151
|
Regionalization and Shaping Factors for Microbiomes and Core Resistomes in Atmospheric Particulate Matters. mSystems 2022; 7:e0069822. [PMID: 36154139 PMCID: PMC9600985 DOI: 10.1128/msystems.00698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) seriously threatens public health by reducing antibiotic effectiveness in curing bacterial infections. Atmospheric particulate matter (APM) is a common environmental hazard that affects human health by causing various diseases and disseminating bacterial pathogenesis, of which pathogenic bacteria and AMR are essential parts. The properties of APM microbiomes and resistomes, along with their shaping factors and mutual relationships, need further examination. To address this, we analyzed APMs collected from 13 cities within four clusters (North and South China, Inner Mongolia, and Tibet). Significant regionalization was found for both the microbiomes (P < 0.001) and core resistomes (P < 0.001) for APMs, with statistical analyses showing significant differences in different regions. Principal coordinate analysis (PCoA) and accompanying ANOSIM analyses showed that microbiomes and core resistomes followed the same regional subclustering hierarchy patterns. This finding, together with response analysis of APM microbiomes and core resistomes to environmental parameters that showed similar response patterns, as well as Procrustes analysis (M2 = 0.963, P < 0.05) between APM microbiomes and core resistomes, strongly suggested that APM microbiomes and core resistomes are correlated. Co-occurrence network analysis further revealed key taxa and antimicrobial resistance determinants in the interactions between APM microbiomes and core resistomes. Thus, it was concluded that APM microbiome and resistome compositions were highly regional, that environmental pollutants and APM levels impacted APM microbiomes and resistomes, and that microbiomes and resistomes in APMs are significantly correlated (P < 0.05). IMPORTANCE Bacteria associated with atmospheric particulate matter (APMs) can transmit over long distances. A large portion of these bacteria can potentially threaten human health. The antimicrobial resistance (AMR) of pathogenic bacteria carried by APMs prevents curing from infections. Therefore, both the pathogenic bacteria in APMs and their AMR are receiving more attention. The literature suggests a knowledge gap that exists for bacterial AMR and bacterial pathogenesis in APMs, including their distribution patterns, mutual relationships, and factors influencing their compositions. This work aimed to bridge this knowledge gap by studying APM samples collected from 13 cities. The results demonstrated that both bacteria and antibiotic resistance determinants were highly regional and that their composition patterns were significantly correlated, and influenced by the same group of environmental factors. This study thus determined the relationship between the two important aspects of bacterial pathogenesis in APMs and represents significant progress in understanding bacterial pathogenesis in APMs.
Collapse
|
152
|
马 麟, 吴 静, 李 双, 李 鹏, 张 路. [Effect of modification of antihypertensive medications on the association of nitrogen dioxide long-term exposure and chronic kidney disease]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:1047-1055. [PMID: 36241250 PMCID: PMC9568383 DOI: 10.19723/j.issn.1671-167x.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the potential effect of modification of antihypertensive medications on the association of nitrogen dioxide (NO2) long-term exposure and chronic kidney disease (CKD). METHODS Data of the national representative sample of adult population from the China National Survey of Chronic Kidney Disease (2007-2010) were included in the analyses, and exposure data of NO2 were collected and matched. Generalized mixed-effects models were used to analyze the associations between NO2 and CKD, stratified by the presence of hypertension and taking antihypertensive medications. The stratified exposure-response curves of NO2 and CKD were fitted using the natural spine smoothing function. The modifying effects of antihypertensive medications on the association and the exposure-response curve of NO2 and CKD were analyzed. RESULTS Data of 45 136 participants were included, with an average age of (49.5±15.3) years. The annual average exposure concentration of NO2 was (7.2±6.4) μg/m3. Altogether 6 517 (14.4%) participants were taking antihypertensive medications, and 4 833 (10.7%) participants were identified as having CKD. After adjustment for potential confounders, in the hypertension population not using antihypertensive medications, long-term exposure to NO2 was associated with a significant increase risk of CKD (OR: 1.38, 95%CI: 1.24-1.54, P < 0.001); while in the hypertension population using antihypertensive medications, no significant association between long-term exposure to NO2 and CKD (OR: 0.96, 95%CI: 0.86-1.07, P=0.431) was observed. The exposure-response curve of NO2 and CKD suggested that there was a non-linear trend in the association between NO2 and CKD. The antihypertension medications showed significant modifying effects both on the association and the exposure-response curve of NO2 and CKD (interaction P < 0.001). CONCLUSION The association between long-term exposure to NO2 and CKD was modified by antihypertensive medications. Taking antihypertensive medications may mitigate the effect of long-term exposure to NO2 on CKD.
Collapse
Affiliation(s)
- 麟 马
- 北京大学医学部学科建设办公室, 北京 100191Office of Development Planning and Academic Development, Peking University, Beijing 100191, China
| | - 静依 吴
- 浙江省北大信息技术高等研究院, 杭州 311215Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - 双成 李
- 北京大学地表过程分析与模拟教育部重点实验室, 北京大学城市与环境学院, 北京 100871Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - 鹏飞 李
- 浙江省北大信息技术高等研究院, 杭州 311215Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
- 北京大学健康医疗大数据国家研究院, 北京 100191National Institute of Health Data Science, Peking University, Beijing 100191, China
| | - 路霞 张
- 浙江省北大信息技术高等研究院, 杭州 311215Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
- 北京大学健康医疗大数据国家研究院, 北京 100191National Institute of Health Data Science, Peking University, Beijing 100191, China
- 北京大学第一医院肾内科, 北京大学肾脏病研究所, 北京 100034Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
| |
Collapse
|
153
|
Jeemon P, Harikrishnan S. Systolic blood pressure and cardiovascular health. Nat Med 2022; 28:2003-2004. [PMID: 36216944 DOI: 10.1038/s41591-022-02005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Panniyammakal Jeemon
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India.
| | | |
Collapse
|
154
|
Mei Y, Zhao J, Zhou Q, Zhao M, Xu J, Li Y, Li K, Xu Q. Residential greenness attenuated association of long-term air pollution exposure with elevated blood pressure: Findings from polluted areas in Northern China. Front Public Health 2022; 10:1019965. [PMID: 36249254 PMCID: PMC9557125 DOI: 10.3389/fpubh.2022.1019965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
Background Evidence on the hypertensive effects of long-term air pollutants exposure are mixed, and the joint hypertensive effects of air pollutants are also unclear. Sparse evidence exists regarding the modifying role of residential greenness in such effects. Methods A cross-sectional study was conducted in typically air-polluted areas in northern China. Particulate matter with diameter < 1 μm (PM1), particulate matter with diameter < 2.5 μm (PM2.5), particulate matter with diameter < 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were predicted by space-time extremely randomized trees model. We used the Normalized Difference Vegetation Index (NDVI) to reflect residential green space. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were examined. We also calculated the pulse pressure (PP) and mean arterial pressure (MAP). Generalized additive model and quantile g-computation were, respectively, conducted to investigate individual and joint effects of air pollutants on blood pressure. Furthermore, beneficial effect of NDVI and its modification effect were explored. Results Long-term air pollutants exposure was associated with elevated DBP and MAP. Specifically, we found a 10-μg/m3 increase in PM2.5, PM10, and SO2 were associated with 2.36% (95% CI: 0.97, 3.76), 1.51% (95% CI: 0.70, 2.34), and 3.54% (95% CI: 1.55, 5.56) increase in DBP; a 10-μg/m3 increase in PM2.5, PM10, and SO2 were associated with 1.84% (95% CI: 0.74, 2.96), 1.17% (95% CI: 0.52, 1.83), and 2.43% (95% CI: 0.71, 4.18) increase in MAP. Air pollutants mixture (one quantile increase) was positively associated with increased values of DBP (8.22%, 95% CI: 5.49, 11.02) and MAP (4.15%, 95% CI: 2.05, 6.30), respectively. These identified harmful effect of air pollutants mainly occurred among these lived with low NDVI values. And participants aged ≥50 years were more susceptible to the harmful effect of PM2.5 and PM10 compared to younger adults. Conclusions Our study indicated the harmful effect of long-term exposure to air pollutants and these effects may be modified by living within higher green space place. These evidence suggest increasing residential greenness and air pollution control may have simultaneous effect on decreasing the risk of hypertension.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Qun Xu
| |
Collapse
|
155
|
Gerdts E, Sudano I, Brouwers S, Borghi C, Bruno RM, Ceconi C, Cornelissen V, Diévart F, Ferrini M, Kahan T, Løchen ML, Maas AHEM, Mahfoud F, Mihailidou AS, Moholdt T, Parati G, de Simone G. Sex differences in arterial hypertension. Eur Heart J 2022; 43:4777-4788. [PMID: 36136303 PMCID: PMC9726450 DOI: 10.1093/eurheartj/ehac470] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/17/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
There is strong evidence that sex chromosomes and sex hormones influence blood pressure (BP) regulation, distribution of cardiovascular (CV) risk factors and co-morbidities differentially in females and males with essential arterial hypertension. The risk for CV disease increases at a lower BP level in females than in males, suggesting that sex-specific thresholds for diagnosis of hypertension may be reasonable. However, due to paucity of data, in particularly from specifically designed clinical trials, it is not yet known whether hypertension should be differently managed in females and males, including treatment goals and choice and dosages of antihypertensive drugs. Accordingly, this consensus document was conceived to provide a comprehensive overview of current knowledge on sex differences in essential hypertension including BP development over the life course, development of hypertension, pathophysiologic mechanisms regulating BP, interaction of BP with CV risk factors and co-morbidities, hypertension-mediated organ damage in the heart and the arteries, impact on incident CV disease, and differences in the effect of antihypertensive treatment. The consensus document also highlights areas where focused research is needed to advance sex-specific prevention and management of hypertension.
Collapse
Affiliation(s)
| | - Isabella Sudano
- University Hospital Zurich University Heart Center, Cardiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sofie Brouwers
- Department of Cardiology, Cardiovascular Center Aalst, OLV Clinic Aalst, Aalst, Belgium,Department of Experimental Pharmacology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rosa Maria Bruno
- Université de Paris Cité, Inserm, PARCC, Paris, France,Service de Pharamcologie, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Claudio Ceconi
- University of Cardiologia, ASST Garda, Desenzano del Garda, Italy
| | | | | | - Marc Ferrini
- Department of Cardiology and Vascular Pathology, CH Saint Joseph and Saint Luc, Lyon, France
| | - Thomas Kahan
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Stockholm, Sweden
| | - Maja-Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Anastasia S Mihailidou
- Department of Cardiology and Kolling Institute, Royal North Shore Hospital, St Leonards, UK,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gianfranco Parati
- Department of Cardiac, Neural and Metabolic Sciences, Instituto Auxologico Italiano, IRCCS, Milan, Italy,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
156
|
Li L, Zhu Y, Han B, Chen R, Man X, Sun X, Kan H, Lei Y. Acute exposure to air pollutants increase the risk of acute glaucoma. BMC Public Health 2022; 22:1782. [PMID: 36127653 PMCID: PMC9487138 DOI: 10.1186/s12889-022-14078-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ambient air pollution is related to the onset and progression of ocular disease. However, the effect of air pollutants on the acute glaucoma remains unclear. Objective To investigate the effect of air pollutants on the incidence of acute glaucoma (acute angle closure glaucoma and glaucomatocyclitic crisis) among adults. Methods We conducted a time-stratified case-crossover study based on the data of glaucoma outpatients from January, 2015 to Dec, 2021 in Shanghai, China. A conditional logistic regression model combined with a polynomial distributed lag model was applied for the statistical analysis. Each case serves as its own referent by comparing exposures on the day of the outpatient visit to the exposures on the other 3–4 control days on the same week, month and year. To fully capture the delayed effect of air pollution, we used a maximum lag of 7 days in main model. Results A total of 14,385 acute glaucoma outpatients were included in this study. We found exposure to PM2.5, PM10, nitrogen dioxide (NO2) and carbon monoxide (CO) significantly increased the odds of outpatient visit for acute glaucoma. Wherein the odds of acute glaucoma related to PM2.5 and NO2 were higher and more sustained, with OR of 1.07 (95%CI: 1.03–1.11) and 1.12 (95% CI: 1.08–1.17) for an IQR increase over lag 0–3 days, than PM10 and CO over lag 0–1 days (OR:1.03; 95% CI: 1.01–1.05; OR: 1.04; 95% CI: 1.01–1.07). Conclusions This case-crossover study provided first-hand evidence that air pollutants, especially PM2.5 and NO2, significantly increased risk of acute glaucoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-14078-9.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China
| | - Binze Han
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China.,Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China
| | - Xiaofei Man
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai, 200032, China. .,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
157
|
Zheng XY, Tang SL, Liu T, Wang Y, Xu XJ, Xiao N, Li C, Xu YJ, He ZX, Ma SL, Chen YL, Meng RL, Lin LF. Effects of long-term PM 2.5 exposure on metabolic syndrome among adults and elderly in Guangdong, China. Environ Health 2022; 21:84. [PMID: 36088422 PMCID: PMC9464395 DOI: 10.1186/s12940-022-00888-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND We aimed to explore the association between long-term exposure to particulate matter ≤ 2.5 µm (PM2.5) and metabolic syndrome (MetS) and its components including fasting blood glucose (FBG), blood pressure, triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and waist circumference among adults and elderly in south China. METHODS We surveyed 6628 participants in the chronic disease and risk factors surveillance conducted in 14 districts of Guangdong province in 2015. MetS was defined based on the recommendation by the Joint Interim Societies' criteria. We used the spatiotemporal land-use regression (LUR) model to estimate the two-year average exposure of ambient air pollutants (PM2.5, PM10, SO2, NO2, and O3) at individual levels. We recorded other covariates by using a structured questionnaire. Generalized linear mixed model was used for analysis. RESULTS A 10-μg/m3 increase in the two-year mean PM2.5 exposure was associated with a higher risk of developing MetS [odd ratio (OR): 1.17, 95% confidence interval (CI): 1.01, 1.35], increased risk of fasting blood glucose level. (OR: 1.18, 95% CI: 1.02, 1.36), and hypertriglyceridemia (OR: 1.36, 95% CI: 1.18, 1.58) in the adjusted/unadjusted models (all P < 0.05). We found significant interaction between PM2.5 and the region, exercise on the high TG levels, and an interaction with the region, age, exercise and grain consumption on FBG (P interaction < 0.05). CONCLUSIONS Long-term exposure to PM2.5 was associated with MetS, dyslipidemia and FBG impairment. Efforts should be made for environment improvement to reduce the burden of MetS-associated non-communicable disease.
Collapse
Affiliation(s)
- Xue-yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Si-li Tang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Liu
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
| | - Ye Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Xiao-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Ni Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Yan-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Zhao-xuan He
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Shu-li Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-liang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rui-lin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Li-feng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
158
|
Niu Z, Duan Z, Wei J, Wang F, Han D, Zhang K, Jing Y, Wen W, Qin W, Yang X. Associations of long-term exposure to ambient ozone with hypertension, blood pressure, and the mediation effects of body mass index: A national cross-sectional study of middle-aged and older adults in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113901. [PMID: 35870345 DOI: 10.1016/j.ecoenv.2022.113901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The associations between long-term exposure to ozone (O3) and respiratory diseases are well established. However, its association with cardiovascular disease (CVD) remains controversial. In this study, we examined the associations between O3 and the prevalence of hypertension and blood pressure, and the mediation effects of body mass index (BMI) in Chinese middle-aged and older adults. METHODS In this national cross-sectional study, we estimated the O3 exposure of 12,028 middle-aged and older adults from 126 county-level cities in China, using satellite-based spatiotemporal models. Generalized linear mixed models were used to evaluate the associations of long-term exposure to O3 with hypertension and blood pressure, including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure (PP). Mediation effect models were applied to examine the mediation effects of BMI among O3-induced hypertension and elevated blood pressure. RESULTS Each 10 μg/m3 increase in O3 concentration was significantly associated with an increase of 13.7% (95% confidence interval (CI): 4.8%, 23.3%) in the prevalence of hypertension, an increase of 1.128 mmHg (95% CI: 0.248, 2.005), 0.679 mmHg (95% CI: 0.059, 1.298), 0.820 mmHg (95%CI: 0.245, 1.358) in SBP, DBP, and MAP, respectively. Mediation effect models showed that BMI played 40.08%, 37.25%, 39.95%, and 33.51% mediation roles in the effects of long-term exposure to O3 on hypertension, SBP, DBP, and MAP, respectively. CONCLUSIONS Long-term exposure to O3 can increase the prevalence of hypertension and blood pressure levels of middle-aged and older adults, and an increase of BMI would be an important modification effect for O3-induced hypertension and blood pressure increase.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Fuli Wang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Yuming Jing
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
159
|
Li B, Cao H, Liu K, Xia J, Sun Y, Peng W, Xie Y, Guo C, Liu X, Wen F, Zhang F, Shan G, Zhang L. Associations of long-term ambient air pollution and traffic-related pollution with blood pressure and hypertension defined by the different guidelines worldwide: the CHCN-BTH study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63057-63070. [PMID: 35449329 DOI: 10.1007/s11356-022-20227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the generalization of the strict hypertension definition in the 2017 ACC/AHA Hypertension Guideline from environmental condition remains sparse. The aims of this study are to investigate and compare the associations of ambient air pollution and traffic-related pollution (TRP) with hypertension defined by the different criteria. A total of 32,135 participants were recruited from the baseline survey of the CHCN-BTH in 2017. We defined hypertension as SBP/DBP ≥ 140/90 mmHg according to the hypertension guidelines in China, Japan, Europe and ISH (traditional criteria) and defined as SBP/DBP ≥ 130/80 mmHg according to the 2017 ACC/AHA Hypertension Guideline (strict criteria). A two-level generalized linear mixed models were applied to investigate the associations of air pollutants (i.e. PM2.5, SO2, NO2) and TRP with blood pressure (BP) measures and hypertension. Stratified analyses and two-pollutant models were also performed. The stronger associations of air pollutants were found in the hypertension defined by the strict criteria than that defined by the traditional criteria. The ORs per an IQR increase in PM2.5 were 1.17 (95% CI: 1.09, 1.25) for the strict criteria and 1.14 (95% CI: 1.06, 1.23) for the traditional criteria. The similar conditions were also observed for TRP. The above results were robust in both stratified analyses and two-pollutant models. Our study assessed the significance of the hypertension defined by the strict criteria from environmental aspect and called attention to the more adverse effects of air pollution and TRP on the earlier stage of hypertension.
Collapse
Affiliation(s)
- Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
160
|
Lin YCD, Cai Y, Huang HY, Liang D, Li J, Tang Y, Hong HC, Yan Q, Huang HD, Li Z. Air pollution and blood pressure in the elderly: evidence from a panel study in Nanjing, China. Heliyon 2022; 8:e10539. [PMID: 36132186 PMCID: PMC9483594 DOI: 10.1016/j.heliyon.2022.e10539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background Air pollution is known to have notable negative effects on human health. Recently, the effect of air pollution on blood pressure among the elderly has attracted researchers’ attention. However, the existing evidence is not consistent, given that positive, null, and negative outcomes are presented in the literature. In this study, we investigated the relationship between blood pressure (BP) and indices of air pollutants (PM2.5, PM10, and air quality index) in a specific elderly population through a panel study to address this knowledge gap. Methods We obtained repeated BP measurements from January 2017 to May 2019 in a panel of 619 elderly with a total of 5106 records in Nanjing, China. Data on daily indices of ambient air pollutants, including fine particulate matter with an aerodynamic diameter of ≤ 2.5μ m (PM2.5), ≤ 10μ m (PM10), and air quality index (AQI) of the same period were obtained. We evaluated the association between BP and average concentrations of air pollutants in the past one-week, two-week, and four-week lags before measuring the BP. The non-linear panel regression models were used with fixed- and mixed-effects to control age, gender, and temperature. Results In the non-linear panel fixed-effects model, the average concentration of PM2.5 is significantly associated with systolic BP (SBP) at all lags but is only significantly correlated with diastolic BP (DBP) at a one-week lag. An interquartile range (IQR) increase of one-week average moving PM2.5 (38.86 μg/m3) of our sample increases the SBP and DBP by 7.68% and 6.9%, respectively. PM10 shows the same pattern of effect on BP as PM2.5. AQI shows less significant associations with BP. In the non-linear mixed-effects model, the average concentrations of PM2.5 and PM10 are significantly associated with SBP at all lags but have no significant effect on DBP at one- and two-week lags. AQI is only significantly associated with DBP at a one-week lag. Conclusions Exposures to ambient particulate matter (PM2.5 and PM10) were associated with increased BP among older people, indicating a potential link between air pollution and the high prevalence of hypertension. Air pollution is a well-recognized risk factor for future cardiovascular diseases and should be reduced to prevent hypertension among the elderly.
Collapse
Affiliation(s)
- Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yutong Cai
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30329, United States
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Qiting Yan
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhaoyuan Li
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
161
|
Yu Z, Zhang X, Zhang J, Feng Y, Zhang H, Wan Z, Xiao C, Zhang H, Wang Q, Huang C. Gestational exposure to ambient particulate matter and preterm birth: An updated systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 212:113381. [PMID: 35523275 DOI: 10.1016/j.envres.2022.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on gestational particulate matter (PM) exposure and preterm birth (PTB) showed inconsistent results, and no study systematically examined the short-term effect of PM exposure on PTB subtypes. To investigate both long- and short-term effects of the evidence to date in general population, we searched for epidemiological studies on PM exposure and PTB that published in PubMed, Web of Science, Embase and Cochrane Library up to March 31, 2022. The protocol for this review was registered with PROSPERO (CRD42021265202). Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression and sensitivity analysis were performed. Of 16,801 records, 84 eligible studies were finally included. The meta-analysis of long-term effect showed that per 10 μg/m3 increase in PM2.5 and PM10 during entire pregnancy were associated with PTB, the pooled odds ratios (ORs) were 1.084 (95% CI: 1.055-1.113) and 1.034 (95% CI: 1.018-1.049). Positive associations were found between PM2.5 in second trimester and PTB subtypes. For the short-term exposure, we observed that PTB was positively associated with a 10 μg/m3 increment in PM2.5 on lag day 2 and 3, the pooled ORs and 95% CIs were 1.003 (1.001-1.004) and 1.003 (1.001-1.005), with I2 of 65.30% and 76.60%. PM10 exposure on ave day 1 increased the risk of PTB, the pooled OR was 1.001 (95% CI: 1.000, 1.001). We also found that PM10 exposure in 2 weeks prior to birth increased PTB risk. Our results support the hypothesis of both long- and short-term PM2.5 exposure increase the risk of PTB. Further well-designed longitudinal studies and investigations into potential biological mechanisms are warranted.
Collapse
Affiliation(s)
- Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention; Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Han Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenglong Xiao
- School of Earth Sciences, Chengdu University of Technology, Chengdu, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention; Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
162
|
Air Pollution from Global Health to Individual Risk Factor—Is It Time for Enviropathies in Everyday Clinical Practice? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159595. [PMID: 35954950 PMCID: PMC9367743 DOI: 10.3390/ijerph19159595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
While the link between cardiovascular and respiratory conditions and air pollution is well-known, recent studies provided a growing body of evidence that polluted air, particularly air with high levels of particulate matter with a diameter smaller than 2.5 micrometers (PM 2.5), can have a range of negative impacts on health, both in terms of mortality and morbidity. It is time to emphasize the role of environmental factors as contributory factors or determinants of both global and individual health levels, and to consider them together as a health priority, as enviropathies (meant as pathologies caused, triggered or worsened by environmental exposure). Bringing attention to harmful air pollution exposure has fostered population studies, which developed accurate quantification of environmental exposure in polluted regions, aiding our understanding of the dose-response relationship between pollutants and diseases. Those efforts have influenced local and global health policy strategies. Now we face the challenge of controlling environmental pollution and limiting individual exposure to prevent or avoid serious health risks. Is it time for enviropathies in everyday clinical practice?
Collapse
|
163
|
Basith S, Manavalan B, Shin TH, Park CB, Lee WS, Kim J, Lee G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. NANOMATERIALS 2022; 12:nano12152656. [PMID: 35957086 PMCID: PMC9370264 DOI: 10.3390/nano12152656] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/26/2022]
Abstract
Air pollution exerts several deleterious effects on the cardiovascular system, with cardiovascular disease (CVD) accounting for 80% of all premature deaths caused by air pollution. Short-term exposure to particulate matter 2.5 (PM2.5) leads to acute CVD-associated deaths and nonfatal events, whereas long-term exposure increases CVD-associated risk of death and reduces longevity. Here, we summarize published data illustrating how PM2.5 may impact the cardiovascular system to provide information on the mechanisms by which it may contribute to CVDs. We provide an overview of PM2.5, its associated health risks, global statistics, mechanistic underpinnings related to mitochondria, and hazardous biological effects. We elaborate on the association between PM2.5 exposure and CVD development and examine preventive PM2.5 exposure measures and future strategies for combating PM2.5-related adverse health effects. The insights gained can provide critical guidelines for preventing pollution-related CVDs through governmental, societal, and personal measures, thereby benefitting humanity and slowing climate change.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Wang-Soo Lee
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Chung-Ang University, Seoul 06973, Korea;
| | - Jaetaek Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, College of Medicine, Chung-Ang University, Seoul 06973, Korea
- Correspondence: (J.K.); (G.L.)
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (J.K.); (G.L.)
| |
Collapse
|
164
|
Ye W, Steenland K, Quinn A, Liao J, Balakrishnan K, Rosa G, Ndagijimana F, Ntivuguruzwa JDD, Thompson LM, McCracken JP, Díaz-Artiga A, Rosenthal JP, Papageorghiou A, Davila-Roman VG, Pillarisetti A, Johnson M, Wang J, Nicolaou L, Checkley W, Peel JL, Clasen TF. Effects of a Liquefied Petroleum Gas Stove Intervention on Gestational Blood Pressure: Intention-to-Treat and Exposure-Response Findings From the HAPIN Trial. Hypertension 2022; 79:1887-1898. [PMID: 35708015 PMCID: PMC9278708 DOI: 10.1161/hypertensionaha.122.19362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Approximately 3 to 4 billion people worldwide are exposed to household air pollution, which has been associated with increased blood pressure (BP) in pregnant women in some studies. METHODS We recruited 3195 pregnant women in Guatemala, India, Peru, and Rwanda and randomly assigned them to intervention or control groups. The intervention group received a gas stove and fuel during pregnancy, while the controls continued cooking with solid fuels. We measured BP and personal exposure to PM2.5, black carbon and carbon monoxide 3× during gestation. We conducted an intention-to-treat and exposure-response analysis to determine if household air pollution exposure was associated with increased gestational BP. RESULTS Median 24-hour PM2.5 dropped from 84 to 24 μg/m3 after the intervention; black carbon and carbon monoxide decreased similarly. Intention-to-treat analyses showed an increase in systolic BP and diastolic BP in both arms during gestation, as expected, but the increase was greater in intervention group for both systolic BP (0.69 mm Hg [0.03-1.35]; P=0.04) and diastolic BP (0.62 mm Hg [0.05-1.19]; P=0.03). The exposure-response analyses suggested that higher exposures to household air pollution were associated with moderately higher systolic BP and diastolic BP; however, none of these associations reached conventional statistical significance. CONCLUSIONS In intention-to-treat, we found higher gestational BP in the intervention group compared with controls, contrary to expected. In exposure-response analyses, we found a slight increase in BP with higher exposure, but it was not statistically significant. Overall, an intervention with gas stoves did not markedly affect gestational BP.
Collapse
Affiliation(s)
- Wenlu Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley (W.Y., A. Pillarisetti)
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
| | - Ashlinn Quinn
- Berkeley Air Monitoring Group, Berkeley, CA (A.Q., M.J.)
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles (J.L.)
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India (K.B.)
| | - Ghislaine Rosa
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom (G.R.)
| | | | | | - Lisa M. Thompson
- Nell Hodgson Woodruff School of Nursing (L.M.T.), Emory University, Atlanta, GA
| | - John P. McCracken
- Department of Environmental Health Sciences, University of Georgia, Athens (J.P.M.)
| | | | - Joshua P. Rosenthal
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD (J.P.R.)
| | - Aris Papageorghiou
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, United Kingdom (A. Papageorghiou)
| | | | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley (W.Y., A. Pillarisetti)
| | | | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health (J.W.), Emory University, Atlanta, GA
| | - Laura Nicolaou
- Division of Pulmonary and Critical Care, School of Medicine (L.N., W.C.), Johns Hopkins University, Baltimore, MD
- Center for Global Non-Communicable Disease Research and Training (L.N., W.C.), Johns Hopkins University, Baltimore, MD
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine (L.N., W.C.), Johns Hopkins University, Baltimore, MD
- Center for Global Non-Communicable Disease Research and Training (L.N., W.C.), Johns Hopkins University, Baltimore, MD
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins (J.L.P.)
| | - Thomas F. Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health (W.Y., K.S., A. Pillarisetti, T.F.C.), Emory University, Atlanta, GA
| |
Collapse
|
165
|
Markozannes G, Pantavou K, Rizos EC, Sindosi OΑ, Tagkas C, Seyfried M, Saldanha IJ, Hatzianastassiou N, Nikolopoulos GK, Ntzani E. Outdoor air quality and human health: An overview of reviews of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119309. [PMID: 35469927 DOI: 10.1016/j.envpol.2022.119309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The epidemiological evidence supporting putative associations between air pollution and health-related outcomes continues to grow at an accelerated pace with a considerable heterogeneity and with varying consistency based on the outcomes assessed, the examined surveillance system, and the geographic region. We aimed to evaluate the strength of this evidence base, to identify robust associations as well as to evaluate effect variation. An overview of reviews (umbrella review) methodology was implemented. PubMed and Scopus were systematically screened (inception-3/2020) for systematic reviews and meta-analyses examining the association between air pollutants, including CO, NOX, NO2, O3, PM10, PM2.5, and SO2 and human health outcomes. The quality of systematic reviews was evaluated using AMSTAR. The strength of evidence was categorized as: strong, highly suggestive, suggestive, or weak. The criteria included statistical significance of the random-effects meta-analytical estimate and of the effect estimate of the largest study in a meta-analysis, heterogeneity between studies, 95% prediction intervals, and bias related to small study effects. Seventy-five systematic reviews of low to moderate methodological quality reported 548 meta-analyses on the associations between outdoor air quality and human health. Of these, 57% (N = 313) were not statistically significant. Strong evidence supported 13 associations (2%) between elevated PM2.5, PM10, NO2, and SO2 concentrations and increased risk of cardiorespiratory or pregnancy/birth-related outcomes. Twenty-three (4%) highly suggestive associations were identified on elevated PM2.5, PM10, O3, NO2, and SO2 concentrations and increased risk of cardiorespiratory, kidney, autoimmune, neurodegenerative, cancer or pregnancy/birth-related outcomes. Sixty-seven (12%), and 132 (24%) meta-analyses were graded as suggestive, and weak, respectively. Despite the abundance of research on the association between outdoor air quality and human health, the meta-analyses of epidemiological studies in the field provide evidence to support robust associations only for cardiorespiratory or pregnancy/birth-related outcomes.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus; Hellenic Open University, Patra, Greece
| | - Ourania Α Sindosi
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Christos Tagkas
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Maike Seyfried
- Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Ian J Saldanha
- Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA
| | - Nikos Hatzianastassiou
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA.
| |
Collapse
|
166
|
Peng Y, Wang Y, Wu F, Chen Y. Association of cooking fuel with incident hypertension among adults in China: A population-based cohort study. J Clin Hypertens (Greenwich) 2022; 24:1003-1011. [PMID: 35904176 PMCID: PMC9380161 DOI: 10.1111/jch.14533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022]
Abstract
With an increasing prevalence of hypertension, indoor air‐pollution factors began to attract extensive attention. However, the association of cooking fuel with the incidence of hypertension was inconsistent. The aim of this study was to investigate the association of household air‐pollution caused by cooking fuel with the incidence of hypertension. Data were derived from the China Health and Nutrition Survey. Participants aged 18 years or older were eligible. A validated questionnaire was used to collect the information on the type of cooking fuel, including electricity, natural gas, coal, and wood/charcoal. Participants with a systemic blood pressure (SBP) ≥ 140 mmHg or /and a diastolic blood pressure (DBP) ≥ 90 mmHg without use of anti‐hypertensive medications, or participants with an SBP/DBP < 140/90 mmHg but having hypertensive history or currently being taking anti‐hypertensive medication were identified as hypertension. Multilevel Cox regressions were employed to examine the association of cooking fuel with incident hypertension. Compared to participants using electricity, participants using wood/charcoal had a higher incidence of hypertension (HR: 1.581; 95% CI: 1.373‐1.821; and P < .001), which was independent of sex and living areas. Furthermore, this significant association was observed only in the participants aged 18–39 years (HR: 1.443; 95% CI: 1.131‐1.840; and P = .003). Compared to participants using non‐polluting energy, participants using solid fuel were more likely to develop hypertension (HR: 1.309; 95% CI: 1.191‐1.439; and P < .001). In conclusion, household air‐pollution was associated with the incidence of hypertension among Chinese adults. Using wood/charcoal or solid fuel in youth was associated with a higher incidence of hypertension later in life.
Collapse
Affiliation(s)
- Yue Peng
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu Wang
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Fei Wu
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yongjie Chen
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
167
|
Weng Z, Liu Q, Yan Q, Liang J, Zhang X, Xu J, Li W, Xu C, Gu A. Associations of genetic risk factors and air pollution with incident hypertension among participants in the UK Biobank study. CHEMOSPHERE 2022; 299:134398. [PMID: 35339527 DOI: 10.1016/j.chemosphere.2022.134398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The purposes of this study were to quantify the association of the combination of air pollution and genetic risk factors with hypertension and explore the interactions between air pollution and genetic risk. This study included 391,366 participants of European ancestry initially free from pre-existing hypertension in the UK Biobank. Exposure to ambient air pollutants, including particulate matter (PM2.5 PM2.5-10, and PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOX), was estimated through land use regression modelling, and the associations between air pollutants and the incidence of hypertension were investigated using a Cox proportional hazards model adjusted for covariates. Furthermore, we established a polygenic risk score for hypertension and assessed the combined effect of genetic susceptibility and air pollution on incident hypertension. The results showed significant associations between the risk of hypertension and exposure to PM2.5 (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.29-1.53; per 10 μg/m3), PM10 (1.05, 1.00-1.09; per 10 μg/m3), and NOX (1.01, 1.01-1.02 per 10 μg/m3). Additive effects of PM2.5 and NOX exposure and genetic risk were observed. Compared to individuals with a low genetic risk and low air pollution exposure, participants with high air pollution exposure and a high genetic risk had a significantly increased risk of hypertension (PM2.5: 71% (66%-76%), PM10: 59% (55%-64%), NOX: 65% (60%-70%)). Our results indicate that long-term exposure to air pollution is associated with an increased risk of hypertension, especially in individuals with a high genetic risk.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
168
|
Wang H, Li XB, Chu XJ, Cao NW, Wu H, Huang RG, Li BZ, Ye DQ. Ambient air pollutants increase the risk of immunoglobulin E-mediated allergic diseases: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49534-49552. [PMID: 35595897 PMCID: PMC9122555 DOI: 10.1007/s11356-022-20447-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/21/2022] [Indexed: 05/06/2023]
Abstract
Immunoglobulin E (IgE)-mediated allergic diseases, including eczema, atopic dermatitis (AD), and allergic rhinitis (AR), have increased prevalence in recent decades. Recent studies have proved that environmental pollution might have correlations with IgE-mediated allergic diseases, but existing research findings were controversial. Thus, we performed a comprehensive meta-analysis from published observational studies to evaluate the risk of long-term and short-term exposure to air pollutants on eczema, AD, and AR in the population (per 10-μg/m3 increase in PM2.5 and PM10; per 1-ppb increase in SO2, NO2, CO, and O3). PubMed, Embase, and Web of Science were searched to identify qualified literatures. The Cochran Q test was used to assess heterogeneity and quantified with the I2 statistic. Pooled effects and the 95% confidence intervals (CIs) were used to evaluate outcome effects. A total of 55 articles were included in the study. The results showed that long-term and short-term exposure to PM10 increased the risk of eczema (PM10, RRlong = 1.583, 95% CI: 1.328, 1.888; RRshort = 1.006, 95% CI: 1.003-1.008) and short-term exposure to NO2 (RRshort = 1.009, 95% CI: 1.008-1.011) was associated with eczema. Short-term exposure to SO2 (RRshort: 1.008, 95% CI: 1.001-1.015) was associated with the risk of AD. For AR, PM2.5 (RRlong = 1.058, 95% CI: 1.014-1.222) was harmful in the long term, and short-term exposure to PM10 (RRshort: 1.028, 95% CI: 1.008-1.049) and NO2 (RRshort: 1.018, 95% CI: 1.007-1.029) were risk factors. The findings indicated that exposure to air pollutants might increase the risk of IgE-mediated allergic diseases. Further studies are warranted to illustrate the potential mechanism for air pollutants and allergic diseases.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
169
|
Yue D, Shen T, Mao J, Su Q, Mao Y, Ye X, Ye D. Prenatal exposure to air pollution and the risk of eczema in childhood: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48233-48249. [PMID: 35588032 DOI: 10.1007/s11356-022-20844-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
An increasing number of studies investigated the association between air pollution during pregnancy and the risk of eczema in offspring. However, no meta-analysis has confirmed the existence and size of their association to date. We systematically searched PubMed, Web of Science, Cochrane Library, and Embase databases to select the observational controlled studies published from the inception date to October 16, 2021. Quality evaluation was guided by the Newcastle-Ottawa Scale (NOS). Sensitivity analysis was applied to assess the impact of each included study on the combined effects, and publication bias was examined by Begg's tests and Egger's tests. A total of 12 articles involving 69,374 participants met our eligibility criteria. A significant association between the maternal exposure to NO2 (per 10 μg/m3 increased) and childhood eczema was observed, with a pooled risk estimate of 1.13 (95% CI: 1.06-1.19), but no association was observed between exposure to PM10, PM2.5, and SO2 and the risk of eczema in offspring. Besides, the effect of maternal NO2 exposure on childhood eczema was significant in the first and second trimesters, but not in the third trimester. There was notable variability in geographic location (p = 0.037) and air pollutant concentration (p = 0.031) based on meta-regression. Our findings indicated that prenatal exposure to NO2 was a risk factor for elevated risk of eczema in childhood, especially in the first and second trimesters. Further studies with larger sample sizes considering different constituents of air pollution and various exposure windows are needed to validate these associations.
Collapse
Affiliation(s)
- Dengyuan Yue
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Ting Shen
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Jiaqing Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
170
|
Keswani A, Akselrod H, Anenberg SC. Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM EVIDENCE 2022; 1:EVIDra2200068. [PMID: 38319260 DOI: 10.1056/evidra2200068] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Air Pollution Impacts and Climate Change LinksAs part of the NEJM Group series on climate change, Keswani and colleagues review the linkages between climate change and air pollution and suggest strategies that clinicians may use to mitigate the adverse health impacts of air pollution.
Collapse
Affiliation(s)
- Anjeni Keswani
- Division of Allergy/Immunology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hana Akselrod
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Susan C Anenberg
- George Washington University Milken Institute School of Public Health, Washington, DC
| |
Collapse
|
171
|
Cortés S, Leiva C, Ojeda MJ, Bustamante-Ara N, Wambaa W, Dominguez A, Pasten Salvo C, Rodriguez Peralta C, Rojas Arenas B, Vargas Mesa D, Ahumada-Padilla E. Air Pollution and Cardiorespiratory Changes in Older Adults Living in a Polluted Area in Central Chile. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221107136. [PMID: 35782316 PMCID: PMC9243574 DOI: 10.1177/11786302221107136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
One recognized cause of cardiorespiratory diseases is air pollution. Older adults (OA) are one of the most vulnerable groups that suffer from its adverse effects. The objective of the study was to analyze the association between exposure to air pollution and changes in cardiorespiratory variables in OA. Observational prospective cohort study. Health questionnaires, blood pressure (BP) measurements, lung functions, respiratory symptoms, physical activity levels, and physical fitness in high and low exposure to air pollution were all methods used in evaluating OAs in communes with high contamination rates. Linear and logistic models were created to adjust for variables of interest. A total of 92 OA participated in this study. 73.9% of the subjects were women with 72.3 ± 5.6 years. 46.7% were obese, while 12.1% consumed tobacco. The most prevalent diseases found were hypertension, diabetes, and cardiovascular disease. Adjusted linear models maintained an increase for systolic BP of 6.77 mmHg (95% CI: 1.04-12.51), and diastolic of 3.51 mmHg (95% CI: 0.72-6.29), during the period of high exposure to air pollution. The adjusted logistic regression model indicated that, during the period of high exposure to air pollution increase the respiratory symptoms 4 times more (OR: 4.43, 95% CI: 2.07-10.04) in the OA. The results are consistent with an adverse effect on cardiorespiratory variables in periods of high exposure to air pollution in the OA population.
Collapse
Affiliation(s)
- Sandra Cortés
- Department of Public Health, Pontificia
Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases
(ACCDIS), Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Sustainable Urban
Development (CEDEUS), Pontificia Universidad Católica de Chile, Santiago,
Chile
| | - Cinthya Leiva
- Department of Public Health, Pontificia
Universidad Católica de Chile, Santiago, Chile
- Center for Sustainable Urban
Development (CEDEUS), Pontificia Universidad Católica de Chile, Santiago,
Chile
| | - María José Ojeda
- Department of Public Health, Pontificia
Universidad Católica de Chile, Santiago, Chile
| | | | | | - Alan Dominguez
- Department of Public Health, Pontificia
Universidad Católica de Chile, Santiago, Chile
- Department of Experimental and Health
Sciences, Pompeu Fabra University, Barcelona, España
| | | | | | | | | | | |
Collapse
|
172
|
Recent Insights into Particulate Matter (PM 2.5)-Mediated Toxicity in Humans: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127511. [PMID: 35742761 PMCID: PMC9223652 DOI: 10.3390/ijerph19127511] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Several epidemiologic and toxicological studies have commonly viewed ambient fine particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm, as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system, reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease, cancers, preterm births, and other illnesses. There has been increased worry in recent years about the negative impacts of this worldwide danger. The causal associations between PM2.5 and human health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been described in this review.
Collapse
|
173
|
Faridi S, Brook RD, Yousefian F, Hassanvand MS, Nodehi RN, Shamsipour M, Rajagopalan S, Naddafi K. Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119109. [PMID: 35271952 PMCID: PMC10411486 DOI: 10.1016/j.envpol.2022.119109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of -0.78 mmHg (95% confidence interval [CI]: -2.06, 0.50) and -0.49 mmHg (95%CI: -1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: -2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms2 (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15-0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04-0.15Hz))-to-high frequency ratio [-0.14 (95%CI: -0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
174
|
Lin L, Li T, Sun M, Liang Q, Ma Y, Wang F, Duan J, Sun Z. Global association between atmospheric particulate matter and obesity: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 209:112785. [PMID: 35077718 DOI: 10.1016/j.envres.2022.112785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Among various air pollutants, particulate matter (PM) is the most harmful and representative pollutant. Although several studies have shown a link between particulate pollution and obesity, the conclusions are still inconsistent. METHODS We conducted a systematic review and meta-analysis to pool the effect of PM exposure on obesity. Five databases (including PubMed, Web of Science, Scopus, Embase, and Cochrane) were searched for relevant studies up to Jan 2022. Adjusted risk ratio (RR) with corresponding 95% confidence interval (CI) were retrieved from individual studies and pooled with random effect models by STATA software. Besides, we tested the stability of results by Egger's test, Begg's test, funnel plot, and using the trim-and-fill method to modify the possible asymmetric funnel graph. The NTP-OHAT guidelines were followed to assess the risk of bias. Then the GRADE was used to evaluate the certainty of evidence. RESULTS 26 studies were included in this meta-analysis. 19 studies have shown that PM2.5 can increase the risk of obesity per 10 μg/m3 increment (RR: 1.159, 95% CI: 1.111-1.209), while 15 studies have indicated that PM10 increase the risk of obesity per 10 μg/m3 increment (RR: 1.092, 95% CI: 1.070-1.116). Besides, 5 other articles with maternal exposure showed that PM2.5 increases the risk of obesity in children (RR: 1.06, 95% CI: 1.02-1.11). And we explored the source of heterogeneity by subgroup analysis, which suggested associations between PM and obesity tended to vary by region, age group, participants number, etc. The analysis results showed publication bias and other biases are well controlled, but most certainties of the evidence were low, and more research is required to reduce these uncertainties. CONCLUSION Exposure to PM2.5 and PM10 with per 10 μg/m3 increment could increase the risk of obesity in the global population.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
175
|
Lin LZ, Zhan XL, Jin CY, Liang JH, Jing J, Dong GH. The epidemiological evidence linking exposure to ambient particulate matter with neurodevelopmental disorders: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 209:112876. [PMID: 35134379 DOI: 10.1016/j.envres.2022.112876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND There has been increasing attention on the associations between ambient particulate matter (PM) in early-life and neurodevelopmental disorders (NDDs). However, the associations remained unclear when considering different types of NDDs and different sizes of PM, and vulnerable exposure windows during early-life were not identified yet. OBJECTIVE To synthesize the published literature on the associations between ambient particulate matter (PM) and risk of different types of neurodevelopmental disorders (NDDs) in a systematic review and meta-analysis. METHODS A systematic search of Medline, Embase, PubMed, Cochrane Library, and Web of Science was performed from inception through 24 January 2022. Two reviewers conducted the study selection, data extraction, and quality appraisal. A random-effects model was used for meta-analyses with two quality-of-evidence assessments (the Grading of Recommendations Assessment, Development, and Evaluation system and the best evidence synthesis system). RESULTS A total of 6554 articles were screened, of which 31 were included in the review, and 20 provided adequate data for meta-analyses. Exposures to particulate matter of 2.5 μm or less (PM2.5) during prenatal periods (OR, 1.32 [95%CI, 1.03-1.69]), the first year after birth (OR, 1.62 [95%CI, 1.22-2.15]) and the second year after birth (OR, 3.13 [95%CI, 1.47-6.67]) were associated with increased risk of autism spectrum disorders (ASD) in children. The quality of evidence for these associations during early postnatal periods was somewhat moderate with limited studies. We found inconsistent evidence when considering other types of NDDs and different sizes of PM. CONCLUSIONS AND RELEVANCE Current evidence indicated that there might be an association between PM2.5 exposure and higher risk of ASD, and early postnatal periods appeared to be the critical exposure window. High-quality studies are needed to assess the evidence for other types of NDDs.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Ling Zhan
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu-Yao Jin
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jing-Hong Liang
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin Jing
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
176
|
Lou Y, Zhu Y, You Q, Jiang Q, Meng X, Di H, Xu H, Gan Y, Lu Z, Cao S. Maternal long working hours and offspring's weight-related outcomes: A systematic review and meta-analysis. Obes Rev 2022; 23:e13439. [PMID: 35293115 DOI: 10.1111/obr.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
It is unclear whether maternal working time has an impact on offspring's weight-related outcomes especially obesity; the objective of this study is to conduct the first meta-analysis to focus on this topic. We searched PubMed, Ovid, and Web of Science databases through August 2021. A random-effect model was used to assess the pooled odds ratios (ORs) and regression coefficients (β) with their corresponding 95% confidence intervals (95% CIs). Subgroup analyses were conducted to explore sources of heterogeneity. Publication bias was evaluated by the Egger's tests. Twenty-two observational studies were included with a total of 191,420 participants. Compared with children whose mothers worked less than 35 h/week, we found that children whose mothers worked more than 35 to 40 h/week had a 2.24-fold increased risk of childhood overweight/obesity (OR = 2.24, 95% CI: 1.61-3.11). An increment of 10 h/week in maternal working was associated with an approximately 1.0 percentage points in the probability of childhood overweight/obesity (β = 0.008, 95% CI: 0.004-0.012). The pooled OR also indicated a similar result (OR = 1.09, 95% CI: 1.04-1.15). In addition, an increment of 10 h/week in maternal working was associated with 0.029 units increase in offspring's BMI z score (β = 0.029, 95% CI: 0.016-0.042). Maternal long working hours is a potential risk factor for offspring's weight-related outcomes. Measures should be taken to protect the work welfare of females, thus facilitating the positive interaction of individual-family-society.
Collapse
Affiliation(s)
- Yiling Lou
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqi You
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingqing Jiang
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Meng
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongkun Di
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbin Xu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyi Cao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
177
|
Zhao Z, Guo M, An J, Zhang L, Tan P, Tian X, Zhao Y, Liu L, Wang X, Liu X, Guo X, Luo Y. Acute effect of air pollutants' peak-hour concentrations on ischemic stroke hospital admissions among hypertension patients in Beijing, China, from 2014 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41617-41627. [PMID: 35094263 DOI: 10.1007/s11356-021-18208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Air pollutants' effect on ischemic stroke (IS) has been widely reported. But the effect of high-level concentrations during people's outdoor periods among hypertension patients was unknown. Peak-hour concentrations were defined considering air pollutants' high concentrations as well as people's outdoor periods. We conducted a time-series study and used the generalized additive model to analyze peak-hour concentrations' acute effect. A total of 315,499 IS patients comorbid with hypertension were admitted to secondary and above hospitals in Beijing from 2014 to 2018. A 10 µg/m3 (CO: 1 mg/m3) increase of the peak-hour concentrations was positively associated with IS hospital admissions among hypertension patients. The maximum effect sizes were as follows: for PM2.5, 0.17% (95% confidence interval [CI]: 0.10-0.24%) at Lag0 and 0.22% (95% CI: 0.12-0.33%) at Lag0-5; for PM10, 0.09% (95% CI: 0.05-0.13%) at Lag5 and 0.17% (95% CI: 0.09-0.26%) at Lag0-5; for SO2, 0.87% (95% CI: 0.46-1.29%) at Lag5; for NO2, 0.83% (95% CI: 0.62-1.04%) at Lag0 and 0.86% (95% CI: 0.59-1.13%) at Lag0-1; for CO 1.23% (95% CI: 0.66-1.80%) at Lag0 and 1.33% (95% CI: 0.33-2.35%) at Lag0-5; for O3 0.23% (95% CI: 0.12-0.35%) at Lag0 and 0.20% (95% CI: 0.05-0.34%) at Lag0-1. The effect sizes of PM2.5, NO2, and O3 remained significant after adjusting daily mean. Larger effect sizes were observed for PM2.5 and PM10 in cool season and for O3 in warm season. As significant exposure indicators of air pollution, peak-hour concentrations exposure increased the risk of IS hospital admissions among hypertension patients and it is worthy of consideration in relative environmental standard. It is suggested for hypertension patients to avoid outdoor activity during peak hours. More relevant searches are required to further illustrate air pollutant's effect on chronic disease population.
Collapse
Affiliation(s)
- Zemeng Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Moning Guo
- Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, 100034, China
| | - Ji An
- Department of Medical Engineering, Peking University Third Hospital, Beijing, 100191, China
| | - Licheng Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
- Beijing Cancer Hospital, Beijing, 100142, China
| | - Peng Tan
- Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, 100034, China
| | - Xue Tian
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Yuhan Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Lulu Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
178
|
de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med 2022; 291:779-800. [PMID: 35138681 PMCID: PMC9310863 DOI: 10.1111/joim.13467] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The available evidence on the effects of ambient air pollution on cardiovascular diseases (CVDs) has increased substantially. In this umbrella review, we summarized the current epidemiological evidence from systematic reviews and meta-analyses linking ambient air pollution and CVDs, with a focus on geographical differences and vulnerable subpopulations. We performed a search strategy through multiple databases including articles between 2010 and 31 January 2021. We performed a quality assessment and evaluated the strength of evidence. Of the 56 included reviews, the most studied outcomes were stroke (22 reviews), all-cause CVD mortality, and morbidity (19). The strongest evidence was found between higher short- and long-term ambient air pollution exposure and all-cause CVD mortality and morbidity, stroke, blood pressure, and ischemic heart diseases (IHD). Short-term exposures to particulate matter <2.5 μm (PM2.5 ), <10 μm (PM10 ), and nitrogen oxides (NOx ) were consistently associated with increased risks of hypertension and triggering of myocardial infarction (MI), and stroke (fatal and nonfatal). Long-term exposures of PM2.5 were largely associated with increased risk of atherosclerosis, incident MI, hypertension, and incident stroke and stroke mortality. Few reviews evaluated other CVD outcomes including arrhythmias, atrial fibrillation, or heart failure but they generally reported positive statistical associations. Stronger associations were found in Asian countries and vulnerable subpopulations, especially among the elderly, cardiac patients, and people with higher weight status. Consistent with experimental data, this comprehensive umbrella review found strong evidence that higher levels of ambient air pollution increase the risk of CVDs, especially all-cause CVD mortality, stroke, and IHD. These results emphasize the importance of reducing the alarming levels of air pollution across the globe, especially in Asia, and among vulnerable subpopulations.
Collapse
Affiliation(s)
- Jeroen de Bont
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Suganthi Jaganathan
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Environmental HealthPublic Health Foundation of IndiaDelhi‐NCRIndia
- Centre for Chronic Disease ControlNew DelhiIndia
| | - Marcus Dahlquist
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Åsa Persson
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Massimo Stafoggia
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of EpidemiologyLazio Region Health ServiceRomeItaly
| | - Petter Ljungman
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of CardiologyDanderyd University HospitalDanderydSweden
| |
Collapse
|
179
|
Chien JW, Wu C, Chan CC. The association of hypertension and prehypertension with greenness and PM 2.5 in urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153526. [PMID: 35101513 DOI: 10.1016/j.scitotenv.2022.153526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The interplay of air pollution and urban greenness on hypertension (HTN) is not fully understood. METHODS We conducted a cross-sectional study to explore the role of greenness and PM2.5 on HTN for 40,375 adult residents in the New Taipei City, Taiwan. Normalized Difference Vegetation Index (NDVI) defined greenness and land use regression derived exposures of PM2.5 were used to calculate odds ratios (ORs) of HTN in logistic regression models and common OR of normal to stage 3 HTN in ordinal logistic regression models. Linear regression model was used to evaluate the association between NDVI and blood pressures, including systolic (SBP), diastolic (DBP) and mean (MBP) pressures. The mediation and moderation analysis were used to assess the mediation and moderation effect of PM2.5 on the association between greenness and SBP. RESULTS We found 37.3%, 21.4%, 8.2% and 2.7% of prehypertension and stage 1-3 hypertensions, respectively, for our study participants with annual PM2.5 exposures of 10.96-43.59 μg/m3 living in an urban environment with NDVI within 500 m buffer ranging from -0.22 to 0.26. The ORs of HTN were 0.744 (95% CI: 0.698-0.793) for NDVI (quartile 4 vs. quartile 1) and 1.048 (1.012-1.085) for each IQR (8.69 μg/m3) increase in PM2.5, respectively. The common OR of the higher level of 5 categories of BP was 1.1310 (1.241-1.383). With each IQR increase of NDVI (0.03), we found SBP, DBP and MBP were decreased by 0.78 mm Hg (-0.93-0.64), 0.52 mm Hg (-0.62-0.43) and 0.61 mm Hg (-0.71-0.51), respectively, in linear regression models. Stratified analysis found greenness effect was more prominent for people who are younger, female, never smoking, and without chronic diseases. PM2.5 is moderated rather than mediated the association between greenness and SBP. CONCLUSIONS Greenness was associated with lower prevalence of prehypertension and all stages of HTN and this relationship was moderated by PM2.5.
Collapse
Affiliation(s)
- Jien-Wen Chien
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Pediatric Nephrology, Changhua Christian Children's Hospital, Changhua, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
180
|
Liu L, Yan LL, Lv Y, Zhang Y, Li T, Huang C, Kan H, Zhang J, Zeng Y, Shi X, Ji JS. Air pollution, residential greenness, and metabolic dysfunction biomarkers: analyses in the Chinese Longitudinal Healthy Longevity Survey. BMC Public Health 2022; 22:885. [PMID: 35509051 PMCID: PMC9066955 DOI: 10.1186/s12889-022-13126-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We hypothesize higher air pollution and fewer greenness exposures jointly contribute to metabolic syndrome (MetS), as mechanisms on cardiometabolic mortality. METHODS We studied the samples in the Chinese Longitudinal Healthy Longevity Survey. We included 1755 participants in 2012, among which 1073 were followed up in 2014 and 561 in 2017. We used cross-sectional analysis for baseline data and the generalized estimating equations (GEE) model in a longitudinal analysis. We examined the independent and interactive effects of fine particulate matter (PM2.5) and Normalized Difference Vegetation Index (NDVI) on MetS. Adjustment covariates included biomarker measurement year, baseline age, sex, ethnicity, education, marriage, residence, exercise, smoking, alcohol drinking, and GDP per capita. RESULTS At baseline, the average age of participants was 85.6 (SD: 12.2; range: 65-112). Greenness was slightly higher in rural areas than urban areas (NDVI mean: 0.496 vs. 0.444; range: 0.151-0.698 vs. 0.133-0.644). Ambient air pollution was similar between rural and urban areas (PM2.5 mean: 49.0 vs. 49.1; range: 16.2-65.3 vs. 18.3-64.2). Both the cross-sectional and longitudinal analysis showed positive associations of PM2.5 with prevalent abdominal obesity (AO) and MetS, and a negative association of NDVI with prevalent AO. In the longitudinal data, the odds ratio (OR, 95% confidence interval-CI) of PM2.5 (per 10 μg/m3 increase) were 1.19 (1.12, 1.27), 1.16 (1.08, 1.24), and 1.14 (1.07, 1.21) for AO, MetS and reduced high-density lipoprotein cholesterol (HDL-C), respectively. NDVI (per 0.1 unit increase) was associated with lower AO prevalence [OR (95% CI): 0.79 (0.71, 0.88)], but not significantly associated with MetS [OR (95% CI): 0.93 (0.84, 1.04)]. PM2.5 and NDVI had a statistically significant interaction on AO prevalence (pinteraction: 0.025). The association between PM2.5 and MetS, AO, elevated fasting glucose and reduced HDL-C were only significant in rural areas, not in urban areas. The association between NDVI and AO was only significant in areas with low PM2.5, not under high PM2.5. CONCLUSIONS We found air pollution and greenness had independent and interactive effect on MetS components, which may ultimately manifest in pre-mature mortality. These study findings call for green space planning in urban areas and air pollution mitigation in rural areas.
Collapse
Affiliation(s)
- Linxin Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Lijing L Yan
- Global Heath Research Center, Duke Kunshan University, Kunshan, China.,School of Public Health, Wuhan University, Wuhan, China.,Institute for Global Health and Development, Peking University, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Junfeng Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China.,Center for the Study of Aging and Human Development, Duke Medical School, Durham, NC, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China.
| |
Collapse
|
181
|
Wang R, Wang J, Sun J, Yang K, Wang N, Qin B. PM 2.5 causes vascular hyperreactivity through the upregulation of the thromboxane A 2 receptor and activation of MAPK pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33095-33105. [PMID: 35025049 DOI: 10.1007/s11356-021-18303-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Airborne fine particulate matter (PM2.5) is a major cardiovascular disease environmental risk factor. However, the underlying mechanism of action is not fully understood. Thromboxane is widely known as an important vasoconstrictor substance that binds to G-protein-coupled receptors (GPCR) in arteries and is involved in various cardiovascular diseases. This study examined the effect of PM2.5 on thromboxane A2 receptor (TP) in the mesenteric arteries and the underlying intracellular signal mechanisms (by focusing on the mitogen-activated protein kinase (MAPK) pathway). Rat mesenteric artery segments were exposed to PM2.5 in the presence of MAPK pathway inhibitors. The contractile reactivity of mesenteric arteries was analyzed using wire myography. The mRNA and protein expression of TP receptor and MAPK pathway molecules were detected by real-time PCR and Western blot. Mesenteric artery receptor localization was assessed by immunohistochemistry. The results showed that TP receptor-mediated maximum contraction response was achieved after exposing arteries to 1.0 μg/mL PM2.5 for 16 h (Emax: 228 ± 16% of K+). Moreover, inhibitor U0126 (ERK1/2 inhibitor), SB203580 (p38 inhibitor), and SP600125 (JNK inhibitor) depressed the increased TP receptor-mediated contractile responses (reduced rage were 17.9 ~ 59.6%). These inhibitors also decreased the increased mRNA expression and protein of the TP receptor induced by PM2.5 (reduced by more than 50% and 46%, respectively). The immunoreactivity of increased TP receptor expression was primarily localized in the cytoplasm. In addition, phosphorylation quantitative analysis showed that in the presence of MAPK inhibitors, the PM2.5-induced phosphorylation of ERK1/2, p38, and JNK protein increased by more than 30.0 ~ 130.3%. These results suggest that PM2.5 upregulates the TP receptor of rat mesenteric arteries through activation of the ERK1/2, p38, and JNK MAPK pathways.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China
- Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jinhui Wang
- Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kuan Yang
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China
| | - Nana Wang
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China
| | - Bei Qin
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
182
|
Chen W, Han Y, Wang Y, Chen X, Qiu X, Li W, Xu Y, Zhu T. Glucose Metabolic Disorders Enhance Vascular Dysfunction Triggered by Particulate Air Pollution: a Panel Study. Hypertension 2022; 79:1079-1090. [PMID: 35193365 DOI: 10.1161/hypertensionaha.121.18889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular dysfunction is a biological pathway whereby particulate matter (PM) exerts deleterious cardiovascular effects. The effects of ambient PM on vascular function in prediabetic individuals are unclear. METHODS A panel study recruited 112 Beijing residents with and without prediabetes. Multiple vascular function indices were measured up to 7 times. The associations between vascular function indices and short-term exposure to ambient PM, including fine particulate matter (PM2.5), ultrafine particles, accumulation mode particles, and black carbon, and the modification of these associations by glucose metabolic status were examined using linear mixed-effects models. RESULTS Increases in brachial artery pulse pressure, central aortic pulse pressure, and ejection duration, and decreases in subendocardial viability ratio and reactive hyperemia index were significantly associated with at least one PM pollutant in all participants, indicating increased vascular dysfunction. For example, for an interquartile range increment in 5-day moving average ultrafine particles, brachial artery pulse pressure, and central aortic pulse pressure increased 5.4% (0.8%-10.4%) and 6.2% (1.2%-11.5%), respectively. Additionally, PM-associated changes in vascular function differed according to glucose metabolic status. Among participants with high fasting blood glucose levels (≥6.1 mmol/L), PM exposure was significantly associated with increased brachial artery systolic blood pressure, central aortic systolic blood pressure, brachial artery pulse pressure, central aortic pulse pressure, and augmentation pressure normalized to a heart rate of 75 bpm and decreased subendocardial viability ratio and reactive hyperemia index. Weaker or null associations were observed in the low-fasting blood glucose group. CONCLUSIONS Glucose metabolic disorders may exacerbate vascular dysfunction associated with short-term ambient PM exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China (Y.W.)
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co, Ltd, Xiongan, China (X.C.)
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| |
Collapse
|
183
|
Wang T, Wang J, Rao J, Han Y, Luo Z, Jia L, Chen L, Wang C, Zhang Y, Zhang J. Meta-analysis of the effects of ambient temperature and relative humidity on the risk of mumps. Sci Rep 2022; 12:6440. [PMID: 35440700 PMCID: PMC9017417 DOI: 10.1038/s41598-022-10138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Many studies have shown that the relationship between ambient temperature, relative humidity and mumps has been highlighted. However, these studies showed inconsistent results. Therefore, the goal of our study is to conduct a meta-analysis to clarify this relationship and to quantify the size of these effects as well as the potential factors. Systematic literature researches on PubMed, Embase.com, Web of Science Core Collection, Cochrane library, Chinese BioMedical Literature Database (CBM) and China National Knowledge Infrastructure (CNKI) were performed up to February 7, 2022 for articles analyzing the relationships between ambient temperature, relative humidity and incidence of mumps. Eligibility assessment and data extraction were conducted independently by two researchers, and meta-analysis was performed to synthesize these data. We also assessed sources of heterogeneity by study region, regional climate, study population. Finally, a total of 14 studies were screened out from 1154 records and identified to estimate the relationship between ambient temperature, relative humidity and incidence of mumps. It was found that per 1 °C increase and decrease in the ambient temperature were significantly associated with increased incidence of mumps with RR of 1.0191 (95% CI: 1.0129–1.0252, I2 = 92.0%, Egger’s test P = 0.001, N = 13) for per 1 °C increase and 1.0244 (95% CI: 1.0130–1.0359, I2 = 86.6%, Egger’s test P = 0.077, N = 9) for per 1 °C decrease. As to relative humidity, only high effect of relative humidity was slightly significant (for per 1 unit increase with RR of 1.0088 (95% CI: 1.0027–1.0150), I2 = 72.6%, Egger’s test P = 0.159, N = 9). Subgroup analysis showed that regional climate with temperate areas may have a higher risk of incidence of mumps than areas with subtropical climate in cold effect of ambient temperature and low effect of relative humidity. In addition, meta-regression analysis showed that regional climate may affect the association between incidence of mumps and cold effect of ambient temperature. Our results suggest ambient temperature could affect the incidence of mumps significantly, of which both hot and cold effect of ambient temperature may increase the incidence of mumps. Further studies are still needed to clarify the relationship between the incidence of mumps and ambient temperature outside of east Asia, and many other meteorological factors. These results of ambient temperature are important for establishing preventive measures on mumps, especially in temperate areas. The policy-makers should pay more attention to ambient temperature changes and take protective measures in advance.
Collapse
Affiliation(s)
- Taiwu Wang
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China
| | - Junjun Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, 210002, China.,Chinese Field Epidemiology Training Program, Beijing, 100050, China
| | - Jixian Rao
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China
| | - Yifang Han
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China
| | - Zhenghan Luo
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China
| | - Lingru Jia
- Wuxi Center of Joint Logistic Support Force, Wuxi, 214000, China
| | - Leru Chen
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China
| | - Chunhui Wang
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Jinhai Zhang
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, 210002, China.
| |
Collapse
|
184
|
Zhao Y, Bao WW, Yang BY, Liang JH, Gui ZH, Huang S, Chen YC, Dong GH, Chen YJ. Association between greenspace and blood pressure: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152513. [PMID: 35016929 DOI: 10.1016/j.scitotenv.2021.152513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Many studies have investigated the association between greenspaces and blood pressure (BP), but the results remain mixed. We conducted a systematic review and meta-analysis to comprehensively evaluate the evidence concerning greenspaces with BP levels and prevalent hypertension. Systematic literature searches were performed in Web of Science, PubMed, and Embase up to 25 April 2021. Combined effect estimates were calculated using random-effect models for each greenspace exposure assessment method that had been examined in ≥3 studies. Sensitivity analysis, subgroup analysis, and publication bias were also conducted. Of 38 articles (including 52 analyses, 5.2 million participants in total) examining the effects of normalized difference vegetation index (NDVI) (n = 23), proportion of greenspace (n = 11), distance to greenspace (n = 9), and others (n = 9) were identified. Most studies (65%) reported beneficial associations between greenspaces and BP levels/hypertension. Our results of meta-analyses showed that higher NDVI500m was significantly associated with lower levels of systolic blood pressure (SBP = -0.77 mmHg, 95%CI: -1.23 to -0.32) and diastolic blood pressure (DBP = -0.32 mmHg, 95%CI: -0.57 to -0.07). We also found that NDVI in different buffers and the proportion of greenspaces were significantly associated with lower odds (1-9%) of hypertension. However, no significant effect was found for distance to greenspaces. In summary, our results indicate the beneficial effects of greenspace exposure on BP and hypertension. However, future better-designed studies, preferably longitudinal, are needed to confirm and better quantify the observed benefits in BP and/or hypertension.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Wen Bao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Hong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhao-Huan Gui
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shan Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi-Can Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya-Jun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
185
|
Okoye OC, Carnegie E, Mora L. Air Pollution and Chronic Kidney Disease Risk in Oil and Gas- Situated Communities: A Systematic Review and Meta-Analysis. Int J Public Health 2022; 67:1604522. [PMID: 35479765 PMCID: PMC9035494 DOI: 10.3389/ijph.2022.1604522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Objective: This systematic review and meta-analysis aimed at synthesising epidemiological data on the association between long-term air pollution and kidney-related outcomes in oil and natural gas (ONG) situated communities. Methods: We synthesised studies using the PRISMA 2020 guideline. We searched databases including Medline, Cochrane Library, CIHANL, CAB Abstracts, Greenlife, African Journal Online, Google Scholar and Web of Science, from inception to April 2021. Heterogeneity across studies and publication bias were assessed. Results: Twenty-five studies were systematically reviewed but only 14 were included in the meta-analysis and categorised based on the outcome studied. Residents of exposed communities have increased risk for Chronic Kidney Disease (CKD) (OR = 1.70, 95% CI 1.44–2.01), lower eGFR (OR = 0.55, 95% CI 0.48–0.67) and higher serum creatinine (OR = 1.39, 95% CI 1.06–1.82) compared to less exposed or unexposed populations. The risks for hypertension and kidney cancer between the two populations were not significantly different. Conclusion: We report an increased risk for CKD and kidney dysfunction in populations residing near petrochemical plants, although from a limited number of studies. The scientific community needs to explore this environment and non-communicable disease relationship, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Ogochukwu Chinedum Okoye
- Department of Internal Medicine, Delta State University, Abraka, Nigeria
- School of Health and Social Care, Edinburgh Napier University, Edinburgh, United Kingdom
- *Correspondence: Ogochukwu Chinedum Okoye,
| | - Elaine Carnegie
- School of Health and Social Care, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Luca Mora
- Urban Innovation, Business School, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
186
|
The Association between Childhood Exposure to Ambient Air Pollution and Obesity: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084491. [PMID: 35457358 PMCID: PMC9030539 DOI: 10.3390/ijerph19084491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
Obesity has become a worldwide epidemic; 340 million of children and adolescents were overweight or obese in 2016, and this number continues to grow at a rapid rate. Epidemiological research has suggested that air pollution affects childhood obesity and weight status, but the current evidence remains inconsistent. Therefore, the aim of this meta-analysis was to estimate the effects of childhood exposure to air pollutants on weight. A total of four databases (PubMed, Web of Science, Embase, and Cochrane Library) were searched for publications up to December 31, 2021, and finally 15 studies met the inclusion criteria for meta-analysis. Merged odds ratios (ORs), coefficients (β), and 95% confidence intervals (95% CIs) that were related to air pollutants were estimated using a random-effects model. The meta-analysis indicated that air pollutants were correlated with childhood obesity and weight gain. For obesity, the association was considerable for PM10 (OR = 1.12, 95% CI: 1.06, 1.18), PM2.5 (OR = 1.28, 95% CI: 1.13, 1.45), PM1 (OR = 1.41, 95% CI: 1.30, 1.53), and NO2 (OR = 1.11, 95% CI: 1.06, 1.18). Similarly, BMI status increased by 0.08 (0.03-0.12), 0.11 (0.05-0.17), and 0.03 (0.01-0.04) kg/m2 with 10 μg/m3 increment in exposure to PM10, PM2.5, and NO2. In summary, air pollution can be regarded as a probable risk factor for the weight status of children and adolescents. The next step is to conduct longer-term and large-scale studies on different population subgroups, exposure concentrations, and pollutant combinations to provide detailed evidence. Meanwhile, integrated management of air pollution is essential.
Collapse
|
187
|
Khan JR, Biswas RK, Hossain MB, Archie RJ. Residential area greenness and hypertension: a national assessment on urban adults in Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022:1-13. [PMID: 35373666 DOI: 10.1080/09603123.2022.2053662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the associations between greenness and blood pressure (BP) metrics (systolic BP [SBP], diastolic BP [DBP], hypertension) among urban adults in Bangladesh and the potential mediation effects of body mass index (BMI) using 2011 Bangladesh Demographic and Health Survey data for 2360 urban adults (aged ≥35 years). The Enhanced Vegetation Index was used as a measure of residential area greenness. Associations between greenness and BP metrics were estimated using linear and binary logistic regression models. We also conducted mediation analyses. Greater area-level greenness was inversely associated with SBP (β -1.33, 95%CI: -2.46, -.20), DBP (β -.83, 95%CI: -1.64, -.02), and hypertension (adjusted odds ratio .87, 95%CI: .77, .98). BMI substantially mediated associations between greenness and BP metrics. Adopting urban greening policies could reduce the risk of hypertension, thus can contribute to reduction of non-communicable disease burden in Bangladesh. Longitudinal studies are required to further investigate the causal pathways.
Collapse
Affiliation(s)
- Jahidur Rahman Khan
- Health Research Institute, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Climate and Environmental Health, Biomedical Research Foundation, Dhaka, Bangladesh
| | - Raaj Kishore Biswas
- Transport and Road Safety (TARS) Research Centre, School of Aviation, University of New South Wales, Sydney, New South Wales, Australia
| | - Md Belal Hossain
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- BRAC James P Grant School of Public Health, BRAC University, Mohakhali, Dhaka, Bangladesh
| | - Rownak Jahan Archie
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
188
|
Yuan Z, Chen P, Yang L, Miao L, Wang H, Xu D, Lin Z. Combined oxidant capacity, redox-weighted oxidant capacity and elevated blood pressure: A panel study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113364. [PMID: 35255254 DOI: 10.1016/j.ecoenv.2022.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence is limited on the potential health effects of Ox (sum value) and Oxwt(weighted value), the two surrogates for ozone (O3) and nitrogen dioxides (NO2). OBJECTIVES To investigate the impacts of Ox and redox-weighted oxidant capacity (Oxwt) on blood pressure (BP). METHODS A panel study was conducted with four repeated follow-up visits among 40 healthy college students in Hefei, Anhui Province, China from August to October, 2021. We measured BP by using an automated sphygmomanometer and obtained hourly data of air pollutants at a nearby site. The sum of O3 and NO2 (Ox) and their weighted average (Oxwt) were obtained as exposure variables. We applied linear mixed-effect models to evaluate the effects of Ox and Oxwton systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP). RESULTS Totally, 160 pairs of valid BP values were obtained. The 24-h mean levels of Ox and Oxwt were 64.38 μg/m3 and 110.28 μg/m3, respectively. Overall, both Ox and Oxwt were significantly linked with SBP, DBP and MAP at most lag periods, whereas non-significant with PP. A 10-μg/m3 increase in Oxwt at lag 0-24 h was linked to increases of 2.43 mmHg (95% CI: 0.96, 3.91) in SBP, 2.31 mmHg (95% CI: 1.37, 3.26) in DBP and 2.35 mmHg (95% CI: 1.35, 3.36) in MAP, while the corresponding effect estimates for Ox were 1.51 mmHg (95%CI: 0.60, 2.43), 1.43 mmHg (95% CI: 0.85, 2.02) and 1.46 mmHg (95%CI: 0.83, 2.09). In two-pollutant models, our results were almost unchanged after controlling for simultaneous exposure to other pollutants. The effects were more pronounced among males and those with physical activity. CONCLUSIONS The findings provide first-hand evidence that short-term exposure to Ox and Oxwt was associated with BP increases in young adults.
Collapse
Affiliation(s)
- Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
189
|
Lin LZ, Su F, Fang QL, Ho HC, Zhou Y, Ma HM, Chen DH, Hu LW, Chen G, Yu HY, Yang BY, Zeng XW, Xiang MD, Feng WR, Dong GH. The association between anthropogenic heat and adult hypertension in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152926. [PMID: 34998766 DOI: 10.1016/j.scitotenv.2022.152926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Although the potential serious threat of anthropogenic heat on human health was receiving considerable attention worldwide, its long-term health effect on blood pressure (BP) remained unknown. We aimed to evaluate the associations of long-term anthropogenic heat exposure with different components of BP and hypertension. METHODS In this cross-sectional study (Liaoning province, China) conducted in 2009, we included a total of 24,845 Chinese adults (18-74 years). We estimated the anthropogenic heat exposure in 2008 using multisource remote sensing images and ancillary data. We measured systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP), and defined hypertension. We used generalized linear mixed model to examine the associations. RESULTS In the adjusted model, the estimates indicated that the difference in SBP, MAP and PP for those in highest quartiles of total anthropogenic heat exposure was greater compared with the lowest quartile (highest quartile: β = 1.11 [95% CI: 0.28-1.94], 0.60 [95% CI: 0.04-1.17], 0.76 [95% CI: 0.17-1.35]). Compared with the lowest quartile, the odds of hypertension were higher among those in higher quartiles (second quartile: OR = 1.17 [95% CI: 1.05-1.30]; third quartile:1.10 [95% CI: 1.1.01-1.21]; highest quartile: 1.17 [95% CI: 1.06-1.28]). These associations were stronger in female participants. CONCLUSION Our study showed that long-term exposure to anthropogenic heat was associated with elevated BP and higher odds of hypertension. These findings suggest that mitigation strategies to reduce anthropogenic heat should be considered.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiu-Ling Fang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou 510308, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ming-Deng Xiang
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China.
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
190
|
Zang ST, Wu QJ, Li XY, Gao C, Liu YS, Jiang YT, Zhang JY, Sun H, Chang Q, Zhao YH. Long-term PM 2.5 exposure and various health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152381. [PMID: 34914980 DOI: 10.1016/j.scitotenv.2021.152381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Adverse effects from exposure to particulate matter <2.5 μm in diameter (PM2.5) on health-related outcomes have been found in a range of experimental and epidemiological studies. This study aimed to assess the significance, validity, and reliability of the relationship between long-term PM2.5 exposure and various health outcomes. The Embase, PubMed, Web of Science, CNKI, WANFANG, VIP, and SinoMed databases and reference lists of the retrieved review articles were searched to obtain meta-analysis and systematic reviews focusing on PM2.5-related outcomes as of August 31, 2021. Random-/fixed-effects models were applied to estimate summary effect size and 95% confidence intervals (CIs). The quality of included meta-analyses was evaluated based on the AMSTAR 2 tool. Small-study effect and excess significance bias studies were conducted to further assess the associations. Registered PROSPERO number: CRD42020200606. This included 24 articles involving 71 associations between PM2.5 exposure and the health outcomes. The evidence for the positive association of 10 μg/m3 increments of long-term exposure to PM2.5 and stroke incidence in Europe was convincing (effect size = 1.07, 95% CI: 1.05-1.10). There was evidence that was highly suggestive of a positive association between 10 μg/m3 increments of long-term exposure to PM2.5 and the following health-related outcomes: mortality of lung cancer (effect size = 1.11, 95% CI: 1.08-1.13) and Alzheimer's disease (effect size = 4.79, 95% CI: 2.79-8.21). There was highly suggestive evidence that chronic obstructive pulmonary disease risk is positively associated with higher long-term PM2.5 exposure versus lower long-term PM2.5 exposure (effect size = 2.32, 95% CI: 1.88-2.86). In conclusion, the positive association of long-term exposure to PM2.5 and stroke incidence in Europe was convincing. Given the validity of numerous associations of long-term exposure to PM2.5 and health-related outcomes is subject to biases, more robust evidence is urgently needed.
Collapse
Affiliation(s)
- Si-Tian Zang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin-Yu Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chang Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ya-Shu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-Yu Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
191
|
Li G, Zhang H, Hu M, He J, Yang W, Zhao H, Zhu Z, Zhu J, Huang F. Associations of combined exposures to ambient temperature, air pollution, and green space with hypertension in rural areas of Anhui Province, China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 204:112370. [PMID: 34780789 DOI: 10.1016/j.envres.2021.112370] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Hypertension (HTN) was a major preventable cause of cardiovascular disease (CVD), contributing to a huge disease burden. Ambient temperature, air pollution and green space were important influencing factors of HTN, and few studies have assessed the effects and interactions of ambient temperature, air pollution and green space on HTN in rural areas. In this study, we selected 8400 individuals randomly in rural areas of Anhui Province by a multi-stage stratified cluster sampling. A total of 8383 individuals were included in the final analysis. We collected particulate pollutants and meteorological data from the local air quality monitoring stations and National Center for Meteorological Science from January 1 to December 31, 2020, respectively. The normalized differential vegetation index (NDVI) of Anhui Province in 2020 was produced and processed by remote sensing inversion on the basis of medium resolution satellite images. The average annual mean exposure concentrations of air pollution, meteorological factors, and NDVI were calculated for each individual based on the geocoded residential address. HTN was defined according the Chinese Guidelines for Prevention and Treatment of HTN. The effects and interactions of ambient temperature, air pollution and green space on HTN were evaluated by generalized linear model and interaction model, respectively. In this study, the prevalence of HTN was 24.14%. The adjusted odd ratio of HTN for each 1 μg/m3 increasing in PM2.5 and PM10, 1 °C of ambient temperature, and 0.1 of NDVI were:1.276 (1.013, 1.043), 1.012 (1.006, 1.018), 0.862 (0.862, 0.981) and 0.669 (0.611, 0.733), respectively. The results showed that air pollutants were positively correlated with HTN, while ambient temperature and green space were negatively correlated with HTN. Meanwhile, the negative associations of green space on HTN could decrease with the increasing concentrations of air pollution, but increase with the rising of ambient temperature.
Collapse
Affiliation(s)
- Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Wanjun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhenyu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jinliang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
192
|
Luo YN, Yang BY, Zou Z, Markevych I, Browning MHEM, Heinrich J, Bao WW, Guo Y, Hu LW, Chen G, Ma J, Ma Y, Chen YJ, Dong GH. Associations of greenness surrounding schools with blood pressure and hypertension: A nationwide cross-sectional study of 61,229 children and adolescents in China. ENVIRONMENTAL RESEARCH 2022; 204:112004. [PMID: 34499893 DOI: 10.1016/j.envres.2021.112004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Greenness exposure may lower blood pressure. However, few studies of this relationship have been conducted with children and adolescents, especially in low and middle-income countries. OBJECTIVES To evaluate associations between greenness around schools and blood pressure among children and adolescents across China. METHODS We recruited 61,229 Chinese citizens aged 6-18 years from 94 schools in a nationwide cross-sectional study in seven Chinese provinces/province-level municipalities. Participants' blood pressures and hypertension were assessed with standardized protocols. Greenness levels within 500 m and 1,000 m of each school were estimated with three satellite-based indices: vegetation continuous fields (VCF), normalized difference vegetation index (NDVI), and soil adjusted vegetation index (SAVI). Generalized linear mixed models were used to evaluate associations between greenness and blood pressure, greenness and prevalent hypertension, using coefficient and odds ratio respectively. Stratified analyses and mediation analyses were also performed. RESULTS One interquartile range increase in greenness was associated with a 17%-20% reduced prevalence of hypertension for all measures of greenness (odds ratios for VCF500m = 20% (95% CI:18%, 23%); for NDVI500m = 17% (95% CI:13%, 21%); and for SAVI500m = 17% (95% CI: 13%, 20%). Increases in greenness were also associated with reductions in systolic blood pressure (0.48-0.58 mmHg) and diastolic blood pressure (0.26-0.52 mmHg). Older participants, boys, and urban dwellers showed stronger associations than their counterparts. No evidence of mediation was observed for air pollution (i.e., NO2 and PM2.5) and body mass index. CONCLUSION Higher greenness around schools may lower blood pressure levels and prevalent hypertension among Chinese children and adolescents, particularly in older subjects, boys, and those living in urban districts. Further studies, preferably longitudinal, are needed to examine causality.
Collapse
Affiliation(s)
- Ya-Na Luo
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Matthew H E M Browning
- Department of Parks, Recreation and Tourism Management, Clemson University, Clemson, SC, 29634, USA
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich; Comprehensive Pneumology Center (CPC) Munich, Member DZL; German Center for Lung Research, Ziemssenstrasse 1, 80336, Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Wen-Wen Bao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne VIC, 3004, Australia
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gongbo Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China.
| | - Ya-Jun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
193
|
Oh E, Choi KH, Kim SR, Kwon HJ, Bae S. Association of indoor and outdoor short-term PM2.5 exposure with blood pressure among school children. INDOOR AIR 2022; 32:e13013. [PMID: 35347791 DOI: 10.1111/ina.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The association between particulate matter and children's increased blood pressure is inconsistent, and few studies have evaluated indoor exposure, accounting for time-activity. The present study aimed to examine the association between personal short-term exposure to PM2.5 and blood pressure in children. We conducted a panel study with up to three physical examinations during different seasons of 2018 (spring, summer, and fall) among 52 children. The indoor PM2.5 concentration was continuously measured at home and classroom of each child using indoor air quality monitors. The outdoor PM2.5 concentration was measured from the nearest monitoring station. We constructed a mixed effect model to analyze the association of short-term indoor and outdoor PM2.5 exposure accounting for time-activity of each participant with blood pressure. The average PM2.5 concentration was 34.3 ± 9.2 μg/m3 and it was highest in the spring. The concentration measured at homes was generally higher than that measured at outdoor monitoring station. A 10-μg/m3 increment of the up to previous 3-day mean (lag0-3) PM2.5 concentration was associated with 2.7 mmHg (95%CI = 0.8, 4.0) and 2.1 mmHg (95%CI = 0.3, 4.0) increases in systolic and diastolic blood pressure, respectively. In a panel study comprehensively evaluating both indoor and outdoor exposures, which enabled more accurate exposure assessment, we observed a statistically significant association between blood pressure and PM2.5 exposure in children.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Hwa Choi
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - Sung Roul Kim
- Department of Environmental Health Science, Soon Chun Hyang University, Asan, Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Environmental Health Center, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
194
|
Zhao M, Xu Z, Guo Q, Gan Y, Wang Q, Liu JA. Association between long-term exposure to PM 2.5 and hypertension: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2022; 204:112352. [PMID: 34762927 DOI: 10.1016/j.envres.2021.112352] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Numerous studies have examined the association between long-term exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and hypertension. However, the results are inconsistent. OBJECTIVES Considering the limitations of previous meta-analyses and the publication of many new studies in recent years, we conducted this meta-analysis to assess the relationship between long-term PM2.5 exposure and the incidence and prevalence of hypertension in a healthy population. METHODS We searched PubMed, Web of Science, Embase, and Scopus for relevant studies published until April 2, 2021 and reviewed the reference lists of previous reviews. A total of 28 observational studies reporting RR or OR with 95% CI for the association between long-term PM2.5 exposure and the risk of hypertension were included. RESULTS After the sensitivity analysis, we excluded one study with a high degree of heterogeneity, resulting in 27 studies and 28 independent reports. Approximately 42 million participants were involved, and the cases of hypertension in cohort and cross-sectional studies were 508,749 and 1,793,003, respectively. The meta-analysis showed that each 10 μg/m3 increment in PM2.5 was significantly associated with the risks of hypertension incidence (RR = 1.21, 95% CI: 1.07, 1.35) and prevalence (OR = 1.06, 95% CI: 1.03, 1.09). Subgroup analyses showed that occupational exposure had a significant effect on the association of PM2.5 and hypertension incidence (p for interaction = 0.042) and that the PM2.5 concentration level and physical activity had a noticeable effect on the association of PM2.5 and hypertension prevalence (p for interaction = 0.005; p for interaction = 0.022). CONCLUSIONS A significantly positive correlation was observed between long-term PM2.5 exposure and risks of hypertension incidence and prevalence, and a high PM2.5 concentration resulted in an increased risk of hypertension.
Collapse
Affiliation(s)
- Mingqing Zhao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyuan Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianqian Guo
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-An Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
195
|
Environmental exposure to volatile organic compounds is associated with endothelial injury. Toxicol Appl Pharmacol 2022; 437:115877. [PMID: 35045333 PMCID: PMC10045232 DOI: 10.1016/j.taap.2022.115877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Volatile organic compounds (VOCs) are airborne toxicants abundant in outdoor and indoor air. High levels of VOCs are also present at various Superfund and other hazardous waste sites; however, little is known about the cardiovascular effects of VOCs. We hypothesized that ambient exposure to VOCs exacerbate cardiovascular disease (CVD) risk by depleting circulating angiogenic cells (CACs). APPROACH AND RESULTS In this cross-sectional study, we recruited 603 participants with low-to-high CVD risk and measured 15 subpopulations of CACs by flow cytometry and 16 urinary metabolites of 12 VOCs by LC/MS/MS. Associations between CAC and VOC metabolite levels were examined using generalized linear models in the total sample, and separately in non-smokers. In single pollutant models, metabolites of ethylbenzene/styrene and xylene, were negatively associated with CAC levels in both the total sample, and in non-smokers. The metabolite of acrylonitrile was negatively associated with CD45dim/CD146+/CD34+/AC133+ cells and CD45+/CD146+/AC133+, and the toluene metabolite with AC133+ cells. In analysis of non-smokers (n = 375), multipollutant models showed a negative association with metabolites of ethylbenzene/styrene, benzene, and xylene with CD45dim/CD146+/CD34+ cells, independent of other VOC metabolite levels. Cumulative VOC risk score showed a strong negative association with CD45dim/CD146+/CD34+ cells, suggesting that total VOC exposure has a cumulative effect on pro-angiogenic cells. We found a non-linear relationship for benzene, which showed an increase in CAC levels at low, but depletion at higher levels of exposure. Sex and race, hypertension, and diabetes significantly modified VOC associated CAC depletion. CONCLUSION Low-level ambient exposure to VOCs is associated with CAC depletion, which could compromise endothelial repair and angiogenesis, and exacerbate CVD risk.
Collapse
|
196
|
Wang W, Zhang W, Hu D, Li L, Cui L, Liu J, Liu S, Xu J, Wu S, Deng F, Guo X. Short-term ozone exposure and metabolic status in metabolically healthy obese and normal-weight young adults: A viewpoint of inflammatory pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127462. [PMID: 34653859 DOI: 10.1016/j.jhazmat.2021.127462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Unhealthy metabolic status increases risks of cardiovascular and other diseases. This study aims to explore whether there is a link between O3 and metabolic health indicators through a viewpoint of inflammatory pathways. 49 metabolically healthy normal-weight (MH-NW) and 39 metabolically healthy obese (MHO) young adults aged 18-26 years were recruited from a panel study with three visits. O3 exposure were estimated based on fixed-site environmental monitoring data and time-activity diary for each participant. Compared to MH-NW people, MHO people were more susceptible to the adverse effects on metabolic status, including blood pressure, glucose, and lipid indicators when exposed to O3. For instance, O3 exposure was associated with significant decreases in high-density lipoprotein cholesterol (HDL-C), and increases in C-peptide and low-density lipoprotein cholesterol (LDL-C) among MHO people, while only weaker changes in HDL-C and LDL-C among MH-NW people. Mediation analyses indicated that leptin mediated the metabolic health effects in both groups, while eosinophils and MCP-1 were also important mediating factors for the MHO people. Although both with a metabolically healthy status, compared to normal-weight people, obese people might be more susceptible to the negative effects of O3 on metabolic status, possibly through inflammatory indicators such as leptin, eosinophils, and MCP-1.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
197
|
Liu Y, Dong J, Zhai G. Association between air pollution and hospital admissions for hypertension in Lanzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11976-11989. [PMID: 34558050 DOI: 10.1007/s11356-021-16577-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Air pollution has been accepted as an important risk factor for hypertension. However, little is known about the association between air pollution and hospitalization for hypertension. In this study, we explored the association between six criteria air pollutants and hypertension hospitalization in Lanzhou, China. An over-dispersed Poisson regression model combined with a distributed lag nonlinear model (DLNM) was used. In addition, we investigated the effect of modification by sex, age, and season. A total of 30,197 hospitalization cases were identified during the study period. A 10μg/m3 increase in PM2.5, PM10, SO2, and NO2 concentrations or 1 mg/m3 increment in CO was significantly associated with relative risks (RRs) of hospital admissions due to hypertension 1.026 [95% confidence interval (CI): 1.010, 1.043], 1.010 (95%CI: 1.005, 1.015), 1.042 (95%CI: 1.001, 1.085), 1.028 (95%CI: 1.003, 1.052), and 1.106 (95%CI: 1.031, 1.186), respectively. No significant influence of O38h was found on hypertension hospital admissions. The associations differed by individual characteristics; the elderly (≥ 65 years) and females were highly vulnerable. The effects of PM2.5, SO2, and CO were more evident in the cool season than in the warm season. From exposure-response curves, we observe a nearly linear relationship for PM2.5, PM10, SO2, NO2, and CO. This study suggests that exposure to PM2.5, PM10, SO2, NO2, and CO is associated with hypertension morbidity.
Collapse
Affiliation(s)
- Yurong Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Guangyu Zhai
- School of Economics and Management, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| |
Collapse
|
198
|
Wensu Z, Wen C, Fenfen Z, Wenjuan W, Li L. The Association Between Long-Term Exposure to Particulate Matter and Incidence of Hypertension Among Chinese Elderly: A Retrospective Cohort Study. Front Cardiovasc Med 2022; 8:784800. [PMID: 35087881 PMCID: PMC8788195 DOI: 10.3389/fcvm.2021.784800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives: Studies that investigate the links between particulate matter ≤2. 5 μm (PM2.5) and hypertension among the elderly population, especially those including aged over 80 years, are limited. Therefore, we aimed to examine the association between PM2.5 exposure and the risk of hypertension incidence among Chinese elderly. Methods: This prospective cohort study used 2008, 2011, 2014, and 2018 wave data from a public database, the Chinese Longitudinal Healthy Longevity Survey, a national survey investigating the health of those aged over 65 years in China. We enrolled cohort participants who were free of hypertension at baseline (2008) from 706 counties (districts) and followed up in the 2011, 2014, and 2018 survey waves. The annual PM2.5 concentration of 706 counties (districts) units was derived from the Atmospheric Composition Analysis Group database as the exposure variable, and exposure to PM2.5 was defined as 1-year average of PM2.5 concentration before hypertension event occurrence or last interview (only for censoring). A Cox proportional hazards model with penalized spline was used to examine the non-linear association between PM2.5 concentration and hypertension risk. A random-effects Cox proportional hazards model was built to explore the relationship between each 1 μg/m3, 10 μg/m3 and quartile increment in PM2.5 concentration and hypertension incidence after adjusting for confounding variables. The modification effects of the different characteristics of the respondents were also explored. Results: A total of 7,432 participants aged 65-116 years were enrolled at baseline. The median of PM2.5 exposure concentration of all the participants was 52.7 (inter-quartile range, IQR = 29.1) μg/m3. Overall, the non-linear association between PM2.5 and hypertension incidence risk indicated that there was no safe threshold for PM2.5 exposure. The higher PM2.5 exposure, the greater risk for hypertension incidence. Each 1 μg/m3 [adjusted hazard ratio (AHR): 1.01; 95% CI: 1.01-1.02] and 10 μg/m3 (AHR: 1.12; 95% CI: 1.09-1.16) increments in PM2.5, were associated with the incidence of hypertension after adjusting for potential confounding variables. Compared to first quartile (Q1) exposure, the adjusted HRs of hypertension incidence for the Q2, Q3 and Q4 exposure of PM2.5 were 1.31 (95% CI: 1.13-1.51), 1.35 (95% CI: 1.15-1.60), and 1.83 (95% CI: 1.53-2.17), respectively. The effects appear to be stronger among those without a pension, living in a rural setting, and located in central/western regions. Conclusion: We found no safe threshold for PM2.5 exposure related to hypertension risk, and more rigorous approaches for PM2.5 control were needed. The elderly without a pension, living in rural and setting in the central/western regions may be more vulnerable to the effects of PM2.5 exposure.
Collapse
Affiliation(s)
- Zhou Wensu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Wen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhou Fenfen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wang Wenjuan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ling Li
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
199
|
Xu Z, Wang W, Liu Q, Li Z, Lei L, Ren L, Deng F, Guo X, Wu S. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118336. [PMID: 34634403 DOI: 10.1016/j.envpol.2021.118336] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Collapse
Affiliation(s)
- Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
200
|
Prenissl J, De Neve JW, Sudharsanan N, Manne-Goehler J, Mohan V, Awasthi A, Prabhakaran D, Roy A, Tandon N, Davies JI, Atun R, Bärnighausen T, Jaacks LM, Vollmer S, Geldsetzer P. Patterns of multimorbidity in India: A nationally representative cross-sectional study of individuals aged 15 to 49 years. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000587. [PMID: 36962723 PMCID: PMC10021201 DOI: 10.1371/journal.pgph.0000587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
There is a dearth of evidence on the epidemiology of multimorbidity in low- and middle-income countries. This study aimed to determine the prevalence of multimorbidity in India and its variation among states and population groups. We analyzed data from a nationally representative household survey conducted in 2015-2016 among individuals aged 15 to 49 years. Multimorbidity was defined as having two or more conditions out of five common chronic morbidities in India: anemia, asthma, diabetes, hypertension, and obesity. We disaggregated multimorbidity prevalence by condition, state, rural versus urban areas, district-level wealth, and individual-level sociodemographic characteristics. 712,822 individuals were included in the analysis. The prevalence of multimorbidity was 7·2% (95% CI, 7·1% - 7·4%), and was higher in urban (9·7% [95% CI, 9·4% - 10·1%]) than in rural (5·8% [95% CI, 5·7% - 6·0%]) areas. The three most prevalent morbidity combinations were hypertension with obesity (2·9% [95% CI, 2·8% - 3·1%]), hypertension with anemia (2·2% [95% CI, 2·1%- 2·3%]), and obesity with anemia (1·2% [95% CI, 1·1%- 1·2%]). The age-standardized multimorbidity prevalence varied from 3·4% (95% CI: 3·0% - 3·8%) in Chhattisgarh to 16·9% (95% CI: 13·2% - 21·5%) in Puducherry. Being a woman, being married, not currently smoking, greater household wealth, and living in urban areas were all associated with a higher risk of multimorbidity. Multimorbidity is common among young and middle-aged adults in India. This study can inform screening guidelines for chronic conditions and the targeting of relevant policies and interventions to those most in need.
Collapse
Affiliation(s)
- Jonas Prenissl
- Heidelberg Institute of Global Health, Medical Faculty and University Hospital, University of Heidelberg, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Jan-Walter De Neve
- Heidelberg Institute of Global Health, Medical Faculty and University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Nikkil Sudharsanan
- Heidelberg Institute of Global Health, Medical Faculty and University Hospital, University of Heidelberg, Heidelberg, Germany
- Technical University of Munich, Munich, Germany
| | - Jennifer Manne-Goehler
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, Tamil Nadu, India
- Dr. Mohan's Diabetes Specialities Centre,Chennai, Tamil Nadu, India
| | - Ashish Awasthi
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, Haryana, India
| | - Dorairaj Prabhakaran
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, Haryana, India
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Ambuj Roy
- Department of Cardiology, Cardiothoracic Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Justine I Davies
- Institute of Applied Health Research, Birmingham University, Birmingham, United Kingdom
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rifat Atun
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Medical Faculty and University Hospital, University of Heidelberg, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Africa Health Research Institute, Mtubatuba, KwaZulu-Natal, South Africa
| | - Lindsay M Jaacks
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, Haryana, India
- The Global Academy of Agriculture and Food Security, The University of Edinburgh, Midlothian, United Kingdom
| | - Sebastian Vollmer
- Department of Economics & Centre for Modern Indian Studies, University of Goettingen, Göttingen, Germany
| | - Pascal Geldsetzer
- Division of Primary Care and Population Health, Department of Medicine, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|