a now a platform for structure- and immunology-based design improvements that could eventually yield immunogens of practical value for solving the long-standing HIV-1 vaccine problem.
Collapse
Affiliation(s)
- Rogier W. Sanders
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
- Department of Medical MicrobiologyAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - John P. Moore
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
| |
Collapse
|
197
|
Chen B, Chou JJ. Structure of the transmembrane domain of HIV-1 envelope glycoprotein. FEBS J 2016; 284:1171-1177. [PMID: 27868386 DOI: 10.1111/febs.13954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
HIV-1 envelope spike (Env) is a heavily glycosylated, type I membrane protein that mediates fusion of viral and cell membranes to initiate infection. It is also a primary target of neutralizing antibodies and thus an important candidate for vaccine development. We have recently reported a nuclear magnetic resonance structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in a membrane-like environment. Taking HIV-1 as an example, we discuss here how a TM domain can anchor, stabilize, and modulate a viral envelope spike and how its high-resolution structure can contribute to understanding viral membrane fusion and to immunogen design.
Collapse
Affiliation(s)
- Bing Chen
- Division of Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
198
|
Wibmer CK, Gorman J, Anthony CS, Mkhize NN, Druz A, York T, Schmidt SD, Labuschagne P, Louder MK, Bailer RT, Abdool Karim SS, Mascola JR, Williamson C, Moore PL, Kwong PD, Morris L. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site. J Virol 2016; 90:10220-10235. [PMID: 27581986 PMCID: PMC5105658 DOI: 10.1128/jvi.01357-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023] Open
Abstract
All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Colin S Anthony
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Nonhlanhla N Mkhize
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Phillip Labuschagne
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
199
|
Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies. Virology 2016; 501:12-24. [PMID: 27846415 DOI: 10.1016/j.virol.2016.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022]
Abstract
Glycans on HIV-1 Envelope serve multiple functions including blocking epitopes from antibodies. We show that removal of glycan 301, a major target of anti-V3/glycan antibodies, has substantially different effects in two viruses. While glycan 301 on Du156.12 blocks epitopes commonly recognized by sera from chronically HIV-1-infected individuals, it does not do so on CAP45.G3, suggesting that removing the 301 glycan has a smaller effect on the integrity of the glycan shield in CAP45.G3. Changes in sensitivity to broadly neutralizing monoclonal antibodies suggest that the interaction between glycan 301 and the CD4 binding site differ substantially between these 2 viruses. Molecular modeling suggests that removal of glycan 301 likely exposes a greater surface area of the V3 and C4 regions in Du156.12. Our data indicate that the contribution of the 301 glycan to resistance to common neutralizing antibodies varies between viruses, allowing for easier selection for its loss in some viruses.
Collapse
|