151
|
Role of kinase suppressor of Ras-1 in neuronal survival signaling by extracellular signal-regulated kinase 1/2. J Neurosci 2007; 27:11389-400. [PMID: 17942733 DOI: 10.1523/jneurosci.3473-07.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scaffolding proteins including kinase suppressor of Ras-1 (KSR1) determine specificity of signaling by extracellular signal-regulated kinase 1/2 (ERK1/2), enabling it to couple diverse extracellular stimuli to various cellular responses. The scaffolding protein(s) that contributes to ERK1/2-mediated neuronal survival has not yet been identified. In cultured rat cortical neurons, BDNF activates ERK1/2 to enhance neuronal survival by suppressing DNA damage- or trophic deprivation-induced apoptosis. Here we report that in this system, BDNF increased KSR1 association with activated ERK1/2, whereas KSR1 knockdown with a short hairpin (sh) RNA reduced BDNF-mediated activation of ERK1/2 and protection against a DNA-damaging drug, camptothecin (CPT). In contrast, BDNF suppression of trophic deprivation-induced apoptosis was unaffected by shKSR1 although blocked by shERK1/2. Also, overexpression of KSR1 enhanced BDNF protection against CPT. Therefore, KSR1 is specifically involved in antigenotoxic activation of ERK1/2 by BDNF. To test whether KSR1 contributes to ERK1/2 activation by other neuroprotective stimuli, we used a cAMP-elevating drug, forskolin. In cortical neurons, ERK1/2 activation by forskolin was protein kinase A (PKA) dependent but TrkB (receptor tyrosine kinase B) independent and was accompanied by the increased association between KSR1 and active ERK1/2. Forskolin suppressed CPT-induced apoptosis in a KSR1 and ERK1/2-dependent manner. Inhibition of PKA abolished forskolin protection, whereas selective PKA activation resulted in an ERK1/2- and KSR1-mediated decrease in apoptosis. Hence, KSR1 is critical for the antiapoptotic activation of ERK1/2 by BDNF or cAMP/PKA signaling. In addition, these novel data indicate that stimulation of cAMP signaling is a candidate neuroprotective strategy to intervene against neurotoxicity of DNA-damaging agents.
Collapse
|
152
|
Herbert SP, Odell AF, Ponnambalam S, Walker JH. The Confluence-dependent Interaction of Cytosolic Phospholipase A2-α with Annexin A1 Regulates Endothelial Cell Prostaglandin E2 Generation. J Biol Chem 2007; 282:34468-78. [PMID: 17873281 DOI: 10.1074/jbc.m701541200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulated generation of prostaglandins from endothelial cells is critical to vascular function. Here we identify a novel mechanism for the regulation of endothelial cell prostaglandin generation. Cytosolic phospholipase A(2)-alpha (cPLA(2)alpha) cleaves phospholipids in a Ca(2+)-dependent manner to yield free arachidonic acid and lysophospholipid. Arachidonic acid is then converted into prostaglandins by the action of cyclooxygenase enzymes and downstream synthases. By previously undefined mechanisms, nonconfluent endothelial cells generate greater levels of prostaglandins than confluent cells. Here we demonstrate that Ca(2+)-independent association of cPLA(2)alpha with the Golgi apparatus of confluent endothelial cells correlates with decreased prostaglandin synthesis. Golgi association blocks arachidonic acid release and prevents functional coupling between cPLA(2)alpha and COX-mediated prostaglandin synthesis. When inactivated at the Golgi apparatus of confluent endothelial cells, cPLA(2)alpha is associated with the phospholipid-binding protein annexin A1. Furthermore, the siRNA-mediated knockdown of endogenous annexin A1 significantly reverses the inhibitory effect of confluence on endothelial cell prostaglandin generation. Thus the confluence-dependent interaction of cPLA(2)alpha and annexin A1 at the Golgi acts as a novel molecular switch controlling cPLA(2)alpha activity and endothelial cell prostaglandin generation.
Collapse
Affiliation(s)
- Shane P Herbert
- Faculty of Biological Sciences, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | |
Collapse
|
153
|
Blackwell E, Kim HJN, Stone DE. The pheromone-induced nuclear accumulation of the Fus3 MAPK in yeast depends on its phosphorylation state and on Dig1 and Dig2. BMC Cell Biol 2007; 8:44. [PMID: 17963515 PMCID: PMC2219999 DOI: 10.1186/1471-2121-8-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 10/26/2007] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Like mammalian MAP kinases, the mating-specific Fus3 MAPK of yeast accumulates in the nuclei of stimulated cells. Because Fus3 does not appear to be subjected to active nucleo-cytoplasmic transport, it is not clear how its activation by mating pheromone effects the observed change in its localization. One possibility is that the activation of Fus3 changes its affinity for nuclear and cytoplasmic tethers. RESULTS Dig1, Dig2, and Ste12 are nuclear proteins that interact with Fus3. We found that the pheromone-induced nuclear accumulation of a Fus3-GFP reporter is reduced in cells lacking Dig1 or Dig2, whereas Fus3T180AY182A-GFP localization was unaffected by the absence of these proteins. This suggests that Dig1 and Dig2 contribute to the retention of phosphorylated Fus3 in the nucleus. Moreover, overexpression of Ste12 caused the hyper-accumulation of Fus3-GFP (but not Fus3T180AY182A-GFP) in the nuclei of pheromone-treated cells, suggesting that Ste12 also plays a role in the nuclear retention of phosphorylated Fus3, either by directly interacting with it or by transcribing genes whose protein products are Fus3 tethers. We have previously reported that overexpression of the Msg5 phosphatase inhibits the nuclear localization of Fus3. Here we show that this effect depends on the phosphatase activity of Msg5, and provide evidence that both nuclear and cytoplasmic Msg5 can affect the localization of Fus3. CONCLUSION Our data are consistent with a model in which the pheromone-induced phosphorylation of Fus3 increases its affinity for nuclear tethers, which contributes to its nuclear accumulation and is antagonized by Msg5.
Collapse
Affiliation(s)
- Ernest Blackwell
- Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hye-Jin N Kim
- Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - David E Stone
- Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
154
|
Abstract
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- J. Omerovic
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - A. J. Laude
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - I. A. Prior
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| |
Collapse
|
155
|
Feng L, Xie X, Ding Q, Luo X, He J, Fan F, Liu W, Wang Z, Chen Y. Spatial regulation of Raf kinase signaling by RKTG. Proc Natl Acad Sci U S A 2007; 104:14348-53. [PMID: 17724343 PMCID: PMC1964828 DOI: 10.1073/pnas.0701298104] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subcellular compartmentalization has become an important theme in cell signaling such as spatial regulation of Ras by RasGRP1 and MEK/ERK by Sef. Here, we report spatial regulation of Raf kinase by RKTG (Raf kinase trapping to Golgi). RKTG is a seven-transmembrane protein localized at the Golgi apparatus. RKTG expression inhibits EGF-stimulated ERK and RSK phosphorylation, blocks NGF-mediated PC12 cell differentiation, and antagonizes Ras- and Raf-1-stimulated Elk-1 transactivation. Through interaction with Raf-1, RKTG changes the localization of Raf-1 from cytoplasm to the Golgi apparatus, blocks EGF-stimulated Raf-1 membrane translocation, and reduces the interaction of Raf-1 with Ras and MEK1. In RKTG-null mice, the basal ERK phosphorylation level is increased in the brain and liver. In RKTG-deleted mouse embryonic fibroblasts, EGF-induced ERK phosphorylation is enhanced. Collectively, our results reveal a paradigm of spatial regulation of Raf kinase by RKTG via sequestrating Raf-1 to the Golgi apparatus and thereby inhibiting the ERK signaling pathway.
Collapse
Affiliation(s)
- Lin Feng
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoduo Xie
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiurong Ding
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolin Luo
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing He
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengjuan Fan
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Weizhong Liu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzhen Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Chen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
- *To whom correspondence should be addressed at:
Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China. E-mail:
| |
Collapse
|
156
|
Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1161-76. [PMID: 17306385 PMCID: PMC2758354 DOI: 10.1016/j.bbamcr.2007.01.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 12/31/2006] [Accepted: 01/04/2007] [Indexed: 12/15/2022]
Abstract
Multiple growth- and differentiation-inducing polypeptide factors bind to and activate transmembrane receptors tyrosine kinases (RTKs), to instigate a plethora of biochemical cascades culminating in regulation of cell fate. We concentrate on the four linear mitogen-activated protein kinase (MAPK) cascades, and highlight organizational and functional features relevant to their action downstream to RTKs. Two cellular outcomes of growth factor action, namely proliferation and migration, are critically regulated by MAPKs and we detail the underlying molecular mechanisms. Hyperactivation of MAPKs, primarily the Erk pathway, is a landmark of cancer. We describe the many links of MAPKs to tumor biology and review studies that identified machineries permitting prolongation of MAPK signaling. Models attributing signal integration to both phosphorylation of MAPK substrates and to MAPK-regulated gene expression may shed light on the remarkably diversified functions of MAPKs acting downstream to activated RTKs.
Collapse
Affiliation(s)
- Menachem Katz
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
157
|
Pullikuth AK, Catling AD. Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective. Cell Signal 2007; 19:1621-32. [PMID: 17553668 PMCID: PMC2233890 DOI: 10.1016/j.cellsig.2007.04.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/23/2007] [Indexed: 01/09/2023]
Abstract
Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell migration.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Andrew D. Catling
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
158
|
Callaway K, Abramczyk O, Martin L, Dalby KN. The Anti-Apoptotic Protein PEA-15 Is a Tight Binding Inhibitor of ERK1 and ERK2, Which Blocks Docking Interactions at the D-Recruitment Site. Biochemistry 2007; 46:9187-98. [PMID: 17658892 DOI: 10.1021/bi700206u] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PEA-15 is a small anti-apoptotic protein that is enriched in astrocytes, but expressed in a broad range of tissues. It sequesters the protein kinases ERK1 and 2 in the cytoplasm, thereby limiting their proximity to nuclear substrates. Using a fluorescence anisotropy approach, PEA-15 is shown to be a high-affinity ligand for both ERK1 and 2, exhibiting a dissociation constant in the range of Kd = 0.2-0.4 microM, regardless of their activation states. Neither the phosphorylation of PEA-15 (phospho Ser-104 and/or phospho Ser-116) nor the phosphorylation of ERK1/2 (by MKK1) significantly affects the stability of the ERK/PEA-15 interaction, and therefore it does not directly regulate the release of ERK2 to the nucleus. The extreme C-terminus of PEA-15 was previously shown by mutagenesis to be important for ERK2 binding; however, the site of binding was not established. Here it is demonstrated that the D-recruitment site (DRS) of ERK2 binds PEA-15, probably at the C-terminus, and renders PEA-15 an inhibitor of ERK2 docking interactions. Using fluorescence anisotropy competition assays it is shown that PEA-15 competes for binding to ERK1/2 with a peptide derived from the D-site of Elk-1, which binds the DRS of ERK1/2. Using modified ERK2 proteins containing single cysteine residues, PEA-15 was shown to protect single cysteines situated within the DRS from alkylation. The pattern and magnitude of protection were very similar to those induced by the binding of the peptide derived from the D-site of Elk-1. These and published data support the notion that PEA-15 binds two sites on ERK1/2 in a bidentate manner: the DRS and a site that includes the MAP kinase insert. Previous reports have suggested that PEA-15 is not an inhibitor of ERK2; however, it is shown here to potently inhibit the ability of ERK2 to phosphorylate two transcription factors, Elk-1 and Ets-1, which contain docking sites for the DRS of ERK2. Therefore, in addition to sequestering ERK1/2 in the cytoplasm, PEA-15 has the potential to modulate the activity of ERK2 in cells by competing directly with proteins that contain D-sites.
Collapse
Affiliation(s)
- Kari Callaway
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
159
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.
Collapse
Affiliation(s)
- M Raman
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
160
|
Abstract
Signals received at the cell surface must be properly transmitted to critical targets within the cell to achieve the appropriate biological response. This process of signal transduction is often initiated by receptor tyrosine kinases (RTKs), which function as entry points for many extracellular cues and play a critical role in recruiting the intracellular signaling cascades that orchestrate a particular response. Essential for most RTK-mediated signaling is the engagement and activation of the mitogen-activated protein kinase (MAPK) cascade comprised of the Raf, MEK and extracellular signal-regulated kinase (ERK) kinases. For many years, it was thought that signaling from RTKs to ERK occurred only at the plasma membrane and was mediated by a simple, linear Ras-dependent pathway. However, the limitation of this model became apparent with the discovery that Ras and ERK can be activated at various intracellular compartments, and that RTKs can modulate Ras/ERK signaling from these sites. Moreover, ERK scaffolding proteins and signaling modulators have been identified that play critical roles in determining the strength, duration and location of RTK-mediated ERK signaling. Together, these factors contribute to the diversity of biological responses generated by RTK signaling.
Collapse
Affiliation(s)
- M M McKay
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
161
|
Hamilton SR, Fard SF, Paiwand FF, Tolg C, Veiseh M, Wang C, McCarthy JB, Bissell MJ, Koropatnick J, Turley EA. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J Biol Chem 2007; 282:16667-80. [PMID: 17392272 PMCID: PMC2949353 DOI: 10.1074/jbc.m702078200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD44 is an integral hyaluronan receptor that can promote or inhibit motogenic signaling in tumor cells. Rhamm is a nonintegral cell surface hyaluronan receptor (CD168) and intracellular protein that promotes cell motility in culture. Here we describe an autocrine mechanism utilizing cell surface Rhamm-CD44 interactions to sustain rapid basal motility in invasive breast cancer cell lines that requires endogenous hyaluronan synthesis and the formation of Rhamm-CD44-ERK1,2 complexes. Motile/invasive MDA-MB-231 and Ras-MCF10A cells produce more endogenous hyaluronan, cell surface CD44 and Rhamm, an oncogenic Rhamm isoform, and exhibit more elevated basal activation of ERK1,2 than less invasive MCF7 and MCF10A breast cancer cells. Furthermore, CD44, Rhamm, and ERK1,2 uniquely co-immunoprecipitate and co-localize in MDA-MB-231 and Ras-MCF10A cells. Combinations of anti-CD44, anti-Rhamm antibodies, and a MEK1 inhibitor (PD098059) had less-than-additive blocking effects, suggesting the action of all three proteins on a common motogenic signaling pathway. Collectively, these results show that cell surface Rhamm and CD44 act together in a hyaluronan-dependent autocrine mechanism to coordinate sustained signaling through ERK1,2, leading to high basal motility of invasive breast cancer cells. Therefore, an effect of CD44 on tumor cell motility may depend in part on its ability to partner with additional proteins, such as cell surface Rhamm.
Collapse
Affiliation(s)
- Sara R. Hamilton
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Shireen F. Fard
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Frouz F. Paiwand
- Department of Cardiovascular Research, Hospital for Sick Children (Toronto, ON, Canada)
| | - Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Mandana Veiseh
- Division of Life Sciences, Lawrence Berkeley National Laboratories, Berkeley CA
| | - Chao Wang
- Department of Cardiovascular Research, Hospital for Sick Children (Toronto, ON, Canada)
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology and University of Minnesota Comprehensive Cancer Center (Minneapolis, MN, USA)
| | - Mina J. Bissell
- Division of Life Sciences, Lawrence Berkeley National Laboratories, Berkeley CA
| | - James Koropatnick
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Eva A. Turley
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| |
Collapse
|
162
|
Ebner HL, Blatzer M, Nawaz M, Krumschnabel G. Activation and nuclear translocation of ERK in response to ligand-dependent and -independent stimuli in liver and gill cells from rainbow trout. ACTA ACUST UNITED AC 2007; 210:1036-45. [PMID: 17337716 DOI: 10.1242/jeb.02719] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mitogen-activated protein kinase ERK is an important signalling molecule involved in the control of cell proliferation, differentiation and cell death, targeting molecules at the cell membrane, in the cytosol, and in the nucleus. This study investigated the activation pattern and subcellular distribution of ERK in liver and gill cells of rainbow trout upon hypo-osmotic shock, addition of epidermal growth factor (EGF) and copper treatment. It further set out to characterize the hypothetical role of nuclear-export signal (NES)-dependent relocation of ERK after nuclear entry and the potential involvement of the ERK activator MEK. Although, in primary hepatocytes, ERK was activated in all conditions in a stimulus-specific manner, it did not accumulate in the nucleus, irrespective of the absence or presence of the inhibitor of NES-dependent export leptomycin B (LB). Similarly, in trout hepatoma cells, where pERK levels increased upon osmotic and mitotic stimulation, but not after toxic insult, no significant nuclear translocation was observed. In a gill cell line, levels of pERK increased after osmotic and mitotic stimulation and showed a decrease during incubation with a toxicant. Again, none of these conditions triggered nuclear accumulation of pERK in the gill cells in the absence of LB, but in contrast to the observation in liver cells, both osmotic and mitotic stimulation caused nuclear accumulation in the presence of the inhibitor. The ERK activator MEK, which possesses a NES-sequence, was apparently not involved in nuclear export, as it did not seem to enter the nucleus. Altogether, ERK is activated in trout cells in a stimulus- and cell type-specific manner, and our data suggest that it acutely acts primarily on cytoplasmic or membrane-situated targets in liver cells, whereas it presumably triggers rapid transcriptional activities in gill cells.
Collapse
Affiliation(s)
- Hannes L Ebner
- Institut für Zoologie und Limnologie, and Center of Molecular Biosciences, Leopold Franzens Universität Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
163
|
Abraira VE, Hyun N, Tucker AF, Coling DE, Brown MC, Lu C, Hoffman GR, Goodrich LV. Changes in Sef levels influence auditory brainstem development and function. J Neurosci 2007; 27:4273-82. [PMID: 17442811 PMCID: PMC6672320 DOI: 10.1523/jneurosci.3477-06.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development of the CNS, secreted morphogens of the fibroblast growth factor (FGF) family have multiple effects on cell division, migration, and survival depending on where, when, and how much FGF signal is received. The consequences of misregulating the FGF pathway were studied in a mouse with decreased levels of the FGF antagonist Sef. To uncover effects in the nervous system, we focused on the auditory system, which is accessible to physiological analysis. We found that the mitogen-activated protein kinase pathway is active in the rhombic lip, a germinal zone that generates diverse types of neurons, including the cochlear nucleus complex of the auditory system. Sef is expressed immediately adjacent to the rhombic lip, overlapping with FGF15 and FGFR1, which is also present in the lip itself. This pattern suggests that Sef may normally function in non-rhombic lip cells and prevent them from responding to FGF ligand in the vicinity. Consistent with this idea, overexpression of Sef in chicks decreased the size of the auditory nuclei. Cochlear nucleus defects were also apparent in mice with reduced levels of Sef, with 13% exhibiting grossly dysmorphic cochlear nuclei and 26% showing decreased amounts of GFAP in the cochlear nucleus. Additional evidence for cochlear nucleus defects was obtained by electrophysiological analysis of Sef mutant mice, which have normal auditory thresholds but abnormal auditory brainstem responses. These results show both increases and decreases in Sef levels affect the assembly and function of the auditory brainstem.
Collapse
Affiliation(s)
| | | | | | - Donald E. Coling
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York 14260, and
| | - M. Christian Brown
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
164
|
Zisman-Rozen S, Fink D, Ben-Izhak O, Fuchs Y, Brodski A, Kraus MH, Bejar J, Ron D. Downregulation of Sef, an inhibitor of receptor tyrosine kinase signaling, is common to a variety of human carcinomas. Oncogene 2007; 26:6093-8. [PMID: 17420726 DOI: 10.1038/sj.onc.1210424] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carcinomas are tumors of epithelial origin accounting for over 80% of all human malignancies. A substantial body of evidence implicates oncogenic signaling by receptor tyrosine kinases (RTKs) in carcinoma development. Here we investigated the expression of Sef, a novel inhibitor of RTK signaling, in normal human epithelial tissues and derived malignancies. Human Sef (hSef) was highly expressed in normal epithelial cells of breast, prostate, thyroid gland and the ovarian surface. By comparison, substantial downregulation of hSef expression was observed in the majority of tumors originating from these epithelia. Among 186 primary carcinomas surveyed by RNA in situ hybridization, hSef expression was undetectable in 116 cases including 72/99 (73%) breast, 11/16 (69%) thyroid, 16/31 (52%) prostate and 17/40 (43%) ovarian carcinomas. Moderate reduction of expression was observed in 17/186, and marked reduction in 40/186 tumors. Only 13/186 cases including 12 low-grade and one intermediate grade tumor retained high hSef expression. The association of hSef downregulation and tumor progression was statistically significant (P<0.001). Functionally, ectopic expression of hSef suppressed proliferation of breast carcinoma cells, whereas inhibition of endogenous hSef expression accelerated fibroblast growth factor and epidermal growth factor-dependent proliferation of cervical carcinoma cells. The inhibitory effect of hSef on cell proliferation combined with consistent downregulation in human carcinoma indicates a tumor suppressor-like role for hSef, and implicates loss of hSef expression as a common mechanism in epithelial neoplasia.
Collapse
Affiliation(s)
- S Zisman-Rozen
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
One of the challenges of modern biology is to understand how cells within a developing organism generate, integrate, and respond to dynamic informational cues. Based on over two decades of intensive research, many parts and subroutines of the responsible signal transduction networks have been identified and functionally characterized. From this work, it has become evident that a complicated interplay between signaling pathways, involving extensive feedback regulation and multiple levels of cross-talk, underlies even the "simplest" developmental decision. Thus a signaling pathway can no longer be thought of as a rigid linear process, but rather must be considered a dynamic, self-interacting, and self-adjusting network. The Epidermal Growth Factor Receptor tyrosine kinase signaling pathway provides a prime vantage point from which to explore emerging principles in developmental signal transduction.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
166
|
Yano M, Matsumura T, Senokuchi T, Ishii N, Motoshima H, Taguchi T, Matsuo T, Sonoda K, Kukidome D, Sakai M, Kawada T, Nishikawa T, Araki E. Troglitazone inhibits oxidized low-density lipoprotein-induced macrophage proliferation: Impact of the suppression of nuclear translocation of ERK1/2. Atherosclerosis 2007; 191:22-32. [PMID: 16725145 DOI: 10.1016/j.atherosclerosis.2006.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 03/07/2006] [Accepted: 04/07/2006] [Indexed: 11/23/2022]
Abstract
Thiazolidinediones (TZDs), which were known as novel insulin-sensitizing antidiabetic agents, have been reported to inhibit the acceleration of atherosclerotic lesions. Macrophages play important roles in the development of atherosclerosis. We previously reported that oxidized low-density lipoprotein (Ox-LDL) induces macrophage proliferation through ERK1/2-dependent GM-CSF production. In the present study, we investigated the effects of two TZDs, troglitazone and ciglitazone on Ox-LDL-induced macrophage proliferation. Troglitazone significantly inhibited Ox-LDL-induced increases in [(3)H]thymidine incorporation into and proliferation of mouse peritoneal macrophages, whereas ciglitazone had no effects. Troglitazone and ciglitazone both significantly induced PPARgamma activity, suggesting that the inhibitory effect of troglitazone was not mediated by PPARgamma. Ox-LDL-induced production of GM-CSF was significantly inhibited by troglitazone, but not by ciglitazone. Troglitazone inhibited Ox-LDL-induced production of intracellular reactive oxygen species, whereas ciglitazone had no effect. The antioxidant reagents NAC and NMPG each inhibited phosphorylation of ERK1/2, whereas troglitazone and ciglitazone had no effects. However, troglitazone, NAC and NMPG all inhibited nuclear translocation of ERK1/2. In conclusion, troglitazone inhibited Ox-LDL-induced GM-CSF production by suppressing nuclear translocation of ERK1/2, thereby inhibiting macrophage proliferation. This suppression of macrophage proliferation by troglitazone may, at least in part, explain its antiatherogenic effects.
Collapse
Affiliation(s)
- Miyuki Yano
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Shi F, Chiu YJ, Cho Y, Bullard TA, Sokabe M, Fujiwara K. Down-regulation of ERK but not MEK phosphorylation in cultured endothelial cells by repeated changes in cyclic stretch. Cardiovasc Res 2007; 73:813-22. [PMID: 17289004 PMCID: PMC2621446 DOI: 10.1016/j.cardiores.2006.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 12/06/2006] [Accepted: 12/19/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Effects of cyclic stretch on endothelial cells are studied usually by exposing cells cultured under stretch-free conditions to some levels of cyclic stretch, but in vivo these cells experience both increase and decrease in stretch. Experiments were designed to study how endothelial cells maintained under certain levels of cyclic stretch responded to shifts in stretch frequencies and amplitudes. METHODS Confluent endothelial cells cultured on flexible silicone membranes with or without pre-stretching for 2-12 h were exposed to various levels of stretch amplitude or frequency and assayed for extracellular signal-regulated kinase 1/2 (ERK) phosphorylation. RESULTS When endothelial cells without pre-stretching were cyclically stretched, ERK phosphorylation increased, peaking approximately 15 min and slowly decreased. In contrast, when pre-stretched cells were exposed to either higher or lower stretch condition, ERK phosphorylation transiently decreased within 5 min, indicating that some mechanism which down-regulated ERK phosphorylation was activated. Because phosphorylation of ERK kinase (MEK) was not inhibited in these cells, this mechanism targeted ERK directly, not the upstream kinases of the Ras-Raf-MEK-ERK cascade. Furthermore, this ERK down-regulation in pre-stretched cells was not induced by agonists, was inhibited by Na(3)VO(4) but not okadaic acid, and was detected in the cytosolic fraction. Repeated shifts in stretch conditions induced continuous down-regulation of ERK but not MEK phosphorylation. CONCLUSIONS Endothelial cells are capable of down-regulating ERK phosphorylation in a cyclic stretch- and tyrosine phosphatase-dependent manner. Frequent changes in stretch conditions constitutively activated this ability, which could play some role in regulating ERK activity in endothelial cells in vivo.
Collapse
Affiliation(s)
- Feng Shi
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Yi-Jen Chiu
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Youngsun Cho
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Tara A. Bullard
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Masahiro Sokabe
- Department of Physiology, Graduate School of Medicine, Nagoya University and ICORP/SORST, Cell Mechanosignaling, Japan Science and Technology Corporation, 65 Tsurumai, Nagoya 466-8550 Japan
| | - Keigi Fujiwara
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| |
Collapse
|
168
|
Kim HJ, Taylor LJ, Bar-Sagi D. Spatial regulation of EGFR signaling by Sprouty2. Curr Biol 2007; 17:455-61. [PMID: 17320394 DOI: 10.1016/j.cub.2007.01.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 11/17/2022]
Abstract
Ligand-induced activation of the epidermal growth factor receptor (EGFR) initiates multiple signal-transduction pathways as well as trafficking events that relocalize the receptors from the cell surface to intracellular endocytic compartments. Although there is growing awareness that endocytic transport can play a direct role in signal specification, relatively little is known about the molecular mechanisms underlying this link. Here we show that human Sprouty 2 (hSpry2), a protein that has been implicated in the negative regulation of receptor tyrosine kinase (RTK) signaling [1], interferes with the trafficking of activated EGFR specifically at the step of progression from early to late endosomes. This effect is mediated by the binding of hSpry2 to the endocytic regulatory protein, hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), and leads to a block in intracellular signal propagation. These observations suggest that EGFR signaling is controlled by a novel mechanism involving trafficking-dependent alterations in receptor compartmentalization.
Collapse
Affiliation(s)
- Hong Joo Kim
- Graduate Program in Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
169
|
Lunn JS, Fishwick KJ, Halley PA, Storey KG. A spatial and temporal map of FGF/Erk1/2 activity and response repertoires in the early chick embryo. Dev Biol 2007; 302:536-52. [PMID: 17123506 DOI: 10.1016/j.ydbio.2006.10.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/29/2006] [Accepted: 10/09/2006] [Indexed: 11/24/2022]
Abstract
During early vertebrate development Fibroblast Growth Factor (FGF) signalling is required for multiple activities including specification of mesodermal, neural and heart tissue, as well as gastrulation movements and regulation of differentiation and pattern onset in the extending body axis. A current challenge is to understand how FGF signalling generates such diverse outcomes. A key FGF downstream pathway is the Ras-MAPK/Erk1/2 cascade, which culminates in the phosphorylation of target proteins, such as the Ets family of transcription factors. To begin to assess specificity downstream of FGF in the chick embryo we have characterised the patterns of Fgfr1-4 expression and Erk1/2 activation, as well as expression of the Erk1/2 specific phosphatase, Mkp3 and of three Ets factor genes (Erm, Pea3 and Er81) from early blastula to the 10 somite stage. We identify new sites of Fgfr expression and show that nearly all regions of Erk1/2 activity are within Fgfr expression domains and require FGF signalling. Differences in intensity, duration, distribution and sub-cellular localisation of activated Erk1/2 are observed in distinct cell populations within the embryo and during wound healing. With few exceptions, a tight correspondence between Erk1/2 activation and Mkp3 expression is found, while specific combinations of Ets factors are associated with distinct regions of Erk1/2 activation. These findings provide a comprehensive spatial and temporal map of FGF/Erk1/2 activity during early chick development and identify region and tissue specific differences in expression of Fgfrs as well as Erk1/2 phosphorylation and transcriptional targets which help to define response specificity.
Collapse
MESH Headings
- Animals
- Chick Embryo
- Dual Specificity Phosphatase 6
- Enzyme Activation
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation, Developmental
- Mitogen-Activated Protein Kinase 1/physiology
- Mitogen-Activated Protein Kinase 3/physiology
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 3/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 4/biosynthesis
- Signal Transduction
- Transcription Factors/biosynthesis
Collapse
Affiliation(s)
- J Simon Lunn
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
170
|
Abstract
Signal transduction networks allow cells to recognize and respond to changes in the extracellular environment. All eukaryotic cells have MAPK (mitogen-activated protein kinase) pathways that participate in diverse cellular functions, including differentiation, survival, transformation and movement. Five distinct groups of MAPKs have been characterized in mammals, the most extensively studied of which is the Ras/Raf/MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]/ERK cascade. Numerous stimuli, including growth factors and phorbol esters, activate MEK/ERK signalling. How disparate extracellular signals are translated by MEK/ERK into different cellular functions remains obscure. Originally identified in yeast, scaffold proteins are now recognized to contribute to the specificity of MEK/ERK pathways in mammalian cells. These scaffolds include KSR (kinase suppressor of Ras), beta-arrestin, MEK partner-1, Sef and IQGAP1. Scaffolds organize multiprotein signalling complexes. This targets MEK/ERK to specific substrates and facilitates communication with other pathways, thereby mediating diverse functions. The adaptor proteins regulate the kinetics, amplitude and localization of MEK/ERK signalling, providing an efficient mechanism that enables an individual extracellular stimulus to promote a specific biological response.
Collapse
Affiliation(s)
- D B Sacks
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Thorn 530, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
171
|
Ren Y, Li Z, Rong Z, Cheng L, Li Y, Wang Z, Chang Z. Tyrosine 330 in hSef is critical for the localization and the inhibitory effect on FGF signaling. Biochem Biophys Res Commun 2007; 354:741-6. [PMID: 17266935 DOI: 10.1016/j.bbrc.2007.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 01/09/2007] [Indexed: 11/16/2022]
Abstract
Sef (similar expression to fgf genes) was identified as an inhibitor of FGF signaling. The regulation of this inhibitory effect was largely unknown. In this report we demonstrated that tyrosine 330 in hSef protein plays a critical role in the control of the protein localization and thereby in the regulation of Ras/MAPK signaling pathway. We found that the tyrosine 330 is in the form of the YXXcapital EF, Cyrillic signal context and mutation of this residue resulted in preferred plasma membrane localization of hSef. We also observed that both Sef and SefY330F (where tyrosine is substituted by phenylalanine) interacted and co-localized with FGFR in the co-immunoprecipitation assay, and immunostaining assay respectively. We further revealed that the increased amount of Sef localization in the plasma membrane was coupled with the enhanced inhibitory effect on the FGF signaling pathway, indicating that Sef might exert its inhibitory function on the plasma membrane. This paper revealed that tyrosine 330 is critical for the inhibitory function of Sef on FGF signaling.
Collapse
Affiliation(s)
- Yongming Ren
- Department of Biological Sciences and Biotechnology, School of Medicine, Institute of Biomedicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
172
|
Rong Z, Ren Y, Cheng L, Li Z, Li Y, Sun Y, Li H, Xiong S, Chang Z. Sef-S, an alternative splice isoform of sef gene, inhibits NIH3T3 cell proliferation via a mitogen-activated protein kinases p42 and p44 (ERK1/2)-independent mechanism. Cell Signal 2007; 19:93-102. [PMID: 16857343 DOI: 10.1016/j.cellsig.2006.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/29/2006] [Indexed: 11/22/2022]
Abstract
sef (similar expression to fgf genes) was recently identified as a negative regulator of fibroblast growth factor (FGF) signaling in zebrafish, chicken, mouse and human. By repressing events upstream and/or downstream Ras, Sef inhibits FGF-induced ERK activation and cell proliferation. Here we report that Sef-S, an alternative splice isoform of Sef, lacks a signal peptide and is localized in cytosol. Sef-S inhibits FGF-induced NIH3T3 cell proliferation, a similar function to Sef. However, Sef-S represses neither the intensity nor the duration of ERK activation. Moreover, Sef-S does not inhibit Elk1-dependent transcription. Our study revealed that the signal peptide is critical for the different activities between Sef and Sef-S in FGF-Ras-MAPK signaling cascades. Furthermore, we observed that Sef-S associated with FGFR2 in a co-immunoprecipitated complex. These results indicate that Sef-S inhibits FGF-induced NIH3T3 cell proliferation via an ERK-independent mechanism and therefore suggest that alternative splice licenses sef gene to inhibit cell proliferation via multiple signaling pathways.
Collapse
Affiliation(s)
- Zhili Rong
- Tsinghua Institute of Genome Research, Department of Biological Sciences and Biotechnology, and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Feinstein TN, Linstedt AD. Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol Biol Cell 2006; 18:594-604. [PMID: 17182854 PMCID: PMC1783781 DOI: 10.1091/mbc.e06-06-0530] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.
Collapse
Affiliation(s)
- Timothy N. Feinstein
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D. Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
174
|
Santolin L, Meisterernst M. TFII-IDelta and TFII-Ibeta: unequal brothers fostering cellular proliferation. Mol Cell 2006; 24:169-71. [PMID: 17052451 DOI: 10.1016/j.molcel.2006.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Activation of the immediate-early gene c-fos through MAP kinases is a hallmark of growth factor signaling. In this issue of Molecular Cell, Roy and colleagues (Hakre et al., 2006) show that TFII-I isoforms play differential roles in this process.
Collapse
Affiliation(s)
- Lisa Santolin
- Gene Expression, GSF-National Research Center for Environment and Health, Institute for Molecular Immunology, Marchionistrasse 25, D-81377 München, Germany
| | | |
Collapse
|
175
|
Hakre S, Tussie-Luna MI, Ashworth T, Novina CD, Settleman J, Sharp PA, Roy AL. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression. Mol Cell 2006; 24:301-8. [PMID: 17052463 DOI: 10.1016/j.molcel.2006.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 07/18/2006] [Accepted: 09/11/2006] [Indexed: 11/12/2022]
Abstract
Multifunctional transcription factor TFII-I has two spliced isoforms (Delta and beta) in murine fibroblasts. Here we show that these isoforms have distinct subcellular localization and mutually exclusive transcription functions in the context of growth factor signaling. In the absence of signaling, TFII-Ibeta is nuclear and recruited to the c-fos promoter in vivo. But upon growth factor stimulation, the promoter recruitment is abolished and it is exported out of the nucleus. Moreover, isoform-specific silencing of TFII-Ibeta results in transcriptional activation of the c-fos gene. In contrast, TFII-IDelta is largely cytoplasmic in the resting state but translocates to the nucleus upon growth factor signaling, undergoes signal-induced recruitment to the same site on the c-fos promoter, and activates the gene. Importantly, activated TFII-IDelta interacts with Erk1/2 (MAPK) kinase in the cell cytoplasm and imports the Erk1/2 to the nucleus, thereby transducing growth factor signaling. Our results identify a unique growth factor signaling pathway controlled by opposing activities of two TFII-I spliced isoforms.
Collapse
Affiliation(s)
- Shweta Hakre
- Program in Immunology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O, Pigeon K, Friesel R. A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal 2006; 18:1958-66. [PMID: 16603339 DOI: 10.1016/j.cellsig.2006.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 11/28/2022]
Abstract
Sef (similar expression to fgf genes) is a member of the fibroblast growth factor (FGF) synexpression group that negatively regulates FGF receptor (FGFR) signaling in zebrafish during early embryonic development and in mammalian cell culture systems. The mechanism by which Sef exerts its inhibitory effect remains controversial. It has been reported that Sef functions either through binding to and inhibiting FGFR1 activation or by acting downstream of FGF receptors at the level of MEK/ERK kinases. In both cases, the intracellular domain of Sef was found to play a role in the inhibitory function of Sef. Here we demonstrated that both extracellular and transmembrane domains of Sef contributed to Sef-mediated negative regulation of FGF signaling. In fact, over-expression studies in NIH3T3 cells showed that a truncated mutant of Sef, which lacks the intracellular domain (SefECTM), exerted the inhibitory activity on FGF signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent activation of the Raf/MEK/ERK signaling cascade. We also showed that SefECTM associated with FGFR1, and inhibited FGF-induced ERK activation in HEK293T cells. Furthermore, we demonstrated that the over-expression of SefECTM was able to inhibit the function of a constitutively activated form of FGFR1, FGFR1-C289R, but not FGFR1-K562E. Finally, we found that SefECTM reduced cell viability when over-expressed in human umbilical vein endothelial cells (HUVEC). These data provide additional insight into the structure-activity relationship in the mechanism of inhibitory action of Sef on FGFR1-mediated signaling.
Collapse
Affiliation(s)
- Dmitry Kovalenko
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074-7205, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Karlsson M, Mandl M, Keyse SM. Spatio-temporal regulation of mitogen-activated protein kinase (MAPK) signalling by protein phosphatases. Biochem Soc Trans 2006; 34:842-5. [PMID: 17052211 DOI: 10.1042/bst0340842] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ERK (extracellular-signal-regulated kinase) is a MAPK (mitogen-activated protein kinase), which regulates diverse physiological functions including cell proliferation, differentiation, transformation and survival. It is now clear that in addition to the duration and magnitude of signalling through this MAPK pathway, the spatial restriction of MAPK activity plays a key role in determining the physiological outcome of signalling. Recent work has led to the discovery of MAPK-binding proteins, which contain either nuclear localization signals or nuclear export signals. These include MAPK activators and specific protein phosphatases, which may act to both regulate MAPK activity and the subcellular localization of their substrate. This represents a mechanism by which signalling in response to extracellular stimuli may be modulated in terms of both magnitude/duration and spatial restriction thus allowing differential access of the activated MAPK to target proteins and the interpretation of this information by cells to determine an appropriate physiological response.
Collapse
Affiliation(s)
- M Karlsson
- Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | |
Collapse
|
178
|
Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:1213-26. [PMID: 17112607 DOI: 10.1016/j.bbamcr.2006.10.005] [Citation(s) in RCA: 701] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/10/2006] [Accepted: 10/13/2006] [Indexed: 11/19/2022]
Abstract
The ERK signaling cascade is a central MAPK pathway that plays a role in the regulation of various cellular processes such as proliferation, differentiation, development, learning, survival and, under some conditions, also apoptosis. The ability of this cascade to regulate so many distinct, and even opposing, cellular processes, raises the question of signaling specificity determination by this cascade. Here we describe mechanisms that cooperate to direct MEK-ERK signals to their appropriate downstream destinations. These include duration and strength of the signals, interaction with specific scaffolds, changes in subcellular localization, crosstalk with other signaling pathways, and presence of multiple components with distinct functions in each tier of the cascade. Since many of the mechanisms do not function properly in cancer cells, understanding them may shed light not only on the regulation of normal cell proliferation, but also on mechanisms of oncogenic transformation.
Collapse
Affiliation(s)
- Yoav D Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
179
|
Ziv I, Fuchs Y, Preger E, Shabtay A, Harduf H, Zilpa T, Dym N, Ron D. The human sef-a isoform utilizes different mechanisms to regulate receptor tyrosine kinase signaling pathways and subsequent cell fate. J Biol Chem 2006; 281:39225-35. [PMID: 17035228 DOI: 10.1074/jbc.m607327200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative feedback is among the key mechanisms for regulating receptor tyrosine kinase (RTK) signaling. Human Sef, a recently identified inhibitor of RTK signaling, encodes different isoforms, including a membrane spanning (hSef-a) and a cytosolic (hSef-b) isoform. Previously, we reported that hSef-b inhibited fibroblast proliferation and prevented the activation of mitogen-activated protein kinase (MAPK), without affecting protein kinase B/Akt or p38 MAPK. Conflicting results were reported concerning hSef-a inhibition of MAPK activation, and the effect of hSef-a on other RTK-induced signaling pathways is unknown. Here we show that, in fibroblasts, similar to hSef-b, ectopic expression of hSef-a inhibited fibroblast growth factor-induced cell proliferation. Unlike hSef-b, however, the growth arrest was mediated via a MAPK-independent mechanism, and was accompanied by elevated p38 MAPK phosphorylation and inhibition of protein kinase B/Akt. In addition, hSef-a, but not hSef-b, mediated apoptosis in fibroblast growth factor-stimulated cells. Chemical inhibitor of p38 MAPK abrogated the effect of hSef-a on apoptosis. In epithelial cells, ectopic expression of hSef-a inhibited the activation of MAPK, whereas down-regulation of endogenous hSef-a significantly increased MAPK activation and accelerated growth factor-dependent cell proliferation. These results indicate that hSef-a is a multifunctional negative modulator of RTK signaling and clearly demonstrate that hSef-a can inhibit the activation of MAPK, although in a cell type-specific manner. Moreover, the differences between the activities of hSef-a and hSef-b suggest that hSef isoforms can control signal specificity and subsequent cell fate by utilizing different mechanisms to modulate RTK signaling.
Collapse
Affiliation(s)
- Inbal Ziv
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Much progress has been made in recent years toward understanding mechanisms controlling branching morphogenesis, a fundamental aspect of development in a variety of invertebrate and vertebrate organs. To gain a deeper understanding of how branching morphogenesis occurs in the mammary gland, we compare and contrast the cellular and molecular events underlying this process in both invertebrate and vertebrate organs. Thus, in this review, we focus on the common themes that have emerged from such comparative analyses and discuss how they are implemented via a battery of signaling pathways to ensure proper branching morphogenesis in diverse systems.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | |
Collapse
|
181
|
Takagaki K, Shima H, Tanuma N, Nomura M, Satoh T, Watanabe M, Kikuchi K. Characterization of a novel low-molecular-mass dual specificity phosphatase-4 (LDP-4) expressed in brain. Mol Cell Biochem 2006; 296:177-84. [PMID: 17001450 DOI: 10.1007/s11010-006-9313-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Dual-specificity phosphatases (DSPs), which dephosphorylate proteins at Ser/Thr as well as Tyr residues, are thought to be involved in critical signaling events such as control of MAP kinases (MAPKs). We have isolated the cDNA for a novel DSP and termed it low molecular mass DSP-4 (LDP-4). LDP-4 is composed of 211 amino acids with a predicted molecular mass of 23.9-kDa. Northern blot analysis using various mouse tissues showed that the LDP-4 transcript was expressed exclusively in brain. In situ hybridization showed that brain expression of LDP-4 was ubiquitous except for the hippocampus. When expressed in COS-7 cells, FLAG-tagged LDP-4 protein was present within the nucleus and Golgi apparatus. LDP-4 expression did not reduce phosphorylation levels of MAPKs, but rather evoked activation of JNK and p38.
Collapse
Affiliation(s)
- Kentaro Takagaki
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
182
|
Nishimoto S, Nishida E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 2006; 7:782-6. [PMID: 16880823 PMCID: PMC1525153 DOI: 10.1038/sj.embor.7400755] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/19/2006] [Indexed: 12/16/2022] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and, similar to ERK1/2, has the Thr-Glu-Tyr (TEY) activation motif. Both ERK5 and ERK1/2 are activated by growth factors and have an important role in the regulation of cell proliferation and cell differentiation. Moreover, both the ERK5 and the ERK1/2 pathways are sensitive to PD98059 and U0126, which are two well-known inhibitors of the ERK pathway. Despite these similarities, recent studies have revealed distinctive features of the ERK5 pathway: ERK5 has a key role in cardiovascular development and neural differentiation; ERK5 nuclear translocation is controlled by its own nuclear localizing and nuclear export activities; and the carboxy-terminal half of ERK5, which follows its kinase catalytic domain, has a unique function.
Collapse
Affiliation(s)
- Satoko Nishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
183
|
Caunt CJ, Finch AR, Sedgley KR, McArdle CA. Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 2006; 17:276-83. [PMID: 16890451 DOI: 10.1016/j.tem.2006.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/30/2006] [Accepted: 07/17/2006] [Indexed: 12/01/2022]
Abstract
Vast numbers of extracellular signalling molecules exert effects on their target cells by activation of a relatively limited number of mitogen-activated protein kinase (MAPK) cascades, raising the question of how specificity is achieved. To a large extent, this appears to be attributable to differences in kinetics and compartmentalization of MAPK protein activation that are dictated by MAPK-associated proteins serving as scaffolds, anchors, activators or effectors. Here, we review spatiotemporal aspects of signalling via the Ras-Raf-extracellular signal-regulated kinase pathway, emphasizing recent work on roles of arrestins as scaffolds and transducers for seven transmembrane receptor signalling.
Collapse
Affiliation(s)
- Christopher J Caunt
- University of Bristol, Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Whitson Street, Bristol, BS1 3NY, UK
| | | | | | | |
Collapse
|
184
|
Lyman MG, Randall JA, Calton CM, Banfield BW. Localization of ERK/MAP kinase is regulated by the alphaherpesvirus tegument protein Us2. J Virol 2006; 80:7159-68. [PMID: 16809321 PMCID: PMC1489020 DOI: 10.1128/jvi.00592-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many different viruses activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase signaling pathway during infection and require ERK activation for the efficient execution of their replication programs. Despite these findings, no virus-encoded proteins have been identified that directly modulate ERK activities. In an effort to determine the function of a conserved alphaherpesvirus structural protein called Us2, we screened a yeast two-hybrid library derived from NIH 3T3 cells and identified ERK as a Us2-interacting protein. Our studies indicate that Us2 binds to ERK in virus-infected cells, mediates the incorporation of ERK into the virion, and inhibits the activation of ERK nuclear substrates. The association of Us2 with ERK leads to the sequestration of ERK at the plasma membrane and to a perinuclear vesicular compartment, thereby keeping ERK out of the nucleus. Us2 can bind to activated ERK, and the data suggest that Us2 does not inhibit ERK enzymatic activity. The treatment of cells with U0126, a specific inhibitor of ERK activation, resulted in a substantial delay in the release of virus from infected cells that was more pronounced with a virus deleted for Us2 than with parental and repaired strains, suggesting that both ERK and Us2 activities are required for efficient virus replication. This study highlights an additional complexity to the activation of ERK by viruses, namely, that localization of active ERK can be altered by virus-encoded proteins.
Collapse
Affiliation(s)
- Mathew G Lyman
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8333, P.O. Box 6511, Aurora, 80045, USA
| | | | | | | |
Collapse
|
185
|
Abstract
The extracellular-signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway plays an important role in various cellular responses, including cell proliferation, cell differentiation and cell survival. Recent studies have identified a number of Ras/ERK signaling-related proteins, such as scaffold proteins and inhibitors. These proteins modulate ERK signaling and thereby could give variations in ERK signaling outputs that regulate cell fate decisions. Here we focus on the role of ERK signaling in cell cycle progression from G0/G1 to S phase and cancer.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
186
|
Ren Y, Cheng L, Rong Z, Li Z, Li Y, Li H, Wang Z, Chang Z. hSef co-localizes and interacts with Ras in the inhibition of Ras/MAPK signaling pathway. Biochem Biophys Res Commun 2006; 347:988-93. [PMID: 16859641 DOI: 10.1016/j.bbrc.2006.06.193] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 06/29/2006] [Indexed: 12/18/2022]
Abstract
To study the mechanism of the inhibitory effects of Sef (similar expression to fgf genes) on Ras/mitogen-activated protein kinase (MAPK) signaling pathway, we observed cellular localization of this protein. Immunofluorescent staining results show that Sef locates in the vesicles of the cytoplasm without bFGF treatment but co-localizes with Ras on the plasma membrane (PM) in response to bFGF stimulation. The coimmunoprecipitation assay demonstrates that Sef interacts with Ras or RasG12V, respectively. We observed that Sef inhibited FGF induced, but not RasG12V mediated, signal transduction. We propose that Sef interacted with Ras in the inhibition of Ras/MAPK signaling pathway.
Collapse
Affiliation(s)
- Yongming Ren
- Tsinghua Institute of Genome Research, Department of Biological Sciences and Biotechnology, and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Darby S, Sahadevan K, Khan MM, Robson CN, Leung HY, Gnanapragasam VJ. Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer. Oncogene 2006; 25:4122-7. [PMID: 16474841 DOI: 10.1038/sj.onc.1209428] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/12/2005] [Accepted: 12/22/2005] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factors (FGF), and in particular FGF8, have been strongly implicated in prostate carcinogenesis. This study investigated the expression of Sef, a key inhibitory regulator of FGF signalling, in prostate cancer. In a panel of cell lines, hSef was detected in both androgen-dependent and independent cells but was significantly reduced in highly metastatic derivative clones. hSef expression was not influenced by androgenic stimulation. Forced downregulation of hSef by siRNA increased FGF8b induced cell migration (P=0.02) and invasion (P=0.007). Reduced hSef levels also enhanced FGF8b stimulated expression of MMP9 (P=0.005). mRNA in situ hybridization revealed hSef expression in 80% (8/10) of benign biopsies but in only 69% (23/33) of Gleason sum 4-7 and 35% (10/28) of Gleason sum 8-10 cancer biopsies (P=0.004). Quantitative PCR of microdissected glands confirmed this trend (P=0.001). hSef was expressed in 69% (27/39) of non-metastatic tumours but in only 18% (2/11) of metastatic tumours (P=0.004, n=50). hSef expression was next correlated with earlier data on FGF8b expression in a subgroup of cancers. In this cohort, 86% (19/22) of high-grade cancers expressed FGF8 but only 31% (7/22) expressed hSef. Positive FGF8 expression but a loss of hSef was observed in 88% (7/8) of metastatic tumours. In contrast, metastasis was evident in only 10% (1/10) of tumours, which co-expressed both FGF8 and hSef (P<0.001). These results suggest evidence that hSef is downregulated in advanced prostate cancer and might facilitate an enhanced tumorigenic response to FGFs. Further research into the role of hSef in cancer cell signalling and the mechanism of its downregulation may contribute to more effective targeting of growth factors in prostate cancer.
Collapse
Affiliation(s)
- S Darby
- Urology Research Group, Northern Institute for Cancer Research, Medical School, University of Newcastle Upon Tyne, Framlington Place, Newcastle Upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
Signal transduction down the Ras/MAPK pathway, including that critical to T cell activation, proliferation, and differentiation, has been generally considered to occur at the plasma membrane. It is now clear that the plasma membrane does not represent the only platform for Ras/MAPK signaling. Moreover, the plasma membrane itself is no longer considered a uniform structure but rather a patchwork of microdomains that can compartmentalize signaling. Signaling on internal membranes was first recognized on endosomes. Genetically encoded fluorescent probes for signaling events such as GTP/GDP exchange on Ras have revealed signaling on a variety of intracellular membranes, including the Golgi apparatus. In fibroblasts, Ras is activated on the plasma membrane and Golgi with distinct kinetics. The pathway by which Golgi-associated Ras becomes activated involves PLCgamma and RasGRP1 and may also require retrograde trafficking of Ras from the plasma membrane to the Golgi as a consequence of depalmitoylation. Thus, the Ras/MAPK pathway represents a clear example of compartmentalized signaling.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, New York University Medical Center, New York, NY 10016-6402, USA.
| | | |
Collapse
|
189
|
Sallese M, Pulvirenti T, Luini A. The physiology of membrane transport and endomembrane-based signalling. EMBO J 2006; 25:2663-73. [PMID: 16763561 PMCID: PMC1500860 DOI: 10.1038/sj.emboj.7601172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023] Open
Abstract
Some of the important open questions concerning the physiology of the secretory pathway relate to its homeostasis. Secretion involves a number of separate compartments for which their transport activities should be precisely cross-coordinated to avoid gross imbalances in the trafficking system. Moreover, the membrane fluxes across these compartments should be able to adapt to environmental 'requests' and to respond to extracellular signals. How is this regulation effected? Here, we consider evidence that endomembrane-based signalling cascades that are similar in organization to those used at the plasma membrane coordinate membrane traffic. If this is the case, this would also represent a model for a more general inter-organelle signalling network for functionally interconnecting different intracellular activities, a necessity for the maintenance of cellular homeostasis and to express harmonic global cellular responses.
Collapse
Affiliation(s)
- Michele Sallese
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Teodoro Pulvirenti
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
190
|
Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci 2006; 31:268-75. [PMID: 16603362 DOI: 10.1016/j.tibs.2006.03.009] [Citation(s) in RCA: 536] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 03/06/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Although the mechanisms that lead to activation of the Ras, extracellular-signal-regulated kinase mitogen-activated protein kinase (Ras/ERK-MAPK) signaling pathway have been studied intensively, the fundamental principles that determine how activation of ERK signaling can result in distinct biological outcomes have only recently received attention. Factors such as cell-surface receptor density, expression of scaffolding proteins, the surrounding extracellular matrix, and the interplay between kinases and phosphatases modulate the strength and duration of ERK signaling. Furthermore, the spatial distribution and temporal qualities of ERK can markedly alter the qualitative and quantitative features of downstream signaling to immediate early genes (IEG) and the expression of IEG-encoded protein products. As a result, IEG products provide a molecular interpretation of ERK dynamics, enabling the cell to program an appropriate biological response.
Collapse
Affiliation(s)
- Leon O Murphy
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
191
|
Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D. Differential modification of Ras proteins by ubiquitination. Mol Cell 2006; 21:679-87. [PMID: 16507365 DOI: 10.1016/j.molcel.2006.02.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/10/2006] [Accepted: 02/14/2006] [Indexed: 01/18/2023]
Abstract
Ras proteins are essential components of signal transduction pathways that control cell proliferation, differentiation, and survival. It is well recognized that the functional versatility of Ras proteins is accomplished through their differential compartmentalization, but the mechanisms that control their spatial segregation are not fully understood. Here we show that HRas is subject to ubiquitin conjugation, whereas KRas is refractory to this modification. The membrane-anchoring domain of HRas is necessary and sufficient to direct the mono- and diubiquitination of HRas. Ubiquitin attachment to HRas stabilizes its association with endosomes and modulates its ability to activate the Raf/MAPK signaling pathway. Therefore, differential ubiquitination of Ras proteins may control their location-specific signaling activities.
Collapse
Affiliation(s)
- Natalia Jura
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York 11794, USA
| | | | | | | |
Collapse
|
192
|
Abstract
H-Ras, N-Ras, and K-Ras proteins have distinct biological properties, despite ubiquitous expression and similar affinities for regulators and effectors. C-terminal hypervariable regions that distinguish H-Ras, N-Ras, and K-Ras proteins direct them to distinct membrane compartments, where they may encounter regulators and effectors at different local concentrations. Jura and coworkers now report that these membrane-targeting domains direct differential ubiquitination of Ras proteins and so provide a molecular mechanism to explain the sorting process and, perhaps, some of the dramatic differences in biological potency among H-Ras, N-Ras, and K-Ras proteins.
Collapse
Affiliation(s)
- Pablo Rodriguez-Viciana
- University of California, San Francisco, Comprehensive Cancer Center, 2340 Sutter Street, San Francisco, California 94115, USA
| | | |
Collapse
|
193
|
Quatela SE, Philips MR. Ras signaling on the Golgi. Curr Opin Cell Biol 2006; 18:162-7. [PMID: 16488589 DOI: 10.1016/j.ceb.2006.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/09/2006] [Indexed: 11/17/2022]
Abstract
The discovery that Ras proteins are modified by enzymes restricted to the endoplasmic reticulum and Golgi apparatus and that, at steady state, a significant pool of Ras is localized on the Golgi has led to the hypothesis that Ras can become activated on and signal from intracellular membranes. Fluorescent probes capable of showing when and where in living cells Ras becomes activated together with studies of Ras proteins stringently tethered to intracellular membranes have confirmed this hypothesis. Thus, recent studies of Ras have contributed to the rapidly expanding field of compartmentalized signaling.
Collapse
Affiliation(s)
- Steven E Quatela
- Department of Pharmacology, MSB 251, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
194
|
Vrailas AD, Marenda DR, Cook SE, Powers MA, Lorenzen JA, Perkins LA, Moses K. smoothened and thickveins regulate Moleskin/Importin 7-mediated MAP kinase signaling in the developing Drosophila eye. Development 2006; 133:1485-94. [PMID: 16540506 PMCID: PMC1994332 DOI: 10.1242/dev.02334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila Mitogen Activated Protein Kinase (MAPK) Rolled is a key regulator of developmental signaling, relaying information from the cytoplasm into the nucleus. Cytoplasmic MEK phosphorylates MAPK (pMAPK), which then dimerizes and translocates to the nucleus where it regulates transcription factors. In cell culture, MAPK nuclear translocation directly follows phosphorylation, but in developing tissues pMAPK can be held in the cytoplasm for extended periods (hours). Here, we show that Moleskin antigen (Drosophila Importin 7/Msk), a MAPK transport factor, is sequestered apically at a time when lateral inhibition is required for patterning in the developing eye. We suggest that this apical restriction of Msk limits MAPK nuclear translocation and blocks Ras pathway nuclear signaling. Ectopic expression of Msk overcomes this block and disrupts patterning. Additionally, the MAPK cytoplasmic hold is genetically dependent on the presence of Decapentaplegic (Dpp) and Hedgehog receptors.
Collapse
Affiliation(s)
- Alysia D Vrailas
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Kakumoto K, Sasai K, Sukezane T, Oneyama C, Ishimaru S, Shibutani K, Mizushima H, Mekada E, Hanafusa H, Akagi T. FRA1 is a determinant for the difference in RAS-induced transformation between human and rat fibroblasts. Proc Natl Acad Sci U S A 2006; 103:5490-5. [PMID: 16569692 PMCID: PMC1459382 DOI: 10.1073/pnas.0601222103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human diploid fibroblasts (HDF) immortalized by hTERT and simian virus 40 (SV40) early region (ER) exhibit a limited degree of transformation upon the expression of activated H-RAS (H-RAS V12) compared with rat embryonic fibroblasts (REF) immortalized by SV40 ER. Here, we identified FRA1 as a determinant for this difference in RAS-induced transformation. FRA1 was not induced by H-RAS V12 in the immortalized HDF, in contrast to its marked accumulation in the immortalized REF. Ectopic expression of FRA1 significantly enhanced anchorage-independent growth of various HDF expressing hTERT, SV40 ER, and H-RAS V12. More importantly, FRA1 could induce anchorage-independent growth as well as nude mice tumor formation of the immortalized HDF in the absence of H-RAS V12. The results of an in vitro kinase assay clearly showed that the RAS-induced extracellular signal-regulated kinase (ERK) activation, which is responsible for FRA1 induction, was markedly attenuated in the HDF compared with that in the REF, despite no obvious differences in the phosphorylation status of ERK between the species. Our results strongly suggest that HDF negatively regulate the mitogen-activated protein kinase kinase (MEK)/ERK pathway more efficiently than REF, and consequently express less malignant phenotypes in response to H-RAS V12.
Collapse
Affiliation(s)
- Kyoko Kakumoto
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken Sasai
- Department of Developmental Neurobiology, St. Jude Childrens’s Research Hospital, 322 North Lauderdale Street, Memphis, TN 38138
| | - Taiko Sukezane
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Chitose Oneyama
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
- Department of Oncogene Research, Research Institute for Microbial Diseases, and
| | - Satoshi Ishimaru
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Shibutani
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroto Mizushima
- Department of Cell Biology, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; and
| | - Eisuke Mekada
- Department of Cell Biology, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; and
| | - Hidesaburo Hanafusa
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tsuyoshi Akagi
- *Laboratory of Molecular Oncology, Osaka Bioscience Institute, Saito Bioincubator, Room 204, 7-7-15 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
196
|
Suzuki K, Sato M, Morishima Y, Nakanishi S. Neuronal depolarization controls brain-derived neurotrophic factor-induced upregulation of NR2C NMDA receptor via calcineurin signaling. J Neurosci 2006; 25:9535-43. [PMID: 16221864 PMCID: PMC6725692 DOI: 10.1523/jneurosci.2191-05.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the developing cerebellum, switching of subunit composition of NMDA receptors occurs in granule cells from NR2B subunit-containing receptors to NR2C subunit-containing receptors. This switching of subunit composition plays an important role in the establishment of functional mossy fiber-granule cell synaptic transmission in the mature cerebellar network. The mechanism underlying NR2C upregulation in developing granule cells, however, has to date remained to be determined. In granule cells cultured in low (5 mm) KCl, brain-derived neurotrophic factor (BDNF) upregulated NR2C mRNA via the TrkB-extracellular signal-regulated kinase (ERK) 1/2 cascade and promoted the formation of an NR2C-containing NMDA receptor complex. In granule cells cultured in high (25 mm) KCl, depolarization stimulated voltage-sensitive Ca2+ channels. The resultant increase in intracellular Ca2+ activated Ca2+/calmodulin-dependent calcineurin phosphatase and blocked NR2C mRNA upregulation. Interestingly, the depolarization-induced Ca2+ increase simultaneously upregulated BDNF mRNA via Ca2+/calmodulin-dependent protein kinase (CaMK). Consequently, when calcineurin was inhibited by its inhibitor FK506 under the depolarizing condition, the CaMK-mediated increase in BDNF became a stimulatory signal, and the endogenous BDNF autocrine system was capable of upregulating NR2C mRNA via the common TrkB-ERK cascade. The importance of the BDNF-TrkB pathway was further supported by a significant reduction in NR2C in normally migrated granule cells of TrkB(-/-) knock-out mice in vivo. The convergent mechanism of the BDNF and Ca2+ signaling cascades thus plays an important regulatory role in NR2C induction in granule cells during cerebellar development.
Collapse
Affiliation(s)
- Kazunori Suzuki
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
197
|
Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24:21-44. [PMID: 16393692 DOI: 10.1080/02699050500284218] [Citation(s) in RCA: 948] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The extracellular signal-regulated kinase (ERK) cascade is a central pathway that transmits signals from many extracellular agents to regulate cellular processes such as proliferation, differentiation and cell cycle progression. The signaling via the ERK cascade is mediated by sequential phosphorylation and activation of protein kinases in the different tiers of the cascade. Although the main core phosphorylation chain of the cascade includes Raf kinases, MEK1/2, ERK1/2 (ERKs) and RSKs, other alternatively spliced forms and distinct components exist in the different tiers, and participate in ERK signaling under specific conditions. These components enhance the complexity of the ERK cascade and thereby, enable the wide variety of functions that are regulated by it. Another factor that is important for the dissemination of ERKs' signals is the multiplicity of the cascade's substrates, which include transcription factors, protein kinases and phosphatases, cytoskeletal elements, regulators of apoptosis, and a variety of other signaling-related molecules. About 160 substrates have already been discovered for ERKs, and the list of these substrates, as well as the function and mechanism of activation of representative substrates, are described in the current review. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Understanding of these processes may provide a full picture of the distinct, and even opposing cellular processes that are regulated by the ERK cascade.
Collapse
Affiliation(s)
- Seunghee Yoon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
198
|
Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M. Dynamics of the Ras/ERK MAPK Cascade as Monitored by Fluorescent Probes. J Biol Chem 2006; 281:8917-26. [PMID: 16418172 DOI: 10.1074/jbc.m509344200] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To comprehend the Ras/ERK MAPK cascade, which comprises Ras, Raf, MEK, and ERK, several kinetic simulation models have been developed. However, a large number of parameters that are essential for the development of these models are still missing and need to be set arbitrarily. Here, we aimed at collecting these missing parameters using fluorescent probes. First, the levels of the signaling molecules were quantitated. Second, to monitor both the activation and nuclear translocation of ERK, we developed probes based on the principle of fluorescence resonance energy transfer. Third, the dissociation constants of Ras.Raf, Raf.MEK, and MEK.ERK complexes were estimated using a fluorescent tag that can be highlighted very rapidly. Finally, the same fluorescent tag was used to measure the nucleocytoplasmic shuttling rates of ERK and MEK. Using these parameters, we developed a kinetic simulation model consisting of the minimum essential members of the Ras/ERK MAPK cascade. This simple model reproduced essential features of the observed activation and nuclear translocation of ERK. In this model, the concentration of Raf significantly affected the levels of phospho-MEK and phospho-ERK upon stimulation. This prediction was confirmed experimentally by decreasing the level of Raf using the small interfering RNA technique. This observation verified the usefulness of the parameters collected in this study.
Collapse
Affiliation(s)
- Aki Fujioka
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Park KS, Jeon SH, Kim SE, Bahk YY, Holmen SL, Williams BO, Chung KC, Surh YJ, Choi KY. APC inhibits ERK pathway activation and cellular proliferation induced by RAS. J Cell Sci 2006; 119:819-27. [PMID: 16478791 DOI: 10.1242/jcs.02779] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inactivating mutations in the adenomatous polyposis coli gene (APC), and activating mutations in RAS, occur in a majority of colorectal carcinomas. However, the relationship between these changes and tumorigenesis is poorly understood. RAS-induced activation of the ERK pathway was reduced by overexpressing APC in DLD-1 colorectal cancer cells. ERK activity was increased by Cre-virus-induced Apc knockout in primary Apc(flox/flox) mouse embryonic fibroblasts, indicating that APC inhibits ERK activity. ERK activity was increased by overexpression and decreased by knock down of beta-catenin. The activation of Raf1, MEK and ERK kinases by beta-catenin was reduced by co-expression of APC. These results indicate that APC inhibits the ERK pathway by an action on beta-catenin. RAS-induced activation of the ERK pathway was reduced by the dominant negative form of TCF4, indicating that the ERK pathway regulation by APC/beta-catenin signaling is, at least, partly caused by effects on beta-catenin/TCF4-mediated gene expression. The GTP loading and the protein level of mutated RAS were decreased in cells with reduced ERK activity as a result of APC overexpression, indicating that APC regulates RAS-induced ERK activation at least partly by reduction of the RAS protein level. APC regulates cellular proliferation and transformation induced by activation of both RAS and beta-catenin signaling.
Collapse
Affiliation(s)
- Ki-Sook Park
- Division of Molecular and Cellular Biology, Department of Biotechnology, Yonsei University, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Robertson SE, Setty SRG, Sitaram A, Marks MS, Lewis RE, Chou MM. Extracellular signal-regulated kinase regulates clathrin-independent endosomal trafficking. Mol Biol Cell 2006; 17:645-57. [PMID: 16314390 PMCID: PMC1356576 DOI: 10.1091/mbc.e05-07-0662] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/26/2005] [Accepted: 11/14/2005] [Indexed: 01/06/2023] Open
Abstract
Extracellular signal-regulated kinase (Erk) is widely recognized for its central role in cell proliferation and motility. Although previous work has shown that Erk is localized at endosomal compartments, no role for Erk in regulating endosomal trafficking has been demonstrated. Here, we report that Erk signaling regulates trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated endosomal pathway. Inactivation of Erk induced by a variety of methods leads to a dramatic expansion of the Arf6 endosomal recycling compartment, and intracellular accumulation of cargo, such as class I major histocompatibility complex, within the expanded endosome. Treatment of cells with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduces surface expression of MHCI without affecting its rate of endocytosis, suggesting that inactivation of Erk perturbs recycling. Furthermore, under conditions where Erk activity is inhibited, a large cohort of Erk, MEK, and the Erk scaffold kinase suppressor of Ras 1 accumulates at the Arf6 recycling compartment. The requirement for Erk was highly specific for this endocytic pathway, because its inhibition had no effect on trafficking of cargo of the classical clathrin-dependent pathway. These studies reveal a previously unappreciated link of Erk signaling to organelle dynamics and endosomal trafficking.
Collapse
Affiliation(s)
- Sarah E Robertson
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|