151
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
152
|
Little DR, Lynch AM, Yan Y, Akiyama H, Kimura S, Chen J. Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo. Nat Commun 2021; 12:2509. [PMID: 33947861 PMCID: PMC8096971 DOI: 10.1038/s41467-021-22817-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Differential transcription of identical DNA sequences leads to distinct tissue lineages and then multiple cell types within a lineage, an epigenetic process central to progenitor and stem cell biology. The associated genome-wide changes, especially in native tissues, remain insufficiently understood, and are hereby addressed in the mouse lung, where the same lineage transcription factor NKX2-1 promotes the diametrically opposed alveolar type 1 (AT1) and AT2 cell fates. Here, we report that the cell-type-specific function of NKX2-1 is attributed to its differential chromatin binding that is acquired or retained during development in coordination with partner transcriptional factors. Loss of YAP/TAZ redirects NKX2-1 from its AT1-specific to AT2-specific binding sites, leading to transcriptionally exaggerated AT2 cells when deleted in progenitors or AT1-to-AT2 conversion when deleted after fate commitment. Nkx2-1 mutant AT1 and AT2 cells gain distinct chromatin accessible sites, including those specific to the opposite fate while adopting a gastrointestinal fate, suggesting an epigenetic plasticity unexpected from transcriptional changes. Our genomic analysis of single or purified cells, coupled with precision genetics, provides an epigenetic basis for alveolar cell fate and potential, and introduces an experimental benchmark for deciphering the in vivo function of lineage transcription factors.
Collapse
Affiliation(s)
- Danielle R Little
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yun Yan
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
153
|
Abstract
PURPOSE This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions. METHODS Lungs were harvested from mouse embryos at E12.5 and cultured in three different settings, i.e., whole lung culture, mesenchyme-free epithelium culture, and organoid culture. For the whole lung culture, extracted lungs were embedded in Matrigel and incubated on permeable filters. Separately, distal epithelial tips were isolated by firstly removing mesothelial and mesenchymal cells, and then severing the tips from the airway tubes. These were then cultured either in branch-promoting or self-renewing conditions. RESULTS Cultured whole lungs underwent branching morphogenesis similarly to native lungs. Real-time qPCR analysis demonstrated expression of key genes essential for lung bud formation. The culture condition for epithelial tips was optimized by testing different concentrations of FGF10 and CHIR99021 and evaluating branching formation. The epithelial rudiments in self-renewing conditions formed spherical 3D structures with homogeneous Sox9 expression. CONCLUSION We report efficient protocols for ex vivo culture systems of pseudoglandular stage mouse embryonic lungs. These models can be applied to human samples and could be useful to paediatric surgeons to investigate normal lung development, understand the pathogenesis of congenital lung diseases, and explore novel therapeutic strategies.
Collapse
|
154
|
Yochelis A. The nonlinear initiation of side-branching by activator-inhibitor-substrate (Turing) morphogenesis. CHAOS (WOODBURY, N.Y.) 2021; 31:051102. [PMID: 34240921 DOI: 10.1063/5.0050630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
An understanding of the underlying mechanism of side-branching is paramount in controlling and/or therapeutically treating mammalian organs, such as lungs, kidneys, and glands. Motivated by an activator-inhibitor-substrate approach that is conjectured to dominate the initiation of side-branching in a pulmonary vascular pattern, I demonstrate a distinct transverse front instability in which new fingers grow out of an oscillatory breakup dynamics at the front line without any typical length scale. These two features are attributed to unstable peak solutions in 1D that subcritically emanate from Turing bifurcation and that exhibit repulsive interactions. The results are based on a bifurcation analysis and numerical simulations and provide a potential strategy toward also developing a framework of side-branching for other biological systems, such as plant roots and cellular protrusions.
Collapse
Affiliation(s)
- Arik Yochelis
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel and Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
155
|
Getachew D, Matsumoto A, Uchimura Y, Udagawa J, Mita N, Ogawa N, Moriyama S, Takami A, Otani H. Global pattern of interkinetic nuclear migration in tracheoesophageal epithelia of the mouse embryo: Interorgan and intraorgan regional differences. Congenit Anom (Kyoto) 2021; 61:82-96. [PMID: 33249638 DOI: 10.1111/cga.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
Interkinetic nuclear migration (INM) is an apicobasal (AB) polarity-based regulatory mechanism of proliferation/differentiation in epithelial stem/progenitor cells. We previously documented INM in the endoderm-derived tracheal/esophageal epithelia at embryonic day (E) 11.5 and suggested that INM is involved in the development of both organs. We here investigated interorgan (trachea vs esophagus) and intraorgan regional (ventral vs dorsal) differences in the INM mode in the tracheal and esophageal epithelia of the mouse embryo. We also analyzed convergent extension (CE) and planar cell movement (PCM) in the epithelia based on cell distribution. The pregnant C57BL/6J mice were intraperitoneally injected with 5-ethynyl-2'-deoxyuridine at E11.5 and E12.5 and were sacrificed 1, 4, 6, 8, and 12 hours later to obtain the embryos. The distribution of labeled cell nuclei along the AB axis was chronologically analyzed in the total, ventral, and dorsal sides of the epithelia. The percentage distribution of the nuclei population was represented by histogram and the chronological change was analyzed statistically using multidimensional scaling. The interorgan comparison of the INM mode during E11.5-E12.0, but not E12.5-E13.0, showed a significant difference. During E11.5-E12.0 the trachea, but not the esophagus, showed a significant difference between ventral and dorsal sides. During E12.5-E13.0 neither organ showed regional differences. CE appeared to occur in both organs during E11.5-E12.0 while PCM was unclear in both organs. These findings suggest a difference between the trachea and esophagus, and a regional difference in the trachea, not in the esophagus, in the INM mode, which may be related with the later differential organogenesis/histogenesis of these organs.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yasuhiro Uchimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Nanako Mita
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Noriko Ogawa
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shigeru Moriyama
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akiyasu Takami
- Department of Mechanical Engineering, National Institute of Technology, Matsue College, Matsue, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
156
|
Lee H, Ko HW. Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development. BMB Rep 2021. [PMID: 32317081 PMCID: PMC7396919 DOI: 10.5483/bmbrep.2020.53.7.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.
Collapse
Affiliation(s)
- Hankyu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
157
|
Basil MC, Katzen J, Engler AE, Guo M, Herriges MJ, Kathiriya JJ, Windmueller R, Ysasi AB, Zacharias WJ, Chapman HA, Kotton DN, Rock JR, Snoeck HW, Vunjak-Novakovic G, Whitsett JA, Morrisey EE. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell 2021; 26:482-502. [PMID: 32243808 PMCID: PMC7128675 DOI: 10.1016/j.stem.2020.03.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The respiratory system, which includes the trachea, airways, and distal alveoli, is a complex multi-cellular organ that intimately links with the cardiovascular system to accomplish gas exchange. In this review and as members of the NIH/NHLBI-supported Progenitor Cell Translational Consortium, we discuss key aspects of lung repair and regeneration. We focus on the cellular compositions within functional niches, cell-cell signaling in homeostatic health, the responses to injury, and new methods to study lung repair and regeneration. We also provide future directions for an improved understanding of the cell biology of the respiratory system, as well as new therapeutic avenues.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy Katzen
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna E Engler
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael J Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jaymin J Kathiriya
- Division of Pulmonary Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Rebecca Windmueller
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra B Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - William J Zacharias
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hal A Chapman
- Division of Pulmonary Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jason R Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Hans-Willem Snoeck
- Center for Human Development, Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Gordana Vunjak-Novakovic
- Departments of Biomedical Engineering and Medicine, Columbia University, New York, NY 10027, USA
| | - Jeffrey A Whitsett
- Center for Regenerative Medicine of Boston University and Boston Medical Center, The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Edward E Morrisey
- Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
158
|
Miao Q, Chen H, Luo Y, Chiu J, Chu L, Thornton ME, Grubbs BH, Kolb M, Lou J, Shi W. Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1158-L1168. [PMID: 33881909 DOI: 10.1152/ajplung.00299.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TGF-β signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-β signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-β signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-β signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-β receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-β signaling through the GSK3β-β-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-β signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-β signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.
Collapse
Affiliation(s)
- Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Allergy, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ling Chu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College (Zhejiang Academy of Medical Science), Hangzhou, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
159
|
Bhatt SP, Bodduluri S, Kizhakke Puliyakote AS, Oelsner EC, Nakhmani A, Lynch DA, Wilson CG, Fortis S, Kim V. Structural airway imaging metrics are differentially associated with persistent chronic bronchitis. Thorax 2021; 76:343-349. [PMID: 33408194 PMCID: PMC8225550 DOI: 10.1136/thoraxjnl-2020-215853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Chronic bronchitis (CB) is strongly associated with cigarette smoking, but not all smokers develop CB. We aimed to evaluate whether measures of structural airway disease on CT are differentially associated with CB. METHODS In smokers between ages 45 and 80 years, and with Global Initiative for Obstructive Lung Disease stages 0-4, CB was defined by the classic definition. Airway disease on CT was quantified by (i) wall area percent (WA%) of segmental airways; (ii) Pi10, the square root of the wall area of a hypothetical airway with 10 mm internal perimeter; (iii) total airway count (TAC) and (iv) airway fractal dimension (AFD), a measure of the complex branching pattern and remodelling of airways. CB was also assessed at the 5-year follow-up visit. MEASUREMENTS AND MAIN RESULTS Of 8917 participants, 1734 (19.4%) had CB at baseline. Airway measures were significantly worse in those with CB compared with those without CB: WA% 54.5 (8.8) versus 49.8 (8.3); Pi10 2.58 (0.67) versus 2.28 (0.59) mm; TAC 156.7 (81.6) versus 177.8 (91.1); AFD 1.477 (0.091) versus 1.497 (0.092) (all p<0.001). On follow-up of 5517 participants at 5 years, 399 (7.2%) had persistent CB. With adjustment for between-visits changes in smoking status and lung function, greater WA% and Pi10 were associated with significantly associated with persistent CB, adjusted OR per SD change 1.75, 95% CI 1.56 to 1.97; p<0.001 and 1.66, 95% CI 1.42 to 1.86; p<0.001, respectively. Higher AFD and TAC were associated with significantly lower odds of persistent CB, adjusted OR per SD change 0.76, 95% CI 0.67 to 0.86; p<0.001 and 0.69, 95% CI 0.60 to 0.80; p<0.001, respectively. CONCLUSIONS Higher baseline AFD and TAC are associated with a lower risk of persistent CB, irrespective of changes in smoking status, suggesting preserved airway structure can confer a reserve against CB.
Collapse
Affiliation(s)
- Surya P Bhatt
- Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandeep Bodduluri
- Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Arie Nakhmani
- UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, AL, USA
- Electrical Engineering, University of Alabama At Birmingham, Birmingham, Alabama, USA
| | - David A Lynch
- Radiology, National Jewish Health, Denver, Colorado, USA
| | - Carla G Wilson
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Spyridon Fortis
- Pulmonary, Critical Care and Occupation Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Victor Kim
- Division of Pulmonary and Critical Care Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
160
|
Ferner K. Early postnatal lung development in the eastern quoll (Dasyurus viverrinus). Anat Rec (Hoboken) 2021; 304:2823-2840. [PMID: 33773053 DOI: 10.1002/ar.24623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/10/2022]
Abstract
Early postnatal lung development (1-25 days) in the eastern quoll (Dasyurus viverrinus) was investigated to assess the morphofunctional status of one of the most immature marsupial neonates. Lung volume, surface density, surface area, and parenchymal and nonparenchymal volume proportions were determined using light microscopic morphometry. The lungs of the neonate were at the canalicular stage and consisted of two "balloon-like" airways with few septal ridges. The absolute volume of the lung was only 0.0009 cm3 with an air space surface density of 108.83 cm-1 and a surface area of 0.082 cm2 . The increase in lung volume in the first three postnatal days was mainly due to airspace expansion. The rapid postnatal development of the lung was indicated by an increase in the septal proportion of the parenchyma around day 4, which was reflected by an increase in the airspace surface density and surface area. By day 5, the lung entered the saccular stage of development with a reduction in septal thickness, expansion of the tubules into saccules and development of a double capillary system. The subsequent saccular period was characterized by repetitive septation steps, which increased the number of airway generations. The lungs of the newborn Dasyurus viverrinus must be considered as structurally and quantitatively insufficient to meet the respiratory requirements at birth. Hence, cutaneous gas exchange might be crucial for the first three postnatal days. The lung has to mature rapidly in the early postnatal period to support the increased metabolic requirements of the developing young.
Collapse
Affiliation(s)
- Kirsten Ferner
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
161
|
Lüdtke TH, Wojahn I, Kleppa MJ, Schierstaedt J, Christoffels VM, Künzler P, Kispert A. Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung. Respir Res 2021; 22:85. [PMID: 33731112 PMCID: PMC7968368 DOI: 10.1186/s12931-021-01679-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tbx2 encodes a transcriptional repressor implicated in the development of numerous organs in mouse. During lung development TBX2 maintains the proliferation of mesenchymal progenitors, and hence, epithelial proliferation and branching morphogenesis. The pro-proliferative function was traced to direct repression of the cell-cycle inhibitor genes Cdkn1a and Cdkn1b, as well as of genes encoding WNT antagonists, Frzb and Shisa3, to increase pro-proliferative WNT signaling. Despite these important molecular insights, we still lack knowledge of the DNA occupancy of TBX2 in the genome, and of the protein interaction partners involved in transcriptional repression of target genes. METHODS We used chromatin immunoprecipitation (ChIP)-sequencing and expression analyses to identify genomic DNA-binding sites and transcription units directly regulated by TBX2 in the developing lung. Moreover, we purified TBX2 containing protein complexes from embryonic lung tissue and identified potential interaction partners by subsequent liquid chromatography/mass spectrometry. The interaction with candidate proteins was validated by immunofluorescence, proximity ligation and individual co-immunoprecipitation analyses. RESULTS We identified Il33 and Ccn4 as additional direct target genes of TBX2 in the pulmonary mesenchyme. Analyzing TBX2 occupancy data unveiled the enrichment of five consensus sequences, three of which match T-box binding elements. The remaining two correspond to a high mobility group (HMG)-box and a homeobox consensus sequence motif. We found and validated binding of TBX2 to the HMG-box transcription factor HMGB2 and the homeobox transcription factor PBX1, to the heterochromatin protein CBX3, and to various members of the nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complex including HDAC1, HDAC2 and CHD4. CONCLUSION Our data suggest that TBX2 interacts with homeobox and HMG-box transcription factors as well as with the NuRD chromatin remodeling complex to repress transcription of anti-proliferative genes in the pulmonary mesenchyme.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Irina Wojahn
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marc-Jens Kleppa
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jasper Schierstaedt
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Künzler
- Institut Für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
162
|
GM130 regulates pulmonary surfactant protein secretion in alveolar type II cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:193-205. [PMID: 33740186 DOI: 10.1007/s11427-020-1875-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex secreted by alveolar type II epithelial cells and is essential for the maintenance of the delicate structure of mammalian alveoli to promote efficient gas exchange across the air-liquid barrier. The Golgi apparatus plays an important role in pulmonary surfactant modification and secretory trafficking. However, the physiological function of the Golgi apparatus in the transport of pulmonary surfactants is unclear. In the present study, deletion of GM130, which encodes for a matrix protein of the cis-Golgi cisternae, was shown to induce the disruption of the Golgi structure leading to impaired secretion of lung surfactant proteins and lipids. Specifically, the results of in vitro and in vivo analysis indicated that the loss of GM130 resulted in trapping of Sftpa in the endoplasmic reticulum, Sftpb and Sftpc accumulation in the Golgi apparatus, and an increase in the compensatory secretion of Sftpd. Moreover, global and epithelial-specific GM130 knockout in mice resulted in an enlargement of alveolar airspace and an increase in alveolar epithelial autophagy; however, surfactant repletion partially rescued the enlarged airspace defects in GM130-deficient mice. Therefore, our results demonstrate that GM130 and the mammalian Golgi apparatus play a critical role in the control of surfactant protein secretion in pulmonary epithelial cells.
Collapse
|
163
|
Vazquez-Armendariz AI, Herold S. From Clones to Buds and Branches: The Use of Lung Organoids to Model Branching Morphogenesis Ex Vivo. Front Cell Dev Biol 2021; 9:631579. [PMID: 33748115 PMCID: PMC7969706 DOI: 10.3389/fcell.2021.631579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 01/03/2023] Open
Abstract
Three-dimensional (3D) organoid culture systems have rapidly emerged as powerful tools to study organ development and disease. The lung is a complex and highly specialized organ that comprises more than 40 cell types that offer several region-specific roles. During organogenesis, the lung goes through sequential and morphologically distinctive stages to assume its mature form, both structurally and functionally. As branching takes place, multipotent epithelial progenitors at the distal tips of the growing/bifurcating epithelial tubes progressively become lineage-restricted, giving rise to more differentiated and specialized cell types. Although many cellular and molecular mechanisms leading to branching morphogenesis have been explored, deeper understanding of biological processes governing cell-fate decisions and lung patterning is still needed. Given that these distinct processes cannot be easily analyzed in vivo, 3D culture systems have become a valuable platform to study organogenesis in vitro. This minireview focuses on the current lung organoid systems that recapitulate developmental events occurring before and during branching morphogenesis. In addition, we also discuss their limitations and future directions.
Collapse
Affiliation(s)
- Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine II, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| |
Collapse
|
164
|
Rubin L, Stabler CT, Schumacher-Klinger A, Marcinkiewicz C, Lelkes PI, Lazarovici P. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev 2021; 59:84-94. [PMID: 33589358 DOI: 10.1016/j.cytogfr.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Although lung innervation has been described by many studies in humans and rodents, the regulation of the respiratory system induced by neurotrophins is not fully understood. Here, we review current knowledge on the role of neurotrophins and the expression and function of their receptors in neurogenesis, vasculogenesis and during the embryonic development of the respiratory tree and highlight key implications relevant to respiratory diseases.
Collapse
Affiliation(s)
- Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Adi Schumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
165
|
Liu S, Yang R, Chen Y, Zhao X, Chen S, Yang X, Cheng Z, Hu B, Liang X, Yin N, Liu Q, Wang H, Liu S, Faiola F. Development of Human Lung Induction Models for Air Pollutants' Toxicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2440-2451. [PMID: 33535745 DOI: 10.1021/acs.est.0c05700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an urgent need for reliable and effective models to study air pollution health effects on human lungs. Here, we report the utilization of human pluripotent stem cell (hPSC) induction models for human lung progenitor cells (hLPs) and alveolar type 2 epithelial cell-like cells (ATLs) for the toxicity assessment of benzo(a)pyrene, nano-carbon black, and nano-SiO2, as common air pollutants. We induced hPSCs to generate ATLs, which recapitulated key features of human lung type 2 alveolar epithelial cells, and tested the induction models for cellular uptake of nanoparticles and toxicity evaluations. Our findings reveal internalization of nano-carbon black, dose-dependent uptake of nano-SiO2, and interference with surfactant secretion in ATLs exposed to benzo(a)pyrene/nano-SiO2. Thus, hLP and ATL induction models could facilitate the evaluation of environmental pollutants potentially affecting the lungs. In conclusion, this is one of the first studies that managed to adopt hPSC pulmonary induction models in toxicology studies.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaokun Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
166
|
Wen B, Li E, Ustiyan V, Wang G, Guo M, Na CL, Kalin GT, Galvan V, Xu Y, Weaver TE, Kalin TV, Whitsett JA, Kalinichenko VV. In Vivo Generation of Lung and Thyroid Tissues from Embryonic Stem Cells Using Blastocyst Complementation. Am J Respir Crit Care Med 2021; 203:471-483. [PMID: 32877203 PMCID: PMC7885842 DOI: 10.1164/rccm.201909-1836oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.Objectives: To determine whether ESCs are capable of generating lung tissue in Nkx2-1-/- mouse embryos with lung agenesis.Methods: Blastocyst complementation was used to produce chimeras from normal mouse ESCs and Nkx2-1-/- embryos, which lack pulmonary tissues. Nkx2-1-/- chimeras were examined using immunostaining, transmission electronic microscopy, fluorescence-activated cell sorter analysis, and single-cell RNA sequencing.Measurements and Main Results: Although peripheral pulmonary and thyroid tissues are entirely lacking in Nkx2-1 gene-deleted embryos, pulmonary and thyroid structures in Nkx2-1-/- chimeras were restored after ESC complementation. Respiratory epithelial cell lineages in restored lungs of Nkx2-1-/- chimeras were derived almost entirely from ESCs, whereas endothelial, immune, and stromal cells were mosaic. ESC-derived cells from multiple respiratory cell lineages were highly differentiated and indistinguishable from endogenous cells based on morphology, ultrastructure, gene expression signatures, and cell surface proteins used to identify cell types by fluorescence-activated cell sorter.Conclusions: Lung and thyroid tissues were generated in vivo from ESCs by blastocyst complementation. Nkx2-1-/- chimeras can be used as "bioreactors" for in vivo differentiation and functional studies of ESC-derived progenitor cells.
Collapse
Affiliation(s)
- Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute
| | - Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute
| | | | - Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute
| | - Minzhe Guo
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | | | | | - Veronica Galvan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Yan Xu
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Timothy E. Weaver
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Tanya V. Kalin
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
167
|
Bi X, Wang K, Yang L, Pan H, Jiang H, Wei Q, Fang M, Yu H, Zhu C, Cai Y, He Y, Gan X, Zeng H, Yu D, Zhu Y, Jiang H, Qiu Q, Yang H, Zhang YE, Wang W, Zhu M, He S, Zhang G. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 2021; 184:1377-1391.e14. [PMID: 33545088 DOI: 10.1016/j.cell.2021.01.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes. In particular, many regulatory elements for limb development are present in these fishes, supporting the hypothesis that the relevant ancestral regulation networks emerged before the origin of tetrapods. Transcriptome analyses confirm the homology between the lung and swim bladder and reveal the presence of functional lung-related genes in early ray-finned fishes. Furthermore, we functionally validate the essential role of a jawed vertebrate highly conserved element for cardiovascular development. Our results imply the ancestors of jawed vertebrates already had the potential gene networks for cardio-respiratory systems supporting air breathing.
Collapse
Affiliation(s)
- Xupeng Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | | | - Hao Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yiran Cai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yuming He
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youan Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
168
|
Li J, Pan C, Tang C, Tan W, Zhang W, Guan J. miR-184 targets TP63 to block idiopathic pulmonary fibrosis by inhibiting proliferation and epithelial-mesenchymal transition of airway epithelial cells. J Transl Med 2021; 101:142-154. [PMID: 32989231 PMCID: PMC7815506 DOI: 10.1038/s41374-020-00487-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) of epithelium and airway epithelial cell proliferation disorder are key events in idiopathic pulmonary fibrosis (IPF) pathogenesis. During EMT, epithelial cell adhesion molecules (EpCAM, such as E-cadherin) are downregulated, cytokeratin cytoskeletal transforms into vimentin-based cytoskeleton, and the epithelial cells acquire mesenchymal morphology. In the present study, we show abnormal upregulation of tumor protein p63 (TP63) and downregulation of miR-184 in IPF. Transforming growth factor beta 1 (TGF-β1) stimulation of BEAS-2B and A549 cell lines significantly increased the protein levels of Tp63, alpha-smooth muscle actin (α-SMA), and vimentin, but decreased EpCAM protein levels, and promoted viability of both BEAS-2B and A549 cell lines. TP63 knockdown in BEAS-2B and A549 cell lines significantly attenuated above-described TGF-β1-induced fibrotic changes. miR-184 targeted TP63 3'-UTR to inhibit Tp63 expression. miR-184 overexpression within BEAS-2B and A549 cell lines also attenuated TGF-β1-induced fibrotic changes. miR-184 overexpression attenuated bleomycin-induced pulmonary fibrosis in mice. Moreover, TP63 overexpression aggravated TGF-β1-stimulated fibrotic alterations within BEAS-2B and A549 cells and significantly reversed the effects of miR-184 overexpression, indicating miR-184 relieves TGF-β1-stimulated fibrotic alterations within BEAS-2B and A549 cells by targeting TP63, while TP63 overexpression reversed miR-184 cellular functions. In conclusion, the miR-184/TP63 axis modulates the TGF-β1-induced fibrotic alterations in epithelial cell lines and bleomycin-induced pulmonary fibrosis in mice. Therefore, these results confirm that the miR-184/TP63 axis is involved in IPF progression.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Chanyuan Pan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Chao Tang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Wenwen Tan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Weiwei Zhang
- Department of Traditional Chinese Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Jing Guan
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
169
|
Kong J, Wen S, Cao W, Yue P, Xu X, Zhang Y, Luo L, Chen T, Li L, Wang F, Tao J, Zhou G, Luo S, Liu A, Bao F. Lung organoids, useful tools for investigating epithelial repair after lung injury. Stem Cell Res Ther 2021; 12:95. [PMID: 33516265 PMCID: PMC7846910 DOI: 10.1186/s13287-021-02172-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Organoids are derived from stem cells or organ-specific progenitors. They display structures and functions consistent with organs in vivo. Multiple types of organoids, including lung organoids, can be generated. Organoids are applied widely in development, disease modelling, regenerative medicine, and other multiple aspects. Various human pulmonary diseases caused by several factors can be induced and lead to different degrees of lung epithelial injury. Epithelial repair involves the participation of multiple cells and signalling pathways. Lung organoids provide an excellent platform to model injury to and repair of lungs. Here, we review the recent methods of cultivating lung organoids, applications of lung organoids in epithelial repair after injury, and understanding the mechanisms of epithelial repair investigated using lung organoids. By using lung organoids, we can discover the regulatory mechanisms related to the repair of lung epithelia. This strategy could provide new insights for more effective management of lung diseases and the development of new drugs.
Collapse
Affiliation(s)
- Jing Kong
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China.,The School of Medicine, Kunming University, Kunming, 650214, China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Wenjing Cao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Peng Yue
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xin Xu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Yu Zhang
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Lisha Luo
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Taigui Chen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Lianbao Li
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Feng Wang
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Jian Tao
- The School of Medicine, Kunming University, Kunming, 650214, China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Suyi Luo
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China
| | - Aihua Liu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Yunnan Province Key Laboratory of Children's Major Diseases Research, The Children's Hospital of Kunming, Kunming Medical University, Kunming, 650030, China.
| | - Fukai Bao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
170
|
Inactivation of Lats1 and Lats2 highlights the role of hippo pathway effector YAP in larynx and vocal fold epithelium morphogenesis. Dev Biol 2021; 473:33-49. [PMID: 33515576 DOI: 10.1016/j.ydbio.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
Proliferation and differentiation of vocal fold epithelial cells during embryonic development is poorly understood. We examined the role of Hippo signaling, a vital pathway known for regulating organ size, in murine laryngeal development. Conditional inactivation of the Hippo kinase genes Lats1 and Lats2, specifically in vocal fold epithelial cells, resulted in severe morphogenetic defects. Deletion of Lats1 and Lats2 caused abnormalities in epithelial differentiation, epithelial lamina separation, cellular adhesion, basement membrane organization with secondary failed cartilage, and laryngeal muscle development. Further, Lats1 and Lats2 inactivation led to failure in differentiation of p63+ basal progenitors. Our results reveal novel roles of Hippo-Lats-YAP signaling in proper regulation of VF epithelial fate and larynx morphogenesis.
Collapse
|
171
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
172
|
Abstract
The lungs are constantly exposed to the external environment and are therefore vulnerable to insults that can cause infection and injury. Maintaining the integrity and barrier function of the lung epithelium requires complex interactions of multiple cell lineages. Elucidating the cellular players and their regulation mechanisms provides fundamental information to deepen understanding about the responses and contributions of lung stem cells. This Review focuses on advances in our understanding of mammalian alveolar epithelial stem cell subpopulations and discusses insights about the regeneration-specific cell status of alveolar epithelial stem cells. We also consider how these advances can inform our understanding of post-injury lung repair processes and lung diseases.
Collapse
Affiliation(s)
- Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
173
|
Kina YP, Khadim A, Seeger W, El Agha E. The Lung Vasculature: A Driver or Passenger in Lung Branching Morphogenesis? Front Cell Dev Biol 2021; 8:623868. [PMID: 33585463 PMCID: PMC7873988 DOI: 10.3389/fcell.2020.623868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
Multiple cellular, biochemical, and physical factors converge to coordinate organogenesis. During embryonic development, several organs such as the lung, salivary glands, mammary glands, and kidneys undergo rapid, but intricate, iterative branching. This biological process not only determines the overall architecture, size and shape of such organs but is also a pre-requisite for optimal organ function. The lung, in particular, relies on a vast surface area to carry out efficient gas exchange, and it is logical to suggest that airway branching during lung development represents a rate-limiting step in this context. Against this background, the vascular network develops in parallel to the airway tree and reciprocal interaction between these two compartments is critical for their patterning, branching, and co-alignment. In this mini review, we present an overview of the branching process in the developing mouse lung and discuss whether the vasculature plays a leading role in the process of airway epithelial branching.
Collapse
Affiliation(s)
| | | | | | - Elie El Agha
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
174
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
175
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
176
|
Getachew D, Kaneda R, Saeki Y, Matsumoto A, Otani H. Morphologic changes in the cytoskeleton and adhesion apparatus during the conversion from pseudostratified single columnar to stratified squamous epithelium in the developing mouse esophagus. Congenit Anom (Kyoto) 2021; 61:14-24. [PMID: 32776381 DOI: 10.1111/cga.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ryo Kaneda
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
177
|
Wang J, Ahimaz PR, Hashemifar S, Khlevner J, Picoraro JA, Middlesworth W, Elfiky MM, Que J, Shen Y, Chung WK. Novel candidate genes in esophageal atresia/tracheoesophageal fistula identified by exome sequencing. Eur J Hum Genet 2021; 29:122-130. [PMID: 32641753 PMCID: PMC7852873 DOI: 10.1038/s41431-020-0680-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
The various malformations of the aerodigestive tract collectively known as esophageal atresia/tracheoesophageal fistula (EA/TEF) constitute a rare group of birth defects of largely unknown etiology. Previous studies have identified a small number of rare genetic variants causing syndromes associated with EA/TEF. We performed a pilot exome sequencing study of 45 unrelated simplex trios (probands and parents) with EA/TEF. Thirteen had isolated and 32 had nonisolated EA/TEF; none had a family history of EA/TEF. We identified de novo variants in protein-coding regions, including 19 missense variants predicted to be deleterious (D-mis) and 3 likely gene-disrupting (LGD) variants. Consistent with previous studies of structural birth defects, there is a trend of increased burden of de novo D-mis in cases (1.57-fold increase over the background mutation rate), and the burden is greater in constrained genes (2.55-fold, p = 0.003). There is a frameshift de novo variant in EFTUD2, a known EA/TEF risk gene involved in mRNA splicing. Strikingly, 15 out of 19 de novo D-mis variants are located in genes that are putative target genes of EFTUD2 or SOX2 (another known EA/TEF gene), much greater than expected by chance (3.34-fold, p value = 7.20e-5). We estimated that 33% of patients can be attributed to de novo deleterious variants in known and novel genes. We identified APC2, AMER3, PCDH1, GTF3C1, POLR2B, RAB3GAP2, and ITSN1 as plausible candidate genes in the etiology of EA/TEF. We conclude that further genomic analysis to identify de novo variants will likely identify previously undescribed genetic causes of EA/TEF.
Collapse
Affiliation(s)
- Jiayao Wang
- grid.239585.00000 0001 2285 2675Department of Pediatrics, Columbia University Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY USA
| | - Priyanka R. Ahimaz
- grid.239585.00000 0001 2285 2675Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | - Somaye Hashemifar
- grid.239585.00000 0001 2285 2675Department of Pediatrics, Columbia University Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY USA
| | - Julie Khlevner
- grid.239585.00000 0001 2285 2675Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | - Joseph A. Picoraro
- grid.239585.00000 0001 2285 2675Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | - William Middlesworth
- grid.239585.00000 0001 2285 2675Division of Pediatric Surgery, Department of Surgery, Columbia University Medical Center, New York, NY USA
| | - Mahmoud M. Elfiky
- grid.7776.10000 0004 0639 9286Pediatric Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jianwen Que
- grid.239585.00000 0001 2285 2675Department of Medicine, Columbia University Medical Center, New York, NY USA
| | - Yufeng Shen
- grid.239585.00000 0001 2285 2675Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY USA
| | - Wendy K. Chung
- grid.239585.00000 0001 2285 2675Department of Pediatrics, Columbia University Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Department of Medicine, Columbia University Medical Center, New York, NY USA
| |
Collapse
|
178
|
de Fátima Martins M, Honório-Ferreira A, S Reis M, Cortez-Vaz C, Gonçalves CA. Sialic acids expression in newborn rat lungs: implications for pulmonary developmental biology. Acta Histochem 2020; 122:151626. [PMID: 33068965 DOI: 10.1016/j.acthis.2020.151626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Mammalian lung development proceeds during the postnatal period and continues throughout life. Intricate tubular systems of airways and vessels lined by epithelial cells are developed during this process. All cells, and particularly epithelial cells, carry an array of glycans on their surfaces. N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic (Neu5Gc) acids, two most frequently-occurring sialic acid residues, are essential determinants during development and in the homeostasis of cells and organisms. However, systematic data about the presence of cell surface sialic acids in the postnatal lung and their content is still scarce. In the present study, we addressed the histochemical localization of Neu5Ac > Neu5Gc in 0-day-old rat lungs. Furthermore, both residues were separated, identified and quantified in lung membranes isolated from 0-day-old rat lungs using high-performance liquid chromatography (HPLC) methodologies. Finally, we compared these results with those previously reported by us for adult rat lungs. The Neu5Ac > Neu5Gc residues were located on the surface of ciliated and non-ciliated cells and the median values for both residues in the purified lung membranes of newborn rats were 5.365 and 1.935 μg/mg prot., respectively. Comparing these results with those reported for the adults, it was possible to observe a significant difference between the levels of Neu5Ac and Neu5Gc (p < 0.001). A more substantial change was found for the case of Neu5Ac. The preponderance of Neu5Ac and its expressive increase during the postnatal development points towards a more prominent role of this residue. Bearing in mind that sialic acids are negatively charged molecules, the high content of Neu5Ac could contribute to the formation of an anion "shield" and have a role in pulmonary development and physiology.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ana Honório-Ferreira
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Marco S Reis
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Catarina Cortez-Vaz
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Carlos Alberto Gonçalves
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| |
Collapse
|
179
|
Froidure A, Marchal-Duval E, Homps-Legrand M, Ghanem M, Justet A, Crestani B, Mailleux A. Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis. Eur Respir Rev 2020; 29:29/158/190140. [PMID: 33208483 DOI: 10.1183/16000617.0140-2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by an important remodelling of lung parenchyma. Current evidence indicates that the disease is triggered by alveolar epithelium activation following chronic lung injury, resulting in alveolar epithelial type 2 cell hyperplasia and bronchiolisation of alveoli. Signals are then delivered to fibroblasts that undergo differentiation into myofibroblasts. These changes in lung architecture require the activation of developmental pathways that are important regulators of cell transformation, growth and migration. Among others, aberrant expression of profibrotic Wnt-β-catenin, transforming growth factor-β and Sonic hedgehog pathways in IPF fibroblasts has been assessed. In the present review, we will discuss the transcriptional integration of these different pathways during IPF as compared with lung early ontogeny. We will challenge the hypothesis that aberrant transcriptional integration of these pathways might be under the control of a chaotic dynamic, meaning that a small change in baseline conditions could be sufficient to trigger fibrosis rather than repair in a chronically injured lung. Finally, we will discuss some potential opportunities for treatment, either by suppressing deleterious mechanisms or by enhancing the expression of pathways involved in lung repair. Whether developmental mechanisms are involved in repair processes induced by stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Antoine Froidure
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Institut de Recherche Expérimentale et Clinique, Pôle de Pneumologie, Université catholique de Louvain, Belgium Service de pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Emmeline Marchal-Duval
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France
| | - Meline Homps-Legrand
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France
| | - Mada Ghanem
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Aurélien Justet
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France.,Service de pneumologie, CHU de Caen, Caen, France
| | - Bruno Crestani
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Paris, France
| | - Arnaud Mailleux
- Institut National de la Santé et de la Recherche Médical, UMR1152, Labex Inflamex, DHU FIRE, Université de Paris, Faculté de médecine Xavier Bichat, Paris, France
| |
Collapse
|
180
|
Mižíková I, Thébaud B. Looking at the developing lung in single-cell resolution. Am J Physiol Lung Cell Mol Physiol 2020; 320:L680-L687. [PMID: 33205990 DOI: 10.1152/ajplung.00385.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung development is a complicated and delicate process, facilitated by spatially and temporarily coordinated cross talk of up to 40 cell types. Developmental origin and heterogeneity of lung cell lineages in context of lung development have been a focus of research efforts for decades. Bulk RNA and protein measurements, RNA and protein labeling, and lineage tracing techniques have been traditionally employed. However, the complex and heterogeneous nature of lung tissue presents a particular challenge when identifying subtle changes in gene expression in individual cell types. Rapidly developing single-cell RNA sequencing (scRNA-seq) techniques allow for unbiased and robust assessment of complex cellular dynamics during biological processes in unprecedented ways. Discovered a decade ago, scRNA-seq has been applied in respiratory research to understand lung cellular composition and to identify novel cell types. Still, very few studies to date have addressed the single-cell transcriptome in healthy or aberrantly developing lung. In this review, we discuss principal discoveries with scRNA-seq in the field of prenatal and postnatal lung development. In addition, we examine challenges and expectations, and propose future steps associated with the use of scRNA-seq to study developmental lung diseases.
Collapse
Affiliation(s)
- I Mižíková
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
181
|
Wang A, Chiou J, Poirion OB, Buchanan J, Valdez MJ, Verheyden JM, Hou X, Kudtarkar P, Narendra S, Newsome JM, Guo M, Faddah DA, Zhang K, Young RE, Barr J, Sajti E, Misra R, Huyck H, Rogers L, Poole C, Whitsett JA, Pryhuber G, Xu Y, Gaulton KJ, Preissl S, Sun X, NHLBI LungMap Consortium. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. eLife 2020; 9:e62522. [PMID: 33164753 PMCID: PMC7688309 DOI: 10.7554/elife.62522] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory failure associated with COVID-19 has placed focus on the lungs. Here, we present single-nucleus accessible chromatin profiles of 90,980 nuclei and matched single-nucleus transcriptomes of 46,500 nuclei in non-diseased lungs from donors of ~30 weeks gestation,~3 years and ~30 years. We mapped candidate cis-regulatory elements (cCREs) and linked them to putative target genes. We identified distal cCREs with age-increased activity linked to SARS-CoV-2 host entry gene TMPRSS2 in alveolar type 2 cells, which had immune regulatory signatures and harbored variants associated with respiratory traits. At the 3p21.31 COVID-19 risk locus, a candidate variant overlapped a distal cCRE linked to SLC6A20, a gene expressed in alveolar cells and with known functional association with the SARS-CoV-2 receptor ACE2. Our findings provide insight into regulatory logic underlying genes implicated in COVID-19 in individual lung cell types across age. More broadly, these datasets will facilitate interpretation of risk loci for lung diseases.
Collapse
Affiliation(s)
- Allen Wang
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Olivier B Poirion
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Justin Buchanan
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Michael J Valdez
- Biomedical Sciences Graduate Program, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Xiaomeng Hou
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Parul Kudtarkar
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Sharvari Narendra
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Jacklyn M Newsome
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Minzhe Guo
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
- Divisions of Pulmonary Biology and Biomedical Informatics, University of Cincinnati College of MedicineCincinnatiUnited States
| | | | - Kai Zhang
- Ludwig Institute for Cancer ResearchLa JollaUnited States
| | - Randee E Young
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Justinn Barr
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Eniko Sajti
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Ravi Misra
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Heidie Huyck
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Lisa Rogers
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Cory Poole
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Jeffery A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
- Divisions of Pulmonary Biology and Biomedical Informatics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Gloria Pryhuber
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Yan Xu
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
- Divisions of Pulmonary Biology and Biomedical Informatics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Kyle J Gaulton
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Sebastian Preissl
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Xin Sun
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
- Department of Biological Sciences, University of California-San DiegoLa JollaUnited States
| | | |
Collapse
|
182
|
Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e399. [PMID: 33145915 DOI: 10.1002/wdev.399] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
Abstract
The pulmonary system is comprised of two main compartments, airways and alveolar space. Their tissue and cellular complexity ensure lung function and protection from external agents, for example, virus. Two-dimensional (2D) in vitro systems and animal models have been largely employed to elucidate the molecular mechanisms underlying human lung development, physiology, and pathogenesis. However, neither of these models accurately recapitulate the human lung environment and cellular crosstalk. More recently, human-derived three-dimensional (3D) models have been generated allowing for a deeper understanding of cell-to-cell communication. However, the availability and accessibility of primary human cell sources from which generate the 2D and 3D models may be limited. In the past few years, protocols have been developed to successfully employ human pluripotent stem cells (hPSCs) and differentiate them toward pulmonary fate in vitro. In the present review, we discuss the advantages and pitfalls of hPSC-derived lung 2D and 3D models, including the main characteristics and potentials for these models and their current and future applications for modeling development and diseases. Lung organoids currently represent the closest model to the human pulmonary system. We further focus on the applications of lung organoids for the study of human diseases such as pulmonary fibrosis, infectious diseases, and lung cancer. Finally, we discuss the present limitations and potential future applications of 3D lung organoids. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion.
Collapse
Affiliation(s)
- Lu Tian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jinghui Gao
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Irving M Garcia
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,Ben May department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Alessandra Castaldi
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ya-Wen Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
183
|
Sah RK, Ma J, Bah FB, Xing Z, Adlat S, Oo ZM, Wang Y, Bahadar N, Bohio AA, Nagi FH, Feng X, Zhang L, Zheng Y. Targeted Disruption of Mouse Dip2B Leads to Abnormal Lung Development and Prenatal Lethality. Int J Mol Sci 2020; 21:E8223. [PMID: 33153107 PMCID: PMC7663123 DOI: 10.3390/ijms21218223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular and anatomical functions of mammalian Dip2 family members (Dip2A, Dip2B and Dip2C) during organogenesis are largely unknown. Here, we explored the indispensable role of Dip2B in mouse lung development. Using a LacZ reporter, we explored Dip2B expression during embryogenesis. This study shows that Dip2B expression is widely distributed in various neuronal, myocardial, endothelial, and epithelial cell types during embryogenesis. Target disruption of Dip2b leads to intrauterine growth restriction, defective lung formation and perinatal mortality. Dip2B is crucial for late lung maturation rather than early-branching morphogenesis. The morphological analysis shows that Dip2b loss leads to disrupted air sac formation, interstitium septation and increased cellularity. In BrdU incorporation assay, it is shown that Dip2b loss results in increased cell proliferation at the saccular stage of lung development. RNA-seq analysis reveals that 1431 genes are affected in Dip2b deficient lungs at E18.5 gestation age. Gene ontology analysis indicates cell cycle-related genes are upregulated and immune system related genes are downregulated. KEGG analysis identifies oxidative phosphorylation as the most overrepresented pathways along with the G2/M phase transition pathway. Loss of Dip2b de-represses the expression of alveolar type I and type II molecular markers. Altogether, the study demonstrates an important role of Dip2B in lung maturation and survival.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Jun Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
| | - Fatoumata Binta Bah
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Zhenkai Xing
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Zin Ma Oo
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Yajun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Noor Bahadar
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Farooq Hayel Nagi
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Xuechao Feng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| | - Luqing Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Yaowu Zheng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (R.K.S.); (F.B.B.); (Z.X.); (S.A.); (Z.M.O.); (Y.W.); (N.B.); (A.A.B.); (F.H.N.); (L.Z.)
| |
Collapse
|
184
|
Lungova V, Thibeault SL. Mechanisms of larynx and vocal fold development and pathogenesis. Cell Mol Life Sci 2020; 77:3781-3795. [PMID: 32253462 PMCID: PMC7511430 DOI: 10.1007/s00018-020-03506-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The larynx and vocal folds sit at the crossroad between digestive and respiratory tracts and fulfill multiple functions related to breathing, protection and phonation. They develop at the head and trunk interface through a sequence of morphogenetic events that require precise temporo-spatial coordination. We are beginning to understand some of the molecular and cellular mechanisms that underlie critical processes such as specification of the laryngeal field, epithelial lamina formation and recanalization as well as the development and differentiation of mesenchymal cell populations. Nevertheless, many gaps remain in our knowledge, the filling of which is essential for understanding congenital laryngeal disorders and the evaluation and treatment approaches in human patients. This review highlights recent advances in our understanding of the laryngeal embryogenesis. Proposed genes and signaling pathways that are critical for the laryngeal development have a potential to be harnessed in the field of regenerative medicine.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Susan L Thibeault
- Department of Surgery, University of Wisconsin Madison, 5103 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
185
|
Dost AFM, Moye AL, Vedaie M, Tran LM, Fung E, Heinze D, Villacorta-Martin C, Huang J, Hekman R, Kwan JH, Blum BC, Louie SM, Rowbotham SP, Sainz de Aja J, Piper ME, Bhetariya PJ, Bronson RT, Emili A, Mostoslavsky G, Fishbein GA, Wallace WD, Krysan K, Dubinett SM, Yanagawa J, Kotton DN, Kim CF. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell 2020; 27:663-678.e8. [PMID: 32891189 PMCID: PMC7541765 DOI: 10.1016/j.stem.2020.07.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Mutant KRAS is a common driver in epithelial cancers. Nevertheless, molecular changes occurring early after activation of oncogenic KRAS in epithelial cells remain poorly understood. We compared transcriptional changes at single-cell resolution after KRAS activation in four sample sets. In addition to patient samples and genetically engineered mouse models, we developed organoid systems from primary mouse and human induced pluripotent stem cell-derived lung epithelial cells to model early-stage lung adenocarcinoma. In all four settings, alveolar epithelial progenitor (AT2) cells expressing oncogenic KRAS had reduced expression of mature lineage identity genes. These findings demonstrate the utility of our in vitro organoid approaches for uncovering the early consequences of oncogenic KRAS expression. This resource provides an extensive collection of datasets and describes organoid tools to study the transcriptional and proteomic changes that distinguish normal epithelial progenitor cells from early-stage lung cancer, facilitating the search for targets for KRAS-driven tumors.
Collapse
Affiliation(s)
- Antonella F M Dost
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eileen Fung
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dar Heinze
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Julian H Kwan
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sharon M Louie
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel P Rowbotham
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E Piper
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Preetida J Bhetariya
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William D Wallace
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
186
|
Jones-Freeman B, Starkey MR. Bronchioalveolar stem cells in lung repair, regeneration and disease. J Pathol 2020; 252:219-226. [PMID: 32737996 DOI: 10.1002/path.5527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
Bronchioalveolar stem cells (BASCs) are a lung resident stem cell population located at bronchioalveolar duct junctions that contribute to the maintenance of bronchiolar club cells and alveolar epithelial cells of the distal lung. Their transformed counterparts are considered to be likely progenitors of lung adenocarcinomas, which has been a major area of research in relation to BASCs. A critical limitation in addressing the function of BASCs in vivo has been the lack of a unique BASC marker, which has prevented specific targeting of BASCs in animal models of respiratory conditions. Recently, there have been several studies describing genetically modified mice that allow in vivo quantification, tracing, and functional analysis of BASCs to address this long-standing issue. These cutting-edge experimental tools will likely have significant implications for future experimental studies involving BASCs and the elucidation of their role in various lung diseases. To date, this has been largely explored in models of lung injury including naphthalene-induced airway injury, bleomycin-induced alveolar injury, hyperoxia-induced models of bronchopulmonary dysplasia, and influenza virus infection. These novel experimental mouse tools will facilitate the assessment of the impact of BASC loss on additional respiratory conditions including infection-induced severe asthma and chronic obstructive pulmonary disease, as well as respiratory bacterial infections, both in early life and adulthood. These future studies may shed light on the potential broad applicability of targeting BASCs for a diverse range of respiratory conditions during lung development and in promoting effective regeneration and repair of the lung in respiratory diseases. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
187
|
Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, Smits HH, de Steenhuijsen Piters WAA, Strickland DH, Collins JJP. Early origins of lung disease: towards an interdisciplinary approach. Eur Respir Rev 2020; 29:29/157/200191. [PMID: 33004528 DOI: 10.1183/16000617.0191-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).
Collapse
Affiliation(s)
- Niki D J Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland.,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| | - Miguel A Alejandre Alcazar
- Dept of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Paediatrics, Experimental Pulmonology, University of Cologne, Cologne, Germany.,Centre of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Suhas G Kallapur
- Neonatal-Perinatal Medicine, Dept of Pediatrics, David Geffen School of Medicine, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Sylvia Knapp
- Dept of Medicine I/Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.,CeMM, Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Rory E Morty
- Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Dept of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research, Giessen, Germany
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Niki L Reynaert
- Dept of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robbert J Rottier
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Jennifer J P Collins
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands .,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| |
Collapse
|
188
|
Miao B, Fu S, Lyu C, Gontarz P, Wang T, Zhang B. Tissue-specific usage of transposable element-derived promoters in mouse development. Genome Biol 2020; 21:255. [PMID: 32988383 PMCID: PMC7520981 DOI: 10.1186/s13059-020-02164-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are a significant component of eukaryotic genomes and play essential roles in genome evolution. Mounting evidence indicates that TEs are highly transcribed in early embryo development and contribute to distinct biological functions and tissue morphology. RESULTS We examine the epigenetic dynamics of mouse TEs during the development of five tissues: intestine, liver, lung, stomach, and kidney. We found that TEs are associated with over 20% of open chromatin regions during development. Close to half of these accessible TEs are only activated in a single tissue and a specific developmental stage. Most accessible TEs are rodent-specific. Across these five tissues, 453 accessible TEs are found to create the transcription start sites of downstream genes in mouse, including 117 protein-coding genes and 144 lincRNA genes, 93.7% of which are mouse-specific. Species-specific TE-derived transcription start sites are found to drive the expression of tissue-specific genes and change their tissue-specific expression patterns during evolution. CONCLUSION Our results suggest that TE insertions increase the regulatory potential of the genome, and some TEs have been domesticated to become a crucial component of gene and regulate tissue-specific expression during mouse tissue development.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63108, USA
- Department of Genetics, Edison Family Center for Genomic Sciences and Systems Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Shuhua Fu
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Cheng Lyu
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Paul Gontarz
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Ting Wang
- Department of Genetics, Edison Family Center for Genomic Sciences and Systems Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63108, USA.
| |
Collapse
|
189
|
Funk E, Lencer E, McCune A. Dorsoventral inversion of the air-filled organ (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected embryonic tissue. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:325-338. [PMID: 32864827 PMCID: PMC8094346 DOI: 10.1002/jez.b.22998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
How modification of gene expression generates novel traits is key to understanding the evolutionary process. We investigated the genetic basis for the origin of the piscine gas bladder from lungs of ancestral bony vertebrates. Distinguishing these homologous organs is the direction of budding from the foregut during development; lungs bud ventrally and the gas bladder buds dorsally.
Collapse
Affiliation(s)
- Emily Funk
- Cornell University, Department of Ecology and Evolutionary Biology, 215 Tower Rd, Ithaca, NY 14853
- University of California Davis, Genomic Variation Lab, Animal Science Department, 2235 Meyer Hall, Davis, CA 95616
| | - Ezra Lencer
- University of Colorado Denver - Anschutz Medical Campus, Department of Craniofacial Biology, 12081 East 17 Ave, RC 1 South, Campus Box 8120, Aurora, CO 80045
| | - Amy McCune
- Cornell University, Department of Ecology and Evolutionary Biology, 215 Tower Rd, Ithaca, NY 14853
| |
Collapse
|
190
|
Kishimoto K, Furukawa KT, Luz-Madrigal A, Yamaoka A, Matsuoka C, Habu M, Alev C, Zorn AM, Morimoto M. Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells. Nat Commun 2020; 11:4159. [PMID: 32855415 PMCID: PMC7453000 DOI: 10.1038/s41467-020-17969-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of β-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kana T Furukawa
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Agustin Luz-Madrigal
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Chisa Matsuoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Masanobu Habu
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Aaron M Zorn
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
191
|
Abstract
The premature infant is born into the world unprepared to naturally thrive in a foreign environment. Lung development entails immense growth, structural remodeling and differentiation of specialized cells during the normal term perinatal and postnatal periods. Thus, the premature infant presents with a lung deficient for appropriate respiration. Disruption of lung development seen in bronchopulmonary dysplasia (BPD) and chronic lung disease (CLD) results in not only impaired airway growth but also a deficiency in the accompanying vasculature including the capillary system required for gas exchange. Deficient vascular area can lead to elevated pulmonary vascular resistance and the development of pulmonary hypertension (PH). Unlike PH seen in children and adults with pulmonary arterial hypertension (PAH), treatment with conventional pulmonary vasodilators can be limited in developmental lung disease-associated PH because there are fewer blood vessels to dilate. In this brief review, we highlight some of the knowledge on PH in the premature infant presented at the Proceedings of the 22nd Annual Update on Pediatric and Congenital Cardiovascular Disease.
Collapse
Affiliation(s)
- Lori A Christ
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jennifer M Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Penn-CHOP Lung Biology Institute and Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
192
|
Tang R, Wang J, Zhou M, Lan Y, Jiang L, Price M, Yue B, Li D, Fan Z. Comprehensive analysis of lncRNA and mRNA expression changes in Tibetan chicken lung tissue between three developmental stages. Anim Genet 2020; 51:731-740. [DOI: 10.1111/age.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ruixiang Tang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Min Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife College of Life Sciences Sichuan University Chengdu 610064 China
| | - Lan Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife College of Life Sciences Sichuan University Chengdu 610064 China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Diyan Li
- Sichuan Agricultural University Chengdu 611130 China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| |
Collapse
|
193
|
Raad S, David A, Que J, Faure C. Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells Dev 2020; 29:953-966. [PMID: 32515280 PMCID: PMC9839344 DOI: 10.1089/scd.2020.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.
Collapse
Affiliation(s)
- Suleen Raad
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Anu David
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Center for Human Development, Columbia University, New York, New York, USA
| | - Christophe Faure
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada.,Esophageal Atresia Clinic and Division of Pediatric Gastroenterology Hepatology and Nutrition, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada.,Address correspondence to: Dr. Christophe Faure, Division of Pediatric Gastroenterology, Sainte-Justine Hospital, 3715 Côte Sainte Catherine, Montreal H3T1C5, Quebec, Canada
| |
Collapse
|
194
|
Singh SP, Devadoss D, Manevski M, Sheybani A, Ivanciuc T, Exil V, Agarwal H, Raizada V, Garofalo RP, Chand HS, Sopori ML. Gestational Exposure to Cigarette Smoke Suppresses the Gasotransmitter H 2S Biogenesis and the Effects Are Transmitted Transgenerationally. Front Immunol 2020; 11:1628. [PMID: 32849552 PMCID: PMC7399059 DOI: 10.3389/fimmu.2020.01628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Gestational cigarette smoke (CS) impairs lung angiogenesis and alveolarization, promoting transgenerational development of asthma and bronchopulmonary dysplasia (BPD). Hydrogen sulfide (H2S), a proangiogenic, pro-alveolarization, and anti-asthmatic gasotransmitter is synthesized by cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercaptopyruvate sulfur transferase (3MST). Objective: Determine if gestational CS exposure affected the expression of H2S synthesizing enzymes in the mouse lung and human placenta. Methods: Mice were exposed throughout gestational period to secondhand CS (SS) at approximating the dose of CS received by a pregnant woman sitting in a smoking bar for 3 h/days during pregnancy. Lungs from 7-days old control and SS-exposed pups and human placenta from mothers who were either non-smokers or smokers during pregnancy were analyzed for expression of the enzymes. Measurements: Mouse lungs and human placentas were examined for the expression of CSE, CBS, and 3MST by immunohistochemical staining, qRT-PCR and/or Western blot (WB) analyses. Results: Compared to controls, mouse lung exposed gestationally to SS had significantly lower levels of CSE, CBS, and 3MST. Moreover, the SS-induced suppression of CSE and CBS in F1 lungs was transmitted to the F2 generation without significant change in the magnitude of the suppression. These changes were associated with impaired epithelial-mesenchymal transition (EMT)-a process required for normal lung angiogenesis and alveolarization. Additionally, the placentas from mothers who smoked during pregnancy, expressed significantly lower levels of CSE, CBS, and 3MST, and the effects were partially moderated by quitting smoking during the first trimester. Conclusions: Lung H2S synthesizing enzymes are downregulated by gestational CS and the effects are transmitted to F2 progeny. Smoking during pregnancy decreases H2S synthesizing enzymes is human placentas, which may correlate with the increased risk of asthma/BPD in children.
Collapse
Affiliation(s)
- Shashi P. Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Dinesh Devadoss
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Marko Manevski
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Aryaz Sheybani
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Teodora Ivanciuc
- Department of Microbiology and Immunology, Galveston, TX, United States
| | - Vernat Exil
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Hemant Agarwal
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Veena Raizada
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | | | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan L. Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| |
Collapse
|
195
|
Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin (Shanghai) 2020; 52:716-722. [PMID: 32445469 DOI: 10.1093/abbs/gmaa052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal of lung epithelial cells is normally slow unless the lung is injured. The resident epithelial stem cells rapidly proliferate and differentiate to maintain lung structure and function when the lung is damaged. The alveolar epithelium is characterized by alveolar type 1 (AT1) and alveolar type 2 (AT2) cells. AT2 cells are the stem cells for alveoli, as they can both self-renew and generate AT1 cells. Abnormal proliferation and regulation of AT2 cells will lead to serious lung diseases including cancers. In this review, we focused on the alveolar stem/progenitor cells, the key physiological function of AT2 cells in lung homeostasis and the complicated regulation of AT2 cells in the repairing processes after lung injury.
Collapse
Affiliation(s)
- Ailing Wu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
196
|
Essey M, Maina JN. Fractal analysis of concurrently prepared latex rubber casts of the bronchial and vascular systems of the human lung. Open Biol 2020; 10:190249. [PMID: 32634372 PMCID: PMC7574555 DOI: 10.1098/rsob.190249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Fractal geometry (FG) is a branch of mathematics that instructively characterizes structural complexity. Branched structures are ubiquitous in both the physical and the biological realms. Fractility has therefore been termed nature's design. The fractal properties of the bronchial (airway) system, the pulmonary artery and the pulmonary vein of the human lung generates large respiratory surface area that is crammed in the lung. Also, it permits the inhaled air to intimately approximate the pulmonary capillary blood across a very thin blood-gas barrier through which gas exchange to occur by diffusion. Here, the bronchial (airway) and vascular systems were simultaneously cast with latex rubber. After corrosion, the bronchial and vascular system casts were physically separated and cleared to expose the branches. The morphogenetic (Weibel's) ordering method was used to categorize the branches on which the diameters and the lengths, as well as the angles of bifurcation, were measured. The fractal dimensions (DF) were determined by plotting the total branch measurements against the mean branch diameters on double logarithmic coordinates (axes). The diameter-determined DF values were 2.714 for the bronchial system, 2.882 for the pulmonary artery and 2.334 for the pulmonary vein while the respective values from lengths were 3.098, 3.916 and 4.041. The diameters yielded DF values that were consistent with the properties of fractal structures (i.e. self-similarity and space-filling). The data obtained here compellingly suggest that the design of the bronchial system, the pulmonary artery and the pulmonary vein of the human lung functionally comply with the Hess-Murray law or 'the principle of minimum work'.
Collapse
Affiliation(s)
| | - John N. Maina
- Department of Zoology, University of Johannesburg,
Auckland Park Campus, Kingsway, Johannesburg 2006, South
Africa
| |
Collapse
|
197
|
Li JJ. Mitigating Coronavirus-Induced Acute Respiratory Distress Syndrome by Radiotherapy. iScience 2020; 23:101215. [PMID: 32512383 PMCID: PMC7260547 DOI: 10.1016/j.isci.2020.101215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
The acute respiratory distress syndrome (ARDS) induced by SARS-CoV-2-mediated cytokine storm (CS) in lungs leads to the high mortality in COVID-19 patients. To reduce ARDS, an ideal approach is to diminish virus loading by activating immune cells for CS prevention or to suppress the overactive cytokine-releasing immune cells for CS inhibition. Here, a potential radiation-mediated CS regulation is raised by reevaluating the radiation-mediated pneumonia control in the 1920s, with the following latent advantages of lung radiotherapy (LR) in treatment of COVID-19: (1) radiation accesses poorly circulated tissue more efficiently than blood-delivered medications; (2) low-dose radiation (LDR)-mediated metabolic rewiring and immune cell activation inhibit virus loading; (3) pre-consumption of immune reserves by LDR decreases CS severity; (4) higherdose radiation (HDR) within lung-tolerable doses relieves CS by eliminating in situ overactive cytokine-releasing cells. Thus, LDR and HDR or combined with antiviral and life-supporting modalities may mitigate SARS-CoV-2 and other virus-mediated ARDS.
Collapse
Affiliation(s)
- Jian Jian Li
- Department of Radiation Oncology, NCI-designated Comprehensive Cancer Center, University of California at Davis School of Medicine, 4501 X Street, Suite G0140, Sacramento, CA 95817, USA.
| |
Collapse
|
198
|
Kuwahara A, Lewis AE, Coombes C, Leung FS, Percharde M, Bush JO. Delineating the early transcriptional specification of the mammalian trachea and esophagus. eLife 2020; 9:e55526. [PMID: 32515350 PMCID: PMC7282815 DOI: 10.7554/elife.55526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
The genome-scale transcriptional programs that specify the mammalian trachea and esophagus are unknown. Though NKX2-1 and SOX2 are hypothesized to be co-repressive master regulators of tracheoesophageal fates, this is untested at a whole transcriptomic scale and their downstream networks remain unidentified. By combining single-cell RNA-sequencing with bulk RNA-sequencing of Nkx2-1 mutants and NKX2-1 ChIP-sequencing in mouse embryos, we delineate the NKX2-1 transcriptional program in tracheoesophageal specification, and discover that the majority of the tracheal and esophageal transcriptome is NKX2-1 independent. To decouple the NKX2-1 transcriptional program from regulation by SOX2, we interrogate the expression of newly-identified tracheal and esophageal markers in Sox2/Nkx2-1 compound mutants. Finally, we discover that NKX2-1 binds directly to Shh and Wnt7b and regulates their expression to control mesenchymal specification to cartilage and smooth muscle, coupling epithelial identity with mesenchymal specification. These findings create a new framework for understanding early tracheoesophageal fate specification at the genome-wide level.
Collapse
Affiliation(s)
- Akela Kuwahara
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Developmental and Stem Cell Biology Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Ace E Lewis
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Coohleen Coombes
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Department of Biology, San Francisco State UniversitySan FranciscoUnited States
| | - Fang-Shiuan Leung
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS)LondonUnited Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
199
|
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 2020; 9:e56890. [PMID: 32484158 PMCID: PMC7358008 DOI: 10.7554/elife.56890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.
Collapse
Affiliation(s)
- Racquel Domingo-Gonzalez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Fabio Zanini
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South WalesSydneyAustralia
| | - Xibing Che
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael A Swift
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - David N Cornfield
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
200
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|