151
|
Gottardo M, Callaini G, Riparbelli MG. Procentriole assembly without centriole disengagement - a paradox of male gametogenesis. J Cell Sci 2014; 127:3434-9. [PMID: 24938597 DOI: 10.1242/jcs.152843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Disengagement of parent centrioles represents the licensing process to restrict centriole duplication exactly once during the cell cycle. However, we provide compelling evidence that this general rule is overridden in insect gametogenesis, when distinct procentrioles are generated during prophase of the first meiosis while parent centrioles are still engaged. Moreover, the number of procentrioles increases during the following meiotic divisions, and up to four procentrioles were found at the base of each mother centriole. However, procentrioles fail to organize a complete set of A-tubules and are thus unable to function as a template for centriole formation. Such a system, in which procentrioles form but halt growth, represents a unique model to analyze the process of cartwheel assembly and procentriole formation.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | | |
Collapse
|
152
|
Abstract
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, 12801 E. 17th Avenue, Room 12104, Aurora, CO 80045, USA
| |
Collapse
|
153
|
Novak ZA, Conduit PT, Wainman A, Raff JW. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr Biol 2014; 24:1276-82. [PMID: 24835456 PMCID: PMC4046630 DOI: 10.1016/j.cub.2014.04.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/11/2014] [Accepted: 04/11/2014] [Indexed: 12/26/2022]
Abstract
Centrioles form centrosomes and cilia, and defects in any of these three organelles are associated with human disease [1]. Centrioles duplicate once per cell cycle, when a mother centriole assembles an adjacent daughter during S phase. Daughter centrioles cannot support the assembly of another daughter until they mature into mothers during the next cell cycle [2-5]. The molecular nature of this daughter-to-mother transition remains mysterious. Pioneering studies in C. elegans identified a set of core proteins essential for centriole duplication [6-12], and a similar set have now been identified in other species [10, 13-18]. The protein kinase ZYG-1/Sak/Plk4 recruits the inner centriole cartwheel components SAS-6 and SAS-5/Ana2/STIL, which then recruit SAS-4/CPAP, which in turn helps assemble the outer centriole microtubules [19, 20]. In flies and humans, the Asterless/Cep152 protein interacts with Sak/Plk4 and Sas-4/CPAP and is required for centriole duplication, although its precise role in the assembly pathway is unclear [21-24]. Here, we show that Asl is not incorporated into daughter centrioles as they assemble during S phase but is only incorporated once mother and daughter separate at the end of mitosis. The initial incorporation of Asterless (Asl) is irreversible, requires DSas-4, and, crucially, is essential for daughter centrioles to mature into mothers that can support centriole duplication. We therefore propose a "dual-licensing" model of centriole duplication, in which Asl incorporation provides a permanent primary license to allow new centrioles to duplicate for the first time, while centriole disengagement provides a reduplication license to allow mother centrioles to duplicate again.
Collapse
Affiliation(s)
- Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul T Conduit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Oxford Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
154
|
Choi BH, Pagano M, Dai W. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle. J Biol Chem 2014; 289:14066-74. [PMID: 24706748 PMCID: PMC4022876 DOI: 10.1074/jbc.m114.558155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Indexed: 01/21/2023] Open
Abstract
PTEN is a well known tumor suppressor through the negative regulation of the PI3K signaling pathway. Here we report that PTEN plays an important role in regulating mitotic timing, which is associated with increased PTEN phosphorylation in the C-terminal tail and its localization to chromatin. Pulldown analysis revealed that Plk1 physically interacted with PTEN. Biochemical studies showed that Plk1 phosphorylates PTEN in vitro in a concentration-dependent manner and that the phosphorylation was inhibited by Bi2635, a Plk1-specific inhibitor. Deletional and mutational analyses identified that Plk1 phosphorylated Ser-380, Thr-382, and Thr-383, but not Ser-385, a cluster of residues known to affect the PTEN stability. Interestingly, a combination of molecular and genetic analyses revealed that only Ser-380 was significantly phosphorylated in vivo and that Plk1 regulated the phosphorylation, which was associated with the accumulation of PTEN on chromatin. Moreover, expression of phospho-deficient mutant, but not wild-type PTEN, caused enhanced mitotic exit. Taken together, our studies identify Plk1 as an important regulator of PTEN during the cell cycle.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- From the Departments of Environmental Medicine, Biochemistry, and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York 10987
| | - Michele Pagano
- the Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, and the Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016
| | - Wei Dai
- From the Departments of Environmental Medicine, Biochemistry, and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York 10987,
| |
Collapse
|
155
|
Riparbelli MG, Gottardo M, Glover DM, Callaini G. Inhibition of Polo kinase by BI2536 affects centriole separation during Drosophila male meiosis. Cell Cycle 2014; 13:2064-72. [PMID: 24802643 PMCID: PMC4111698 DOI: 10.4161/cc.29083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022] Open
Abstract
Pharmacological inhibition of Drosophila Polo kinase with BI2536 has allowed us to re-examine the requirements for Polo during Drosophila male gametogenesis. BI2536-treated spermatocytes persisted in a pro-metaphase state without dividing and had condensed chromosomes that did not separate. Centrosomes failed to recruit γ-tubulin and centrosomin (Cnn) and were not associated with microtubule arrays that were abnormal and did not form proper bipolar spindles. Centrioles, which usually separate during the anaphase of the first meiosis, remained held together in a V-shaped configuration suggesting that Polo kinase regulates the proteolysis that breaks centriole linkage to ensure their disengagement. Despite these defects spermatid differentiation proceeds, leading to axoneme formation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences; University of Siena; Siena, Italy
| | - David M Glover
- Department of Genetics; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
156
|
Maiato H, Logarinho E. Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol 2014; 16:386-94. [DOI: 10.1038/ncb2958] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
157
|
Abstract
The belief that cohesin complexes link mother to daughter centrioles has received substantial experimental support. New studies challenge the primacy of cohesin in centriole engagement and provide a more nuanced view into the mechanisms for centriole disengagement in anaphase.
Collapse
Affiliation(s)
- Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
158
|
Zou J, Zhang D, Qin G, Chen X, Wang H, Zhang D. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Cell Cycle 2014; 13:3685-97. [PMID: 25483079 PMCID: PMC4612125 DOI: 10.4161/15384101.2014.964973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATR, ataxia telangiectasia Rad3-related
- BRCA1
- BRCA1, breast cancer gene 1
- CIN, chromosome instability
- DDICA, DNA damage induced centrosome amplification
- DDR, DNA damage response
- DNA damage response
- FancJ
- GFP, green fluorescent protein
- HR, homologous recombination
- HU, hydroxyurea
- ICL, interstrand cross-linkers
- MIN, microsatellite instability
- MMC, mitomycin C
- MT, microtubule
- PCM, pericentriolar materials
- PLK1
- PLK1, Polo-like kinase 1
- UTR, untranslated region
- WCL, whole-cell lysate
- centrosome amplification
- interstrand cross-link
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Deli Zhang
- WeiFang Medical University; WeiFang, Shandong, China
| | - Guang Qin
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Xiangming Chen
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
- Department of Biomedical Sciences; College of Osteopathic Medicine; New York Institute of Technology; Old Westbury, NY USA
| |
Collapse
|
159
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
160
|
Wang G, Jiang Q, Zhang C. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 2014; 127:4111-22. [DOI: 10.1242/jcs.151753] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.
Collapse
|
161
|
Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 2013; 3:277. [PMID: 24282781 PMCID: PMC3824400 DOI: 10.3389/fonc.2013.00277] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022] Open
Abstract
The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker's precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegregated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.
Collapse
Affiliation(s)
- German A Pihan
- Department of Pathology and Laboratory Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
162
|
Zou J, Tian F, Li J, Pickner W, Long M, Rezvani K, Wang H, Zhang D. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Biol Open 2013; 2:1022-31. [PMID: 24167712 PMCID: PMC3798185 DOI: 10.1242/bio.20135801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 01/05/2023] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA) proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC). We further show that, in addition to its role in interstrand crosslinking (ICL) repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1). We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division, Sanford School of Medicine, University of South Dakota , Vermillion, South Dakota, 57069 , USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Cabral G, Sans S, Cowan C, Dammermann A. Multiple mechanisms contribute to centriole separation in C. elegans. Curr Biol 2013; 23:1380-7. [PMID: 23885867 PMCID: PMC3722485 DOI: 10.1016/j.cub.2013.06.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 01/10/2023]
Abstract
Centrosome function in cell division requires their duplication, once, and only once, per cell cycle. Underlying centrosome duplication are alternating cycles of centriole assembly and separation. Work in vertebrates has implicated the cysteine protease separase in anaphase-coupled centriole separation (or disengagement) and identified this as a key step in licensing another round of assembly. Current models have separase cleaving a physical link between centrioles, potentially cohesin, that prevents reinitiation of centriole assembly unless disengaged. Here, we examine separase function in the C. elegans early embryo. We find that depletion impairs separation and consequently duplication of sperm-derived centrioles at the meiosis-mitosis transition. However, subsequent cycles proceed normally. Whereas mitotic centrioles separate in the context of cortical forces acting on a disassembling pericentriolar material, sperm centrioles are not associated with significant pericentriolar material or subject to strong forces. Increasing centrosomal microtubule nucleation restores sperm centriole separation and duplication in separase-depleted embryos, while forced pericentriolar material disassembly drives premature separation in mitosis. These results emphasize the critical role of cytoskeletal forces and the pericentriolar material in centriole separation. Separase contributes to separation where forces are limited, offering a potential explanation for results obtained in different experimental models.
Collapse
Affiliation(s)
- Gabriela Cabral
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sabina Sanegre Sans
- Research Institute of Molecular Pathology, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Carrie R. Cowan
- Research Institute of Molecular Pathology, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
164
|
Oliveira RA, Nasmyth K. Cohesin cleavage is insufficient for centriole disengagement in Drosophila. Curr Biol 2013; 23:R601-3. [PMID: 23885871 DOI: 10.1016/j.cub.2013.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
165
|
Balestra FR, Strnad P, Flückiger I, Gönczy P. Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Dev Cell 2013; 25:555-71. [PMID: 23769972 DOI: 10.1016/j.devcel.2013.05.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
Centrioles are essential for forming cilia, flagella, and centrosomes and are thus critical for a range of fundamental cellular processes. Despite their importance, the mechanisms governing centriole biogenesis remain incompletely understood. We performed a high-content genome-wide small-interfering-RNA-based screen to identify genes regulating centriole formation in human cells. We designed an algorithm to automatically detect GFP-Centrin foci that, combined with subsequent manual analysis, allowed us to identify 44 genes required for centriole formation and 32 genes needed for restricting centriole number. Detailed follow-up characterization uncovered that the C2 domain protein C2CD3 is required for distal centriole formation and suggests that it functions in the basal body to template primary cilia. Moreover, we found that the E3 ubiquitin ligase TRIM37 prevents centriole reduplication events. We developed a dynamic web interface containing all images and numerical features as a powerful resource to investigate facets of centrosome biology.
Collapse
Affiliation(s)
- Fernando R Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
166
|
Schvarzstein M, Pattabiraman D, Bembenek JN, Villeneuve AM. Meiotic HORMA domain proteins prevent untimely centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Proc Natl Acad Sci U S A 2013; 110:E898-907. [PMID: 23401519 PMCID: PMC3593872 DOI: 10.1073/pnas.1213888110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In many species where oocytes lack centrosomes, sperm contribute both genetic material and centriole(s) to the zygote. Correct centriole organization during male meiosis is critical to guarantee a normal bipolar mitotic spindle in the zygote. During Caenorhabditis elegans male meiosis, centrioles normally undergo two rounds of duplication, resulting in haploid sperm each containing a single tightly engaged centriole pair. Here we identify an unanticipated role for C. elegans HORMA (Hop1/Rev7/Mad2) domain proteins HTP-1/2 and HIM-3 in regulating centriole disengagement during spermatocyte meiosis. In him-3 and htp-1 htp-2 mutants, centrioles separate inappropriately during meiosis II, resulting in spermatids with disengaged centrioles. Moreover, extra centrosomes are detected in a subset of zygotes. Together, these data implicate HIM-3 and HTP-1/2 in preventing centriole disengagement during meiosis II. We showed previously that HTP-1/2 prevents premature loss of sister chromatid cohesion during the meiotic divisions by inhibiting removal of meiotic cohesin complexes containing the REC-8 subunit. Worms lacking REC-8, or expressing a mutant separase protein with elevated local concentration at centrosomes and in sperm, likewise exhibit inappropriate centriole separation during spermatocyte meiosis. These observations are consistent with HIM-3 and HTP-1/2 preventing centriole disengagement by inhibiting separase-dependent cohesin removal. Our data suggest that the same specialized meiotic mechanisms that function to prevent premature release of sister chromatid cohesion during meiosis I in C. elegans also function to inhibit centriole separation at meiosis II, thereby ensuring that the zygote inherits the appropriate complement of chromosomes and centrioles.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Divya Pattabiraman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37916
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
167
|
Brownlee CW, Rogers GC. Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 2013; 70:1021-34. [PMID: 22892665 PMCID: PMC11113234 DOI: 10.1007/s00018-012-1102-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Centrosomes are organelles involved in generating and organizing the interphase microtubule cytoskeleton, mitotic spindles and cilia. At the centrosome core are a pair of centrioles, structures that act as the duplicating elements of this organelle. Centrioles function to recruit and organize pericentriolar material which nucleates microtubules. While centrioles are relatively simple in construction, the mechanics of centriole biogenesis remain an important yet poorly understood process. More mysterious still are the regulatory mechanisms that oversee centriole assembly. The fidelity of centriole duplication is critical as defects in either the assembly or number of centrioles promote aneuploidy, primary microcephaly, birth defects, ciliopathies and tumorigenesis. In addition, some pathogens employ mechanisms to promote centriole overduplication to the detriment of the host cell. This review summarizes our current understanding of this important topic, highlighting the need for further study if new therapeutics are to be developed to treat diseases arising from defects of centrosome duplication.
Collapse
Affiliation(s)
- Christopher W. Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
168
|
Conroy PC, Saladino C, Dantas TJ, Lalor P, Dockery P, Morrison CG. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle 2013; 11:3769-78. [PMID: 23070519 DOI: 10.4161/cc.21986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.
Collapse
Affiliation(s)
- Pauline C Conroy
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
169
|
Abstract
Centrosomes serve to organize new centrioles in cycling cells, whereas in quiescent cells they assemble primary cilia. We have recently shown that the mitochondrial porin VDAC3 is also a centrosomal protein that is predominantly associated with the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes. Here, we show that depletion of VDAC3 causes inappropriate ciliogenesis in cycling cells, while expression of GFP-VDAC3 suppresses ciliogenesis in quiescent cells. Mps1 also negatively regulates ciliogenesis, and the inappropriate ciliogenesis caused by VDAC3 depletion can be bypassed by targeting Mps1 to centrosomes independently of VDAC3. Thus, our data show that a VDAC3-Mps1 module at the centrosome promotes ciliary disassembly during cell cycle entry and suppresses cilia assembly in proliferating cells. Our data also suggests that VDAC3 might be a link between mitochondrial dysfunction and ciliopathies in mammalian cells.
Collapse
Affiliation(s)
- Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
170
|
CAND1 promotes PLK4-mediated centriole overduplication and is frequently disrupted in prostate cancer. Neoplasia 2013; 14:799-806. [PMID: 23019411 DOI: 10.1593/neo.12580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/26/2022] Open
Abstract
Centrosomes play a crucial role in the maintenance of genome stability by orchestrating bipolar mitotic spindle formation. The centrosome normally duplicates precisely once before mitosis in a process that is extensively regulated by protein degradation including SKP1-Cullin 1 (CUL1)-F-box (SCF) E3 ubiquitin ligase activity. The core SCF component CUL1 has recently been found to be required to suppress the formation of supernumerary centrosomes and centrioles, the core-forming units of centrosomes. Here, we identify the CUL1-interacting protein cullin-associated and neddylation-dissociated 1 (CAND1) as a novel centrosomal protein with a role in centriole duplication control. CAND1 was found to synergize with Polo-like kinase 4 (PLK4), a master regulator of centriole biogenesis, in the induction of centriole overduplication. We provide evidence that CAND1 functions in this process by increasing PLK4 protein stability. Furthermore, mutants of CUL1 that lack the ability to interact with CAND1 and are unable to assemble functional E3 ubiquitin ligase complexes were impaired in their ability to restrain aberrant daughter centriole synthesis. To corroborate a role of CAND1 in human carcinogenesis, we analyzed a series of prostate adenocarcinomas and found altered expression of CAND1 on the mRNA or protein level in 52.9% and 40.8%, respectively, of the tumor samples analyzed. These results highlight the role of altered SCF components in cancer in general and encourage further studies to explore the SCF-CAND1 axis for the development of novel predictive biomarkers and therapeutic approaches in prostate cancer.
Collapse
|
171
|
Hatzimichael E, Georgiou G, Benetatos L, Briasoulis E. Gene mutations and molecularly targeted therapies in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2013; 3:29-51. [PMID: 23358589 PMCID: PMC3555190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations.
Collapse
|
172
|
Abstract
Sister chromatid cohesion depends on cohesin, a tripartite complex that forms ring structures to hold sister chromatids together in mitosis and meiosis. Meiocytes feature a multiplicity of distinct cohesin proteins and complexes, some meiosis specific, which serve additional functions such as supporting synapsis of two pairs of sister chromatids and determining the loop-axis architecture of prophase I chromosomes. Despite considerable new insights gained in the past few years into the localization and function of some cohesin proteins, and the recent identification of yet another meiosis-specific cohesin subunit, a plethora of open questions remains, which concern not only fundamental germ cell biology but also the consequences of cohesin impairment for human reproductive health.
Collapse
Affiliation(s)
- François McNicoll
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
173
|
Prosser SL, Samant MD, Baxter JE, Morrison CG, Fry AM. Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification. J Cell Sci 2012; 125:5353-68. [PMID: 22956538 PMCID: PMC3939426 DOI: 10.1242/jcs.106096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Centrosome duplication is licensed by the disengagement, or 'uncoupling', of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the anaphase-promoting complex (APC/C), leading to securin degradation and release of active separase. Although APC/C activation during G2 arrest is dependent on polo-like kinase 1 (Plk1)-mediated degradation of the APC/C inhibitor, early mitotic inhibitor 1 (Emi1), Plk1 also has a second APC/C-independent role in promoting disengagement. Importantly, APC/C and Plk1 activity also stimulates centriole disengagement in response to hydroxyurea or DNA damage-induced cell-cycle arrest and this leads to centrosome amplification. However, the reduplication of disengaged centrioles is dependent on cyclin-dependent kinase 2 (Cdk2) activity and Cdk2 activation coincides with a subsequent inactivation of the APC/C and re-accumulation of cyclin A. Although release from these arrests leads to mitotic entry, the presence of disengaged and/or amplified centrosomes results in the formation of abnormal mitotic spindles that lead to chromosome mis-segregation. Thus, oscillation of APC/C activity during cell cycle arrest promotes both centrosome amplification and genome instability.
Collapse
Affiliation(s)
- Suzanna L. Prosser
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
- Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mugdha D. Samant
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Joanne E. Baxter
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Ciaran G. Morrison
- Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| |
Collapse
|
174
|
Korzeniewski N, Hohenfellner M, Duensing S. The centrosome as potential target for cancer therapy and prevention. Expert Opin Ther Targets 2012; 17:43-52. [PMID: 23062185 DOI: 10.1517/14728222.2013.731396] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cancer initiation and propagation is not possible without cell division. Besides microtubules, which are targeted by taxanes as part of a number of standard chemotherapy regimens, mitosis depends on small cellular organelles known as centrosomes. Centrosome abnormalities are a common finding in tumors including major human malignancies such as prostate or breast cancer. Centrosome aberrations can drive chromosome missegregation and aneuploidy, thereby promoting malignant progression. Nonetheless, these important cellular structures have not yet been directly exploited for targeted interventions. AREAS COVERED This review will summarize the current knowledge of normal and aberrant centrosome duplication. We will highlight the principal pathways leading to aberrant centrosome numbers and the evidence for a role of centrosome amplification in malignant progression. Strategies to target centrosome-mediated cell division errors will be discussed. Lastly, we will review the evidence for centrosome clustering as a druggable cellular process. EXPERT OPINION Recent advances in the understanding of centrosome biogenesis have revealed a number of potential centrosomal drug targets including Polo-like kinases, Cyclin-dependent kinases, Aurora kinases, and molecular motor proteins. For some of these proteins, targeted inhibitory compounds are available and in vitro experiments have provided the proof-of-concept that blocking centrosome overduplication can result in a reduction of aneuploid cells. In addition, inhibition of centrosomal clustering has antitumor activity in vitro and in vivo. Nonetheless, further in vitro and preclinical studies are required to determine the most effective way to exploit the centrosome for therapeutic or preventive anticancer strategies.
Collapse
Affiliation(s)
- Nina Korzeniewski
- University of Heidelberg School of Medicine, Department of Urology, Section of Molecular Urooncology, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
175
|
Jin H, Avey M, Yu HG. Is cohesin required for spindle-pole-body/centrosome cohesion? Commun Integr Biol 2012; 5:26-9. [PMID: 22482005 DOI: 10.4161/cib.18557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Centrosomes are microtubule-organizing centers that nucleate spindle microtubules during cell division. In budding yeast, the centrosome, often referred to as the spindle pole body, shares structural components with the centriole, the central core of the animal centrosome. The parental centrosome is duplicated when DNA replication takes place. Like sister chromatids tethered together by cohesin, duplicated centrosomes are linked and then separate to form the bipolar spindle necessary for chromosome segregation. Recent studies have shown that cohesin is also localized to the animal centrosome and is perhaps directly involved in engaging paired centrioles. Here we discuss the potential role of cohesin in mediating spindle-pole-body cohesion in the context of yeast meiosis. We propose that the coordination of chromosome segregation with centrosome cohesion and duplication is mediated by the antagonistic interaction between the Aurora kinase and the Polo kinase and that the role of cohesin in centrosome regulation appears to be indirect in budding yeast.
Collapse
Affiliation(s)
- Hui Jin
- Department of Biological Science; The Florida State University; Tallahassee, FL USA
| | | | | |
Collapse
|
176
|
Zhang C, Sun X, Ren Y, Lou Y, Zhou J, Liu M, Li D. Validation of Polo-like kinase 1 as a therapeutic target in pancreatic cancer cells. Cancer Biol Ther 2012; 13:1214-20. [PMID: 22892842 PMCID: PMC3469479 DOI: 10.4161/cbt.21412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase and plays a critical role in mitosis. PLK1 has also been regarded as a valuable target for cancer treatment, and several PLK1 inhibitors are currently undergoing clinical investigations. In this study, our data show that the expression level of PLK1 is upregulated in human pancreatic cancer cells. Molecular modeling studies indicate that DMTC inhibits PLK1 activity through competitive displacement of ATP from its binding pocket. Our data further show that DMTC suppresses the proliferation of pancreatic cancer cells and induces the formation of multinucleated cells, ultimately resulting in apoptosis. In addition, combination index analysis demonstrates that DMTC acts synergistically with the chemotherapeutic drug gemcitabine in inhibiting the proliferation of pancreatic cancer cells. These results thus suggest a potential of using PLK1 inhibitors for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Xiaodong Sun
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yuan Ren
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yunbo Lou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Min Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education; Basic Medical College; Tianjin Medical University; Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| |
Collapse
|
177
|
Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 2012; 20:1905-17. [PMID: 23000383 DOI: 10.1016/j.str.2012.08.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022]
Abstract
Centrioles are key microtubule polarity determinants. Centriole duplication is tightly controlled to prevent cells from developing multipolar spindles, a situation that promotes chromosomal instability. A conserved component in the duplication pathway is Plk4, a polo kinase family member that localizes to centrioles in M/G1. To limit centriole duplication, Plk4 levels are controlled through trans-autophosphorylation that primes ubiquitination. In contrast to Plks 1-3, Plk4 possesses a unique central region called the "cryptic polo box." Here, we present the crystal structure of this region at 2.3 Å resolution. Surprisingly, the structure reveals two tandem homodimerized polo boxes, PB1-PB2, that form a unique winged architecture. The full PB1-PB2 cassette is required for binding the centriolar protein Asterless as well as robust centriole targeting. Thus, with its C-terminal polo box (PB3), Plk4 has a triple polo box architecture that facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle.
Collapse
Affiliation(s)
- Lauren K Slevin
- Department of Biology, CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
178
|
Hatano T, Sluder G. The interrelationship between APC/C and Plk1 activities in centriole disengagement. Biol Open 2012; 1:1153-60. [PMID: 23213396 PMCID: PMC3507193 DOI: 10.1242/bio.20122626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/06/2012] [Indexed: 11/20/2022] Open
Abstract
Mother–daughter centriole disengagement, the necessary first step in centriole duplication, involves Plk1 activity in early mitosis and separase activity after APC/C activity mediates securin degradation. Plk1 activity is thought to be essential and sufficient for centriole disengagement with separase activity playing a supporting but non-essential role. In separase null cells, however, centriole disengagement is substantially delayed. The ability of APC/C activity alone to mediate centriole disengagement has not been directly tested. We investigate the interrelationship between Plk1 and APC/C activities in disengaging centrioles in S or G2 HeLa and RPE1 cells, cell types that do not reduplicate centrioles when arrested in S phase. Knockdown of the interphase APC/C inhibitor Emi1 leads to centriole disengagement and reduplication of the mother centrioles, though this is slow. Strong inhibition of Plk1 activity, if any, during S does not block centriole disengagement and mother centriole reduplication in Emi1 depleted cells. Centriole disengagement depends on APC/C–Cdh1 activity, not APC/C–Cdc20 activity. Also, Plk1 and APC/C–Cdh1 activities can independently promote centriole disengagement in G2 arrested cells. Thus, Plk1 and APC/C–Cdh1 activities are independent but slow pathways for centriole disengagement. By having two slow mechanisms for disengagement working together, the cell ensures that centrioles will not prematurely separate in late G2 or early mitosis, thereby risking multipolar spindle assembly, but rather disengage in a timely fashion only late in mitosis.
Collapse
Affiliation(s)
- Toshiyuki Hatano
- Department of Cell Biology, University of Massachusetts Medical School , Worcester, MA 01605 , USA
| | | |
Collapse
|
179
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
180
|
Majumder S, Slabodnick M, Pike A, Marquardt J, Fisk HA. VDAC3 regulates centriole assembly by targeting Mps1 to centrosomes. Cell Cycle 2012; 11:3666-78. [PMID: 22935710 DOI: 10.4161/cc.21927] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.
Collapse
Affiliation(s)
- Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
181
|
Zhu D, Zhang Y, Lam PPL, Dolai S, Liu Y, Cai EP, Choi D, Schroer SA, Kang Y, Allister EM, Qin T, Wheeler MB, Wang CC, Hong WJ, Woo M, Gaisano HY. Dual role of VAMP8 in regulating insulin exocytosis and islet β cell growth. Cell Metab 2012; 16:238-49. [PMID: 22841572 DOI: 10.1016/j.cmet.2012.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/17/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
Optimal insulin secretion required to maintain glucose homeostasis is the summation of total pancreatic islet β cell mass and intrinsic secretory capacity of individual β cells, which are regulated by distinct mechanisms that could be amplified by glucagon-like-peptide-1 (GLP-1). Because of these actions of GLP-1 on islet β cells, GLP-1 has been deployed to treat diabetes. We employed SNARE protein VAMP8-null mice to demonstrate that VAMP8 mediates insulin granule recruitment to the plasma membrane, which partly accounts for GLP-1 potentiation of glucose-stimulated insulin secretion. VAMP8-null mice also exhibited increased islet β cell mass from increased β cell mitosis, with β cell proliferative activity greatly amplified by GLP-1. Thus, despite the β cell exocytotic defect, VAMP8-null mice have an increased total insulin secretory capacity, which improved glucose homeostasis. We conclude that these VAMP8-mediated events partly underlie the therapeutic actions of GLP-1 on insulin secretion and β cell growth.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Haaß W, Stehle M, Nittka S, Giehl M, Schrotz-King P, Fabarius A, Hofmann WK, Seifarth W. The proteolytic activity of separase in BCR-ABL-positive cells is increased by imatinib. PLoS One 2012; 7:e42863. [PMID: 22870341 PMCID: PMC3411713 DOI: 10.1371/journal.pone.0042863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/13/2012] [Indexed: 01/10/2023] Open
Abstract
Separase, an endopeptidase required for the separation of sister-chromatides in mitotic anaphase, triggers centriole disengagement during centrosome duplication. In cancer, separase is frequently overexpressed, pointing to a functional role as an aneuploidy promoter associated with centrosomal amplification and genomic instability. Recently, we have shown that centrosomal amplification and subsequent chromosomal aberrations are a hallmark of chronic myeloid leukemia (CML), increasing from chronic phase (CP) toward blast crisis (BC). Moreover, a functional linkage of p210BCR-ABL tyrosine kinase activity with centrosomal amplification and clonal evolution has been established in long-term cell culture experiments. Unexpectedly, therapeutic doses of imatinib (IM) did not counteract; instead induced similar centrosomal alterations in vitro. We investigated the influence of IM and p210BCR-ABL on Separase as a potential driver of centrosomal amplification in CML. Short-term cell cultures of p210BCR-ABL-negative (NHDF, UROtsa, HL-60, U937), positive (K562, LAMA-84) and inducible (U937p210BCR-ABL/c6 (Tet-ON)) human cell lines were treated with therapeutic doses of IM and analyzed by qRT-PCR, Western blot analysis and quantitative Separase activity assays. Decreased Separase protein levels were observed in all cells treated with IM in a dose dependent manner. Accordingly, in all p210BCR-ABL-negative cell lines, decreased proteolytic activity of Separase was found. In contrast, p210BCR-ABL-positive cells showed increased Separase proteolytic activity. This activation of Separase was consistent with changes in the expression levels of Separase regulators (Separase phosphorylation at serine residue 1126, Securin, CyclinB1 and PP2A). Our data suggest that regulation of Separase in IM-treated BCR-ABL-positive cells occurs on both the protein expression and the proteolytic activity levels. Activation of Separase proteolytic activity exclusively in p210BCR-ABL-positive cells during IM treatment may act as a driving force for centrosomal amplification, contributing to genomic instability, clonal evolution and resistance in CML.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzamides
- Blast Crisis/drug therapy
- Blast Crisis/enzymology
- Blast Crisis/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cyclin B1/genetics
- Cyclin B1/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability/drug effects
- Genomic Instability/genetics
- HL-60 Cells
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphorylation/drug effects
- Phosphorylation/genetics
- Piperazines/pharmacology
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Proteolysis
- Pyrimidines/pharmacology
- Securin
- Separase
- U937 Cells
Collapse
Affiliation(s)
- Wiltrud Haaß
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Michael Stehle
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Stefanie Nittka
- Department of Clinical Chemistry, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Michelle Giehl
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Petra Schrotz-King
- National Center for Tumor Diseases (NCT), German Cancer Center (DKFZ), Heidelberg, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
183
|
Yao Y, Dai W. Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell Cycle 2012; 11:2631-42. [PMID: 22732496 PMCID: PMC3850027 DOI: 10.4161/cc.20633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.
Collapse
Affiliation(s)
- Yixin Yao
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| |
Collapse
|
184
|
Lee K, Rhee K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 2012; 11:2476-85. [PMID: 22722493 DOI: 10.4161/cc.20878] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Centriole disengagement is considered an essential step for licensing a new round of centriole duplication in the next cell cycle. Separase is critical for centriole disengagement. Here, we showed that pericentrin B (PCNTB) is specifically cleaved by separase at the exit of mitosis. The cleavage-resistant PCNTB mutant blocks the centriole disengagement and duplication. We also observed that an artificial cleavage of PCNTB during M phase induced premature disengagement of centrioles. Based on these results, we concluded that the separase-dependent cleavage of PCNTB is necessary and sufficient for centriole disengagement during mitosis.
Collapse
Affiliation(s)
- Kwanwoo Lee
- Department of Biological Sciences, Seoul National University, Korea
| | | |
Collapse
|
185
|
Abstract
The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.
Collapse
Affiliation(s)
- Balca R Mardin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, 69117 Heidelberg, Germany
| | | |
Collapse
|
186
|
Abstract
The maintenance of sister chromatid cohesion from S phase to the onset of anaphase relies on a small but evolutionarily conserved protein called Sororin. Sororin is a phosphoprotein and its dynamic localization and function are regulated by protein kinases, such as Cdk1/cyclin B and Erk2. The association of Sororin with chromatin requires cohesin to be preloaded to chromatin and modification of Smc3 during DNA replication. Sororin antagonizes the function of Wapl in cohesin releasing from S to G 2 phase and promotes cohesin release from sister chromatid arms in prophase via interaction with Plk1. This review focuses on progress of the identification and regulation of Sororin during cell cycle; role of post-translational modification on Sororin function; role of Sororin in the maintenance and resolution of sister chromatid cohesion; and finally discusses Sororin's emerging role in cancer and the potential issues that need be addressed in the future.
Collapse
Affiliation(s)
- Nenggang Zhang
- Texas Children’s Cancer Center; Department of Pediatric Hematology/Oncology; Baylor College of Medicine; Houston, TX USA
| | - Debananda Pati
- Texas Children’s Cancer Center; Department of Pediatric Hematology/Oncology; Baylor College of Medicine; Houston, TX USA
| |
Collapse
|
187
|
Ogden A, Rida PCG, Aneja R. Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death Differ 2012; 19:1255-67. [PMID: 22653338 DOI: 10.1038/cdd.2012.61] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nearly a century ago, cell biologists postulated that the chromosomal aberrations blighting cancer cells might be caused by a mysterious organelle-the centrosome-that had only just been discovered. For years, however, this enigmatic structure was neglected in oncologic investigations and has only recently reemerged as a key suspect in tumorigenesis. A majority of cancer cells, unlike healthy cells, possess an amplified centrosome complement, which they manage to coalesce neatly at two spindle poles during mitosis. This clustering mechanism permits the cell to form a pseudo-bipolar mitotic spindle for segregation of sister chromatids. On rare occasions this mechanism fails, resulting in declustered centrosomes and the assembly of a multipolar spindle. Spindle multipolarity consigns the cell to an almost certain fate of mitotic arrest or death. The catastrophic nature of multipolarity has attracted efforts to develop drugs that can induce declustering in cancer cells. Such chemotherapeutics would theoretically spare healthy cells, whose normal centrosome complement should preclude multipolar spindle formation. In search of the 'Holy Grail' of nontoxic, cancer cell-selective, and superiorly efficacious chemotherapy, research is underway to elucidate the underpinnings of centrosome clustering mechanisms. Here, we detail the progress made towards that end, highlighting seminal work and suggesting directions for future research, aimed at demystifying this riddling cellular tactic and exploiting it for chemotherapeutic purposes. We also propose a model to highlight the integral role of microtubule dynamicity and the delicate balance of forces on which cancer cells rely for effective centrosome clustering. Finally, we provide insights regarding how perturbation of this balance may pave an inroad for inducing lethal centrosome dispersal and death selectively in cancer cells.
Collapse
Affiliation(s)
- A Ogden
- Department of Biology, Georgia State University, Atlanta, 30303, USA
| | | | | |
Collapse
|
188
|
Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr Biol 2012; 22:915-21. [PMID: 22542101 DOI: 10.1016/j.cub.2012.03.048] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/13/2012] [Accepted: 03/16/2012] [Indexed: 11/17/2022]
Abstract
The centrosome, consisting of a pair of centrioles surrounded by pericentriolar material, directs the formation of bipolar spindles during mitosis. Aberrant centrosome number can promote chromosome instability, which is implicated in tumorigenesis. Thus, centrosome duplication needs to be tightly regulated to occur only once per cell cycle. Separase, a cysteine protease that triggers sister chromatid separation, is involved in centriole disengagement, which licenses centrosomes for the next round of duplication. However, at least two questions remain unsolved: what is the substrate relevant to the disengagement, and how does separase, activated at anaphase onset, act on the disengagement that occurs during late mitosis. Here, we show that kendrin, also named pericentrin, is cleaved by activated separase at a consensus site in vivo and in vitro, and this leads to the delayed release of kendrin from the centrosome later in mitosis. Furthermore, we demonstrate that expression of a noncleavable kendrin mutant suppresses centriole disengagement and subsequent centriole duplication. Based on these results, we propose that kendrin is a novel and crucial substrate for separase at the centrosome, protecting the engaged centrioles from premature disengagement and thereby blocking reduplication until the cell passes through mitosis.
Collapse
Affiliation(s)
- Kazuhiko Matsuo
- Faculty of Pharmaceutical Science, Teikyo Heisei University, Ichihara, Japan
| | | | | | | | | | | |
Collapse
|
189
|
Ikeda KN, de Graffenried CL. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. J Cell Sci 2012; 125:3173-84. [PMID: 22427687 DOI: 10.1242/jcs.101162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinases play an important role in a variety of mitotic events in mammalian cells, ranging from centriole separation and chromosome congression to abscission. To fulfill these roles, Polo-like kinase homologs move to different cellular locations as the cell cycle progresses, starting at the centrosome, progressing to the spindle poles and then the midbody. In the protist parasite Trypanosoma brucei, the single polo-like kinase homolog T. brucei PLK (TbPLK) is essential for cytokinesis and is necessary for the correct duplication of a centrin-containing cytoskeletal structure known as the bilobe. We show that TbPLK has a dynamic localization pattern during the cell cycle. The kinase localizes to the basal body, which nucleates the flagellum, and then successively localizes to a series of cytoskeletal structures that regulate the position and attachment of the flagellum to the cell body. The kinase localizes to each of these structures as they are duplicating. TbPLK associates with a specialized set of microtubules, known as the microtubule quartet, which might transport the kinase during its migration. Depletion of TbPLK causes defects in basal body segregation and blocks the duplication of the regulators that position the flagellum, suggesting that its presence on these structures might be necessary for their proper biogenesis. TbPLK migrates throughout the cell in T. brucei, but the specific locations to which it targets and its functions are geared towards the inheritance of a properly positioned and attached flagellum.
Collapse
Affiliation(s)
- Kyojiro N Ikeda
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria
| | | |
Collapse
|
190
|
Shirk K, Jin H, Giddings TH, Winey M, Yu HG. The Aurora kinase Ipl1 is necessary for spindle pole body cohesion during budding yeast meiosis. J Cell Sci 2012; 124:2891-6. [PMID: 21878496 DOI: 10.1242/jcs.086652] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In budding yeast, the microtubule-organizing center is called the spindle pole body (SPB) and shares structural components with the centriole, the central core of the animal centrosome. During meiotic interphase I, the SPB is duplicated when DNA replication takes place. Duplicated SPBs are linked and then separate to form a bipolar spindle required for homolog separation in meiosis I. During interphase II, SPBs are duplicated again, in the absence of DNA replication, to form four SPBs that establish two spindles for sister-chromatid separation in meiosis II. Here, we report that the Aurora kinase Ipl1, which is necessary for sister-chromatid cohesion, is also required for maintenance of a tight association between duplicated SPBs during meiosis, which we term SPB cohesion. Premature loss of cohesion leads to SPB overduplication and the formation of multipolar spindles. By contrast, the Polo-like kinase Cdc5 is necessary for SPB duplication and interacts antagonistically with Ipl1 at the meiotic SPB to ensure proper SPB separation. Our data suggest that Ipl1 coordinates SPB dynamics with the two chromosome segregation cycles during yeast meiosis.
Collapse
Affiliation(s)
- Katelan Shirk
- Department of Biological Science, The Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | |
Collapse
|
191
|
Arquint C, Sonnen KF, Stierhof YD, Nigg EA. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J Cell Sci 2012; 125:1342-52. [PMID: 22349698 DOI: 10.1242/jcs.099887] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Control of centriole number is crucial for genome stability and ciliogenesis. Here, we characterize the role of human STIL, a protein that displays distant sequence similarity to the centriole duplication factors Ana2 in Drosophila and SAS-5 in Caenorhabditis elegans. Using RNA interference, we show that STIL is required for centriole duplication in human cells. Conversely, overexpression of STIL triggers the near-simultaneous formation of multiple daughter centrioles surrounding each mother, which is highly reminiscent of the phenotype produced by overexpression of the polo-like kinase PLK4 or the spindle assembly abnormal protein 6 homolog (SAS-6). We further show, by fluorescence and immunoelectron microscopy, that STIL is recruited to nascent daughter centrioles at the onset of centriole duplication and degraded, in an APC/C(Cdc20-Cdh1)-dependent manner, upon passage through mitosis. We did not detect a stable complex between STIL and SAS-6, but the two proteins resemble each other with regard to both localization and cell cycle control of expression. Thus, STIL cooperates with SAS-6 and PLK4 in the control of centriole number and represents a key centriole duplication factor in human cells.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
192
|
Brito DA, Gouveia SM, Bettencourt-Dias M. Deconstructing the centriole: structure and number control. Curr Opin Cell Biol 2012; 24:4-13. [PMID: 22321829 DOI: 10.1016/j.ceb.2012.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/02/2012] [Accepted: 01/07/2012] [Indexed: 11/18/2022]
Abstract
Centrioles are very small microtubule-based organelles essential for centrosome, cilia and flagella assembly, which are involved in a variety of cellular and developmental processes. Although the centriole was first described almost a century ago, the knowledge on its assembly mechanism remains poor. In the past decade, forefront functional studies have provided important data on the different players involved in centriole biogenesis. Centriole research has now started to profit from highly sensitive structural, imaging, and biochemical techniques that are unveiling how those players contribute to assemble such a small and complex structure. We will review those studies and discuss how this field will increasingly benefit from the newborn and exciting era of super resolution analyses.
Collapse
Affiliation(s)
- Daniela A Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
193
|
Sir JH, Barr AR, Nicholas AK, Carvalho OP, Khurshid M, Sossick A, Reichelt S, D’Santos C, Woods CG, Gergely F. A primary microcephaly protein complex forms a ring around parental centrioles. Nat Genet 2011; 43:1147-53. [PMID: 21983783 PMCID: PMC3299569 DOI: 10.1038/ng.971] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/14/2011] [Indexed: 12/12/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.
Collapse
Affiliation(s)
- Joo-Hee Sir
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre Robinson Way Cambridge CB2 0RE UK
- Department of Oncology University of Cambridge Cambridge UK
| | - Alexis R. Barr
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre Robinson Way Cambridge CB2 0RE UK
- Department of Oncology University of Cambridge Cambridge UK
| | - Adeline K. Nicholas
- Department of Medical Genetics Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
| | - Ofelia P. Carvalho
- Department of Medical Genetics Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
| | - Maryam Khurshid
- Department of Medical Genetics Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
| | - Alex Sossick
- Gurdon Institute Tennis Court Road Cambridge CB2 1QN UK
| | - Stefanie Reichelt
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre Robinson Way Cambridge CB2 0RE UK
| | - Clive D’Santos
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre Robinson Way Cambridge CB2 0RE UK
| | - C. Geoffrey Woods
- Department of Medical Genetics Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre Robinson Way Cambridge CB2 0RE UK
- Department of Oncology University of Cambridge Cambridge UK
| |
Collapse
|
194
|
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011; 13:1154-60. [PMID: 21968988 DOI: 10.1038/ncb2345] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.
Collapse
|
195
|
Stevens D, Gassmann R, Oegema K, Desai A. Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS One 2011; 6:e22969. [PMID: 21829677 PMCID: PMC3149067 DOI: 10.1371/journal.pone.0022969] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/08/2011] [Indexed: 02/03/2023] Open
Abstract
Chromosome segregation requires coordinated separation of sister chromatids following biorientation of all chromosomes on the mitotic spindle. Chromatid separation at the metaphase-to-anaphase transition is accomplished by cleavage of the cohesin complex that holds chromatids together. Here we show using live-cell imaging that extending the metaphase bioriented state using five independent perturbations (expression of non-degradable Cyclin B, expression of a Spindly point mutant that prevents spindle checkpoint silencing, depletion of the anaphase inducer Cdc20, treatment with a proteasome inhibitor, or treatment with an inhibitor of the mitotic kinesin CENP-E) leads to eventual scattering of chromosomes on the spindle. This scattering phenotype is characterized by uncoordinated loss of cohesion between some, but not all sister chromatids and subsequent spindle defects that include centriole separation. Cells with scattered chromosomes persist long-term in a mitotic state and eventually die or exit. Partial cohesion loss-associated scattering is observed in both transformed cells and in karyotypically normal human cells, albeit at lower penetrance. Suppressing microtubule dynamics reduces scattering, suggesting that cohesion at centromeres is unable to resist dynamic microtubule-dependent pulling forces on the kinetochores. Consistent with this view, strengthening cohesion by inhibiting the two pathways responsible for its removal significantly inhibits scattering. These results establish that chromosome scattering due to uncoordinated partial loss of chromatid cohesion is a common outcome following extended arrest with bioriented chromosomes in human cells. These findings have important implications for analysis of mitotic phenotypes in human cells and for development of anti-mitotic chemotherapeutic approaches in the treatment of cancer.
Collapse
Affiliation(s)
- Deanna Stevens
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Reto Gassmann
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Karen Oegema
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Arshad Desai
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
196
|
Zou H. The sister bonding of duplicated chromosomes. Semin Cell Dev Biol 2011; 22:566-71. [PMID: 21497666 PMCID: PMC3142318 DOI: 10.1016/j.semcdb.2011.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 11/21/2022]
Abstract
Sister chromatid cohesion and separation are two fundamental chromosome dynamics that are essential to equal chromosome segregation during cell proliferation. In this review, I will discuss the major steps that regulate these dynamics during mitosis, with an emphasis on vertebrate cells. The implications of these machineries outside of sister chromatid cohesion and separation are also discussed.
Collapse
Affiliation(s)
- Hui Zou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75252-9148, United States.
| |
Collapse
|
197
|
Schöckel L, Möckel M, Mayer B, Boos D, Stemmann O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol 2011; 13:966-72. [PMID: 21743463 DOI: 10.1038/ncb2280] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 05/13/2011] [Indexed: 12/28/2022]
Abstract
Cohesin pairs sister chromatids by forming a tripartite Scc1-Smc1-Smc3 ring around them. In mitosis, cohesin is removed from chromosome arms by the phosphorylation-dependent prophase pathway. Centromeric cohesin is protected by shugoshin 1 and protein phosphatase 2A (Sgo1-PP2A) and opened only in anaphase by separase-dependent cleavage of Scc1 (refs 4-6). Following chromosome segregation, centrioles loosen their tight orthogonal arrangement, which licenses later centrosome duplication in S phase. Although a role of separase in centriole disengagement has been reported, the molecular details of this process remain enigmatic. Here, we identify cohesin as a centriole-engagement factor. Both premature sister-chromatid separation and centriole disengagement are induced by ectopic activation of separase or depletion of Sgo1. These unscheduled events are suppressed by expression of non-cleavable Scc1 or inhibition of the prophase pathway. When endogenous Scc1 is replaced by artificially cleavable Scc1, the corresponding site-specific protease triggers centriole disengagement. Separation of centrioles can alternatively be induced by ectopic cleavage of an engineered Smc3. Thus, the chromosome and centrosome cycles exhibit extensive parallels and are coordinated with each other by dual use of the cohesin ring complex.
Collapse
|
198
|
Abstract
The role of centrioles changes as a function of the cell cycle. Centrioles promote formation of spindle poles in mitosis and act as basal bodies to assemble primary cilia in interphase. Stringent regulations govern conversion between these two states. Although the molecular mechanisms have not been fully elucidated, recent findings have begun to shed light on pathways that regulate the conversion of centrioles to basal bodies and vice versa. Emerging studies also provide insights into how defects in the balance between centrosome and cilia function could promote ciliopathies and cancer.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Department of Pathology, School of Medicine, New York University Cancer Institute, New York, NY 10016, USA
| | | |
Collapse
|
199
|
Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CCL, Davids BJ, Shah SA, Yates JR, Gillin FD. Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 2011; 41:1079-92. [PMID: 21723868 DOI: 10.1016/j.ijpara.2011.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 12/27/2022]
Abstract
Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhoea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterised by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signalling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localisation in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localise with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localise to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signalling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles.
Collapse
Affiliation(s)
- Tineke Lauwaet
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Smith E, Hégarat N, Vesely C, Roseboom I, Larch C, Streicher H, Straatman K, Flynn H, Skehel M, Hirota T, Kuriyama R, Hochegger H. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 2011; 30:2233-45. [PMID: 21522128 PMCID: PMC3117641 DOI: 10.1038/emboj.2011.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.
Collapse
Affiliation(s)
- Ewan Smith
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Clare Vesely
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Isaac Roseboom
- Department of Physics and Astronomy, University of Sussex, Brigthon, UK
| | - Chris Larch
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK
| | - Hansjörg Streicher
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK
| | | | - Helen Flynn
- CRUK London Research Institutes Clare Hall, South Mimms, UK
| | - Mark Skehel
- CRUK London Research Institutes Clare Hall, South Mimms, UK
| | - Toru Hirota
- The Cancer Institute, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|