151
|
|
152
|
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:283. [PMID: 32678016 PMCID: PMC7364498 DOI: 10.1186/s13287-020-01789-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
153
|
On the cutting edge: protease-based methods for sensing and controlling cell biology. Nat Methods 2020; 17:885-896. [PMID: 32661424 DOI: 10.1038/s41592-020-0891-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Sequence-specific proteases have proven to be versatile building blocks for tools that report or control cellular function. Reporting methods link protease activity to biochemical signals, whereas control methods rely on engineering proteases to respond to exogenous inputs such as light or chemicals. In turn, proteases have inherent control abilities, as their native functions are to release, activate or destroy proteins by cleavage, with the irreversibility of proteolysis allowing sustained downstream effects. As a result, protease-based synthetic circuits have been created for diverse uses such as reporting cellular signaling, tuning protein expression, controlling viral replication and detecting cancer states. Here, we comprehensively review the development and application of protease-based methods for reporting and controlling cellular function in eukaryotes.
Collapse
|
154
|
Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis – causes and possible functions. J Cell Sci 2020; 133:133/11/jcs240861. [DOI: 10.1242/jcs.240861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Clathrin-mediated endocytosis is the main entry route for most cell surface receptors and their ligands. It is regulated by clathrin-coated structures that are endowed with the ability to cluster receptors and to locally bend the plasma membrane, resulting in the formation of receptor-containing vesicles that bud into the cytoplasm. This canonical role of clathrin-coated structures has been shown to play a fundamental part in many different aspects of cell physiology. However, it has recently become clear that the ability of clathrin-coated structures to deform membranes can be perturbed. In addition to chemical or genetic alterations, numerous environmental conditions can physically prevent or slow down membrane bending and/or budding at clathrin-coated structures. The resulting ‘frustrated endocytosis’ is emerging as not merely a passive consequence, but one that actually fulfils some very specific and important cellular functions. In this Review, we provide an historical and defining perspective on frustrated endocytosis in the clathrin pathway of mammalian cells, before discussing its causes and highlighting the possible functional consequences in physiology and diseases.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Kseniia Porshneva
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
155
|
Caolo V, Debant M, Endesh N, Futers TS, Lichtenstein L, Bartoli F, Parsonage G, Jones EA, Beech DJ. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. eLife 2020; 9:50684. [PMID: 32484440 PMCID: PMC7295575 DOI: 10.7554/elife.50684] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, γ-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes.
Collapse
Affiliation(s)
- Vincenza Caolo
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Naima Endesh
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Laeticia Lichtenstein
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Av Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
156
|
Pandey A, Niknejad N, Jafar-Nejad H. Multifaceted regulation of Notch signaling by glycosylation. Glycobiology 2020; 31:8-28. [PMID: 32472127 DOI: 10.1093/glycob/cwaa049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
To build a complex body composed of various cell types and tissues and to maintain tissue homeostasis in the postembryonic period, animals use a small number of highly conserved intercellular communication pathways. Among these is the Notch signaling pathway, which is mediated via the interaction of transmembrane Notch receptors and ligands usually expressed by neighboring cells. Maintaining optimal Notch pathway activity is essential for normal development, as evidenced by various human diseases caused by decreased and increased Notch signaling. It is therefore not surprising that multiple mechanisms are used to control the activation of this pathway in time and space. Over the last 20 years, protein glycosylation has been recognized as a major regulatory mechanism for Notch signaling. In this review, we will provide a summary of the various types of glycan that have been shown to modulate Notch signaling. Building on recent advances in the biochemistry, structural biology, cell biology and genetics of Notch receptors and the glycosyltransferases that modify them, we will provide a detailed discussion on how various steps during Notch activation are regulated by glycans. Our hope is that the current review article will stimulate additional research in the field of Notch glycobiology and will potentially be of benefit to investigators examining the contribution of glycosylation to other developmental processes.
Collapse
Affiliation(s)
| | | | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics.,Development, Disease Models & Therapeutics Graduate Program.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
157
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
158
|
Hosseini-Alghaderi S, Baron M. Notch3 in Development, Health and Disease. Biomolecules 2020; 10:biom10030485. [PMID: 32210034 PMCID: PMC7175233 DOI: 10.3390/biom10030485] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Notch3 is one of four mammalian Notch proteins, which act as signalling receptors to control cell fate in many developmental and adult tissue contexts. Notch signalling continues to be important in the adult organism for tissue maintenance and renewal and mis-regulation of Notch is involved in many diseases. Genetic studies have shown that Notch3 gene knockouts are viable and have limited developmental defects, focussed mostly on defects in the arterial smooth muscle cell lineage. Additional studies have revealed overlapping roles for Notch3 with other Notch proteins, which widen the range of developmental functions. In the adult, Notch3, in collaboration with other Notch proteins, is involved in stem cell regulation in different tissues in stem cell regulation in different tissues, and it also controls the plasticity of the vascular smooth muscle phenotype involved in arterial vessel remodelling. Overexpression, gene amplification and mis-activation of Notch3 are associated with different cancers, in particular triple negative breast cancer and ovarian cancer. Mutations of Notch3 are associated with a dominantly inherited disease CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), and there is further evidence linking Notch3 misregulation to hypertensive disease. Here we discuss the distinctive roles of Notch3 in development, health and disease, different views as to the underlying mechanisms of its activation and misregulation in different contexts and potential for therapeutic intervention.
Collapse
|
159
|
Abstract
Membrane mucins cover most mucosal surfaces throughout the human body. The intestine harbors complex population of microorganisms (the microbiota) and numerous exogenous molecules that can harm the epithelium. In the colon, where the microbial burden is high, a mucus barrier forms the first line of defense by keeping bacteria away from the epithelial cells. In the small intestine where the mucus layer is less organized, microbes are kept at bay by peristalsis and antimicrobial peptides. Additionally, a dense glycocalyx consisting of extended and heavily glycosylated membrane mucins covers the surface of enterocytes. Whereas many aspects of mucosal barriers are being discovered, the function of membrane mucins remains a largely overlooked topic, mainly because we lack the necessary reagents and experimental animal models to investigate these large glycoproteins. In this Cell Science at a Glance article and accompanying poster, we highlight central concepts of membrane mucin biology and the role of membrane mucins as integral components of intestinal mucosal barriers. We also present the current consensus concerning the role of membrane mucins in host-microbe interactions. Moreover, we discuss how regulatory circuits that govern membrane mucins in the healthy gut display strong overlap with pathways that are perturbed during chronic inflammation. Finally, we review how dysregulation of intestinal membrane mucins may contribute to human diseases, such as inflammation and cancer.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Dept. Medical Biochemistry, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Gunnar C Hansson
- Dept. Medical Biochemistry, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| |
Collapse
|
160
|
Yang ZJ, Yu ZY, Cai YM, Du RR, Cai L. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun Biol 2020; 3:116. [PMID: 32170210 PMCID: PMC7069970 DOI: 10.1038/s42003-020-0848-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
Notch signaling is highly conserved in most animals and plays critical roles during neurogenesis as well as embryonic development. Synthetic Notch-based systems, modeled from Notch receptors, have been developed to sense and respond to a specific extracellular signal. Recent advancement of synNotch has shown promise for future use in cellular engineering to treat cancers. However, synNotch from Morsut et al. (2016) has a high level of ligand-independent activation, which limits its application. Here we show that adding an intracellular hydrophobic sequence (QHGQLWF, named as RAM7) present in native Notch, significantly reduced ligand-independent activation. Our enhanced synthetic Notch receptor (esNotch) demonstrates up to a 14.6-fold reduction in ligand-independent activation, without affecting its antigen-induced activation efficiency. Our work improves a previously reported transmembrane receptor and provides a powerful tool to develop better transmembrane signaling transduction modules for further advancement of eukaryotic synthetic biology.
Collapse
Affiliation(s)
- Zi-Jie Yang
- Department of Biochemistry, School of Life Sciences and Zhongshan Hospital, Fudan University, 200438, Shanghai, China
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zi-Yan Yu
- Department of Biochemistry, School of Life Sciences and Zhongshan Hospital, Fudan University, 200438, Shanghai, China
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi-Ming Cai
- Department of Biochemistry, School of Life Sciences and Zhongshan Hospital, Fudan University, 200438, Shanghai, China
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77225, USA
| | - Rong-Rong Du
- Department of Biochemistry, School of Life Sciences and Zhongshan Hospital, Fudan University, 200438, Shanghai, China
| | - Liang Cai
- Department of Biochemistry, School of Life Sciences and Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
- The Center for Faculty Development of Fudan University, Shanghai, China.
| |
Collapse
|
161
|
Abstract
Despite the importance in various cellular processes, the nanomechanical responses of the living cell membrane have been elusive due to complexities in the membrane associated with the hidden architecture of multiple molecular components, including the lipid bilayer. Here, combined experimental and theoretical frameworks that can probe and interpret nanomechanical responses of the cell membrane are demonstrated. A magnetic tweezer assay was introduced to apply pico-Newton scale forces to lipids and E-cadherin molecules at the living cell surface. Two unique classes of force-extension curves were identified: one with a deflection transition (Type I) and another with a discontinuous transition (Type II). The repeated observations of these responses, regardless of cell type and targeted cell surface molecule, suggest the Type I and II curves are the primary nanomechanical responses of cell membranes. To reproduce these responses in vitro, a model system using synthetic lipid vesicles was also developed. Together with a finite element model of lipid bilayers, the reproduced responses suggest that the confined fluidity and curvature constraints imposed on the lipid bilayer components of the cell membrane are the main parameters responsible for the generation of these responses. This work provides an insight into how forces on membrane molecules propagate to the lipid bilayer components to generate specific nanomechanical responses. In addition, the consistent results obtained using different methodologies demonstrate that the presented force-probing assays and the theoretical model can serve a combined testbed to investigate nanoscale mechanics of the living cell membrane.
Collapse
Affiliation(s)
- Jichul Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS) and Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
- Research Center for Natural Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
162
|
Rushdi M, Li K, Yuan Z, Travaglino S, Grakoui A, Zhu C. Mechanotransduction in T Cell Development, Differentiation and Function. Cells 2020; 9:E364. [PMID: 32033255 PMCID: PMC7072571 DOI: 10.3390/cells9020364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Cells in the body are actively engaging with their environments that include both biochemical and biophysical aspects. The process by which cells convert mechanical stimuli from their environment to intracellular biochemical signals is known as mechanotransduction. Exemplifying the reliance on mechanotransduction for their development, differentiation and function are T cells, which are central to adaptive immune responses. T cell mechanoimmunology is an emerging field that studies how T cells sense, respond and adapt to the mechanical cues that they encounter throughout their life cycle. Here we review different stages of the T cell's life cycle where existing studies have shown important effects of mechanical force or matrix stiffness on a T cell as sensed through its surface molecules, including modulating receptor-ligand interactions, inducing protein conformational changes, triggering signal transduction, amplifying antigen discrimination and ensuring directed targeted cell killing. We suggest that including mechanical considerations in the immunological studies of T cells would inform a more holistic understanding of their development, differentiation and function.
Collapse
Affiliation(s)
- Muaz Rushdi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Zhou Yuan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
| | - Stefano Travaglino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, GA 30329, USA;
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
| |
Collapse
|
163
|
Hunter GL, Giniger E. Phosphorylation and Proteolytic Cleavage of Notch in Canonical and Noncanonical Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:51-68. [DOI: 10.1007/978-3-030-36422-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
164
|
Chang HJ, Bonnet J. Synthetic receptors to understand and control cellular functions. Methods Enzymol 2020; 633:143-167. [DOI: 10.1016/bs.mie.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
165
|
Ligand-Induced Cis-Inhibition of Notch Signaling: The Role of an Extracellular Region of Serrate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:29-49. [PMID: 32072497 DOI: 10.1007/978-3-030-36422-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular development can be controlled by communication between adjacent cells mediated by the highly conserved Notch signaling system. A cell expressing the Notch receptor on one cell can be activated in trans by ligands on an adjacent cell leading to alteration of transcription and cellular fate. Ligands also have the ability to inhibit Notch signaling, and this can be accomplished when both receptor and ligands are coexpressed in cis on the same cell. The manner in which cis-inhibition is accomplished is not entirely clear but it is known to involve several different protein domains of the ligands and the receptor. Some of the protein domains involved in trans-activation are also used for cis-inhibition, but some are used uniquely for each process. In this work, the involvement of various ligand regions and the receptor are discussed in relation to their contributions to Notch signaling.
Collapse
|
166
|
Luo H, Wu X, Sun R, Su J, Wang Y, Dong Y, Shi B, Sun Y, Jiang H, Li Z. Target-Dependent Expression of IL12 by synNotch Receptor-Engineered NK92 Cells Increases the Antitumor Activities of CAR-T Cells. Front Oncol 2019; 9:1448. [PMID: 31921693 PMCID: PMC6930917 DOI: 10.3389/fonc.2019.01448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/04/2019] [Indexed: 01/04/2023] Open
Abstract
IL12 is an immune-stimulatory cytokine for key immune cells including T cells and NK cells. However, systemic administration of IL12 has serious side effects that limit its clinical application in patients. Recently, synthetic Notch (synNotch) receptors have been developed that induce transcriptional activation and deliver therapeutic payloads in response to the reorganization of specific antigens. NK92 cell is a human natural killer (NK) cell line which has been developed as tools for adjuvant immunotherapy of cancer. Here, we explored the possibility of using synNotch receptor-engineered NK92 cells to selectively secrete IL12 at the tumor site and increase the antitumor activities of chimeric antigen receptor (CAR)-modified T cells. Compared with the nuclear factor of activated T-cells (NFATs) responsive promoter, which is another regulatory element, the synNotch receptor was better at controlling the expression of cytokines. NK92 cells transduced with the GPC3-specific synNotch receptor could produce the proinflammatory cytokine IL12 (GPC3-Syn-IL12-NK92) in response to GPC3 antigen expressed in cancer cells. In vivo GPC3-Syn-IL12-NK92 cells controlling IL12 production could enhance the antitumor ability of GPC3-redirected CAR T cells and increase the infiltration of T cells without inducing toxicity. Taken together, our results demonstrated that IL12 supplementation by synNotch-engineered NK92 cells could secrete IL12 in a target-dependent manner, and promote the antitumor efficiency of CAR-T cells. Local expression of IL12 by synNotch-engineered NK92 cells might be a safe approach to enhance the clinical outcome of CAR-T cell therapy.
Collapse
Affiliation(s)
- Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Su
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwei Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yansha Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
167
|
Wang Y, Barnett SFH, Le S, Guo Z, Zhong X, Kanchanawong P, Yan J. Label-free Single-Molecule Quantification of Rapamycin-induced FKBP-FRB Dimerization for Direct Control of Cellular Mechanotransduction. NANO LETTERS 2019; 19:7514-7525. [PMID: 31466449 DOI: 10.1021/acs.nanolett.9b03364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically induced dimerization (CID) has been applied to study numerous biological processes and has important pharmacological applications. However, the complex multistep interactions under various physical constraints involved in CID impose a great challenge for the quantification of the interactions. Furthermore, the mechanical stability of the ternary complexes has not been characterized; hence, their potential application in mechanotransduction studies remains unclear. Here, we report a single-molecule detector that can accurately quantify almost all key interactions involved in CID and the mechanical stability of the ternary complex, in a label-free manner. Its application is demonstrated using rapamycin-induced heterodimerization of FRB and FKBP as an example. We revealed the sufficient mechanical stability of the FKBP/rapamycin/FRB ternary complex and demonstrated its utility in the precise switching of talin-mediated force transmission in integrin-based cell adhesions.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Physics , National University of Singapore , Singapore 117546
| | - Samuel F H Barnett
- Mechanobiology Institute , National University of Singapore , Singapore 117411
| | - Shimin Le
- Department of Physics , National University of Singapore , Singapore 117546
| | - Zhenhuan Guo
- Mechanobiology Institute , National University of Singapore , Singapore 117411
| | - Xueying Zhong
- Mechanobiology Institute , National University of Singapore , Singapore 117411
| | - Pakorn Kanchanawong
- Mechanobiology Institute , National University of Singapore , Singapore 117411
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Jie Yan
- Department of Physics , National University of Singapore , Singapore 117546
- Mechanobiology Institute , National University of Singapore , Singapore 117411
| |
Collapse
|
168
|
Hall DP, Kovall RA. Structurally conserved binding motifs of transcriptional regulators to notch nuclear effector CSL. Exp Biol Med (Maywood) 2019; 244:1520-1529. [PMID: 31544502 DOI: 10.1177/1535370219877818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This mini review discusses the protein complexes comprised of the universal Notch signaling transcription factor, CSL (CBF1/Su(H)/Lag-1), and its activating or repressing transcriptional coregulation partners. Many of these complex structures have been solved crystallographically as well as undergoing extensive binding studies with wild-type and mutant variants. Notch signaling is critically important in a large variety of basic biological processes: cell proliferation, differentiation, cell cycle control to name a few. Aberrant Notch thus remains a coveted target for pharmaceutical intervention. To that end, we provide a molecular-level summary of the similarities and differences in the Notch coregulator complexes that ultimately govern these processes. We highlight a conserved binding motif that multiple superficially unrelated proteins have adopted to become involved in Notch target gene regulation. As CSL-interacting small molecules begin to be characterized, this review will provide insight to potential binding sites and differential complex disruption. Impact statement Proper Notch signaling regulation is informed by many distinct protein complexes involving a single nuclear effector. A decade of research into these protein complexes yields multiple crystal structures and a wealth of binding data to guide drug development for Notch-related diseases – cancer, cardiovascular, development disorders.
Collapse
Affiliation(s)
- Daniel P Hall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
169
|
Li R, Baek KI, Chang CC, Zhou B, Hsiai TK. Mechanosensitive Pathways Involved in Cardiovascular Development and Homeostasis in Zebrafish. J Vasc Res 2019; 56:273-283. [PMID: 31466069 DOI: 10.1159/000501883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases such as coronary heart disease, myocardial infarction, and cardiac arrhythmia are the leading causes of morbidity and mortality in developed countries and are steadily increasing in developing countries. Fundamental mechanistic studies at the molecular, cellular, and animal model levels are critical for the diagnosis and treatment of these diseases. Despite being phylogenetically distant from humans, zebrafish share remarkable similarity in the genetics and electrophysiology of the cardiovascular system. In the last 2 decades, the development and deployment of innovative genetic manipulation techniques greatly facilitated the application of zebrafish as an animal model for studying basic biology and diseases. Hemodynamic shear stress is intimately involved in vascular development and homeostasis. The critical mechanosensitive signaling pathways in cardiovascular development and pathophysiology previously studied in mammals have been recapitulated in zebrafish. In this short article, we reviewed recent knowledge about the role of mechanosensitive pathways such as Notch, PKCε/PFKFB3, and Wnt/Ang2 in cardiovas-cular development and homeostasis from studies in the -zebrafish model.
Collapse
Affiliation(s)
- Rongsong Li
- College of Health Sciences and Environmental Engineering, Shenzhen Technology University, Shenzhen, China,
| | - Kyung In Baek
- Department of Bioengineering,University of California, Los Angeles, California, USA
| | - Chih-Chiang Chang
- Department of Bioengineering,University of California, Los Angeles, California, USA
| | - Bill Zhou
- Department of Radiology, University of California, Los Angeles, California, USA
| | - Tzung K Hsiai
- Department of Bioengineering,University of California, Los Angeles, California, USA.,Department of Medicine (Cardiology) and Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
170
|
Krishna BM, Jana S, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett 2019; 461:123-131. [PMID: 31326555 DOI: 10.1016/j.canlet.2019.07.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
The Notch signaling pathway, which is highly conserved from sea urchins to humans, plays an important role in cell-differentiation, survival, proliferation, stem-cell renewal, and determining cell fate during development and morphogenesis. It is well established that signaling pathways are dysregulated in a wide-range of diseases, including human malignancies. Studies suggest that the dysregulation of the Notch pathway contributes to carcinogenesis, cancer stem cell renewal, angiogenesis, and chemo-resistance. Elevated levels of Notch receptors and ligands have been associated with cancer-progression and poor survival. Furthermore, the Notch signaling pathway regulates the transcriptional activity of key target genes through crosstalk with several other signaling pathways. Indeed, increasing evidence suggests that the Notch signaling pathway may serve as a therapeutic target for the treatment of several cancers, including breast cancer. Researchers have demonstrated the anti-tumor properties of Notch inhibitors in various cancer types. Currently, Notch inhibitors are being evaluated for anticancer efficacy in a number of clinical-trials. However, because there are multiple Notch receptors that can exhibit either oncogenic or tumor-suppressing roles in various cells, it is important that the Notch inhibitors are specific to particular receptors that are tumorigenic in nature. This review critically evaluates existing Notch inhibitory drugs and strategies and summarizes the previous discoveries, current understandings, and recent developments in support of Notch receptors as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
171
|
Lloyd-Lewis B, Mourikis P, Fre S. Notch signalling: sensor and instructor of the microenvironment to coordinate cell fate and organ morphogenesis. Curr Opin Cell Biol 2019; 61:16-23. [PMID: 31323467 DOI: 10.1016/j.ceb.2019.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
During development, stem cells give rise to specialised cell types in a tightly regulated, spatiotemporal manner to drive the formation of complex three-dimensional tissues. While mechanistic insights into the gene regulatory pathways that guide cell fate choices are emerging, how morphogenetic changes are coordinated with cell fate specification remains a fundamental question in organogenesis and adult tissue homeostasis. The requirement of cell contacts for Notch signalling makes it a central pathway capable of linking dynamic cellular rearrangements during tissue morphogenesis with stem cell function. Here, we highlight recent studies that support a critical role for the Notch pathway in translating microenvironmental cues into cell fate decisions, guiding the development of diverse organ systems.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- Institut Curie, PSL Research University, Inserm, CNRS, Paris, France; Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Philippos Mourikis
- Université Paris Est Créteil, IMRB U955-E10, Inserm, CNRS, Créteil, France
| | - Silvia Fre
- Institut Curie, PSL Research University, Inserm, CNRS, Paris, France; Sorbonne University, UPMC University of Paris VI, Paris, France.
| |
Collapse
|
172
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
173
|
Yu J, Siebel CW, Schilling L, Canalis E. An antibody to Notch3 reverses the skeletal phenotype of lateral meningocele syndrome in male mice. J Cell Physiol 2019; 235:210-220. [PMID: 31188489 DOI: 10.1002/jcp.28960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
Lateral meningocele syndrome (LMS), a genetic disorder characterized by meningoceles and skeletal abnormalities, is associated with NOTCH3 mutations. We created a mouse model of LMS (Notch3tm1.1Ecan ) by introducing a tandem termination codon in the Notch3 locus upstream of the proline (P), glutamic acid (E), serine (S) and threonine (T) domain. Microcomputed tomography demonstrated that Notch3tm1.1Ecan mice exhibit osteopenia. The cancellous bone osteopenia was no longer observed after the intraperitoneal administration of antibodies directed to the negative regulatory region (NRR) of Notch3. The anti-Notch3 NRR antibody suppressed the expression of Hes1, Hey1, and Hey2 (Notch target genes), and decreased Tnfsf11 (receptor activator of NF Kappa B ligand) messenger RNA in Notch3tm1.1Ecan osteoblast (OB) cultures. Bone marrow-derived macrophages (BMMs) from Notch3tm1.1Ecan mutants exhibited enhanced osteoclastogenesis in culture, and this was increased in cocultures with Notch3tm1.1Ecan OB. Osteoclastogenesis was suppressed by anti-Notch3 NRR antibodies in Notch3tm1.1Ecan OB/BMM cocultures. In conclusion, the cancellous bone osteopenia of Notch3tm1.1Ecan mutants is reversed by anti-Notch3 NRR antibodies.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, California
| | - Lauren Schilling
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut
| |
Collapse
|
174
|
Hayward AN, Aird EJ, Gordon WR. A toolkit for studying cell surface shedding of diverse transmembrane receptors. eLife 2019; 8:e46983. [PMID: 31172946 PMCID: PMC6586460 DOI: 10.7554/elife.46983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Proteolysis of transmembrane receptors is a critical cellular communication mechanism dysregulated in disease, yet decoding proteolytic regulation mechanisms of hundreds of shed receptors is hindered by difficulties controlling stimuli and unknown fates of cleavage products. Notch proteolytic regulation is a notable exception, where intercellular forces drive exposure of a cryptic protease site within a juxtamembrane proteolytic switch domain to activate transcriptional programs. We created a Synthetic Notch Assay for Proteolytic Switches (SNAPS) that exploits the modularity and unequivocal input/response of Notch proteolysis to screen surface receptors for other putative proteolytic switches. We identify several new proteolytic switches among receptors with structural homology to Notch. We demonstrate SNAPS can detect shedding in chimeras of diverse cell surface receptors, leading to new, testable hypotheses. Finally, we establish the assay can be used to measure modulation of proteolysis by potential therapeutics and offer new mechanistic insights into how DECMA-1 disrupts cell adhesion.
Collapse
Affiliation(s)
- Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
175
|
Drabek AA, Loparo JJ, Blacklow SC. A Flow-Extension Tethered Particle Motion Assay for Single-Molecule Proteolysis. Biochemistry 2019; 58:2509-2518. [PMID: 30946563 PMCID: PMC6607913 DOI: 10.1021/acs.biochem.9b00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulated proteolysis of signaling proteins under mechanical tension enables cells to communicate with their environment in a variety of developmental and physiologic contexts. The role of force in inducing proteolytic sensitivity has been explored using magnetic tweezers at the single-molecule level with bead-tethered assays, but such efforts have been limited by challenges in ensuring that beads not be restrained by multiple tethers. Here, we describe a multiplexed assay for single-molecule proteolysis that overcomes the multiple-tether problem using a flow-extension strategy on a microscope equipped with magnetic tweezers. Particle tracking and computational sorting of flow-induced displacements allow assignment of tethered substrates to singly captured and multiply tethered bins, with the fraction of fully mobile, single-tether substrates depending inversely on the concentration of substrate loaded on the coverslip. Computational exclusion of multiple-tether beads enables robust assessment of on-target proteolysis by the highly specific tobacco etch virus protease and the more promiscuous metalloprotease ADAM17. This method should be generally applicable to a wide range of proteases and readily extensible to robust evaluation of proteolytic sensitivity as a function of applied magnetic force.
Collapse
Affiliation(s)
- Andrew A. Drabek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J. Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
176
|
Kirkness MWH, Forde NR. Single-Molecule Assay for Proteolytic Susceptibility: Force-Induced Collagen Destabilization. Biophys J 2019; 114:570-576. [PMID: 29414702 DOI: 10.1016/j.bpj.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
Force plays a key role in regulating dynamics of biomolecular structure and interactions, yet techniques are lacking to manipulate and continuously read out this response with high throughput. We present an enzymatic assay for force-dependent accessibility of structure that makes use of a wireless mini-radio centrifuge force microscope to provide a real-time readout of kinetics. The microscope is designed for ease of use, fits in a standard centrifuge bucket, and offers high-throughput, video-rate readout of individual proteolytic cleavage events. Proteolysis measurements on thousands of tethered collagen molecules show a load-enhanced trypsin sensitivity, indicating destabilization of the triple helix.
Collapse
Affiliation(s)
- Michael W H Kirkness
- Department of Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Nancy R Forde
- Department of Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada; Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
177
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
178
|
Hunter GL, He L, Perrimon N, Charras G, Giniger E, Baum B. A role for actomyosin contractility in Notch signaling. BMC Biol 2019; 17:12. [PMID: 30744634 PMCID: PMC6369551 DOI: 10.1186/s12915-019-0625-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Notch-Delta signaling functions across a wide array of animal systems to break symmetry in a sheet of undifferentiated cells and generate cells with different fates, a process known as lateral inhibition. Unlike many other signaling systems, however, since both the ligand and receptor are transmembrane proteins, the activation of Notch by Delta depends strictly on cell-cell contact. Furthermore, the binding of the ligand to the receptor may not be sufficient to induce signaling, since recent work in cell culture suggests that ligand-induced Notch signaling also requires a mechanical pulling force. This tension exposes a cleavage site in Notch that, when cut, activates signaling. Although it is not known if mechanical tension contributes to signaling in vivo, others have suggested that this is how endocytosis of the receptor-ligand complex contributes to the cleavage and activation of Notch. In a similar way, since Notch-mediated lateral inhibition at a distance in the dorsal thorax of the pupal fly is mediated via actin-rich protrusions, it is possible that cytoskeletal forces generated by networks of filamentous actin and non-muscle myosin during cycles of protrusion extension and retraction also contribute to Notch signaling. Results To test this hypothesis, we carried out a detailed analysis of the role of myosin II-dependent tension in Notch signaling in the developing fly and in cell culture. Using dynamic fluorescence-based reporters of Notch, we found that myosin II is important for signaling in signal sending and receiving cells in both systems—as expected if myosin II-dependent tension across the Notch-Delta complex contributes to Notch activation. While myosin II was found to contribute most to signaling at a distance, it was also required for maximal signaling between adjacent cells that share lateral contacts and for signaling between cells in culture. Conclusions Together these results reveal a previously unappreciated role for non-muscle myosin II contractility in Notch signaling, providing further support for the idea that force contributes to the cleavage and activation of Notch in the context of ligand-dependent signaling, and a new paradigm for actomyosin-based mechanosensation. Electronic supplementary material The online version of this article (10.1186/s12915-019-0625-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ginger L Hunter
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA. .,MRC-LMCB, University College London, London, WC1E6BT, UK. .,Institute for the Physics of Living Systems, University College London, London, WC1E6BT, UK. .,Present Address: Department of Biology, Clarkson University, Potsdam, NY, 13699, USA.
| | - Li He
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, WC1E6BT, UK.,Department of Cell and Developmental Biology, University College London, London, WC1E6BT, UK
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA.
| | - Buzz Baum
- MRC-LMCB, University College London, London, WC1E6BT, UK.,Institute for the Physics of Living Systems, University College London, London, WC1E6BT, UK
| |
Collapse
|
179
|
Henrique D, Schweisguth F. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development 2019; 146:146/3/dev172148. [PMID: 30709911 DOI: 10.1242/dev.172148] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most cells in our body communicate during development and throughout life via Notch receptors and their ligands. Notch receptors relay information from the cell surface to the genome via a very simple mechanism, yet Notch plays multiple roles in development and disease. Recent studies suggest that this versatility in Notch function may not necessarily arise from complex and context-dependent integration of Notch signaling with other developmental signals, but instead arises, in part, from signaling dynamics. Here, we review recent findings on the core Notch signaling mechanism and discuss how spatial-temporal dynamics contribute to Notch signaling output.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Histologia e Biologia do Desenvolvimento and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egaz Moniz, 1649-028 Lisboa, Portugal
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France .,CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
180
|
Holdener BC, Haltiwanger RS. Protein O-fucosylation: structure and function. Curr Opin Struct Biol 2019; 56:78-86. [PMID: 30690220 DOI: 10.1016/j.sbi.2018.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Fucose is a common terminal modification on protein and lipid glycans. Fucose can also be directly linked to protein via an O-linkage to Serine or Threonine residues located within consensus sequences contained in Epidermal Growth Factor-like (EGF) repeats and Thrombospondin Type 1 Repeats (TSRs). In this context, fucose is added exclusively to properly folded EGF repeats and TSRs by Protein O-fucosyltransferases 1 and 2, respectively. In both cases, the O-linked fucose can also be elongated with other sugars. Here, we describe the biological importance of these O-fucose glycans and molecular mechanisms by which they affect the function of the proteins they modify. O-Fucosylation of EGF repeats modulates the Notch signaling pathway, while O-fucosylation of TSRs is predicted to influence secretion of targets including several extracellular proteases. Recent data show O-fucose glycans mediate their effects by participating in both intermolecular and intramolecular interactions.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
181
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
182
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
183
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
184
|
Zheng G, Kalinin AA, Dinov ID, Meixner W, Zhu S, Wiley JW. Hypothesis: Caco-2 cell rotational 3D mechanogenomic turing patterns have clinical implications to colon crypts. J Cell Mol Med 2018; 22:6380-6385. [PMID: 30255651 PMCID: PMC6237597 DOI: 10.1111/jcmm.13853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/29/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Colon crypts are recognized as a mechanical and biochemical Turing patterning model. Colon epithelial Caco-2 cell monolayer demonstrated 2D Turing patterns via force analysis of apical tight junction live cell imaging which illuminated actomyosin meshwork linking the actomyosin network of individual cells. Actomyosin forces act in a mechanobiological manner that alters cell/nucleus/tissue morphology. We observed the rotational motion of the nucleus in Caco-2 cells that appears to be driven by actomyosin during the formation of a differentiated confluent epithelium. Single- to multi-cell ring/torus-shaped genomes were observed prior to complex fractal Turing patterns extending from a rotating torus centre in a spiral pattern consistent with a gene morphogen motif. These features may contribute to the well-described differentiation from stem cells at the crypt base to the luminal colon epithelium along the crypt axis. This observation may be useful to study the role of mechanogenomic processes and the underlying molecular mechanisms as determinants of cellular and tissue architecture in space and time, which is the focal point of the 4D nucleome initiative. Mathematical and bioengineer modelling of gene circuits and cell shapes may provide a powerful algorithm that will contribute to future precision medicine relevant to a number of common medical disorders.
Collapse
Affiliation(s)
- Gen Zheng
- Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Alexandr A. Kalinin
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMichigan
- Statistics Online Computational Resource (SOCR)University of Michigan School of NursingAnn ArborMichigan
| | - Ivo D. Dinov
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMichigan
- Statistics Online Computational Resource (SOCR)University of Michigan School of NursingAnn ArborMichigan
- Michigan Institute for Data Science (MIDAS)University of MichiganAnn ArborMichigan
| | - Walter Meixner
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Shengtao Zhu
- Department of Digestive DiseasesBeijing Friendship HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medical Research of Digestive DiseasesBeijingChina
| | - John W. Wiley
- Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
| |
Collapse
|
185
|
Paolini A, Abdelilah-Seyfried S. The mechanobiology of zebrafish cardiac valve leaflet formation. Curr Opin Cell Biol 2018; 55:52-58. [DOI: 10.1016/j.ceb.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
|
186
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
187
|
Gera S, Dighe RR. The soluble ligand Y box-1 activates Notch3 receptor by binding to epidermal growth factor like repeats 20-23. Arch Biochem Biophys 2018; 660:129-136. [PMID: 30321499 DOI: 10.1016/j.abb.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022]
Abstract
The transduction of signal by the Notch receptors to the intracellular domain is highly regulated and relies on binding of the ligands to the Epidermal growth factor Like Repeats (ELRs) of receptor's extracellular domain. Both canonical and non-canonical ligands are known to interact with different ELRs and activate Notch receptors. The aim of this study was to investigate the interaction of a soluble non-canonical ligand, Y box-1 (Yb-1) with Notch3 receptor ELRs. Polyclonal antibodies were employed as novel tools to identify the binding site of this ligand. Using various ligand binding and signaling assays, soluble Yb-1 was found to interact specifically with the Notch3 receptor, but not with Notch1. The ELRs 17-24 of Notch3 were identified as the binding site for Yb-1. Further, Yb-1 and Notch3 ELRs 17-24 structures were modelled and the Yb-1-Notch3 interaction interface was predicted to be Notch3 ELRs 20-23. Binding of the Yb-1 with Notch3 ELRs different from those reported for canonical DSL ligands also transduced the signal to the intracellular domain through the negative regulatory region. In conclusion, study highlights the importance of molecular modifications in different Notch3 ELRs for the transduction of signal to the negative regulatory region.
Collapse
Affiliation(s)
- Sakshi Gera
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Rajan R Dighe
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
188
|
Baron M. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Membr Biol 2018; 34:33-49. [PMID: 30246579 DOI: 10.1080/09687688.2018.1503742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch is a conserved cell signalling receptor regulating many aspects of development and tissue homeostasis. Notch is activated by ligand-induced proteolytic cleavages that release the Notch intracellular domain, which relocates to the nucleus to regulate gene transcription. Proteolytic activation first requires mechanical force to be applied to the Notch extracellular domain through an endocytic pulling mechanism transmitted through the ligand/receptor interface. This exposes the proteolytic cleavage site allowing the signal to be initiated following removal of the Notch extracellular domain. Ligands can also act, when expressed in the same cell, through non-productive cis-interactions to inhibit Notch activity. Furthermore, ligand selectivity and Notch activation are regulated by numerous post-translational modifications of the extracellular domain. Additional non-canonical trans and cis interactions with other regulatory proteins may modulate alternative mechanisms of Notch activation that depend on endocytic trafficking of the full-length receptor and proteolytic release of the intracellular domain from endo-lysosomal surface. Mutations of Notch, located in different regions of the protein, are associated with a spectrum of different loss and gain of function phenotypes and offer the possibility to dissect distinct regulatory interactions and mechanisms, particularly when combined with detailed structural analysis of Notch in complex with various regulatory partners.
Collapse
Affiliation(s)
- Martin Baron
- a School of Biological Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
189
|
|
190
|
Kelliher MA, Roderick JE. NOTCH Signaling in T-Cell-Mediated Anti-Tumor Immunity and T-Cell-Based Immunotherapies. Front Immunol 2018; 9:1718. [PMID: 30967879 PMCID: PMC6109642 DOI: 10.3389/fimmu.2018.01718] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
The NOTCH (1–4) family of receptors are highly conserved and are critical in regulating many developmental processes and in the maintenance of tissue homeostasis. Our laboratory and numerous others have demonstrated that aberrant NOTCH signaling is oncogenic in several different cancer types. Conversely, there is also evidence that NOTCH can also function as a tumor suppressor. In addition to playing an essential role in tumor development, NOTCH receptors regulate T-cell development, maintenance, and activation. Recent studies have determined that NOTCH signaling is required for optimal T-cell-mediated anti-tumor immunity. Consequently, tumor cells and the tumor microenvironment have acquired mechanisms to suppress NOTCH signaling to evade T-cell-mediated killing. Tumor-mediated suppression of NOTCH signaling in T-cells can be overcome by systemic administration of NOTCH agonistic antibodies and ligands or proteasome inhibitors, resulting in sustained NOTCH signaling and T-cell activation. In addition, NOTCH receptors and ligands are being utilized to improve the generation and specificity of T-cells for adoptive transplant immunotherapies. In this review, we will summarize the role(s) of NOTCH signaling in T-cell anti-tumor immunity as well as TCR- and chimeric antigen receptor-based immunotherapies.
Collapse
Affiliation(s)
- Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Justine E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
191
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
192
|
Chan CJ, Heisenberg CP, Hiiragi T. Coordination of Morphogenesis and Cell-Fate Specification in Development. Curr Biol 2018; 27:R1024-R1035. [PMID: 28950087 DOI: 10.1016/j.cub.2017.07.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development.
Collapse
Affiliation(s)
- Chii J Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
193
|
Lee J, Vedula V, Baek KI, Chen J, Hsu JJ, Ding Y, Chang CC, Kang H, Small A, Fei P, Chuong CM, Li R, Demer L, Packard RRS, Marsden AL, Hsiai TK. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation. JCI Insight 2018; 3:96672. [PMID: 29997298 PMCID: PMC6124527 DOI: 10.1172/jci.insight.96672] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/18/2018] [Indexed: 11/17/2022] Open
Abstract
Hemodynamic shear force has been implicated as modulating Notch signaling-mediated cardiac trabeculation. Whether the spatiotemporal variations in wall shear stress (WSS) coordinate the initiation of trabeculation to influence ventricular contractile function remains unknown. Using light-sheet fluorescent microscopy, we reconstructed the 4D moving domain and applied computational fluid dynamics to quantify 4D WSS along the trabecular ridges and in the groves. In WT zebrafish, pulsatile shear stress developed along the trabecular ridges, with prominent endocardial Notch activity at 3 days after fertilization (dpf), and oscillatory shear stress developed in the trabecular grooves, with epicardial Notch activity at 4 dpf. Genetic manipulations were performed to reduce hematopoiesis and inhibit atrial contraction to lower WSS in synchrony with attenuation of oscillatory shear index (OSI) during ventricular development. γ-Secretase inhibitor of Notch intracellular domain (NICD) abrogated endocardial and epicardial Notch activity. Rescue with NICD mRNA restored Notch activity sequentially from the endocardium to trabecular grooves, which was corroborated by observed Notch-mediated cardiomyocyte proliferations on WT zebrafish trabeculae. We also demonstrated in vitro that a high OSI value correlated with upregulated endothelial Notch-related mRNA expression. In silico computation of energy dissipation further supports the role of trabeculation to preserve ventricular structure and contractile function. Thus, spatiotemporal variations in WSS coordinate trabecular organization for ventricular contractile function.
Collapse
Affiliation(s)
- Juhyun Lee
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
- Joint Department of Bioengineering, University of Texas at Arlington/University of Texas Southwestern Medical Center, Arlington, Texas, USA
| | - Vijay Vedula
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, California, USA
| | - Kyung In Baek
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Junjie Chen
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Yichen Ding
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Chih-Chiang Chang
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Hanul Kang
- Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Adam Small
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng-ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | - Rongsong Li
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - Linda Demer
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
- Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Alison L. Marsden
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, California, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine and Bioengineering, UCLA, Los Angeles, California, USA
- Joint Department of Bioengineering, University of Texas at Arlington/University of Texas Southwestern Medical Center, Arlington, Texas, USA
- Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Medical Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
194
|
Tague EP, Dotson HL, Tunney SN, Sloas DC, Ngo JT. Chemogenetic control of gene expression and cell signaling with antiviral drugs. Nat Methods 2018; 15:519-522. [PMID: 29967495 DOI: 10.1038/s41592-018-0042-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/24/2018] [Indexed: 02/04/2023]
Abstract
We developed a method in which the NS3 cis-protease from hepatitis C virus can be used as a ligand-inducible connection to control the function and localization of engineered proteins in mammalian cells. To demonstrate the versatility of this approach, we designed drug-sensitive transcription factors and transmembrane signaling proteins, the activities of which can be tightly and reversibly controlled through the use of clinically tested antiviral protease inhibitors.
Collapse
Affiliation(s)
- Elliot P Tague
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Hannah L Dotson
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Shannon N Tunney
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - D Christopher Sloas
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - John T Ngo
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
195
|
Meester J, Verstraeten A, Alaerts M, Schepers D, Van Laer L, Loeys B. Overlapping but distinct roles for NOTCH receptors in human cardiovascular disease. Clin Genet 2018; 95:85-94. [DOI: 10.1111/cge.13382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Affiliation(s)
- J.A.N. Meester
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - A. Verstraeten
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - M. Alaerts
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - D. Schepers
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - L. Van Laer
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - B.L. Loeys
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
- Department of GeneticsRadboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
196
|
Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc Natl Acad Sci U S A 2018; 115:E5696-E5705. [PMID: 29866846 DOI: 10.1073/pnas.1719961115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed pronounced effects of the spatial distribution of EphA2 receptors on cellular response to receptor activation. However, little is known about molecular mechanisms underlying this spatial sensitivity, in part due to lack of experimental systems. Here, we introduce a hybrid live-cell patterned supported lipid bilayer experimental platform in which the sites of EphA2 activation and integrin adhesion are spatially controlled. Using a series of live-cell imaging and single-molecule tracking experiments, we map the transmission of signals from ephrinA1:EphA2 complexes. Results show that ligand-dependent EphA2 activation induces localized myosin-dependent contractions while simultaneously increasing focal adhesion dynamics throughout the cell. Mechanistically, Src kinase is activated at sites of ephrinA1:EphA2 clustering and subsequently diffuses on the membrane to focal adhesions, where it up-regulates FAK and paxillin tyrosine phosphorylation. EphrinA1:EphA2 signaling triggers multiple cellular responses with differing spatial dependencies to enable a directed migratory response to spatially resolved contact with ephrinA1 ligands.
Collapse
|
197
|
Steinbuck MP, Winandy S. A Review of Notch Processing With New Insights Into Ligand-Independent Notch Signaling in T-Cells. Front Immunol 2018; 9:1230. [PMID: 29910816 PMCID: PMC5992298 DOI: 10.3389/fimmu.2018.01230] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein essential to a wide spectrum of cellular systems, and its deregulation has been linked to a vast number of developmental disorders and malignancies. Regulated Notch function is critical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. Notch activation through trans-activation of the receptor by one of its ligands expressed on adjacent cells has been well defined. In this canonical ligand-dependent pathway, Notch receptor undergoes conformational changes upon ligand engagement, stimulated by a pulling-force on the extracellular fragment of Notch that results from endocytosis of the receptor-bound ligand into the ligand-expressing cell. These conformational changes in the receptor allow for two consecutive proteolytic cleavage events to occur, which release the intracellular region of the receptor into the cytoplasm. It can then travel to the nucleus, where it induces gene transcription. However, there is accumulating evidence that other pathways may induce Notch signaling. A ligand-independent mechanism of Notch activation has been described in which receptor processing is initiated via cell-internal signals. These signals result in the internalization of Notch into endosomal compartments, where chemical changes existing in this microenvironment result in the conformational modifications required for receptor processing. This review will present mechanisms underlying both canonical ligand-dependent and non-canonical ligand-independent Notch activation pathways and discuss the latter in the context of Notch signaling in T-cells.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Susan Winandy
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
198
|
Hiscock TW, Miesfeld JB, Mosaliganti KR, Link BA, Megason SG. Feedback between tissue packing and neurogenesis in the zebrafish neural tube. Development 2018; 145:dev.157040. [PMID: 29678815 DOI: 10.1242/dev.157040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/03/2018] [Indexed: 01/22/2023]
Abstract
Balancing the rate of differentiation and proliferation in developing tissues is essential to produce organs of robust size and composition. Although many molecular regulators have been established, how these connect to physical and geometrical aspects of tissue architecture is poorly understood. Here, using high-resolution timelapse imaging, we find that changes to cell geometry associated with dense tissue packing play a significant role in regulating differentiation rate in the zebrafish neural tube. Specifically, progenitors that are displaced away from the apical surface due to crowding, tend to differentiate in a Notch-dependent manner. Using simulations we show that interplay between progenitor density, cell shape and changes in differentiation rate could naturally result in negative-feedback control on progenitor cell number. Given these results, we suggest a model whereby differentiation rate is regulated by density dependent effects on cell geometry to: (1) correct variability in cell number; and (2) balance the rates of proliferation and differentiation over development to 'fill' the available space.
Collapse
Affiliation(s)
- Tom W Hiscock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
199
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
200
|
Affiliation(s)
- Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School and the Department of Cancer Biology at the Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|