151
|
Sun S, Zhao R, Xie Y, Liu Y. Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
152
|
Molina A, Chavarría G, Alfaro-Cascante M, Leiva A, Granados-Chinchilla F. Mycotoxins at the Start of the Food Chain in Costa Rica: Analysis of Six Fusarium Toxins and Ochratoxin A between 2013 and 2017 in Animal Feed and Aflatoxin M 1 in Dairy Products. Toxins (Basel) 2019; 11:E312. [PMID: 31159287 PMCID: PMC6628313 DOI: 10.3390/toxins11060312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are secondary metabolites, produced by fungi of genera Aspergillus, Penicillium and Fusarium (among others), which produce adverse health effects on humans and animals (carcinogenic, teratogenic and immunosuppressive). In addition, mycotoxins negatively affect the productive parameters of livestock (e.g., weight, food consumption, and food conversion). Epidemiological studies are considered necessary to assist stakeholders with the process of decision-making regarding the control of mycotoxins in processing environments. This study addressed the prevalence in feed ingredients and compound feed of eight different types of toxins, including metabolites produced by Fusarium spp. (Deoxynivalenol/3-acetyldeoxynivalenol, T-2/HT-2 toxins, zearalenone and fumonisins) and two additional toxins (i.e., ochratoxin A (OTA) and aflatoxin M1 (AFM1)) from different fungal species, for over a period of five years. On the subject of Fusarium toxins, higher prevalences were observed for fumonisins (n = 80/113, 70.8%) and DON (n = 212/363, 58.4%), whereas, for OTA, a prevalence of 40.56% was found (n = 146/360). In the case of raw material, mycotoxin contamination exceeding recommended values were observed in cornmeal for HT-2 toxin (n = 3/24, 12.5%), T-2 toxin (n = 3/61, 4.9%), and ZEA (n = 2/45, 4.4%). In contrast, many compound feed samples exceeded recommended values; in dairy cattle feed toxins such as DON (n = 5/147, 3.4%), ZEA (n = 6/150, 4.0%), T-2 toxin (n = 10/171, 5.9%), and HT-2 toxin (n = 13/132, 9.8%) were observed in high amounts. OTA was the most common compound accompanying Fusarium toxins (i.e., 16.67% of co-occurrence with ZEA). This study also provided epidemiological data for AFM1 in liquid milk. The outcomes unveiled a high prevalence of contamination (i.e., 29.6-71.1%) and several samples exceeding the regulatory threshold. Statistical analysis exposed no significant climate effect connected to the prevalence of diverse types of mycotoxins.
Collapse
Affiliation(s)
- Andrea Molina
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
- Escuela de Zootecnia, Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Guadalupe Chavarría
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Margarita Alfaro-Cascante
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| |
Collapse
|
153
|
Assaf JC, Nahle S, Chokr A, Louka N, Atoui A, El Khoury A. Assorted Methods for Decontamination of Aflatoxin M1 in Milk Using Microbial Adsorbents. Toxins (Basel) 2019; 11:E304. [PMID: 31146398 PMCID: PMC6628408 DOI: 10.3390/toxins11060304] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Aflatoxins (AF) are carcinogenic metabolites produced by different species of Aspergillus which readily colonize crops. AFM1 is secreted in the milk of lactating mammals through the ingestion of feedstuffs contaminated by aflatoxin B1 (AFB1). Therefore, its presence in milk, even in small amounts, presents a real concern for dairy industries and consumers of dairy products. Different strategies can lead to the reduction of AFM1 contamination levels in milk. They include adopting good agricultural practices, decreasing the AFB1 contamination of animal feeds, or using diverse types of adsorbent materials. One of the most effective types of adsorbents used for AFM1 decontamination are those of microbial origin. This review discusses current issues about AFM1 decontamination methods. These methods are based on the use of different bio-adsorbent agents such as bacteria and yeasts to complex AFM1 in milk. Moreover, this review answers some of the raised concerns about the binding stability of the formed AFM1-microbial complex. Thus, the efficiency of the decontamination methods was addressed, and plausible experimental variants were discussed.
Collapse
Affiliation(s)
- Jean Claude Assaf
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Sahar Nahle
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
| | - Ali Atoui
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
| |
Collapse
|
154
|
Lukwago FB, Mukisa IM, Atukwase A, Kaaya AN, Tumwebaze S. Mycotoxins contamination in foods consumed in Uganda: A 12-year review (2006–18). SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
155
|
Alsharif AMA, Choo YM, Tan GH. Detection of Five Mycotoxins in Different Food Matrices in the Malaysian Market by Using Validated Liquid Chromatography Electrospray Ionization Triple Quadrupole Mass Spectrometry. Toxins (Basel) 2019; 11:toxins11040196. [PMID: 30935130 PMCID: PMC6520768 DOI: 10.3390/toxins11040196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are common food contaminants which cause poisoning and severe health risks to humans and animals. The present study applied chemometric approach in liquid chromatography-tandem mass spectrometry (LC-MS/MS) optimization for simultaneous determination of mycotoxins, i.e., aflatoxins B1, B2, G1, and G2, and ochratoxin A. The validated quick, easy, cheap, effective, rugged, and safe (QuEChERS)-LC-MS/MS method was used to study the occurrence of mycotoxins in 120 food matrices. The recovery ranges from 81.94% to 101.67% with relative standard deviation (RSD) lesser than 11%. Through the developed method, aflatoxins were detected in raisin, pistachio, peanut, wheat flour, spice, and chili samples with concentration ranges from 0.45 to 16.93 µg/kg. Trace concentration of ochratoxin A was found in wheat flour and peanut samples which ranged from 1.2 to 3.53 µg/kg. Some of the tested food samples contained mycotoxins of above the European legal maximum limit.
Collapse
Affiliation(s)
- Ali Mohamed Ali Alsharif
- Department of Chemistry, Faculty of Science, University of Mala, Kuala Lumpur 50603, Malaysia.
- Arab Centre for Desertification and Development of Saharian Societies, Murzuk 999116, Libya.
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Mala, Kuala Lumpur 50603, Malaysia.
| | - Guan-Huat Tan
- Department of Chemistry, Faculty of Science, University of Mala, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
156
|
Li H, Xiong Z, Gui D, Pan Y, Xu M, Guo Y, Leng J, Li X. Effect of ozonation and UV irradiation on aflatoxin degradation of peanuts. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Zhongfei Xiong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Dali Gui
- Institute of Mechanics Tianjin University of Science and Technology Tianjin China
| | - Yanfang Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Mengjun Xu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Yanli Guo
- Tianjin Jiesheng Donghui Preservation Technology Co. Ltd Tianjin China
| | - Juncai Leng
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
157
|
Solis-Cruz B, Hernandez-Patlan D, Petrone VM, Pontin KP, Latorre JD, Beyssac E, Hernandez-Velasco X, Merino-Guzman R, Owens C, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of Cellulosic Polymers and Curcumin to Reduce Aflatoxin B1 Toxic Effects on Performance, Biochemical, and Immunological Parameters of Broiler Chickens. Toxins (Basel) 2019; 11:E121. [PMID: 30781456 PMCID: PMC6410090 DOI: 10.3390/toxins11020121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
To evaluate the effect of cellulosic polymers (CEL) and curcumin (CUR) on aflatoxin B1 (AFB1) toxic effects on performance, and the biochemical and immunological parameters in broiler chickens, 150 one-day-old male broiler chicks were randomly allocated into five groups with three replicates of 10 chickens per pen: Negative Control (feed); AFB1 (feed + 2 ppm AFB1); CUR (feed + 2 ppm AFB1 + Curcumin 0.2%); CEL (feed + 2 ppm AFB1 + 0.3% Cellulosic polymers); and, CEL + CUR (feed + 2 ppm AFB1 + 0.3% Cellulose polymers + 0.2% Curcumin). Every week, body weight, body weight gain, feed intake, and feed conversion ratio were calculated. On day 21, liver, spleen, bursa of Fabricius, and intestine from five broilers per replicate per group were removed to obtain relative organ weight. Histopathological changes in liver, several biochemical biomarkers, antibody titers, and muscle and skin pigmentation were also recorded. Dietary addition of 0.3% CEL and 0.2% CUR separately significantly diminished some of the toxic effects resulting from AFB1 on performance parameters, relative organs weight, histopathology, immune response, and serum biochemical variables (P < 0.05); however, the combination of CUR and CEL showed a better-integrated approach for the management of poultry health problems that are related with the consumption of AFB1, since they have different mechanisms of action with different positive effects on the responses of broiler chickens.
Collapse
Affiliation(s)
- Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | - Victor M Petrone
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | - Karine P Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 97105-900, Brazil.
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Eric Beyssac
- Laboratoire de Biopharmacie et Technologie Pharmaceutique, UFR de Pharmacie, Faculté de Pharmacie, Université Clermont Auvergne, 63001 Clermont-Ferrand, France.
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico.
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico.
| | - Casey Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | | |
Collapse
|
158
|
Jiang MP, Zheng SY, Wang H, Zhang SY, Yao DS, Xie CF, Liu DL. Predictive model of aflatoxin contamination risk associated with granary-stored corn with versicolorin A monitoring and logistic regression. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:308-319. [DOI: 10.1080/19440049.2018.1562226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Meng Ping Jiang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| | - Shao Yan Zheng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| | - Hao Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| | - Shu Yao Zhang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Dong Sheng Yao
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
- National Engineering Research Centre of Genetic Medicine, Jinan University, Guangzhou, China
| | - Chun Fang Xie
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
- National Engineering Research Centre of Genetic Medicine, Jinan University, Guangzhou, China
| | - Da Ling Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| |
Collapse
|
159
|
Saha Turna N, Wu F. Risk assessment of aflatoxin-related liver cancer in Bangladesh. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:320-326. [DOI: 10.1080/19440049.2019.1567941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
160
|
Chestnut Drying Is Critical in Determining Aspergillus flavus Growth and Aflatoxin Contamination. Toxins (Basel) 2018; 10:toxins10120530. [PMID: 30544921 PMCID: PMC6316821 DOI: 10.3390/toxins10120530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022] Open
Abstract
Chestnut drying is used to prevent postharvest losses and microorganism contamination during storage. Several studies reported the contamination by aflatoxins (AFs) produced by Aspergillus spp. in chestnuts. The effect of drying temperatures (from 30 to 50 °C) was evaluated on the growth of A. flavus and the production of aflatoxins in chestnuts. The influence of the treatment on the proximate composition, the total phenol content and antioxidant activity of chestnuts was considered. Fungal colonization was observed on the nuts dried at 30, 35, and 40 °C; the incidence was lower at 40 °C. The highest concentrations of AFB1 and AFB2 were produced at 40 °C. No aflatoxins were detected at 45 or 50 °C. At 40 °C A. flavus was under suboptimal conditions for growth (aw 0.78), but the fungus was able to synthesize aflatoxins. As the temperatures applied increased, the total phenol content increased, while the antioxidant activity decreased. A drying treatment at 45 °C for seven days (aw 0.64) could be a promising method to effectively control both the growth of aflatoxigenic fungi and the production of aflatoxins. This study provides preliminary data useful to improve the current drying conditions used in chestnut mills, to reduce both fungal growth and aflatoxin production.
Collapse
|
161
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
162
|
Misra NN, Yadav B, Roopesh MS, Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr Rev Food Sci Food Saf 2018; 18:106-120. [PMID: 33337013 DOI: 10.1111/1541-4337.12398] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Cold plasma treatment is a promising intervention in food processing to boost product safety and extend the shelf-life. The activated chemical species of cold plasma can act rapidly against micro-organisms at ambient temperatures without leaving any known chemical residues. This review presents an overview of the action of cold plasma against molds and mycotoxins, the underlying mechanisms, and applications for ensuring food safety and quality. The cold plasma species act on multiple sites of a fungal cell resulting in loss of function and structure, and ultimately cell death. Likewise, the species cause chemical breakdown of mycotoxins through various pathways resulting in degradation products that are known to be less toxic. We argue that the preliminary reports from cold plasma research point at good potential of plasma for shelf-life extension and quality retention of foods. Some of the notable food sectors which could benefit from antimycotic and antimycotoxin efficacy of cold plasma include, the fresh produce, food grains, nuts, spices, herbs, dried meat and fish industries.
Collapse
Affiliation(s)
- N N Misra
- Center for Crops Utilization Research, Iowa State Univ., Ames, IA, USA
| | - Barun Yadav
- Dept. of Agricultural, Food & Nutritional Science, Univ. of Alberta, Canada
| | - M S Roopesh
- Dept. of Agricultural, Food & Nutritional Science, Univ. of Alberta, Canada
| | - Cheorun Jo
- Dept. of Agricultural Biotechnology, Center for Food & Bioconvergence, Research Inst. of Agriculture & Life Science, Seoul National Univ., Seoul, 08826, South Korea.,Inst. of Green Bio Science and Technology, Seoul National Univ., Pyeongchang, 25354, South Korea
| |
Collapse
|
163
|
Relationship Between Aflatoxin B1 Exposure and Etiology of Liver Disease in Saudi Arabian Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
164
|
Probabilistic health risk assessment for dietary exposure to aflatoxin in peanut and peanut products in Taiwan. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
165
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
166
|
Akram NA, Shafiq F, Ashraf M. Peanut (Arachis hypogaea L.): A Prospective Legume Crop to Offer Multiple Health Benefits Under Changing Climate. Compr Rev Food Sci Food Saf 2018; 17:1325-1338. [PMID: 33350163 DOI: 10.1111/1541-4337.12383] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
Peanut is a multipurpose oil-seed legume, which offer benefits in many ways. Apart from the peanut plant's beneficial effects on soil quality, peanut seeds are nutritious and medicinally and economically important. In this review, insights into peanut origin and its domestication are provided. Peanut is rich in bioactive components, including phenolics, flavonoids, polyphenols, and resveratrol. In addition, the involvement of peanut in biological nitrogen fixation is highly significant. Recent reports regarding peanut responses and N2 fixation ability in response to abiotic stresses, including drought, salinity, heat stress, and iron deficiency on calcareous soils, have been incorporated. As a biotechnological note, recent advances in the development of transgenic peanut plants are also highlighted. In this context, regulation of transcriptional factors and gene transfer for the development of stress-tolerant peanut genotypes are of prime importance. Above all, this review signifies the importance of peanut cultivation and human consumption in view of the scenario of changing world climate in order to maintain food security.
Collapse
Affiliation(s)
| | - Fahad Shafiq
- Dept. of Botany, Government College Univ. Faisalabad, Pakistan
| | | |
Collapse
|
167
|
Shanakhat H, Sorrentino A, Raiola A, Romano A, Masi P, Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4003-4013. [PMID: 29412472 DOI: 10.1002/jsfa.8933] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Mycotoxins are secondary metabolites produced by moulds in food that are considered a substantial issue in the context of food safety, due to their acute and chronic toxic effects on animals and humans. Therefore, new accurate methods for their identification and quantification are constantly developed in order to increase the performance of extraction, improve the accuracy of identification and reduce the limit of detection. At the same time, several industrial practices have shown the ability to reduce the level of mycotoxin contamination in food. In particular, a decrease in the amount of mycotoxins could result from standard processes naturally used for food processing or by procedures strategically introduced during processing, with the specific aim of reducing the amount of mycotoxins. In this review, the current methods adopted for accurate analyses of mycotoxins in cereals (aflatoxins, ochratoxins, trichothecenes, fumonisins) are discussed. In addition, both conventional and innovative strategies adopted to obtain safer finished products from common cereals intended for human consumption will be explored and analysed. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hina Shanakhat
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Sorrentino
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Assunta Raiola
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
168
|
Chien MY, Yang CM, Huang CM, Chen CH. Investigation of aflatoxins contamination in herbal materia medica in a Taiwan pharmaceutical factory. J Food Drug Anal 2018; 26:1154-1159. [PMID: 29976407 PMCID: PMC9303029 DOI: 10.1016/j.jfda.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/01/2022] Open
Abstract
During the years 2005–2016, a total of 1067 samples for 24 types of herbal materia medica were investigated for the presence of aflatoxins (AFs) using immunoaffinity column cleanup and HPLC-coupled to a fluorescence detector after post-column derivatization. AFs were detected in 373 (35%) out of the total samples. Among them, Platycladi Semen (65% for total AFs and 79% for AFB1), Corydalis Rhizoma (53% for total AFs and 32% for AFB1), Corni Fructus (3% for total AFs), Coicis Semen (3% for total AFs and AFB1), Nelumbinis Semen (6% for total AFs and 9% for AFB1), Arecae Semen (18% for AFB1), Polygalae Radix (5% for total AFs and AFB1), and Cassiae Semen (25% for total AFs and 38% for AFB1) exceeded the official limits of 5 and 10 μg/kg, for AFB1 and total AFs (the sum of AFB1, AFB2, AFG1, and AFG2), respectively, set by the Taiwan government. We concluded that Platycladi Semen, Corydalis Rhizoma, and Cassiae Semen are the most commonly contaminated by AFs.
Collapse
Affiliation(s)
- Mei-Yin Chien
- Ko Da Pharmaceutical Co. Ltd., Taoyuan,
Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei,
Taiwan
| | | | | | - Chao-Hsiang Chen
- Ko Da Pharmaceutical Co. Ltd., Taoyuan,
Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei,
Taiwan
- Corresponding author. Ko Da Pharmaceutical Co. Ltd., No.20-1, Gongye 3rd Rd., Pingzhen Dist., Taoyuan city 324, Taiwan, ROC. Fax:+886 3 4690546., E-mail address: (C.-H. Chen)
| |
Collapse
|
169
|
Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res Int 2018; 113:74-85. [PMID: 30195548 DOI: 10.1016/j.foodres.2018.06.067] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/08/2023]
Abstract
Aflatoxins are highly toxic compounds produced as secondary metabolites by some Aspergillus species, whose occurrence have been reported predominantly in several types of foods of low moisture content, while aflatoxin biotransformation products have been reported mainly in milk and milk products. This review deals with the occurrence of aflatoxins in some of the major food products in the last 5 years including regulatory aspects, and recent advances in detoxification strategies for contaminated foods. Aflatoxin contamination in cereals including corn and peanut is still a public health problem for some populations, especially in African countries. Despite that most of physical and chemical methods for aflatoxin detoxification may affect the nutritional properties of food, or are not safe for human consumption, gamma-radiation and ozone applications have demonstrated great potential for detoxification of aflatoxins in some food matrices. Biological methods based on removal or degradation of aflatoxins by bacterial and yeast have good perspectives, although further studies are needed to clarify the detoxification mechanisms by microorganisms and determine practical aspects of the use of these methods in food products, especially their potential effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Bruna L Gonçalves
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Diane V de Neeff
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Bárbara Ponzilacqua
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Carolina F S C Coppa
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Henning Hintzsche
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany; Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, Erlangen 91058, Germany
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Adriano G Cruz
- Science and Technology of Rio de Janeiro, Department of Food Science, Federal Institute of Education, Rio de Janeiro, RJ, Brazil
| | - Carlos H Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil.
| |
Collapse
|
170
|
Assaf JC, El Khoury A, Atoui A, Louka N, Chokr A. A novel technique for aflatoxin M1 detoxification using chitin or treated shrimp shells: in vitro effect of physical and kinetic parameters on the binding stability. Appl Microbiol Biotechnol 2018; 102:6687-6697. [DOI: 10.1007/s00253-018-9124-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
|
171
|
Gilbert MK, Majumdar R, Rajasekaran K, Chen ZY, Wei Q, Sickler CM, Lebar MD, Cary JW, Frame BR, Wang K. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. PLANTA 2018; 247:1465-1473. [PMID: 29541880 DOI: 10.1007/s00425-018-2875-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 05/22/2023]
Abstract
Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.
Collapse
Affiliation(s)
- Matthew K Gilbert
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA.
| | - Rajtilak Majumdar
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Kanniah Rajasekaran
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Science Building, Baton Rouge, LA, 70803, USA
| | - Qijian Wei
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Christine M Sickler
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Matthew D Lebar
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Jeffrey W Cary
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Bronwyn R Frame
- Plant Transformation Facility, Iowa State University, G405 Agronomy Hall, Ames, IA, 50011, USA
| | - Kan Wang
- Plant Transformation Facility, Iowa State University, G405 Agronomy Hall, Ames, IA, 50011, USA
| |
Collapse
|
172
|
Effect of High Protein Diet and Probiotic Lactobacillus casei Shirota Supplementation in Aflatoxin B 1-Induced Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9568351. [PMID: 29951550 PMCID: PMC5989301 DOI: 10.1155/2018/9568351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 01/11/2023]
Abstract
Probiotic Lactobacillus casei Shirota (LcS) is a potential decontaminating agent of aflatoxin B1 (AFB1). However, few studies have investigated the influence of diet, especially a high protein (HP) diet, on the binding of AFB1 by probiotics. This research was conducted to determine the effect of HP diet on the ability of LcS to bind AFB1 and reduce aflatoxin M1 (AFM1) in AFB1-induced rats. Sprague Dawley rats were randomly divided into three groups: A (HP only), B (HP + 108 CFU LcS + 25 μg AFB1/kg BW), and C (HP + 25 μg AFB1/kg BW). Levels of AST and ALP were higher in all groups but other liver function's biomarkers were in the normal range, and the liver's histology showed no structural changes. The urea level of rats in group B (10.02 ± 0.73 mmol/l) was significantly lower (p < 0.05) than that of rats in group A (10.82 ± 0.26 mmol/l). The presence of carcinoma in the small intestine and colon was more obvious in group C than in group B. Moreover, rats in group B had significantly (p < 0.05) lower AFM1 concentration (0.39 ± 0.01 ng/ml) than rats in group C (5.22 ± 0.28 ng/ml). Through these findings, LcS supplementation with HP diet alleviated the adverse effects of AFB1 by preventing AFB1 absorption in the small intestine and reducing urinary AFM1.
Collapse
|
173
|
A monolithic column based on covalent cross-linked polymer gels for online extraction and analysis of trace aflatoxins in food sample. J Chromatogr A 2018; 1548:27-36. [DOI: 10.1016/j.chroma.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
|
174
|
Rajasekaran K, Sayler RJ, Sickler CM, Majumdar R, Jaynes JM, Cary JW. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:150-156. [PMID: 29576068 DOI: 10.1016/j.plantsci.2018.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Aspergillus flavus is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. Contamination of maize with aflatoxin poses a serious threat to human health in addition to reducing the crop value leading to a substantial economic loss. Here we report designing a tachyplesin1-derived synthetic peptide AGM182 and testing its antifungal activity both in vitro and in planta. In vitro studies showed a five-fold increase in antifungal activity of AGM182 (vs. tachyplesin1) against A. flavus. Transgenic maize plants expressing AGM182 under maize Ubiquitin-1 promoter were produced through Agrobacterium-mediated transformation. PCR products confirmed integration of the AGM182 gene, while RT-PCR of maize RNA confirmed the presence of AGM182 transcripts. Maize kernel screening assay using a highly aflatoxigenic A. flavus strain (AF70) showed up to 72% reduction in fungal growth in the transgenic AGM182 seeds compared to isogenic negative control seeds. Reduced fungal growth in the AGM182 transgenic seeds resulted in a significant reduction in aflatoxin levels (76-98%). The results presented here show the power of computational and synthetic biology to rationally design and synthesize an antimicrobial peptide against A. flavus that is effective in reducing fungal growth and aflatoxin contamination in an economically important food and feed crop such as maize.
Collapse
Affiliation(s)
- Kanniah Rajasekaran
- Food and Feed Safety Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, United States.
| | - Ronald J Sayler
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States
| | - Christine M Sickler
- Food and Feed Safety Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, United States
| | - Rajtilak Majumdar
- Food and Feed Safety Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, United States
| | - Jesse M Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, United States
| | - Jeffrey W Cary
- Food and Feed Safety Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, United States
| |
Collapse
|
175
|
Jeyaramraja P, Meenakshi SN, Woldesenbet F. Relationship between drought and preharvest aflatoxin contamination in groundnut (Arachis hypogaea L.). WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Groundnut is a commercial oilseed crop that is prone to infection by Aspergillus flavus or Aspergillus parasiticus. Drought impairs the defence mechanism of the plant and favours the production of aflatoxin by the fungus. Aflatoxin is a carcinogen and its presence in food and feed causes significant economic loss. The answer to the question, ‘how drought tolerance and aflatoxin resistance are related?’ is not clear. In this review paper, the relationship of drought and preharvest aflatoxin contamination (AC), the relationship of drought tolerance traits and AC, and the approaches to enhance resistance to AC are discussed using up-to-date literature. Factors leading to AC are drought, high geocarposphere temperature, kernel/pod damage, and reduced phytoalexin synthesis by the plant. If the fungus colonises a kernel with reduced water activity, the plant cannot synthesise phytoalexin and then, the fungus synthesises aflatoxin. Breeding for resistance to AC is complicated because aflatoxin concentration is costly to measure, highly variable, and influenced by the environment. Since drought tolerant cultivars have resistance to AC, traits of drought tolerance have been used as indirect selection tools for reduced AC. The genetics of aflatoxin resistance mechanisms have not been made clear as the environment influences the host-pathogen relationship. Host-pathogen interactions under the influence of environment should be studied at molecular level to identify plant resistant factors using the tools of genomics, proteomics, and metabolomics in order to develop cultivars with durable resistance. Many candidate genes involved in host-pathogen interactions have been identified due to improvements in fungal expressed sequence tags, microarrays, and genome sequencing techniques. Moreover, research projects are underway on identifying genes coding for antifungal compounds, resistance associated proteins and quantitative trait loci associated with aflatoxin resistance. This review is expected to help those who wish to work on reducing AC in groundnuts.
Collapse
Affiliation(s)
- P.R. Jeyaramraja
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| | - S. Nithya Meenakshi
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, Tamilnadu, India
| | - F. Woldesenbet
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| |
Collapse
|
176
|
Orlandi G, Calvini R, Foca G, Ulrici A. Automated quantification of defective maize kernels by means of Multivariate Image Analysis. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
177
|
Ren G, Hu Y, Zhang J, Zou L, Zhao G. Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Toxins (Basel) 2018; 10:toxins10010028. [PMID: 29300300 PMCID: PMC5793115 DOI: 10.3390/toxins10010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/03/2023] Open
Abstract
Considering crops are susceptible to toxicogenic fungi during plantation, pre-processing and storage, an ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometry (UFLC-QTrap-MS/MS) method was developed and validated for simultaneous determination of the 12 most frequent mycotoxins, including aflatoxin B1, B2, G1, G2, HT-2, T-2 toxin, ochratoxin A, fumonisin B1, B2, zearalanone, zearalenone, and deoxynivalenol, in 14 batches of Tartary buckwheat cultivar, collected from different origins in Sichuan Province, China. Differing from those complicated approaches, a simple and cost-efficient pretreatment method based on dilute-and-shoot was employed. Based on optimized chromatographic and mass spectrometry conditions, these 12 mycotoxins could be analyzed with high correlation coefficients (all over 0.995), high precision (RSD 0.47–9.26%), stability (RSD 0.72–11.36%), and recovery (79.52% to 108.92%, RSD 4.35–14.27%). Furthermore, this analysis method exhibited good determination performance with little disturbance of the matrix effect. Finally, this proposed method was applied for 14 batches of Tartary buckwheat seeds, in which aflatoxin B1 (AFB1) was detected in one moldy cultivar, Meigu No. 2, with its concentration exceeding the maximum residue limits set by EU regulations. The method thus established, which has significant advantages, could provide a preferred determination approach candidate for measurement of multiple mycotoxins measurement in Tartary buckwheat, even other kinds of foodstuffs.
Collapse
Affiliation(s)
- Guixing Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
178
|
Johnson AM, Fulton JR, Abdoulaye T, Ayedun B, Widmar NJO, Akande A, Bandyopadhyay R, Manyong V. Aflatoxin awareness and Aflasafe adoption potential of Nigerian smallholder maize farmers: OPEN ACCESS. WORLD MYCOTOXIN J 2018; 11:437-446. [PMID: 33552313 PMCID: PMC7797632 DOI: 10.3920/wmj2018.2345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022]
Abstract
Aflatoxin is a potent mycotoxin that can cause cancer and death and is associated
with stunted growth. Prevalence of aflatoxin is widespread in Africa negatively
impacting health and trade. Aflasafe is a biological control product that can be
applied to maize or groundnut fields to reduce aflatoxin contamination. This
study examines the levels of aflatoxin and Aflasafe awareness and understanding
among smallholder maize farmers in Nigeria. In addition, the factors affecting
Aflasafe purchase patterns and sustained usage over multiple growing seasons by
farmers were evaluated. In-person surveys of 902 Nigerian smallholder farmers
were conducted during October and November of 2016. This work contributes to the
existing literature by documenting awareness levels of aflatoxin and use of
Aflasafe as a control in Nigeria. Results suggest that the level of awareness of
aflatoxin was very high in states where Aflasafe was promoted as an intervention
for aflatoxin management. In Kaduna state, the region with the longest
intervention, there was a consistent increase in the usage of Aflasafe since its
introduction in 2010. Furthermore, farmers who purchase Aflasafe bundled
(combined) with other inputs were more likely to persist in using the product.
Education was found to significantly and positively impact continued usage of
Aflasafe. Continued interventions, promotion and general education of the public
are recommended for increased awareness, trial, and adoption of Aflasafe in
Nigeria.
Collapse
Affiliation(s)
- A M Johnson
- Department of Agricultural Economics, Purdue University, 403 West State Street, West Lafayette, IN 47907, USA
| | - J R Fulton
- Department of Agricultural Economics, Purdue University, 403 West State Street, West Lafayette, IN 47907, USA
| | - T Abdoulaye
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Idi-Oshe, Ibadan, Nigeria
| | - B Ayedun
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Idi-Oshe, Ibadan, Nigeria
| | - N J O Widmar
- Department of Agricultural Economics, Purdue University, 403 West State Street, West Lafayette, IN 47907, USA
| | - A Akande
- IITA, PMB 82, Garki GPO, Kubwa, Abuja, Nigeria
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Idi-Oshe, Ibadan, Nigeria
| | - V Manyong
- IITA, Plot No. 25, Mikocheni Light Industrial Area, Mwenge - Coca-cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam
| |
Collapse
|
179
|
Pizzolato Montanha F, Anater A, Burchard JF, Luciano FB, Meca G, Manyes L, Pimpão CT. Mycotoxins in dry-cured meats: A review. Food Chem Toxicol 2018; 111:494-502. [DOI: 10.1016/j.fct.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
|
180
|
WetA bridges cellular and chemical development in Aspergillus flavus. PLoS One 2017; 12:e0179571. [PMID: 28658268 PMCID: PMC5489174 DOI: 10.1371/journal.pone.0179571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/31/2017] [Indexed: 12/03/2022] Open
Abstract
Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3)-glucan, β-(1,3)-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.
Collapse
|
181
|
Kademi HI, Baba IA, Saad FT. Modelling the dynamics of toxicity associated with aflatoxins in foods and feeds. Toxicol Rep 2017; 4:358-363. [PMID: 28959660 PMCID: PMC5615152 DOI: 10.1016/j.toxrep.2017.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/14/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
In this paper, we developed a mathematical model to describethe dynamics of Aflatoxins in plants, animals, and humans. Fourequilibrium points were found, and their stability analyses wereconducted using threshold quantities. If both are less than one, thestandardized toxic limit is not exceeded, while if both are greater thanone it is exceeded in both animals and humans. Standardized toxic limitis exceeded in a relevant host (animals or humans) when their respectivethreshold quantity is greater than one. Numerical simulations werecarried out to support the analytic results. The need to use experimentaldata in the model is also shown. This could ease satisfactoryharmonization of acceptable standards and facilitate international tradeof food and feeds.
Collapse
Affiliation(s)
- Hafizu Ibrahim Kademi
- Near East University, Faculty of Veterinary Medicine, Food Hygiene and Technology Department, Nicosia, Cyprus
| | - Isa Abdullahi Baba
- Near East University, Faculty of Arts and Sciences, Department of Mathematics, Nicosia, Cyprus
| | - Farouk Tijjani Saad
- Near East University, Faculty of Arts and Sciences, Department of Mathematics, Nicosia, Cyprus
| |
Collapse
|