151
|
Berger GE, Smesny S, Schäfer MR, Milleit B, Langbein K, Hipler UC, Milleit C, Klier CM, Schlögelhofer M, Holub M, Holzer I, Berk M, McGorry PD, Sauer H, Amminger GP. Niacin Skin Sensitivity Is Increased in Adolescents at Ultra-High Risk for Psychosis. PLoS One 2016; 11:e0148429. [PMID: 26894921 PMCID: PMC4764507 DOI: 10.1371/journal.pone.0148429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most studies provide evidence that the skin flush response to nicotinic acid (niacin) stimulation is impaired in schizophrenia. However, only little is known about niacin sensitivity in the ultra-high risk (UHR) phase of psychotic disorders. Methods We compared visual ratings of niacin sensitivity between adolescents at UHR for psychosis according to the one year transition outcome (UHR-T n = 11; UHR-NT n = 55) with healthy controls (HC n = 25) and first episode schizophrenia patients (FEP n = 25) treated with atypical antipsychotics. Results Contrary to our hypothesis niacin sensitivity of the entire UHR group was not attenuated, but significantly increased compared to the HC group, whereas no difference could be found between the UHR-T and UHR-NT groups. As expected, niacin sensitivity of FEP was attenuated compared to HC group. In UHR individuals niacin sensitivity was inversely correlated with omega-6 and -9 fatty acids (FA), but positively correlated with phospholipase A2 (inPLA2) activity, a marker of membrane lipid repair/remodelling. Conclusions Increased niacin sensitivity in UHR states likely indicates an impaired balance of eicosanoids and omega-6/-9 FA at a membrane level. Our findings suggest that the emergence of psychosis is associated with an increased mobilisation of eicosanoids prior to the transition to psychosis possibly reflecting a “pro-inflammatory state”, whereas thereafter eicosanoid mobilisation seems to be attenuated. Potential treatment implications for the UHR state should be further investigated.
Collapse
Affiliation(s)
- Gregor E. Berger
- University Hospital of Child and Adolescent Psychiatry, University of Zurich, Neumünsterallee 9, 8032 Zurich, Switzerland
- Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Victoria 3052, Melbourne, Australia
| | - Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
- * E-mail:
| | - Miriam R. Schäfer
- Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Victoria 3052, Melbourne, Australia
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Währingergürtel 18–20, A–1090 Vienna, Austria
| | - Berko Milleit
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Christine Milleit
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Claudia M. Klier
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Währingergürtel 18–20, A–1090 Vienna, Austria
| | - Monika Schlögelhofer
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Währingergürtel 18–20, A–1090 Vienna, Austria
| | - Magdalena Holub
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Ingrid Holzer
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Michael Berk
- Deakin University of Melbourne, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Patrick D. McGorry
- Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Victoria 3052, Melbourne, Australia
| | - Heinrich Sauer
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - G. Paul Amminger
- Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Victoria 3052, Melbourne, Australia
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Währingergürtel 18–20, A–1090 Vienna, Austria
| |
Collapse
|
152
|
Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem Res 2016; 41:398-408. [PMID: 26857796 DOI: 10.1007/s11064-016-1838-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol(®)) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor NaB (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,NYU Langone Medical Center, Department of Psychiatry, New York, NY, 10016, USA.
| | - Audrey Hashim
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - David S Dunlop
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Raymond F Suckow
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Tom B Cooper
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.,New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Daniel C Javitt
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA. .,Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
153
|
Zhang Y, Hodgson NW, Trivedi MS, Abdolmaleky HM, Fournier M, Cuenod M, Do KQ, Deth RC. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS One 2016; 11:e0146797. [PMID: 26799654 PMCID: PMC4723262 DOI: 10.1371/journal.pone.0146797] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Surgery, Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, 02215, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, 33328, United States of America
| | - Hamid M. Abdolmaleky
- Department of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA, 02118, United States of America
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Quang Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, 33328, United States of America
- * E-mail:
| |
Collapse
|
154
|
Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 2016; 17:125-34. [PMID: 26763624 DOI: 10.1038/nrn.2015.19] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.
Collapse
Affiliation(s)
- Giles E Hardingham
- School of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Kim Q Do
- Department of Psychiatry, Center of Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1008, Prilly-Lausanne, Switzerland
| |
Collapse
|
155
|
Monin A, Fournier M, Baumann PS, Cuénod M, Do KQ. Role of Redox Dysregulation in White Matter Anomalies Associated with Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00028-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
156
|
de Souza DF, Wartchow KM, Lunardi PS, Brolese G, Tortorelli LS, Batassini C, Biasibetti R, Gonçalves CA. Changes in Astroglial Markers in a Maternal Immune Activation Model of Schizophrenia in Wistar Rats are Dependent on Sex. Front Cell Neurosci 2015; 9:489. [PMID: 26733814 PMCID: PMC4689875 DOI: 10.3389/fncel.2015.00489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/03/2015] [Indexed: 01/26/2023] Open
Abstract
Data from epidemiological studies suggest that prenatal exposure to bacterial and viral infection is an important environmental risk factor for schizophrenia. The maternal immune activation (MIA) animal model is used to study how an insult directed at the maternal host can have adverse effects on the fetus, leading to behavioral and neurochemical changes later in life. We evaluated whether the administration of LPS to rat dams during late pregnancy affects astroglial markers (S100B and GFAP) of the offspring in later life. The frontal cortex and hippocampus were compared in male and female offspring on postnatal days (PND) 30 and 60. The S100B protein exhibited an age-dependent pattern of expression, being increased in the frontal cortex and hippocampus of the MIA group at PND 60, while at PND 30, male rats presented increased S100B levels only in the frontal cortex. Considering that S100B secretion is reduced by elevation of glutamate levels, we may hypothesize that this early increment in frontal cortex tissue of males is associated with elevated extracellular levels of glutamate and glutamatergic hypofunction, an alteration commonly associated with SCZ pathology. Moreover, we also found augmented GFAP in the frontal cortex of the LPS group at PND 30, but not in the hippocampus. Taken together data indicate that astroglial changes induced by MIA are dependent on sex and brain region and that these changes could reflect astroglial dysfunction. Such alterations may contribute to our understanding of the abnormal neuronal connectivity and developmental aspects of SCZ and other psychiatric disorders.
Collapse
Affiliation(s)
- Daniela F de Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Krista M Wartchow
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Paula S Lunardi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Giovana Brolese
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Lucas S Tortorelli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Cristiane Batassini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Regina Biasibetti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| |
Collapse
|
157
|
Mauney SA, Pietersen CY, Sonntag KC, Woo TUW. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res 2015; 169:374-380. [PMID: 26585218 PMCID: PMC4681621 DOI: 10.1016/j.schres.2015.10.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Abstract
The pathophysiology of schizophrenia involves disturbances of information processing across brain regions, possibly reflecting, at least in part, a disruption in the underlying axonal connectivity. This disruption is thought to be a consequence of the pathology of myelin ensheathment, the integrity of which is tightly regulated by oligodendrocytes. In order to gain insight into the possible neurobiological mechanisms of myelin deficit, we determined the messenger RNA (mRNA) expression profile of laser captured cells that were immunoreactive for 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a marker for oligodendrocyte progenitor cells (OPCs) in addition to differentiating and myelinating oligodendrocytes, in the white matter of the prefrontal cortex in schizophrenia subjects. Our findings pointed to the hypothesis that OPC differentiation might be impaired in schizophrenia. To address this hypothesis, we quantified cells that were immunoreactive for neural/glial antigen 2 (NG2), a selective marker for OPCs, and those that were immunoreactive for oligodendrocyte transcription factor 2 (OLIG2), an oligodendrocyte lineage marker that is expressed by OPCs and maturing oligodendrocytes. We found that the density of NG2-immunoreactive cells was unaltered, but the density of OLIG2-immunoreactive cells was significantly decreased in subjects with schizophrenia, consistent with the notion that OPC differentiation impairment may contribute to oligodendrocyte disturbances and thereby myelin deficits in schizophrenia.
Collapse
Affiliation(s)
- Sarah A Mauney
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478, United States; Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States
| | - Charmaine Y Pietersen
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478, United States; Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States
| | - Kai-C Sonntag
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
| | - Tsung-Ung W Woo
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478, United States; Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
158
|
Athanas K, Mauney SL, Woo TUW. Increased extracellular clusterin in the prefrontal cortex in schizophrenia. Schizophr Res 2015; 169:381-385. [PMID: 26482819 PMCID: PMC4681675 DOI: 10.1016/j.schres.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 11/29/2022]
Abstract
The expression of the gene that encodes clusterin, a glycoprotein that has been implicated in the regulation of many cellular processes, has previously been found in gene expression profiling studies to be among the most significantly differentially expressed genes in pyramidal and parvalbumin-containing inhibitory neurons in the cerebral cortex in subjects with schizophrenia. In this study, we investigated whether clusterin may also be dysregulated at the protein level in schizophrenia subjects. We found that, although the intracellular amount of clusterin may be unchanged, the level of extracellular, secreted clusterin appears to be significantly increased in schizophrenia subjects. It is speculated that this finding may represent a neuroprotective response to pathophysiological events that underlie schizophrenia.
Collapse
Affiliation(s)
- Katina Athanas
- Laboratory of Cellular Neuropathology, McLean Hospital Belmont, MA 02478
| | - Sarah L. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital Belmont, MA 02478
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
159
|
Corcoba A, Steullet P, Duarte JMN, Van de Looij Y, Monin A, Cuenod M, Gruetter R, Do KQ. Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia. Int J Neuropsychopharmacol 2015; 19:pyv110. [PMID: 26433393 PMCID: PMC4815475 DOI: 10.1093/ijnp/pyv110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Structural anomalies of white matter are found in various brain regions of patients with schizophrenia and bipolar and other psychiatric disorders, but the causes at the cellular and molecular levels remain unclear. Oxidative stress and redox dysregulation have been proposed to play a role in the pathophysiology of several psychiatric conditions, but their anatomical and functional consequences are poorly understood. The aim of this study was to investigate white matter throughout the brain in a preclinical model of redox dysregulation. METHODS In a mouse model with impaired glutathione synthesis (Gclm KO), a state-of-the-art multimodal magnetic resonance protocol at high field (14.1 T) was used to assess longitudinally the white matter structure, prefrontal neurochemical profile, and ventricular volume. Electrophysiological recordings in the abnormal white matter tracts identified by diffusion tensor imaging were performed to characterize the functional consequences of fractional anisotropy alterations. RESULTS Structural alterations observed at peri-pubertal age and adulthood in Gclm KO mice were restricted to the anterior commissure and fornix-fimbria. Reduced fractional anisotropy in the anterior commissure (-7.5% ± 1.9, P<.01) and fornix-fimbria (-4.5% ± 1.3, P<.05) were accompanied by reduced conduction velocity in fast-conducting fibers of the posterior limb of the anterior commissure (-14.3% ± 5.1, P<.05) and slow-conducting fibers of the fornix-fimbria (-8.6% ± 2.6, P<.05). Ventricular enlargement was found at peri-puberty (+25% ± 8 P<.05) but not in adult Gclm KO mice. CONCLUSIONS Glutathione deficit in Gclm KO mice affects ventricular size and the integrity of the fornix-fimbria and anterior commissure. This suggests that redox dysregulation could contribute during neurodevelopment to the impaired white matter and ventricle enlargement observed in schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Alberto Corcoba
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Pascal Steullet
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Yohan Van de Looij
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Aline Monin
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Michel Cuenod
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Kim Q Do
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter).
| |
Collapse
|
160
|
Alameda L, Ferrari C, Baumann PS, Gholam-Rezaee M, Do KQ, Conus P. Childhood sexual and physical abuse: age at exposure modulates impact on functional outcome in early psychosis patients. Psychol Med 2015; 45:2727-2736. [PMID: 26350397 DOI: 10.1017/s0033291715000690] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Evidence suggests a relationship between exposure to trauma during childhood and functional impairments in psychotic patients. However, the impact of age at the time of exposure has been understudied in early psychosis (EP) patients. METHOD Two hundred and twenty-five patients aged 18-35 years were assessed at baseline and after 2, 6, 18, 24, 30 and 36 months of treatment. Patients exposed to sexual and/or physical abuse (SPA) were classified according to age at the time of first exposure (Early SPA: before age 11 years; Late SPA: between ages 12 and 15 years) and then compared to patients who were not exposed to such trauma (Non-SPA). The functional level in the premorbid phase was measured with the Premorbid Adjustment Scale (PAS) and with the Global Assessment of Functioning (GAF) scale and the Social and Occupational Functioning Assessment Scale (SOFAS) during follow-up. RESULTS There were 24.8% of patients with a documented history of SPA. Late SPA patients were more likely to be female (p = 0.010). Comparison with non-SPA patients revealed that: (1) both Early and Late SPA groups showed poorer premorbid social functioning during early adolescence, and (2) while patients with Early SPA had poorer functional level at follow-up with lower GAF (p = 0.025) and lower SOFAS (p = 0.048) scores, Late SPA patients did not. CONCLUSION Our results suggest a link between exposure to SPA and the later impairment of social functioning before the onset of the disease. EP patients exposed to SPA before age 12 may present long-lasting functional impairment, while patients exposed at a later age may improve in this regard and have a better functional outcome.
Collapse
Affiliation(s)
- L Alameda
- Unit for Research in Schizophrenia,Center for Psychiatric Neuroscience,Department of Psychiatry,Lausanne University Hospital (CHUV),Lausanne,Switzerland
| | - C Ferrari
- Service of General Psychiatry,Treatment and Early Intervention in Psychosis,Program (TIPP-Lausanne),Lausanne University Hospital (CHUV),Lausanne,Switzerland
| | - P S Baumann
- Unit for Research in Schizophrenia,Center for Psychiatric Neuroscience,Department of Psychiatry,Lausanne University Hospital (CHUV),Lausanne,Switzerland
| | - M Gholam-Rezaee
- Department of Psychiatry,Center for Psychiatric Epidemiology and Psychopathology,Lausanne University Hospital (CHUV),Lausanne,Switzerland
| | - K Q Do
- Unit for Research in Schizophrenia,Center for Psychiatric Neuroscience,Department of Psychiatry,Lausanne University Hospital (CHUV),Lausanne,Switzerland
| | - P Conus
- Service of General Psychiatry,Treatment and Early Intervention in Psychosis,Program (TIPP-Lausanne),Lausanne University Hospital (CHUV),Lausanne,Switzerland
| |
Collapse
|
161
|
Smesny S, Milleit B, Schaefer MR, Hipler UC, Milleit C, Wiegand C, Hesse J, Klier CM, Holub M, Holzer I, Berk M, McGorry PD, Sauer H, Amminger GP. Effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system in individuals at ultra-high risk of psychosis. Prostaglandins Leukot Essent Fatty Acids 2015; 101:15-21. [PMID: 26260538 DOI: 10.1016/j.plefa.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oxidative stress and impaired antioxidant defenses are reported in schizophrenia and are associated with disturbed neurodevelopment, brain structural alterations, glutamatergic imbalance, increased negative symptoms, and cognitive impairment. There is evidence that oxidative stress predates the onset of acute psychotic illness. Here, we investigate the effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system (AODS). METHOD In 64 help-seeking UHR-individuals (13-25 years of age), vitamin E levels and glutathione were investigated before and after 12 weeks of treatment with either 1.2g/d omega-3 (PUFA-E) or saturated fatty acids (SFA-E), with each condition also containing 30.4mg/d alpha-tocopherol to ensure absorption without additional oxidative risk. RESULTS In multivariate tests, the effects on the AODS (alpha-tocopherol, total glutathione) were not significantly different (p=0.13, p=0.11, respectively) between treatment conditions. According to univariate findings, only PUFA-E caused a significant alpha-tocopherol increase, while PUFA-E and SFA-E caused a significant gamma- and delta-tocopherol decrease. Total glutathione (GSHt) was decreased by PUFA-E supplementation. CONCLUSION Effects of the PUFA-E condition on the vitamin E and glutathione AODS could be mechanisms underlying its clinical effectiveness. In terms of the vitamin E protection system, PUFA-E seems to directly support the antioxidative defense at membrane level. The effect of PUFA-E on GSHt is not yet fully understood, but could reflect antioxidative effects, resulting in decreased demand for glutathione. It is still necessary to further clarify which type of PUFA/antioxidant combination, and in which dose, is effective at each stage of psychotic illness.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany.
| | - Berko Milleit
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany; Department of Psychiatry and Psychotherapy, Thueringen-Kliniken GmbH, Rainweg 68, 07318 Saalfeld/Saale, Germany
| | - Miriam R Schaefer
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria; Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Christine Milleit
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany; Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Jana Hesse
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Claudia M Klier
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria
| | - Magdalena Holub
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Ingrid Holzer
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Michael Berk
- Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia; IMPACT Strategic Research Centre, Deakin University of Melbourne, School of Medicine, Barwon Health, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia; Department of Psychiatry, The University of Melbourne, Royal Parade, Parkville, Melbourne 3052, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia
| | - Heinrich Sauer
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - G Paul Amminger
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria; Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia
| |
Collapse
|
162
|
Morishita H, Cabungcal JH, Chen Y, Do KQ, Hensch TK. Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biol Psychiatry 2015; 78:396-402. [PMID: 25758057 PMCID: PMC4514575 DOI: 10.1016/j.biopsych.2014.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity. METHODS Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group). RESULTS Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells. CONCLUSIONS A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.
Collapse
Affiliation(s)
- Hirofumi Morishita
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jan-Harry Cabungcal
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1008 Prilly-Lausanne, Switzerland
| | - Ying Chen
- School of Pharmacy, University of Colorado at Denver, Boulder, CO USA
| | - Kim Q. Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1008 Prilly-Lausanne, Switzerland
| | - Takao K. Hensch
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA,Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA,Correspondence to:
| |
Collapse
|
163
|
Kann O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol Dis 2015; 90:75-85. [PMID: 26284893 DOI: 10.1016/j.nbd.2015.08.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022] Open
Abstract
Fast-spiking, inhibitory interneurons - prototype is the parvalbumin-positive (PV+) basket cell - generate action potentials at high frequency and synchronize the activity of numerous excitatory principal neurons, such as pyramidal cells, during fast network oscillations by rhythmic inhibition. For this purpose, fast-spiking, PV+ interneurons have unique electrophysiological characteristics regarding action potential kinetics and ion conductances, which are associated with high energy expenditure. This is reflected in the neural ultrastructure by enrichment with mitochondria and cytochrome c oxidase, indicating the dependence on oxidative phosphorylation for adenosine-5'-triphosphate (ATP) generation. The high energy expenditure is most likely required for membrane ion transport in dendrites and the extensive axon arbor as well as for presynaptic release of neurotransmitter, gamma-aminobutyric acid (GABA). Fast-spiking, PV+ interneurons are central for the emergence of gamma oscillations (30-100Hz) that provide a fundamental mechanism of complex information processing during sensory perception, motor behavior and memory formation in networks of the hippocampus and the neocortex. Conversely, shortage in glucose and oxygen supply (metabolic stress) and/or excessive formation of reactive oxygen and nitrogen species (oxidative stress) may render these interneurons to be a vulnerable target. Dysfunction in fast-spiking, PV+ interneurons might set a low threshold for impairment of fast network oscillations and thus higher brain functions. This pathophysiological mechanism might be highly relevant for cerebral aging as well as various acute and chronic brain diseases, such as stroke, vascular cognitive impairment, epilepsy, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
164
|
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460:53-71. [PMID: 25998734 DOI: 10.1016/j.bbrc.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling.
Collapse
|
165
|
Möller M, Swanepoel T, Harvey BH. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chem Neurosci 2015; 6:987-1016. [PMID: 25794269 DOI: 10.1021/cn5003368] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a life altering disease with a complex etiology and pathophysiology, and although antipsychotics are valuable in treating the disorder, certain symptoms and/or sufferers remain resistant to treatment. Our poor understanding of the underlying neuropathological mechanisms of schizophrenia hinders the discovery and development of improved pharmacological treatment, so that filling these gaps is of utmost importance for an improved outcome. A vast amount of clinical data has strongly implicated the role of inflammation and oxidative insults in the pathophysiology of schizophrenia. Preclinical studies using animal models are fundamental in our understanding of disease development and pathology as well as the discovery and development of novel treatment options. In particular, social isolation rearing (SIR) and pre- or postnatal inflammation (PPNI) have shown great promise in mimicking the biobehavioral manifestations of schizophrenia. Furthermore, the "dual-hit" hypothesis of schizophrenia states that a first adverse event such as genetic predisposition or a prenatal insult renders an individual susceptible to develop the disease, while a second insult (e.g., postnatal inflammation, environmental adversity, or drug abuse) may be necessary to precipitate the full-blown syndrome. Animal models that emphasize the "dual-hit" hypothesis therefore provide valuable insight into understanding disease progression. In this Review, we will discuss SIR, PPNI, as well as possible "dual-hit" animal models within the context of the redox-immune-inflammatory hypothesis of schizophrenia, correlating such changes with the recognized monoamine and behavioral alterations of schizophrenia. Finally, based on these models, we will review new therapeutic options, especially those targeting immune-inflammatory and redox pathways.
Collapse
Affiliation(s)
- M. Möller
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - T. Swanepoel
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - B. H. Harvey
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
166
|
Monin A, Baumann PS, Griffa A, Xin L, Mekle R, Fournier M, Butticaz C, Klaey M, Cabungcal JH, Steullet P, Ferrari C, Cuenod M, Gruetter R, Thiran JP, Hagmann P, Conus P, Do KQ. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry 2015; 20:827-38. [PMID: 25155877 DOI: 10.1038/mp.2014.88] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/30/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia.
Collapse
Affiliation(s)
- A Monin
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - P S Baumann
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [3] Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - A Griffa
- 1] Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland [2] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - L Xin
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Mekle
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - M Fournier
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - C Butticaz
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - M Klaey
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - P Steullet
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - C Ferrari
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - M Cuenod
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - R Gruetter
- 1] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland [2] Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J P Thiran
- 1] Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland [2] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - P Hagmann
- 1] Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland [2] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - P Conus
- 1] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - K Q Do
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| |
Collapse
|
167
|
Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res 2015; 165:163-70. [PMID: 25937462 DOI: 10.1016/j.schres.2015.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 11/21/2022]
Abstract
Oxidative stress has important implications in schizophrenia. Alpha-lipoic acid (ALA) is a natural antioxidant synthesized in human tissues with clinical uses. We studied the effect of ALA or clozapine (CLZ) alone or in combination in the reversal of schizophrenia-like alterations induced by ketamine (KET). Adult male mice received saline or KET for 14 days. From 8th to 14th days mice were additionally administered saline, ALA (100 mg/kg), CLZ 2.5 or 5 mg/kg or the combinations ALA+CLZ2.5 or ALA+CLZ5. Schizophrenia-like symptoms were evaluated by prepulse inhibition of the startle (PPI) and locomotor activity (positive-like), social preference (negative-like) and Y maze (cognitive-like). Oxidative alterations (reduced glutathione - GSH and lipid peroxidation - LP) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) and BDNF in the PFC were also determined. KET caused deficits in PPI, working memory, social interaction and hyperlocomotion. Decreased levels of GSH, nitrite (HC) and BDNF and increased LP were also observed in KET-treated mice. ALA and CLZ alone reversed KET-induced behavioral alterations. These drugs also reversed the decreases in GSH (HC) and BDNF and increase in LP (PFC, HC and ST). The combination ALA+CLZ2.5 reversed behavioral and some neurochemical parameters. However, ALA+CLZ5 caused motor impairment. Therefore, ALA presented an antipsychotic-like profile reversing KET-induced positive- and negative-like symptoms. The mechanism partially involves antioxidant, neurotrophic and nitrergic pathways. The combination of ALA+CLZ2.5 improved most of the parameters evaluated in this study without causing motor impairment demonstrating, thus, that possibly when combined with ALA a lower dose of CLZ is required.
Collapse
|
168
|
Leza JC, García-Bueno B, Bioque M, Arango C, Parellada M, Do K, O'Donnell P, Bernardo M. Inflammation in schizophrenia: A question of balance. Neurosci Biobehav Rev 2015; 55:612-26. [PMID: 26092265 DOI: 10.1016/j.neubiorev.2015.05.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been renewed interest in immune/inflammatory changes and their associated oxidative/nitrosative consequences as key pathophysiological mechanisms in schizophrenia and related disorders. Both brain cell components (microglia, astrocytes, and neurons) and peripheral immune cells have been implicated in inflammation and the resulting oxidative/nitrosative stress (O&NS) in schizophrenia. Furthermore, down-regulation of endogenous antioxidant and anti-inflammatory mechanisms has been identified in biological samples from patients, although the degree and progression of the inflammatory process and the nature of its self-regulatory mechanisms vary from early onset to full-blown disease. This review focuses on the interactions between inflammation and O&NS, their damaging consequences for brain cells in schizophrenia, the possible origins of inflammation and increased O&NS in the disorder, and current pharmacological strategies to deal with these processes (mainly treatments with anti-inflammatory or antioxidant drugs as add-ons to antipsychotics).
Collapse
Affiliation(s)
- Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miquel Bioque
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Celso Arango
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Child and Adolescent Psychiatry Department, IIS Hospital Gregorio Marañón (IISGM), Madrid, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Child and Adolescent Psychiatry Department, IIS Hospital Gregorio Marañón (IISGM), Madrid, Spain
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Miguel Bernardo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
169
|
Pittman-Polletta BR, Kocsis B, Vijayan S, Whittington MA, Kopell NJ. Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 2015; 77:1020-30. [PMID: 25850619 PMCID: PMC4444389 DOI: 10.1016/j.biopsych.2015.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings, we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive and perceptual disturbances observed in schizophrenia.
Collapse
Affiliation(s)
- Benjamin R. Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA,Corresponding author. Please send correspondence to: 111 Cummington Mall, Boston MA 02215. Phone: 617-353-2560. Fax: 617-353-8100., (Benjamin R. Pittman-Polletta)
| | - Bernat Kocsis
- Cognitive Rhythms Collaborative, Boston, MA,Department of Psychiatry, Beth Israel Medical Center, Harvard Medical School, Boston MA
| | - Sujith Vijayan
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| | - Miles A. Whittington
- Cognitive Rhythms Collaborative, Boston, MA,Department of Neuroscience, Hull York Medical School, York University, UK
| | - Nancy J. Kopell
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| |
Collapse
|
170
|
Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun 2015; 6:6761. [PMID: 25854456 PMCID: PMC4403319 DOI: 10.1038/ncomms7761] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
How the brain’s antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. How the brain’s antioxidant defenses adapt to changing demand is not well understood. Here the authors demonstrate that synaptic activity is coupled to transcriptional control of the glutathione antioxidant system via NMDA receptors, enabling neurons to tune their antioxidant defenses.
Collapse
|
171
|
Nascimento JM, Martins-de-Souza D. The proteome of schizophrenia. NPJ SCHIZOPHRENIA 2015; 1:14003. [PMID: 27336025 PMCID: PMC4849438 DOI: 10.1038/npjschz.2014.3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia.
Collapse
Affiliation(s)
- Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
172
|
Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 2015; 49:90-104. [PMID: 25496904 PMCID: PMC7112550 DOI: 10.1016/j.neubiorev.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health & Neurosciences, Bangalore 560029, India.
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre and Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, India
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, and Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
173
|
Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci Biobehav Rev 2015; 48:10-21. [DOI: 10.1016/j.neubiorev.2014.11.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/04/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
|
174
|
Dietrich-Muszalska A. Oxidative Stress in Schizophrenia. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-0440-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
175
|
Bitanihirwe BKY, Woo TUW. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. Psychiatry Res 2014; 220:1155-9. [PMID: 25312391 PMCID: PMC4447488 DOI: 10.1016/j.psychres.2014.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/15/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
Abstract
Parvalbumin (PV)-containing neurons are functionally compromised in schizophrenia. Using double in situ hybridization in postmortem human prefrontal cortex, we found that the messenger RNA (mRNA) for the γ-aminobutyric acid (GABA) transporter GAT-1 was undetectable in 22-41% of PV neurons in layers 3-4 in schizophrenia. In the remaining PV neurons with detectable GAT-1 mRNA, transcript expression was decreased by 26% in layer 3. Hence, the dysfunction of PV neurons involves the molecular dysregulation of presynaptic GABA reuptake.
Collapse
Affiliation(s)
- Byron K. Y. Bitanihirwe
- System and Cell Biology of Neurodegeneration, University of Zürich, Zürich, Switzerland,Program in Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
176
|
Iguchi Y, Kosugi S, Nishikawa H, Lin Z, Minabe Y, Toda S. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions. PLoS One 2014; 9:e114024. [PMID: 25489939 PMCID: PMC4260961 DOI: 10.1371/journal.pone.0114024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/04/2014] [Indexed: 12/26/2022] Open
Abstract
Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Psychiatry and Neurobiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan, 980-8641
| | - Sakurako Kosugi
- Department of Psychiatry and Neurobiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan, 980-8641
| | - Hiromi Nishikawa
- Department of Psychiatry and Neurobiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan, 980-8641
| | - Ziqiao Lin
- Department of Psychiatry and Neurobiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan, 980-8641
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan, 980-8641
| | - Shigenobu Toda
- Department of Psychiatry and Neurobiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan, 980-8641
| |
Collapse
|
177
|
Beltrán González AN, Gasulla J, Calvo DJ. An intracellular redox sensor for reactive oxygen species at the M3-M4 linker of GABAA ρ1 receptors. Br J Pharmacol 2014; 171:2291-9. [PMID: 24428763 DOI: 10.1111/bph.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) are normally involved in cell oxidative stress but also play a role as cellular messengers in redox signalling; for example, modulating the activity of neurotransmitter receptors and ion channels. However, the direct actions of ROS on GABAA receptors were not previously demonstrated. In the present work, we studied the effects of ROS on GABAA ρ1 receptor function. EXPERIMENTAL APPROACH GABAA ρ1 receptors were expressed in oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of ROS. Chemical protection of cysteines by selective sulfhydryl reagents and site-directed mutagenesis studies were used to identify protein residues involved in ROS actions. KEY RESULTS GABAA ρ1 receptor-mediated responses were significantly enhanced in a concentration-dependent and reversible manner by H₂O₂. Potentiating effects were attenuated by a free radical scavenger, lipoic acid or an inhibitor of the Fenton reaction, deferoxamine. Each ρ1 subunit contains only three cysteine residues, two extracellular at the Cys-loop (C¹⁷⁷ and C¹⁹¹) and one intracellular (C³⁶⁴) at the M3-M4 linker. Mutant GABAA ρ1 receptors in which C³⁶⁴ was exchanged by alanine were completely insensitive to modulation, implying that this site, rather than a cysteine in the Cys-loop, is essential for ROS modulation. CONCLUSION AND IMPLICATIONS Our results show that the function of GABAA ρ1 receptors is enhanced by ROS and that the intracellular C³⁶⁴ is the sensor for ROS actions.
Collapse
|
178
|
Yap MYA, Lo YL, Talbot K, Ong WY. Oxidative stress reduces levels of dysbindin-1A via its PEST domain. Neurochem Int 2014; 79:65-9. [DOI: 10.1016/j.neuint.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/05/2023]
|
179
|
McGorry P, Keshavan M, Goldstone S, Amminger P, Allott K, Berk M, Lavoie S, Pantelis C, Yung A, Wood S, Hickie I. Biomarkers and clinical staging in psychiatry. World Psychiatry 2014; 13:211-23. [PMID: 25273285 PMCID: PMC4219053 DOI: 10.1002/wps.20144] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine is rapidly becoming a reality in today's physical medicine. However, as yet this is largely an aspirational goal in psychiatry, despite significant advances in our understanding of the biochemical, genetic and neurobiological processes underlying major mental disorders. Preventive medicine relies on the availability of predictive tools; in psychiatry we still largely lack these. Furthermore, our current diagnostic systems, with their focus on well-established, largely chronic illness, do not support a pre-emptive, let alone a preventive, approach, since it is during the early stages of a disorder that interventions have the potential to offer the greatest benefit. Here, we present a clinical staging model for severe mental disorders and discuss examples of biological markers that have already undergone some systematic evaluation and that could be integrated into such a framework. The advantage of this model is that it explicitly considers the evolution of psychopathology during the development of a mental illness and emphasizes that progression of illness is by no means inevitable, but can be altered by providing appropriate interventions that target individual modifiable risk and protective factors. The specific goals of therapeutic intervention are therefore broadened to include the prevention of illness onset or progression, and to minimize the risk of harm associated with more complex treatment regimens. The staging model also facilitates the integration of new data on the biological, social and environmental factors that influence mental illness into our clinical and diagnostic infrastructure, which will provide a major step forward in the development of a truly pre-emptive psychiatry.
Collapse
Affiliation(s)
- Patrick McGorry
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Centre, Harvard Medical SchoolBoston, MA, USA
| | - Sherilyn Goldstone
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Paul Amminger
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Kelly Allott
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Michael Berk
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia,School of Medicine, Deakin UniversityGeelong, Australia
| | - Suzie Lavoie
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Alison Yung
- Institute of Brain, Behaviour and Mental Health, University of Manchester, ManchesterUK
| | - Stephen Wood
- School of Psychology, University of Birmingham, BirminghamUK
| | - Ian Hickie
- Brain and Mind Research Institute, University of Sydney, SydneyAustralia
| |
Collapse
|
180
|
Griffa A, Baumann PS, Ferrari C, Do KQ, Conus P, Thiran JP, Hagmann P. Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Hum Brain Mapp 2014; 36:354-66. [PMID: 25213204 DOI: 10.1002/hbm.22633] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/26/2014] [Accepted: 03/03/2014] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the disease, and that the capacity of functional integration between brain areas is decreased. In this study we questioned (i) which brain areas underlie the loss of network integration properties observed in the pathology, (ii) what is the topological role of the affected regions within the overall brain network and how this topological status might be altered in patients, and (iii) how white matter properties of tracts connecting affected regions may be disrupted. We acquired diffusion spectrum imaging (a technique sensitive to fiber crossing and slow diffusion compartment) data from 16 schizophrenia patients and 15 healthy controls, and investigated their weighted brain networks. The global connectivity analysis confirmed that patients present disrupted integration and segregation properties. The nodal analysis allowed identifying a distributed set of brain nodes affected in the pathology, including hubs and peripheral areas. To characterize the topological role of this affected core, we investigated the brain network shortest paths layout, and quantified the network damage after targeted attack toward the affected core. The centrality of the affected core was compromised in patients. Moreover the connectivity strength within the affected core, quantified with generalized fractional anisotropy and apparent diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alterations and topological decentralization of the affected core might be major mechanisms underlying the schizophrenia dysconnectivity disorder.
Collapse
Affiliation(s)
- Alessandra Griffa
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
181
|
Fournier M, Ferrari C, Baumann PS, Polari A, Monin A, Bellier-Teichmann T, Wulff J, Pappan KL, Cuenod M, Conus P, Do KQ. Impaired metabolic reactivity to oxidative stress in early psychosis patients. Schizophr Bull 2014; 40:973-83. [PMID: 24687046 PMCID: PMC4133680 DOI: 10.1093/schbul/sbu053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients' fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors.
Collapse
Affiliation(s)
- Margot Fournier
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carina Ferrari
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S. Baumann
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Andrea Polari
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Aline Monin
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tanja Bellier-Teichmann
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | - Michel Cuenod
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,These authors contributed equally to this work
| | - Kim Q. Do
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,These authors contributed equally to this work
| |
Collapse
|
182
|
O’Donnell P, Do KQ, Arango C. Oxidative/Nitrosative stress in psychiatric disorders: are we there yet? Schizophr Bull 2014; 40:960-2. [PMID: 24714380 PMCID: PMC4133678 DOI: 10.1093/schbul/sbu048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Patricio O’Donnell
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA;,*To whom correspondence should be addressed; Neuroscience Research Unit, Pfizer Inc, 610 Main Street, Cambridge, MA 02139, US; tel: 617-395-0838, fax: 845-474-4276, e-mail:
| | - Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne-Prilly, Switzerland
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| |
Collapse
|
183
|
Early adolescent MK-801 exposure impairs the maturation of ventral hippocampal control of basolateral amygdala drive in the adult prefrontal cortex. J Neurosci 2014; 34:9059-66. [PMID: 24990926 DOI: 10.1523/jneurosci.1395-14.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp-BLA inputs in regulating PFC plasticity. Local field potential recordings were used to determine changes in long-term depression (LTD) and long-term potentiation (LTP) of PFC responses resulting from vHipp and BLA high-frequency stimulation in adult rats that received repeated injections of saline or the NMDAR antagonist MK-801 from postnatal day 35 (P35) to P40. We found that early adolescent MK-801 exposure elicited an age- and input-specific dysregulation of vHipp-PFC plasticity, characterized by a shift from LTD to LTP without altering the BLA-induced LTP. Data also showed that the vHipp normally resets the LTP state of BLA transmission; however, this inhibitory regulation is absent following early adolescent MK-801 treatment. This deficit was reminiscent of PFC responses seen in drug-naive juveniles. Notably, local prefrontal upregulation of GABAAα1 function completely restored vHipp functionality and its regulation of BLA plasticity in MK-801-treated rats. Thus, NMDAR signaling is critical for the periadolescent acquisition of a GABA-dependent hippocampal control of PFC plasticity, which enables the inhibitory control of the prefrontal output by the vHipp. A dysregulation of this pathway can alter PFC processing of other converging afferents such as those from the BLA.
Collapse
|
184
|
Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P, Pollock C, Calhoon GG, Sullivan E, Presgraves E, Kil J, Hong LE, Cuenod M, Do KQ, O'Donnell P. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 2014; 83:1073-1084. [PMID: 25132466 DOI: 10.1016/j.neuron.2014.07.028] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Abnormal development can lead to deficits in adult brain function, a trajectory likely underlying adolescent-onset psychiatric conditions such as schizophrenia. Developmental manipulations yielding adult deficits in rodents provide an opportunity to explore mechanisms involved in a delayed emergence of anomalies driven by developmental alterations. Here we assessed whether oxidative stress during presymptomatic stages causes adult anomalies in rats with a neonatal ventral hippocampal lesion, a developmental rodent model useful for schizophrenia research. Juvenile and adolescent treatment with the antioxidant N-acetyl cysteine prevented the reduction of prefrontal parvalbumin interneuron activity observed in this model, as well as electrophysiological and behavioral deficits relevant to schizophrenia. Adolescent treatment with the glutathione peroxidase mimic ebselen also reversed behavioral deficits in this animal model. These findings suggest that presymptomatic oxidative stress yields abnormal adult brain function in a developmentally compromised brain, and highlight redox modulation as a potential target for early intervention.
Collapse
Affiliation(s)
- Jan Harry Cabungcal
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Danielle S Counotte
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eastman Lewis
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugo A Tejeda
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Piantadosi
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameron Pollock
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gwendolyn G Calhoon
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elyse Sullivan
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Echo Presgraves
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Kil
- Sound Pharmaceuticals, Inc, Research and Development, Seattle, WA, USA
| | - L Elliot Hong
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Psychiatric Research Center, Baltimore, MD, USA
| | - Michel Cuenod
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Q Do
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Patricio O'Donnell
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
185
|
Abstract
The clinical symptoms and cognitive and functional deficits of schizophrenia typically begin to gradually emerge during late adolescence and early adulthood. Recent findings suggest that disturbances of a specific subset of inhibitory neurons that contain the calcium-binding protein parvalbumin (PV), which may regulate the course of postnatal developmental experience-dependent synaptic plasticity in the cerebral cortex, including the prefrontal cortex (PFC), may be involved in the pathogenesis of the onset of this illness. Specifically, converging lines of evidence suggest that oxidative stress, extracellular matrix (ECM) deficit and impaired glutamatergic innervation may contribute to the functional impairment of PV neurons, which may then lead to aberrant developmental synaptic pruning of pyramidal cell circuits during adolescence in the PFC. In addition to promoting the functional integrity of PV neurons, maturation of ECM may also play an instrumental role in the termination of developmental PFC synaptic pruning; thus, ECM deficit can directly lead to excessive loss of synapses by prolonging the course of pruning. Together, these mechanisms may contribute to the onset of schizophrenia by compromising the integrity, stability, and fidelity of PFC connectional architecture that is necessary for reliable and predictable information processing. As such, further characterization of these mechanisms will have implications for the conceptualization of rational strategies for the diagnosis, early intervention, and prevention of this debilitating disorder.
Collapse
Affiliation(s)
- Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, MRC303E, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA,
| |
Collapse
|
186
|
Neurodegenerative Aspects in Vulnerability to Schizophrenia Spectrum Disorders. Neurotox Res 2014; 26:400-13. [DOI: 10.1007/s12640-014-9473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/20/2023]
|
187
|
Moser P. Evaluating negative-symptom-like behavioural changes in developmental models of schizophrenia. Eur Neuropsychopharmacol 2014; 24:774-87. [PMID: 24332891 DOI: 10.1016/j.euroneuro.2013.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/18/2013] [Accepted: 11/17/2013] [Indexed: 01/22/2023]
Abstract
Many lines of evidence suggest that schizophrenia has a major developmental component and that environmental factors that disrupt key stages of development, such as maternal stress during pregnancy as a result of infection or malnutrition, can increase the risk of developing schizophrenia in later life. This review examines how non-clinical neurodevelopmental models pertinent to schizophrenia have been evaluated for their ability to reproduce behavioural deficits related to the negative symptoms of schizophrenia. The more frequently used are the prenatal application of the mitotoxic agent methylazoxymethanol, prenatal immune challenge and the neonatal ventral hippocampus lesion model. In general they have been extensively evaluated in models considered relevant to positive symptoms of schizophrenia. In contrast, very few studies have examined tests related to negative symptoms and, when they have, it has almost exclusively been a social interaction model. Other aspects related to negative symptoms such as anhedonia, affective flattening and avolition have almost never been studied. Further studies examining other components of negative symptomatology are needed to more clearly associate these deficits with a schizophrenia-like profile as social withdrawal is a hallmark of many disorders. Although there are no truly effective treatments for negative symptoms, better characterisation with a broader range of drugs used in schizophrenia will be necessary to better evaluate the utility of these models. In summary, developmental models of schizophrenia have been extensively studied as models of positive symptoms but, given the unmet need in the clinic, the same effort now needs to be made with regard to negative symptoms.
Collapse
Affiliation(s)
- Paul Moser
- Centre de Recherche Pierre Fabre 17, Avenue Jean Moulin, 81106 Castres Cédex, France.
| |
Collapse
|
188
|
Pizzurro DM, Dao K, Costa LG. Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 2014; 318:59-68. [PMID: 24561003 PMCID: PMC3999384 DOI: 10.1016/j.tox.2014.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/17/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022]
Abstract
Evidence demonstrating that human exposure to various organophosphorus insecticides (OPs) is associated with neurobehavioral deficits in children continues to emerge. The present study focused on diazinon (DZ) and its active oxygen metabolite, diazoxon (DZO), and explored their ability to impair neurite outgrowth in rat primary hippocampal neurons as a mechanism of developmental neurotoxicity. Both DZ and DZO (0.5-10 μM) significantly inhibited neurite outgrowth in hippocampal neurons, at concentrations devoid of any cyototoxicity. These effects appeared to be mediated by oxidative stress, as they were prevented by antioxidants (melatonin, N-t-butyl-alpha-phenylnitrone, and glutathione ethyl ester). Inhibition of neurite outgrowth was observed at concentrations below those required to inhibit the catalytic activity of acetylcholinesterase. The presence of astrocytes in the culture was able to provide protection against inhibition of neurite outgrowth by DZ and DZO. Astrocytes increased neuronal glutathione (GSH) in neurons, to levels comparable to those of GSH ethyl ester. Astrocytes depleted of GSH by L-buthionine-(S,R)-sulfoximine no longer conferred protection against DZ- and DZO-induced inhibition of neurite outgrowth. The findings indicate that DZ and DZO inhibit neurite outgrowth in hippocampal neurons by mechanisms involving oxidative stress, and that these effects can be modulated by astrocytes and astrocyte-derived GSH. Oxidative stress from other chemical exposures, as well as genetic abnormalities that result in deficiencies in GSH synthesis and regulation, may render individuals more susceptible to these developmental neurotoxic effects of OPs.
Collapse
Affiliation(s)
- Daniella M Pizzurro
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| |
Collapse
|
189
|
Bitanihirwe BKY, Woo TUW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 2014; 45:85-99. [PMID: 24709070 DOI: 10.1016/j.neubiorev.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex brain disorder associated with deficits in synaptic connectivity. The insidious onset of this illness during late adolescence and early adulthood has been reported to be dependent on several key processes of brain development including synaptic refinement, myelination and the physiological maturation of inhibitory neural networks. Interestingly, these events coincide with the appearance of perineuronal nets (PNNs), reticular structures composed of components of the extracellular matrix that coat a variety of cells in the mammalian brain. Until recently, the functions of the PNN had remained enigmatic, but are now considered to be important in development of the central nervous system, neuronal protection and synaptic plasticity, all elements which have been associated with schizophrenia. Here, we review the emerging evidence linking PNNs to schizophrenia. Future studies aimed at further elucidating the functions of PNNs will provide new insights into the pathophysiology of schizophrenia leading to the identification of novel therapeutic targets with the potential to restore normal synaptic integrity in the brain of patients afflicted by this illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
190
|
Bertholet L, Meunier C, Preissmann D, Schenk F. Sex biased spatial strategies relying on the integration of multimodal cues in a rat model of schizophrenia: Impairment in predicting future context? Behav Brain Res 2014; 262:109-17. [DOI: 10.1016/j.bbr.2013.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/12/2013] [Accepted: 12/20/2013] [Indexed: 01/10/2023]
|
191
|
Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol 2014; 12:140-7. [PMID: 24669208 PMCID: PMC3964745 DOI: 10.2174/1570159x11666131120230309] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/01/2013] [Accepted: 11/02/2013] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is an imbalance between cellular production of reactive oxygen species and the counteracting antioxidant mechanisms. The brain with its high oxygen consumption and a lipid-rich environment is considered highly susceptible to oxidative stress or redox imbalances. Therefore, the fact that oxidative stress is implicated in several mental disorders including depression, anxiety disorders, schizophrenia and bipolar disorder, is not surprising. Although several elegant studies have established a link between oxidative stress and psychiatric disorders, the causal relationship between oxidative stress and psychiatric diseases is not fully determined. Another critical aspect that needs much attention and effort is our understanding of the association between cellular oxidative stress and emotional stress. This review examines some of the recent discoveries that link oxidative status with anxiety, depression, schizophrenia and bipolar disorder. A discussion of published results and questions that currently exist in the field regarding a causal relationship between oxidative and emotional stress is also provided.
Collapse
Affiliation(s)
- Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| |
Collapse
|
192
|
Permyakov SE, Kazakov AS, Avkhacheva NV, Permyakov EA. Parvalbumin as a metal-dependent antioxidant. Cell Calcium 2014; 55:261-8. [PMID: 24685310 DOI: 10.1016/j.ceca.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/23/2014] [Accepted: 03/01/2014] [Indexed: 11/25/2022]
Abstract
Parvalbumin (PA) is a Ca(2+)-binding protein of vertebrates massively expressed in tissues with high oxygen uptake and respectively elevated level of reactive oxygen species (ROS). To characterize antioxidant properties of PA, antioxidant capacity (AOC) of intact rat α-PA has been explored. ORAC, TEAC and hydrogen peroxide AOC assays evidence conformation-dependent oxidation of the PA. AOC value for the apo-PA 4-11-fold exceeds that for the Ca(2+)-loaded protein. Despite folded conformation of apo-PA, it has AOC equivalent to that of the proteolized protein. The most populated under resting conditions PA form, Mg(2+)-bound PA, has AOC similar to that of apo-PA. ROS-induced changes in absorption spectrum of PA evidence an oxidation of PA's phenylalanines in the ORAC assay. Sensitivity of PA oxidation to its conformation enabled characterization of its metal affinity and pH-dependent behavior: a transition with pKa of 7.6 has been revealed for the Ca(2+)-loaded PA. Since total AOC of PA under in vivo conditions may reach the level of reduced glutathione, we propose that PA might modulate intracellular redox equilibria and/or signaling in a calcium-dependent manner. We speculate that the oxidation-mediated damage of some of PA-GABAergic interneurons observed in schizophrenia is due to a decline in total AOC of the reduced glutathione-PA pair.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia
| | - Nadezhda V Avkhacheva
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Eugene A Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| |
Collapse
|
193
|
Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, Goldstein JM, Petreyshen TL, Seidman LJ, Shenton ME, Mccarley RW, Sonntag KC, Woo TUW. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:70-85. [PMID: 24628518 PMCID: PMC4633016 DOI: 10.3109/01677063.2013.878339] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of pyramidal cell network function by the soma- and axon-targeting inhibitory neurons that contain the calcium-binding protein parvalbumin (PV) represents a core pathophysiological feature of schizophrenia. In order to gain insight into the molecular basis of their functional impairment, we used laser capture microdissection (LCM) to isolate PV-immunolabeled neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem schizophrenia and normal control brains. We then extracted ribonucleic acid (RNA) from these neurons and determined their messenger RNA (mRNA) expression profile using the Affymetrix platform of microarray technology. Seven hundred thirty-nine mRNA transcripts were found to be differentially expressed in PV neurons in subjects with schizophrenia, including genes associated with WNT (wingless-type), NOTCH, and PGE2 (prostaglandin E2) signaling, in addition to genes that regulate cell cycle and apoptosis. Of these 739 genes, only 89 (12%) were also differentially expressed in pyramidal neurons, as described in the accompanying paper, suggesting that the molecular pathophysiology of schizophrenia appears to be predominantly neuronal type specific. In addition, we identified 15 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of the predicted targets of these miRNAs included the signaling pathways found by microarray to be dysregulated in schizophrenia. Taken together, findings of this study provide a neurobiological framework within which hypotheses of the molecular mechanisms that underlie the dysfunction of PV neurons in schizophrenia can be generated and experimentally explored and, as such, may ultimately inform the conceptualization of rational targeted molecular intervention for this debilitating disorder.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Eleonora Passeri
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petreyshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. Mccarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
194
|
Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 2014; 357:477-92. [PMID: 24577622 DOI: 10.1007/s00441-014-1806-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
Neurons have highly developed Ca(2+) signalling systems responsible for regulating many neural functions such as the generation of brain rhythms, information processing and the changes in synaptic plasticity that underpins learning and memory. The signalling mechanisms that regulate neuronal excitability are particularly important for processes such as sensory perception, cognition and consciousness. The Ca(2+) signalling pathway is a key component of the mechanisms responsible for regulating neuronal excitability, information processing and cognition. Alterations in gene transcription are particularly important as they result in subtle alterations in the neuronal signalling mechanisms that have been implicated in many neural diseases. In particular, dysregulation of the Ca(2+) signalling pathway has been implicated in the development of some of the major psychiatric diseases such as bipolar disorder (BPD) and schizophrenia.
Collapse
|
195
|
Pizzurro DM, Dao K, Costa LG. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 2014; 274:372-82. [PMID: 24342266 PMCID: PMC3916905 DOI: 10.1016/j.taap.2013.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/25/2022]
Abstract
Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial-neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Daniella M. Pizzurro
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
196
|
Evaluation of acetylcholinesterase activity and behavioural alterations induced by ketamine in an animal model of schizophrenia. Acta Neuropsychiatr 2014; 26:43-50. [PMID: 25142099 DOI: 10.1017/neu.2013.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Cognitive deficits in schizophrenia play a crucial role in its clinical manifestation and seem to be related to changes in the cholinergic system, specifically the action of acetylcholinesterase (AChE). Considering this context, the aim of this study was to evaluate the chronic effects of ketamine in the activity of AChE, as well as in behavioural parameters involving learning and memory. METHODS The ketamine was administered for 7 days. A duration of 24 h after the last injection, the animals were submitted to behavioural tests. The activity of AChE in prefrontal cortex, hippocampus and striatum was measured at different times after the last injection (1, 3, 6 and 24 h). RESULTS The results indicate that ketamine did not affect locomotor activity and stereotypical movements. However, a cognitive deficit was observed in these animals by examining their behaviour in inhibitory avoidance. In addition, an increase in AChE activity was observed in all structures analysed 1, 3 and 6 h after the last injection. Differently, serum activity of AChE was similar between groups. CONCLUSION Chronic administration of ketamine in an animal model of schizophrenia generates increased AChE levels in different brain tissues of rats that lead to cognitive deficits. Therefore, further studies are needed to elucidate the complex mechanisms associated with schizophrenia.
Collapse
|
197
|
Prochiantz A. Signaling with homeoprotein transcription factors in development and throughout adulthood. Curr Genomics 2014; 14:361-70. [PMID: 24396269 PMCID: PMC3861887 DOI: 10.2174/1389202911314060009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/22/2022] Open
Abstract
The concept of homeoprotein transduction as a novel signaling pathway has dramatically evolved since it was first proposed in 1991. It is now well established in several biological systems from plants to mammals. In this review, the different steps that have led to this unexpected observation are recalled and the developmental and physiological models that have allowed us (and a few others) to consolidate the original hypothesis are described. Because homeoprotein signaling is active in plants and animals it is proposed that it has predated the separation between animals and plants and is thus very ancient. This may explain why the basic phenomenon of homeoprotein transduction is so minimalist, requiring no specific receptors or transduction pathways beside those offered by mitochondria, organelles present in all eukaryotic cells. Indeed complexity has been added in the course of evolution and the conservation of homeoprotein transduction is discussed in the context of its synergy with bona fide signaling mechanism that may have added robustness to this primitive cell communication device. The same synergy possibly explains why homeoprotein signaling is important both in embryonic development and in adult functions fulfilled by signaling entities (e.g. growth factors) themselves active throughout development and in the adult. The cell biological mechanism of homeoprotein transfer is also discussed. Although it is clear that many questions are still in want of precise answers, it appears that the sequences responsible both for secretion and internalization are in the DNA-binding domain and very highly conserved among most homeoproteins. On this basis, it is proposed that this signaling pathway is likely to imply as many as 200 proteins that participate in a myriad of developmental and physiological pathways.
Collapse
Affiliation(s)
- A Prochiantz
- College de France, Centre for Interdisciplinary Research in Biology (CIRB), UMR CNRS 7241/INSERM 1050, Labex Memolife, PSL Research University, Development and Neuropharmacology group, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
198
|
Samuelsson M, Skogh E, Lundberg K, Vrethem M, Öllinger K. Taurine and glutathione in plasma and cerebrospinal fluid in olanzapine treated patients with schizophrenia. Psychiatry Res 2013; 210:819-24. [PMID: 24113127 DOI: 10.1016/j.psychres.2013.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 01/22/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of schizophrenia. Taurine and glutathione (GSH) have antioxidant and central nervous system protective properties, and are proposed to be involved in the pathology of schizophrenia. The aim of this study was to compare the blood and cerebrospinal fluid (CSF) levels of taurine and GSH in patients with schizophrenia, medicated with oral olanzapine, compared with controls. In total, 37 patients with schizophrenia and 45 healthy volunteers were recruited. We found the plasma taurine levels to be elevated in patients compared with controls. No differences were, however, found between patients and controls regarding taurine in CSF or GSH concentrations in plasma and CSF. Moreover, in the patient group no correlations between taurine and GSH levels and the symptoms or function of the disorder were found. The higher levels of plasma but not CSF taurine in patients with schizophrenia treated with OLA may implicate the involvement of taurine in the pathophysiology of the disease. The absence of GSH differences both in plasma and CSF between patients and controls is interesting in the perspective of earlier research proposing a dysregulation of GSH metabolism as a vulnerability factor for the development of schizophrenia.
Collapse
Affiliation(s)
- Martin Samuelsson
- Division of Psychiatry, Department of Clinical and Experimental Medicine, Linköping University, S-58185 Linköping, Sweden.
| | | | | | | | | |
Collapse
|
199
|
Bentsen H, Osnes K, Refsum H, Solberg DK, Bøhmer T. A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+C in schizophrenia. Transl Psychiatry 2013; 3:e335. [PMID: 24346133 PMCID: PMC3906471 DOI: 10.1038/tp.2013.110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/09/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023] Open
Abstract
Membrane lipid metabolism and redox regulation may be disturbed in schizophrenia. We examined the clinical effect of adding an omega-3 fatty acid and/or vitamins E+C to antipsychotics. It was hypothesized that lower baseline levels of polyunsaturated fatty acids (PUFAs) would predict more benefit from the add-on treatment. The trial had a multicenter, randomized, double-blind, placebo-controlled 2 × 2 factorial design. Patients aged 18-39 years with schizophrenia or related psychoses were consecutively included at admission to psychiatric departments in Norway. They received active or placebo ethyl-eicosapentaenoate (EPA) 2 g day⁻¹ and active or placebo vitamin E 364 mg day⁻¹+vitamin C 1000 mg day⁻¹ (vitamins) for 16 weeks. The main outcome measures were Positive and Negative Syndrome Scale (PANSS) total and subscales scores, analyzed by linear mixed models. Ninety-nine patients were included. At baseline, erythrocyte PUFA were measured in 97 subjects. Given separately, EPA and vitamins increased drop-out rates, whereas when combined they did not differ from placebo. In low PUFA patients, EPA alone impaired the course of total PANSS (Cohen's d=0.29; P=0.03) and psychotic symptoms (d=0.40; P=0.003), especially persecutory delusions (d=0.48; P=0.0004). Vitamins alone impaired the course of psychotic symptoms (d= 0.37; P=0.005), especially persecutory delusions (d=0.47; P=0.0005). Adding vitamins to EPA neutralized the detrimental effect on psychosis (interaction d=0.31; P=0.02). In high PUFA patients, there were no significant effects of trial drugs on PANSS scales. In conclusion, given separately during an acute episode, EPA and vitamins E+C induce psychotic symptoms in patients with low levels of PUFA. Combined, these agents seem safe.
Collapse
Affiliation(s)
- H Bentsen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway,Division of Psychiatry, Oslo University Hospital, Aker, Oslo, Norway,Center for Psychopharmacology, Diakonhjemmet Hospital, P.o.b. 85, Vinderen, Oslo 0319, Norway. E-mail:
| | - K Osnes
- Department of Psychosomatic Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - H Refsum
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - D K Solberg
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - T Bøhmer
- Nutritional Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Aker, Oslo, Norway
| |
Collapse
|
200
|
Changes in oxidative stress markers in patients with schizophrenia: the effect of antipsychotic drugs. Psychiatry Res 2013; 209:284-90. [PMID: 23497820 DOI: 10.1016/j.psychres.2013.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/31/2012] [Accepted: 01/12/2013] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the serum levels or activities of oxidative stress markers in patients with schizophrenia in acute phase and evaluate the changes in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and thiobarbituric acid-reactive substances (TBARS) after treatment. We consecutively enrolled 41 patients with schizophrenia in acute phase, and 27 patients were followed up with a 4-week antipsychotic treatment. Serum oxidative stress markers were measured with assay kits. We found that Positive and Negative Syndrome Scale (PANSS) total scores were significantly negatively correlated with serum GPx activity and GSH levels and positively correlated with serum SOD activity in patients with schizophrenia in acute phase. In addition, serum GPx activity had a positive correlation with GSH levels and negative correlation with SOD activity. We also found that serum SOD activity was significantly negatively correlated with TBARS levels in patients in acute phase. Furthermore, we found significantly increased changes only in GPx activity in female patients receiving the 4-week treatment (P=0.006). In conclusion, our results suggest that SOD, GPX and GSH might be indicators of schizophrenia severity in acute phase. Furthermore, antipsychotic drugs might affect serum GPx activity in female patients receiving the 4-week treatment.
Collapse
|