151
|
ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med 2016; 48:e269. [PMID: 27811934 PMCID: PMC5133371 DOI: 10.1038/emm.2016.119] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Evidence indicates that hypoxia and oxidative stress can control metabolic reprogramming of cancer cells and other cells in tumor microenvironments and that the reprogrammed metabolic pathways in cancer tissue can also alter the redox balance. Thus, important steps toward developing novel cancer therapy approaches would be to identify and modulate critical biochemical nodes that are deregulated in cancer metabolism and determine if the therapeutic efficiency can be influenced by changes in redox homeostasis in cancer tissues. In this review, we will explore the molecular mechanisms responsible for the metabolic reprogramming of tumor microenvironments, the functional modulation of which may disrupt the effects of or may be disrupted by redox homeostasis modulating cancer therapy.
Collapse
|
152
|
Radde BN, Alizadeh-Rad N, Price SM, Schultz DJ, Klinge CM. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells. J Cell Biochem 2016; 117:2521-32. [PMID: 26990649 PMCID: PMC11968783 DOI: 10.1002/jcb.25544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brandie N Radde
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Negin Alizadeh-Rad
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Stephanie M Price
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - David J Schultz
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
153
|
Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets. Cell Death Differ 2016; 24:251-262. [PMID: 27768122 DOI: 10.1038/cdd.2016.116] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors.
Collapse
|
154
|
Case AJ, Roessner CT, Tian J, Zimmerman MC. Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS One 2016; 11:e0164609. [PMID: 27727316 PMCID: PMC5058488 DOI: 10.1371/journal.pone.0164609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Norepinephrine (NE) produces multifaceted regulatory patterns in T-lymphocytes. Recently, we have shown that NE utilizes redox signaling as evidenced by increased superoxide (O2●-) causally linked to the observed changes in these cells; however, the source of this reactive oxygen species (ROS) remains elusive. Herein, we hypothesized that the source of increased O2●- in NE-stimulated T-lymphocytes is due to disruption of mitochondrial bioenergetics. To address this hypothesis, we utilized purified mouse splenic CD4+ and CD8+ T-lymphocytes stimulated with NE and assessed O2●- levels, mitochondrial metabolism, cellular proliferation, and cytokine profiles. We demonstrate that the increase in O2●- levels in response to NE is time-dependent and occurs at later points of T-lymphocyte activation. Moreover, the source of O2●- was indeed the mitochondria as evidenced by enhanced MitoSOX Red oxidation as well as abrogation of this signal by the addition of the mitochondrial-targeted O2●--scavenging antioxidant MitoTempol. NE-stimulated T-lymphocytes also demonstrated decreased mitochondrial respiratory capacity, which suggests disruption of mitochondrial metabolism and the potential source of increased mitochondrial O2●-. The effects of NE in regards to redox signaling appear to be adrenergic receptor-dependent as specific receptor antagonists could reverse the increase in O2●-; however, differential receptors regulating these processes were observed in CD4+ versus CD8+ T-lymphocytes. Finally, mitochondrial O2●- was shown to be mechanistic to the NE-mediated T-lymphocyte phenotype as supplementation of MitoTempol could reverse specific changes in cytokine expression observed with NE treatment. Overall, these studies indicate that mitochondrial metabolism and O2●--mediated redox signaling play a regulatory role in the T-lymphocyte response to NE.
Collapse
Affiliation(s)
- Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| | - Colton T. Roessner
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
155
|
Mitochondrial oncobioenergetic index: A potential biomarker to predict progression from indolent to aggressive prostate cancer. Oncotarget 2016; 6:43065-80. [PMID: 26515588 PMCID: PMC4767491 DOI: 10.18632/oncotarget.5487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial function is influenced by alterations in oncogenes and tumor suppressor genes and changes in the microenvironment occurring during tumorigenesis. Therefore, we hypothesized that mitochondrial function will be stably and dynamically altered at each stage of the prostate tumor development. We tested this hypothesis in RWPE-1 cells and its tumorigenic clones with progressive malignant characteristics (RWPE-1 < WPE-NA22 < WPE-NB14 < WPE-NB11 < WPE-NB26) using high-throughput respirometry. Our studies demonstrate that mitochondrial content do not change with increasing malignancy. In premalignant cells (WPE-NA22 and WPE-NB14), OXPHOS is elevated in presence of glucose or glutamine alone or in combination compared to RWPE-1 cells and decreases with increasing malignancy. Glutamine maintained higher OXPHOS than glucose and suggests that it may be an important substrate for the growth and proliferation of prostate epithelial cells. Glycolysis significantly increases with malignancy and follow a classical Warburg phenomenon. Fatty acid oxidation (FAO) is significantly lower in tumorigenic clones and invasive WPE-NB26 does not utilize FAO at all. In this paper, we introduce for the first time the mitochondrial oncobioenergetic index (MOBI), a mathematical representation of oncobioenergetic profile of a cancer cell, which increases significantly upon transformation into localized premalignant form and rapidly falls below the normal as they become aggressive in prostate tumorigenesis. We have validated this in five prostate cancer cell lines and MOBI appears to be not related to androgen dependence or mitochondrial content, but rather dependent on the stage of the cancer. Altogether, we propose that MOBI could be a potential biomarker to distinguish aggressive cancer from that of indolent disease.
Collapse
|
156
|
Oliva CR, Markert T, Ross LJ, White EL, Rasmussen L, Zhang W, Everts M, Moellering DR, Bailey SM, Suto MJ, Griguer CE. Identification of Small Molecule Inhibitors of Human Cytochrome c Oxidase That Target Chemoresistant Glioma Cells. J Biol Chem 2016; 291:24188-24199. [PMID: 27679486 DOI: 10.1074/jbc.m116.749978] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/25/2016] [Indexed: 01/15/2023] Open
Abstract
The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.
Collapse
Affiliation(s)
| | | | - Larry J Ross
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205
| | - E Lucile White
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205
| | - Lynn Rasmussen
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205
| | - Wei Zhang
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205
| | - Maaike Everts
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Douglas R Moellering
- UAB Nutrition Sciences Department, Diabetes Research Center BARB Core, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shannon M Bailey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Mark J Suto
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205
| | - Corinne E Griguer
- From the Department of Neurosurgery, .,Center for Free Radical Biology, and
| |
Collapse
|
157
|
Lee M, Crawford NPS. Defining the Influence of Germline Variation on Metastasis Using Systems Genetics Approaches. Adv Cancer Res 2016; 132:73-109. [PMID: 27613130 DOI: 10.1016/bs.acr.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is estimated to be responsible for 8 million deaths worldwide and over half a million deaths every year in the United States. The majority of cancer-related deaths in solid tumors is directly associated with the effects of metastasis. While the influence of germline factors on cancer risk and development has long been recognized, the contribution of hereditary variation to tumor progression and metastasis has only gained acceptance more recently. A variety of approaches have been used to define how hereditary variation influences tumor progression and metastasis. One approach that garnered much early attention was epidemiological studies of cohorts of cancer patients, which demonstrated that specific loci within the human genome are associated with a differential propensity for aggressive tumor development. However, a powerful, and somewhat underutilized approach has been the use of systems genetics approaches in transgenic mouse models of human cancer. Such approaches are typically multifaceted, and involve integration of multiple lines of evidence derived, for example, from genetic and transcriptomic screens of genetically diverse mouse models of cancer, coupled with bioinformatics analysis of human cancer datasets, and functional analysis of candidate genes. These methodologies have allowed for the identification of multiple hereditary metastasis susceptibility genes, with wide-ranging cellular functions including regulation of gene transcription, cell proliferation, and cell-cell adhesion. In this chapter, we review how each of these approaches have facilitated the identification of these hereditary metastasis modifiers, the molecular functions of these metastasis-associated genes, and the implications of these findings upon patient survival.
Collapse
Affiliation(s)
- M Lee
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - N P S Crawford
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
158
|
Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1735841. [PMID: 27340504 PMCID: PMC4909908 DOI: 10.1155/2016/1735841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/25/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
Abstract
Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.
Collapse
|
159
|
Choe M, Brusgard JL, Chumsri S, Bhandary L, Zhao XF, Lu S, Goloubeva OG, Polster BM, Fiskum GM, Girnun GD, Kim MS, Passaniti A. The RUNX2 Transcription Factor Negatively Regulates SIRT6 Expression to Alter Glucose Metabolism in Breast Cancer Cells. J Cell Biochem 2016; 116:2210-26. [PMID: 25808624 DOI: 10.1002/jcb.25171] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/20/2015] [Indexed: 12/21/2022]
Abstract
Activation of genes promoting aerobic glycolysis and suppression of mitochondrial oxidative phosphorylation is one of the hallmarks of cancer. The RUNX2 transcription factor mediates breast cancer (BC) metastasis to bone and is regulated by glucose availability. But, the mechanisms by which it regulates glucose metabolism and promotes an oncogenic phenotype are not known. RUNX2 expression in luminal BC cells correlated with lower estrogen receptor-α (ERα) levels, anchorage-independent growth, expression of glycolytic genes, increased glucose uptake, and sensitivity to glucose starvation, but not to inhibitors of oxidative phosphorylation. Conversely, RUNX2 knockdown in triple-negative BC cells inhibited mammosphere formation and glucose dependence. RUNX2 knockdown resulted in lower LDHA, HK2, and GLUT1 glycolytic gene expression, but upregulation of pyruvate dehydrogenase-A1 (PDHA1) mRNA and enzymatic activity, which was consistent with lower glycolytic potential. The NAD-dependent histone deacetylase, SIRT6, a known tumor suppressor, was a critical regulator of these RUNX2-mediated metabolic changes. RUNX2 expression resulted in elevated pAkt, HK2, and PDHK1 glycolytic protein levels that were reduced by ectopic expression of SIRT6. RUNX2 also repressed mitochondrial oxygen consumption rates (OCR), a measure of oxidative phosphorylation (respiration). Overexpression of SIRT6 increased respiration in RUNX2-positive cells, but knockdown of SIRT6 in cells expressing low RUNX2 decreased respiration. RUNX2 repressed SIRT6 expression at both the transcriptional and post-translational levels and endogenous SIRT6 expression was lower in malignant BC tissues or cell lines that expressed high levels of RUNX2. These results support a hypothesis whereby RUNX2-mediated repression of the SIRT6 tumor suppressor regulates metabolic pathways that promote BC progression.
Collapse
Affiliation(s)
- Moran Choe
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Laboratory of Genitourinary Cancer Pathogenesis, NCI, Building 36/Room 1130, 37 Convent Drive, Bethesda, Maryland, 20814
| | - Jessica L Brusgard
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Saranya Chumsri
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lekhana Bhandary
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xianfeng Frank Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology and the VA San Diego Healthcare System, University of California, San Diego, California, 92161
| | - Song Lu
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Olga G Goloubeva
- Department of Epidemiology & Public Health, The Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brian M Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary M Fiskum
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Geoffrey D Girnun
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, Stony Brook University Medical Center, Stony Brook, New York, 11794
| | - Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Antonino Passaniti
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,The Veteran's Health Administration Research & Development Service, Marlene & Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
160
|
Xu W, Ghosh S, Comhair SAA, Asosingh K, Janocha AJ, Mavrakis DA, Bennett CD, Gruca LL, Graham BB, Queisser KA, Kao CC, Wedes SH, Petrich JM, Tuder RM, Kalhan SC, Erzurum SC. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 2016; 126:2465-81. [PMID: 27214549 DOI: 10.1172/jci82925] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.
Collapse
|
161
|
Biological Assessments of Encapsulated Pancreatic β-Cells: Their Potential Transplantation in Diabetes. Cell Mol Bioeng 2016. [DOI: 10.1007/s12195-016-0441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
162
|
Durand MJ, Zinkevich NS, Riedel M, Gutterman DD, Nasci VL, Salato VK, Hijjawi JB, Reuben CF, North PE, Beyer AM. Vascular Actions of Angiotensin 1-7 in the Human Microcirculation: Novel Role for Telomerase. Arterioscler Thromb Vasc Biol 2016; 36:1254-62. [PMID: 27079876 DOI: 10.1161/atvbaha.116.307518] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study examined vascular actions of angiotensin 1-7 (ANG 1-7) in human atrial and adipose arterioles. APPROACH AND RESULTS The endothelium-derived hyperpolarizing factor of flow-mediated dilation (FMD) switches from antiproliferative nitric oxide (NO) to proatherosclerotic hydrogen peroxide in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1-7, we tested the hypothesis that overnight ANG 1-7 treatment restores the NO component of FMD in arterioles from patients with CAD. Endothelial telomerase activity is essential for preserving the NO component of vasodilation in the human microcirculation; thus, we also tested whether telomerase activity was necessary for ANG 1-7-mediated vasoprotection by treating separate arterioles with ANG 1-7±the telomerase inhibitor 2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid. ANG 1-7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from patients with CAD. In atrial arterioles from patients with CAD incubated with ANG 1-7 overnight, the NO synthase inhibitor NG-nitro-l-arginine methyl ester abolished FMD, whereas the hydrogen peroxide scavenger polyethylene glycol catalase had no effect. Conversely, in vessels incubated with ANG 1-7+2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid, NG-nitro-l-arginine methyl ester had no effect on FMD, but polyethylene glycol catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1-7 significantly increased telomerase activity. These results indicate that ANG 1-7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Furthermore, ANG 1-7 treatment is sufficient to restore the NO component of FMD in arterioles from patients with CAD in a telomerase-dependent manner. CONCLUSIONS ANG 1-7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity.
Collapse
Affiliation(s)
- Matthew J Durand
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Natalya S Zinkevich
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Michael Riedel
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - David D Gutterman
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Victoria L Nasci
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Valerie K Salato
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - John B Hijjawi
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Charles F Reuben
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Paula E North
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Andreas M Beyer
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.).
| |
Collapse
|
163
|
Eakins J, Bauch C, Woodhouse H, Park B, Bevan S, Dilworth C, Walker P. A combined in vitro approach to improve the prediction of mitochondrial toxicants. Toxicol In Vitro 2016; 34:161-170. [PMID: 27083147 DOI: 10.1016/j.tiv.2016.03.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 03/02/2016] [Accepted: 03/25/2016] [Indexed: 01/06/2023]
Abstract
Drug induced mitochondrial dysfunction has been implicated in organ toxicity and the withdrawal of drugs or black box warnings limiting their use. The development of highly specific and sensitive in vitro assays in early drug development would assist in detecting compounds which affect mitochondrial function. Here we report the combination of two in vitro assays for the detection of drug induced mitochondrial toxicity. The first assay measures cytotoxicity after 24h incubation of test compound in either glucose or galactose conditioned media (Glu/Gal assay). Compounds with a greater than 3-fold toxicity in galactose media compared to glucose media imply mitochondrial toxicity. The second assay measures mitochondrial respiration, glycolysis and a reserve capacity with mechanistic responses observed within one hour following exposure to test compound. In order to assess these assays a total of 72 known drugs and chemicals were used. Dose-response data was normalised to 100× Cmax giving a specificity, sensitivity and accuracy of 100%, 81% and 92% respectively for this combined approach.
Collapse
Affiliation(s)
- Julie Eakins
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Caroline Bauch
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Heather Woodhouse
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Benjamin Park
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Samantha Bevan
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Clive Dilworth
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Paul Walker
- Cyprotex Discovery Ltd, BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK.
| |
Collapse
|
164
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
165
|
Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, Cohen P, Kannan R, Hinton DR. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction. Invest Ophthalmol Vis Sci 2016; 57:1238-53. [PMID: 26990160 PMCID: PMC4811181 DOI: 10.1167/iovs.15-17053] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress-induced cell death, mitochondrial bioenergetics, and senescence. METHODS Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5-10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress-induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. RESULTS A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress-induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress-induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. CONCLUSIONS Humanin protected RPE cells against oxidative stress-induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Chris Spee
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Hemal H. Mehta
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Junxiang Wan
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Kelvin Yen
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - David R. Hinton
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
- Department of Pathology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
166
|
McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng Part C Methods 2016; 22:221-249. [PMID: 26650970 PMCID: PMC5029285 DOI: 10.1089/ten.tec.2015.0375] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs.
Collapse
Affiliation(s)
- Richard J. McMurtrey
- Institute of Neural Regeneration & Tissue Engineering, Highland, Utah, United States
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
167
|
Feeley KP, Bray AW, Westbrook DG, Johnson LW, Kesterson RA, Ballinger SW, Welch DR. Mitochondrial Genetics Regulate Breast Cancer Tumorigenicity and Metastatic Potential. Cancer Res 2016; 75:4429-36. [PMID: 26471915 DOI: 10.1158/0008-5472.can-15-0074] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current paradigms of carcinogenic risk suggest that genetic, hormonal, and environmental factors influence an individual's predilection for developing metastatic breast cancer. Investigations of tumor latency and metastasis in mice have illustrated differences between inbred strains, but the possibility that mitochondrial genetic inheritance may contribute to such differences in vivo has not been directly tested. In this study, we tested this hypothesis in mitochondrial-nuclear exchange mice we generated, where cohorts shared identical nuclear backgrounds but different mtDNA genomes on the background of the PyMT transgenic mouse model of spontaneous mammary carcinoma. In this setting, we found that primary tumor latency and metastasis segregated with mtDNA, suggesting that mtDNA influences disease progression to a far greater extent than previously appreciated. Our findings prompt further investigation into metabolic differences controlled by mitochondrial process as a basis for understanding tumor development and metastasis in individual subjects. Importantly, differences in mitochondrial DNA are sufficient to fundamentally alter disease course in the PyMT mouse mammary tumor model, suggesting that functional metabolic differences direct early tumor growth and metastatic efficiency.
Collapse
Affiliation(s)
- Kyle P Feeley
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexander W Bray
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David G Westbrook
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Larry W Johnson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Danny R Welch
- Department of Cancer Biology and The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
168
|
Krzywanski DM, Moellering DR, Westbrook DG, Dunham-Snary KJ, Brown J, Bray AW, Feeley KP, Sammy MJ, Smith MR, Schurr TG, Vita JA, Ambalavanan N, Calhoun D, Dell'Italia L, Ballinger SW. Endothelial Cell Bioenergetics and Mitochondrial DNA Damage Differ in Humans Having African or West Eurasian Maternal Ancestry. ACTA ACUST UNITED AC 2016; 9:26-36. [PMID: 26787433 DOI: 10.1161/circgenetics.115.001308] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND We hypothesized that endothelial cells having distinct mitochondrial genetic backgrounds would show variation in mitochondrial function and oxidative stress markers concordant with known differential cardiovascular disease susceptibilities. To test this hypothesis, mitochondrial bioenergetics were determined in endothelial cells from healthy individuals with African versus European maternal ancestries. METHODS AND RESULTS Bioenergetics and mitochondrial DNA (mtDNA) damage were assessed in single-donor human umbilical vein endothelial cells belonging to mtDNA haplogroups H and L, representing West Eurasian and African maternal ancestries, respectively. Human umbilical vein endothelial cells from haplogroup L used less oxygen for ATP production and had increased levels of mtDNA damage compared with those in haplogroup H. Differences in bioenergetic capacity were also observed in that human umbilical vein endothelial cells belonging to haplogroup L had decreased maximal bioenergetic capacities compared with haplogroup H. Analysis of peripheral blood mononuclear cells from age-matched healthy controls with West Eurasian or African maternal ancestries showed that haplogroups sharing an A to G mtDNA mutation at nucleotide pair 10398 had increased mtDNA damage compared with those lacking this mutation. Further study of angiographically proven patients with coronary artery disease and age-matched healthy controls revealed that mtDNA damage was associated with vascular function and remodeling and that age of disease onset was later in individuals from haplogroups lacking the A to G mutation at nucleotide pair 10398. CONCLUSIONS Differences in mitochondrial bioenergetics and mtDNA damage associated with maternal ancestry may contribute to endothelial dysfunction and vascular disease.
Collapse
Affiliation(s)
- David M Krzywanski
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Douglas R Moellering
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - David G Westbrook
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Kimberly J Dunham-Snary
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Jamelle Brown
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Alexander W Bray
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Kyle P Feeley
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Melissa J Sammy
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Matthew R Smith
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Theodore G Schurr
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Joseph A Vita
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Namasivayam Ambalavanan
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - David Calhoun
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Louis Dell'Italia
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Scott W Ballinger
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.).
| |
Collapse
|
169
|
Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants. Neurochem Int 2016; 92:1-12. [DOI: 10.1016/j.neuint.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022]
|
170
|
Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3187560. [PMID: 26881022 PMCID: PMC4736215 DOI: 10.1155/2016/3187560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment.
Collapse
|
171
|
Chacko BK, Zhi D, Darley-Usmar VM, Mitchell T. The Bioenergetic Health Index is a sensitive measure of oxidative stress in human monocytes. Redox Biol 2015; 8:43-50. [PMID: 26748041 PMCID: PMC4712317 DOI: 10.1016/j.redox.2015.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
Metabolic and bioenergetic dysfunction are associated with oxidative stress and thought to be a common underlying mechanism of chronic diseases such as atherosclerosis, diabetes, and neurodegeneration. Recent findings support an emerging concept that circulating leukocytes and platelets can act as sensors or biomarkers of mitochondrial function in patients subjected to metabolic diseases. It is proposed that systemic stress-induced alterations in leukocyte bioenergetics are the consequence of several factors including reactive oxygen species. This suggests that oxidative stress mediated changes in leukocyte mitochondrial function could be used as an indicator of bioenergetic health in individuals. To test this concept, we investigated the effect of the redox cycling agent, 2,3 dimethoxynaphthoquinone (DMNQ) on the bioenergetic profiles of monocytes isolated from healthy human subjects using the extracellular flux analyzer. In addition, we tested the hypothesis that the bioenergetic health index (BHI), a single value that represents the bioenergetic health of individuals, is dynamically sensitive to oxidative stress in human monocytes. DMNQ decreased monocyte ATP-linked respiration, maximal respiration, and reserve capacity and caused an increase in proton leak and non-mitochondrial respiration compared to monocytes not treated with DMNQ. The BHI was a more sensitive indicator of the DMNQ-dependent changes in bioenergetics than any individual parameter. These data suggest that monocytes are susceptible to oxidative stress mediated by DMNQ and this can be accurately assessed by the BHI. Taken together, our findings suggest that the BHI has the potential to act as a functional biomarker of the impact of systemic oxidative stress in patients with metabolic disorders. DMNQ (2,3 dimethoxynapthoquinone) inhibits mitochondrial function in human monocytes. The BHI (Bioenergetic Health Index) measures DMNQ mediated oxidative stress. The BHI is more sensitive to oxidative stress than each bioenergetic parameter.
Collapse
Affiliation(s)
- Balu K Chacko
- Mitochondrial Medicine Laboratory/Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory/Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
172
|
Denise C, Paoli P, Calvani M, Taddei ML, Giannoni E, Kopetz S, Kazmi SMA, Pia MM, Pettazzoni P, Sacco E, Caselli A, Vanoni M, Landriscina M, Cirri P, Chiarugi P. 5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget 2015; 6:41706-21. [PMID: 26527315 PMCID: PMC4747183 DOI: 10.18632/oncotarget.5991] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 12/24/2022] Open
Abstract
Despite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands. 5-FU treatment-resistant cells show a de novo expression of pyruvate kinase M1 (PKM1) and repression of PKM2, correlating with repression of the pentose phosphate pathway, decrease in NADPH level and in antioxidant defenses, promoting PKM2 oxidation and acquisition of stem-like phenotype. Response to 5-FU in a xenotransplantation model of human colon cancer confirms activation of mitochondrial function. Combined treatment with 5-FU and a pharmacological inhibitor of OXPHOS abolished the spherogenic potential of colon cancer cells and diminished the expression of stem-like markers. These findings suggest that inhibition of OXPHOS in combination with 5-FU is a rational combination strategy to achieve durable treatment response in colon cancer.
Collapse
Affiliation(s)
- Corti Denise
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maura Calvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Scott Kopetz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Syed Mohammad Ali Kazmi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Morelli Maria Pia
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Piergiorgio Pettazzoni
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elena Sacco
- SYSBIO Centre for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Marco Vanoni
- SYSBIO Centre for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
173
|
Afonso J, Santos LL, Morais A, Amaro T, Longatto-Filho A, Baltazar F. Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness. Cell Cycle 2015; 15:368-80. [PMID: 26636903 DOI: 10.1080/15384101.2015.1121329] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Monocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated. Thus, we evaluated the immunoexpression of MCTs in the different compartments of UBC tissue samples (n = 111), assessing the correlations among them and with the clinical and prognostic parameters. A significant decrease in positivity for MCT1 and MCT4 occurred from normoxic toward hypoxic regions. Significant associations were found between the expression of MCT4 in hypoxic tumor cells and in the tumor stroma. MCT1 staining in normoxic tumor areas, and MCT4 staining in hypoxic regions, in the tumor stroma and in the blood vessels were significantly associated with UBC aggressiveness. MCT4 concomitant positivity in hypoxic tumor cells and in the tumor stroma, as well as positivity in each of these regions concomitant with MCT1 positivity in normoxic tumor cells, was significantly associated with an unfavourable clinicopathological profile, and predicted lower overall survival rates among patients receiving platinum-based chemotherapy. Our results point to the existence of a multi-compartment metabolic model in UBC, providing evidence of a metabolic coupling between catabolic stromal and cancer cells' compartments, and the anabolic cancer cells. It is urgent to further explore the involvement of this metabolic coupling in UBC progression and chemoresistance.
Collapse
Affiliation(s)
- Julieta Afonso
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Lúcio L Santos
- c Department of Surgical Oncology , Portuguese Institute of Oncology (IPO) , Porto , Portugal.,d Faculty of Health Sciences, University Fernando Pessoa (UFP) , Porto , Portugal
| | - António Morais
- e Department of Urology , Portuguese Institute of Oncology (IPO) , Porto , Portugal
| | - Teresina Amaro
- f Experimental Pathology and Therapeutics Research Center, Portuguese Institute of Oncology (IPO) , Porto , Portugal
| | - Adhemar Longatto-Filho
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal.,g Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University , São Paulo , Brazil.,h Molecular Oncology Research Center, Barretos Cancer Hospital , São Paulo , Brazil
| | - Fátima Baltazar
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| |
Collapse
|
174
|
Broom AJ, Ambroso J, Brunori G, Burns AK, Armitage JR, Francis I, Gandhi M, Peterson RA, Gant TW, Boobis AR, Lyon JJ. Effects of mid-respiratory chain inhibition on mitochondrial function in vitro and in vivo. Toxicol Res (Camb) 2015; 5:136-150. [PMID: 29780577 PMCID: PMC5941817 DOI: 10.1039/c5tx00197h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023] Open
Abstract
Schematic showing the toxicological and adaptive effects of drug-induced respiratory chain inhibition in vivo; also highlighting unanticipated differences from observations made in vitro (in red).
Relating the in vitro mitochondrial effects of drug candidates to likely in vivo outcomes remains challenging. Better understanding of this relationship, alongside improved methods to assess mitochondrial dysfunction in vivo, would both guide safer drug candidate selection and better support discovery programmes targeting mitochondria for pharmacological intervention. The aim of this study was to profile the in vivo effects of a compound with suspected complex III electron transport chain (ETC) inhibitory activity (GSK932121A) at doses associated with clinical signs, and relate findings back to in vitro data with the same compound. Control liver mitochondria or HepG2 cells were treated in vitro with GSK932121A to assess mitochondrial effects on both calcium retention capacity (CRC) and oxygen consumption rate (OCR) respectively. The same assessments were then performed on liver mitochondria isolated from Crl:CD(SD) rats, 5 hours following intraperitoneal (IP) administration of GSK932121A. Lactate/pyruvate assessment, hepatic microscopy, blood gas analysis, glutathione profiling and transcriptomics were used to characterise the acute toxicity. In vivo, GSK932121A caused hypothermia, increased levels of hepatocellular oxidative stress and a metabolic shift in energy production, resulting in an increased lactate/pyruvate ratio, liver steatosis and glycogen depletion, together with gene expression changes indicative of a fasted state. As would be expected of an ETC inhibitor, GSK932121A reduced the CRC of liver mitochondria isolated from naive control animals and the OCR of HepG2 cells when treated directly in vitro. In contrast, mitochondria isolated from animals treated with GSK932121A in vivo unexpectedly showed an increase in CRC and basal OCR. Whilst seemingly contradictory, these differences likely reflect an adapted state in vivo resulting from the initial insult in combination with compensatory changes made by the tissue to maintain energy production. Only the initial, unconfounded, response is observable in vitro. These findings improve current understanding of the toxicological and molecular consequences of ETC inhibition. Furthermore, this work highlights key differences in the way that mitochondrial perturbation is manifest in vivo versus in vitro in terms of functional endpoints and helps guide endpoint selection for future studies with potential mitochondrial toxicants or drugs designed to modulate mitochondrial function for therapeutic benefit.
Collapse
Affiliation(s)
- Ashley J Broom
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345.,Imperial College London , Hammersmith Campus , London , W12 0NN , UK
| | - Jeffrey Ambroso
- GlaxoSmithKline , Safety Assessment , Research Triangle Park , North Carolina , USA
| | - Gino Brunori
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Angie K Burns
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - James R Armitage
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Ian Francis
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Mitul Gandhi
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Richard A Peterson
- GlaxoSmithKline , Safety Assessment , Research Triangle Park , North Carolina , USA
| | - Timothy W Gant
- Public Health England , Harwell Science and Innovation Campus , Oxfordshire , OX11 0RQ , UK
| | - Alan R Boobis
- Imperial College London , Hammersmith Campus , London , W12 0NN , UK
| | - Jonathan J Lyon
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| |
Collapse
|
175
|
Hemachandra LPMP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM, Murphy SK, Hempel N. Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma. Cancer Res 2015; 75:4973-84. [PMID: 26359457 DOI: 10.1158/0008-5472.can-14-3799] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
Abstract
Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O2 (•-)) to hydrogen peroxide (H2O2) and oxygen (O2), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O2 (•-), to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H2O2-mediated migration. While this higher steady-state H2O2 drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H2O2 threshold to enable more rapid killing by exogenous sources of H2O2. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype.
Collapse
Affiliation(s)
- L P Madhubhani P Hemachandra
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Dong-Hui Shin
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York. Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Usawadee Dier
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, State University of New York, Stony Brook, New York
| | - Sarah A Engelberth
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Larissa M Uusitalo
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Nadine Hempel
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York. Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
176
|
Nichols M, Zhang J, Polster BM, Elustondo PA, Thirumaran A, Pavlov EV, Robertson GS. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience 2015; 308:75-94. [PMID: 26363153 DOI: 10.1016/j.neuroscience.2015.09.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
Abstract
In view of evidence that increased consumption of epicatechin (E) and quercetin (Q) may reduce the risk of stroke, we have measured the effects of combining E and Q on mitochondrial function and neuronal survival following oxygen-glucose deprivation (OGD). Relative to mouse cortical neuron cultures pretreated (24h) with either E or Q (0.1-10μM), E+Q synergistically attenuated OGD-induced neuronal cell death. E, Q and E+Q (0.3μM) increased spare respiratory capacity but only E+Q (0.3μM) preserved this crucial parameter of neuronal mitochondrial function after OGD. These improvements were accompanied by corresponding increases in cyclic AMP response element binding protein (CREB) phosphorylation and the expression of CREB-target genes that promote neuronal survival (Bcl-2) and mitochondrial biogenesis (PGC-1α). Consistent with these findings, E+Q (0.1 and 1.0μM) elevated mitochondrial gene expression (MT-ND2 and MT-ATP6) to a greater extent than E or Q after OGD. Q (0.3-3.0μM), but not E (3.0μM), elevated cytosolic calcium (Ca(2+)) spikes and the mitochondrial membrane potential. Conversely, E and E+Q (0.1 and 0.3μM), but not Q (0.1 and 0.3μM), activated protein kinase B (Akt). Nitric oxide synthase (NOS) inhibition with L-N(G)-nitroarginine methyl ester (1.0μM) blocked neuroprotection by E (0.3μM) or Q (1.0μM). Oral administration of E+Q (75mg/kg; once daily for 5days) reduced hypoxic-ischemic brain injury. These findings suggest E and Q activate Akt- and Ca(2+)-mediated signaling pathways that converge on NOS and CREB resulting in synergistic improvements in neuronal mitochondrial performance which confer profound protection against ischemic injury.
Collapse
Affiliation(s)
- M Nichols
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - J Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - B M Polster
- Department of Anesthesiology, Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - P A Elustondo
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - A Thirumaran
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - E V Pavlov
- Department of Basic Sciences, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA.
| | - G S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th Floor Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, Nova Scotia B3H 2E2, Canada.
| |
Collapse
|
177
|
Hiller S, DeKroon R, Hamlett ED, Xu L, Osorio C, Robinette J, Winnik W, Simington S, Maeda N, Alzate O, Yi X. Alpha-lipoic acid supplementation protects enzymes from damage by nitrosative and oxidative stress. Biochim Biophys Acta Gen Subj 2015; 1860:36-45. [PMID: 26344063 DOI: 10.1016/j.bbagen.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation, which could result in retaining the mitochondrial enzyme activity. METHODS In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method. RESULTS We found that the activities of these two mitochondrial enzymes were partially but reversibly inhibited by S-nitrosylation in cultured endothelial cells, and that their activities were partially restored by supplementation of α-lipoic acid. We show that protein S-nitrosylation affects the activity of mitochondrial enzymes that are central to energy supply, and that α-lipoic acid protects mitochondrial enzymes by altering S-nitrosylation levels. CONCLUSIONS Inhibiting protein S-nitrosylation with α-lipoic acid seems to be a protective mechanism against nitrosative stress. GENERAL SIGNIFICANCE Identification and characterization of these new protein targets should contribute to expanding the therapeutic power of α-lipoic acid and to a better understanding of the underlying antioxidant mechanisms.
Collapse
Affiliation(s)
- Sylvia Hiller
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert DeKroon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric D Hamlett
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Longquan Xu
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Osorio
- Systems Proteomics Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Robinette
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States; Systems Proteomics Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Witold Winnik
- Proteomic Research Core Unit, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Stephen Simington
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Oscar Alzate
- Texas A&M Health Science Center, College Station, TX, United States.
| | - Xianwen Yi
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
178
|
Jin L, Zhao X, Qin Y, Zhu W, Zhang W, Liu A, Luo Z. Soy isoflavones protect against H₂O₂-induced injury in human umbilical vein endothelial cells. Mol Med Rep 2015; 12:4476-4482. [PMID: 26095641 DOI: 10.3892/mmr.2015.3949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 05/19/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate the effects of soy isoflavones on the injury of human umbilical vein endothelial cells induced by H2O2. EVC‑304 cells were preincubated with soy isoflavones for 12 h, and then exposed to 100 µM H2O2 for 1 h. Cell viability was evaluated by a 3‑(4,5‑di‑methylthiazol‑2‑yl) 2,5‑diphenyltetrazolium bromide assay. The apoptosis of EVC‑304 cells was detected by Hoechst 33258 and Annexin‑V/propidium iodide staining. The oxidative stress‑related biochemical parameters were detected and the expression of apoptosis‑related proteins was examined by western blot analysis. The results showed that incubation with soy isoflavones caused a significant increase in the viability of EVC‑304 cells and a decrease in cell apoptosis induced by H2O2. Soy isoflavones also markedly enhanced the activities of superoxide dismutase and glutathione peroxidase, and reduced the level of malondialdehyde. Western blot analysis results show that soy isoflavones can modulate the activation of nuclear factor‑κB and the mitochondria‑mediated apoptosis signaling pathway. The results of this study indicated the potential biological relevance of soy isoflavones in the therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Lianhai Jin
- Department of Psychology, Jilin Medical College, Jilin 132013, P.R. China
| | - Xingyu Zhao
- Department of Psychology, Jilin Medical College, Jilin 132013, P.R. China
| | - Yingxin Qin
- Department of Psychology, Jilin Medical College, Jilin 132013, P.R. China
| | - Wenhe Zhu
- Department of Psychology, Jilin Medical College, Jilin 132013, P.R. China
| | - Wei Zhang
- Department of Psychology, Jilin Medical College, Jilin 132013, P.R. China
| | - Anheng Liu
- Department of Cardiology, 307 Hospital of PLA, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Zhengli Luo
- Department of Psychology, Jilin Medical College, Jilin 132013, P.R. China
| |
Collapse
|
179
|
Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 2015; 547:309-54. [PMID: 25416364 DOI: 10.1016/b978-0-12-801415-8.00016-3] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Pharmacology, University of California, San Diego, California, USA.
| | - Alexander Paradyse
- Department of Pharmacology, University of California, San Diego, California, USA
| | | | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, California, USA
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
180
|
Charli A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology 2015; 53:302-313. [PMID: 26141520 DOI: 10.1016/j.neuro.2015.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/09/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an early neurotoxicological high-throughput index for assessing the risk that pesticides pose to the dopaminergic neuronal system.
Collapse
Affiliation(s)
- Adhithiya Charli
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
181
|
Ji K, Zheng J, Lv J, Xu J, Ji X, Luo YB, Li W, Zhao Y, Yan C. Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1α pathway. Free Radic Biol Med 2015; 84:161-170. [PMID: 25843656 DOI: 10.1016/j.freeradbiomed.2015.03.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a growth factor with pleiotropic effects on regulating lipid and glucose metabolism. Its expression is increased in skeletal muscle of mice and humans with mitochondrial disorders. However, the effects of FGF21 on skeletal muscle in response to mitochondrial respiratory chain deficiency are largely unknown. Here we demonstrate that the increased expression of FGF21 is a compensatory response to respiratory chain deficiency. The mRNA and protein levels of FGF21 were robustly raised in skeletal muscle from patients with mitochondrial myopathy or MELAS. The mammalian target of rapamycin (mTOR) phosphorylation levels and its downstream targets, Yin Yang 1 (YY1) and peroxisome proliferator-activated receptor γ, coactivator 1α (PGC-1α), were increased by FGF21 treatment in C2C12 myoblasts. Activation of the mTOR-YY1-PGC1α pathway by FGF21 in myoblasts regulated energy homeostasis as demonstrated by significant increases in intracellular ATP synthesis, oxygen consumption rate, activity of citrate synthase, glycolysis, mitochondrial DNA copy number, and induction of the expression of key energy metabolic genes. The effects of FGF21 on mitochondrial function required phosphoinositide 3-kinase (PI3K), which activates mTOR. Inhibition of PI3K, mTOR, YY1, and PGC-1α activities attenuated the stimulating effects of FGF21 on intracellular ATP levels and mitochondrial gene expression. Our findings revealed that mitochondrial respiratory chain deficiency elicited a compensatory response in skeletal muscle by increasing the FGF21 expression levels in muscle, which resulted in enhanced mitochondrial function through an mTOR-YY1-PGC1α-dependent pathway in skeletal muscle.
Collapse
Affiliation(s)
- Kunqian Ji
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jinfan Zheng
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jingwei Lv
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jingwen Xu
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xinbo Ji
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yue-Bei Luo
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Wei Li
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yuying Zhao
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chuanzhu Yan
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China; Key Laboratory for Experimental Teratology of the Ministry of Education, Brain Science Research Institute, Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
182
|
Decreased Bioenergetic Health Index in monocytes isolated from the pericardial fluid and blood of post-operative cardiac surgery patients. Biosci Rep 2015; 35:BSR20150161. [PMID: 26181371 PMCID: PMC4613711 DOI: 10.1042/bsr20150161] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Translational bioenergetics requires the measurement of mitochondrial function in clinically relevant samples and the integration of the data in a form that can be applied to personalized medicine. In the present study, we show the application of the measurement of the Bioenergetic Health Index (BHI) to cardiac surgery patients. Monitoring the bioenergetics of leucocytes is now emerging as an important approach in translational research to detect mitochondrial dysfunction in blood or other patient samples. Using the mitochondrial stress test, which involves the sequential addition of mitochondrial inhibitors to adherent leucocytes, we have calculated a single value, the Bioenergetic Health Index (BHI), which represents the mitochondrial function in cells isolated from patients. In the present report, we assess the BHI of monocytes isolated from the post-operative blood and post-operative pericardial fluid (PO-PCF) from patients undergoing cardiac surgery. Analysis of the bioenergetics of monocytes isolated from patients’ PO-PCF revealed a profound decrease in mitochondrial function compared with monocytes isolated from their blood or from healthy controls. Further, patient blood monocytes showed no significant difference in the individual energetic parameters from the mitochondrial stress test but, when integrated into the BHI evaluation, there was a significant decrease in BHI compared with healthy control monocytes. These data support the utility of BHI measurements in integrating the individual parameters from the mitochondrial stress test into a single value. Supporting our previous finding that the PO-PCF is pro-oxidant, we found that exposure of rat cardiomyocytes to PO-PCF caused a significant loss of mitochondrial membrane potential and increased reactive oxygen species (ROS). These findings support the hypothesis that integrated measures of bioenergetic health could have prognostic and diagnostic value in translational bioenergetics.
Collapse
|
183
|
Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart. PLoS One 2015; 10:e0130894. [PMID: 26098939 PMCID: PMC4476748 DOI: 10.1371/journal.pone.0130894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/25/2015] [Indexed: 01/26/2023] Open
Abstract
Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.
Collapse
|
184
|
Salabei JK, Lorkiewicz PK, Holden CR, Li Q, Hong KU, Bolli R, Bhatnagar A, Hill BG. Glutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation. Stem Cells 2015; 33:2613-27. [PMID: 25917428 DOI: 10.1002/stem.2047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/08/2015] [Accepted: 03/29/2015] [Indexed: 12/27/2022]
Abstract
Autologous transplantation of cardiac progenitor cells (CPCs) alleviates myocardial dysfunction in the damaged heart; however, the mechanisms that contribute to their reparative qualities remain poorly understood. In this study, we examined CPC metabolism to elucidate the metabolic pathways that regulate their proliferative capacity. In complete growth medium, undifferentiated CPCs isolated from adult mouse heart proliferated rapidly (Td = 13.8 hours). CPCs expressed the Glut1 transporter and their glycolytic rate was increased by high extracellular glucose (Glc) concentration, in the absence of insulin. Although high Glc concentrations did not stimulate proliferation, glutamine (Gln) increased CPC doubling time and promoted survival under conditions of oxidative stress. In comparison with Glc, pyruvate (Pyr) or BSA-palmitate, Gln, when provided as the sole metabolic substrate, increased ATP-linked and uncoupled respiration. Although fatty acids were not used as respiratory substrates when present as a sole carbon source, Gln-induced respiration was doubled in the presence of BSA-palmitate, suggesting that Gln stimulates fatty acid oxidation. Additionally, Gln promoted rapid phosphorylation of the mTORC1 substrate, p70S6k, as well as retinoblastoma protein, followed by induction of cyclin D1 and cdk4. Inhibition of either mTORC1 or glutaminolysis was sufficient to diminish CPC proliferation, and provision of cell permeable α-ketoglutarate in the absence of Gln increased both respiration and cell proliferation, indicating a key role of Gln anaplerosis in cell growth. These findings suggest that Gln, by enhancing mitochondrial function and stimulating mTORC1, increases CPC proliferation, and that interventions to increase Gln uptake or oxidation may improve CPC therapy.
Collapse
Affiliation(s)
- Joshua K Salabei
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | - Pawel K Lorkiewicz
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | - Candice R Holden
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.,Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Bradford G Hill
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.,Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
185
|
Cunniff B, Newick K, Nelson KJ, Wozniak AN, Beuschel S, Leavitt B, Bhave A, Butnor K, Koenig A, Chouchani ET, James AM, Haynes AC, Lowther WT, Murphy MP, Shukla A, Heintz NH. Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. PLoS One 2015; 10:e0127310. [PMID: 26011724 PMCID: PMC4444329 DOI: 10.1371/journal.pone.0127310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 04/14/2015] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of signaling pathways and energy metabolism in cancer cells enhances production of mitochondrial hydrogen peroxide that supports tumorigenesis through multiple mechanisms. To counteract the adverse effects of mitochondrial peroxide many solid tumor types up-regulate the mitochondrial thioredoxin reductase 2 - thioredoxin 2 (TRX2) - peroxiredoxin 3 (PRX3) antioxidant network. Using malignant mesothelioma cells as a model, we show that thiostrepton (TS) irreversibly disables PRX3 via covalent crosslinking of peroxidatic and resolving cysteine residues in homodimers, and that targeting the oxidoreductase TRX2 with the triphenylmethane gentian violet (GV) potentiates adduction by increasing levels of disulfide-bonded PRX3 dimers. Due to the fact that activity of the PRX3 catalytic cycle dictates the rate of adduction by TS, immortalized and primary human mesothelial cells are significantly less sensitive to both compounds. Moreover, stable knockdown of PRX3 reduces mesothelioma cell proliferation and sensitivity to TS. Expression of catalase in shPRX3 mesothelioma cells restores defects in cell proliferation but not sensitivity to TS. In a SCID mouse xenograft model of human mesothelioma, administration of TS and GV together reduced tumor burden more effectively than either agent alone. Because increased production of mitochondrial hydrogen peroxide is a common phenotype of malignant cells, and TS and GV are well tolerated in mammals, we propose that targeting PRX3 is a feasible redox-dependent strategy for managing mesothelioma and other intractable human malignancies.
Collapse
Affiliation(s)
- Brian Cunniff
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
- * E-mail:
| | - Kheng Newick
- University of Pennsylvania School of Medicine, Division of Pulmonary, Thoracic Oncology Research Laboratory, Philadelphia, PA, 19147, United States of America
| | - Kimberly J. Nelson
- Wake Forest School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC, 27157, United States of America
| | - Alexandra N. Wozniak
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Stacie Beuschel
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Bruce Leavitt
- University of Vermont, College of Medicine, Department of Surgery, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Anant Bhave
- University of Vermont, College of Medicine, Department of Radiology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Kelly Butnor
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Andreas Koenig
- University of Vermont, Department of Immunology medicine, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Edward T. Chouchani
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom
| | - Andrew M. James
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Alexina C. Haynes
- Wake Forest School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC, 27157, United States of America
| | - W. Todd Lowther
- Wake Forest School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC, 27157, United States of America
| | - Michael P. Murphy
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Arti Shukla
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Nicholas H. Heintz
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| |
Collapse
|
186
|
Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol Med 2015; 6:1105-20. [PMID: 25063693 PMCID: PMC4197858 DOI: 10.15252/emmm.201404156] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endothelium is the orchestral conductor of blood vessel function. Pathological blood vessel formation (a process termed pathological angiogenesis) or the inability of endothelial cells (ECs) to perform their physiological function (a condition known as EC dysfunction) are defining features of various diseases. Therapeutic intervention to inhibit aberrant angiogenesis or ameliorate EC dysfunction could be beneficial in diseases such as cancer and cardiovascular disease, respectively, but current strategies have limited efficacy. Based on recent findings that pathological angiogenesis and EC dysfunction are accompanied by EC-specific metabolic alterations, targeting EC metabolism is emerging as a novel therapeutic strategy. Here, we review recent progress in our understanding of how EC metabolism is altered in disease and discuss potential metabolic targets and strategies to reverse EC dysfunction and inhibit pathological angiogenesis.
Collapse
Affiliation(s)
- Jermaine Goveia
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center VIB, Leuven, Belgium
| | - Peter Stapor
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center VIB, Leuven, Belgium
| |
Collapse
|
187
|
Cheng G, Zielonka J, McAllister D, Hardy M, Ouari O, Joseph J, Dwinell MB, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett 2015; 365:96-106. [PMID: 26004344 DOI: 10.1016/j.canlet.2015.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Donna McAllister
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Joy Joseph
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
188
|
Endothelial cell oxidative stress in diabetes: a key driver of cardiovascular complications? Biochem Soc Trans 2015; 42:928-33. [PMID: 25109981 DOI: 10.1042/bst20140113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atherothrombotic disease is a well-recognized complication of diabetes and is a major contributor to the high morbidity and mortality associated with diabetes. Although there is substantial evidence linking diabetes with cardiovascular disease, the specific effect of hyper- (or hypo-) glycaemia is less well understood. The present review focuses on the impact that glycaemic dysregulation has on respiratory function and ROS (reactive oxygen species) generation in the endothelial cells that are critical in preventing several key steps in the atherothrombotic process. Endothelial cells are particularly susceptible to ROS-mediated dysfunction not only because of reduced cell viability and increased senescence, but also because one of the major endothelium-derived factors that help to protect against atherosclerosis, nitric oxide, is rapidly deactivated by superoxide radicals.
Collapse
|
189
|
|
190
|
Andreyev AY, Tsui HS, Milne GL, Shmanai VV, Bekish AV, Fomich MA, Pham MN, Nong Y, Murphy AN, Clarke CF, Shchepinov MS. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radic Biol Med 2015; 82:63-72. [PMID: 25578654 DOI: 10.1016/j.freeradbiomed.2014.12.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/11/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Polyunsaturated fatty acid (PUFA) peroxidation is initiated by hydrogen atom abstraction at bis-allylic sites and sets in motion a chain reaction that generates multiple toxic products associated with numerous disorders. Replacement of bis-allylic hydrogens of PUFAs with deuterium atoms (D-PUFAs), termed site-specific isotope reinforcement, inhibits PUFA peroxidation and confers cell protection against oxidative stress. We demonstrate that structurally diverse deuterated PUFAs similarly protect against oxidative stress-induced injury in both yeast and mammalian (myoblast H9C2) cells. Cell protection occurs specifically at the lipid peroxidation step, as the formation of isoprostanes, immediate products of lipid peroxidation, is drastically suppressed by D-PUFAs. Mitochondrial bioenergetics function is a likely downstream target of oxidative stress and a subject of protection by D-PUFAs. Pretreatment of cells with D-PUFAs is shown to prevent inhibition of maximal uncoupler-stimulated respiration as well as increased mitochondrial uncoupling, in response to oxidative stress induced by agents with diverse mechanisms of action, including t-butylhydroperoxide, ethacrynic acid, or ferrous iron. Analysis of structure-activity relationships of PUFAs harboring deuterium at distinct sites suggests that there may be a mechanism supplementary to the kinetic isotope effect of deuterium abstraction off the bis-allylic sites that accounts for the protection rendered by deuteration of PUFAs. Paradoxically, PUFAs with partially deuterated bis-allylic positions that retain vulnerable hydrogen atoms (e.g., monodeuterated 11-D1-Lin) protect in a manner similar to that of PUFAs with completely deuterated bis-allylic positions (e.g., 11,11-D2-Lin). Moreover, inclusion of just a fraction of deuterated PUFAs (20-50%) in the total pool of PUFAs preserves mitochondrial respiratory function and confers cell protection. The results indicate that the therapeutic potential of D-PUFAs may derive from the preservation of mitochondrial function.
Collapse
Affiliation(s)
- Alexander Y Andreyev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA
| | - Hui S Tsui
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Andrei V Bekish
- Department of Chemistry, Belarusian State University, Minsk 220020, Belarus
| | - Maksim A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Minhhan N Pham
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yvonne Nong
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
191
|
Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med 2015; 79:324-36. [PMID: 25464273 PMCID: PMC5275750 DOI: 10.1016/j.freeradbiomed.2014.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne R Diers
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
192
|
Increased susceptibility to ethylmercury-induced mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines. J Toxicol 2015; 2015:573701. [PMID: 25688267 PMCID: PMC4320799 DOI: 10.1155/2015/573701] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022] Open
Abstract
The association of autism spectrum disorders with oxidative stress, redox imbalance, and mitochondrial dysfunction has become increasingly recognized. In this study, extracellular flux analysis was used to compare mitochondrial respiration in lymphoblastoid cell lines (LCLs) from individuals with autism and unaffected controls exposed to ethylmercury, an environmental toxin known to deplete glutathione and induce oxidative stress and mitochondrial dysfunction. We also tested whether pretreating the autism LCLs with N-acetyl cysteine (NAC) to increase glutathione concentrations conferred protection from ethylmercury. Examination of 16 autism/control LCL pairs revealed that a subgroup (31%) of autism LCLs exhibited a greater reduction in ATP-linked respiration, maximal respiratory capacity, and reserve capacity when exposed to ethylmercury, compared to control LCLs. These respiratory parameters were significantly elevated at baseline in the ethylmercury-sensitive autism subgroup as compared to control LCLs. NAC pretreatment of the sensitive subgroup reduced (normalized) baseline respiratory parameters and blunted the exaggerated ethylmercury-induced reserve capacity depletion. These findings suggest that the epidemiological link between environmental mercury exposure and an increased risk of developing autism may be mediated through mitochondrial dysfunction and support the notion that a subset of individuals with autism may be vulnerable to environmental influences with detrimental effects on development through mitochondrial dysfunction.
Collapse
|
193
|
Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 2015; 75:151-8. [PMID: 25600213 DOI: 10.1016/j.nbd.2014.12.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 02/07/2023] Open
Abstract
Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2(fl/fl)NEX(Cre/Cre)) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development.
Collapse
Affiliation(s)
- Shane Rowley
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 263-0022, Japan
| | - Brian Day
- National Jewish Health, Denver, CO 80206, USA
| | - Manisha Patel
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
194
|
Kikuchi C, Bienengraeber M, Canfield S, Koopmeiner A, Schäfer R, Bosnjak ZJ, Bai X. Comparison of Cardiomyocyte Differentiation Potential Between Type 1 Diabetic Donor- and Nondiabetic Donor-Derived Induced Pluripotent Stem Cells. Cell Transplant 2015; 24:2491-504. [PMID: 25562386 DOI: 10.3727/096368914x685762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the most common type of diabetes in children and adolescents. Diabetic subjects are more likely to experience a myocardial infarction compared to nondiabetic subjects. In recent years, induced pluripotent stem cells (iPSCs) have received increasing attention from basic scientists and clinicians and hold promise for myocardial regeneration due to their unlimited proliferation potential and differentiation capacity. However, cardiomyogenesis of type 1 diabetic donor-derived iPSCs (T1DM-iPSCs) has not been investigated yet. The aim of the study was to comparatively analyze cardiomyocyte (CM) differentiation capacity of nondiabetic donor-derived iPSCs (N-iPSCs) and T1DM-iPSCs. The differentiated CMs were confirmed by both expression of cardiac-specific markers and presence of cardiac action potential. Since mitochondrial bioenergetics is vital to every aspect of CM function, extracellular acidification rates and oxygen consumption rates were measured using Seahorse extracellular flux analyzer. The results showed that N-iPSCs and T1DM-iPSCs demonstrated similar capacity of differentiation into spontaneously contracting CMs exhibiting nodal-, atrial-, or ventricular-like action potentials. Differentiation efficiency was up to 90%. In addition, the CMs differentiated from N-iPSCs and T1DM-iPSCs (N-iPSC-CMs and T1DM-iPSC-CMs, respectively) showed 1) well-regulated glucose utilization at the level of glycolysis and mitochondrial oxidative phosphorylation and 2) the ability to switch metabolic pathways independent of extracellular glucose concentration. Collectively, we demonstrate for the first time that T1DM-iPSCs can differentiate into functional CMs with well-regulated glucose utilization as shown in N-iPSCs, suggesting that T1DM-iPSC-CMs might be a promising autologous cell source for myocardial regeneration in type 1 diabetes patients.
Collapse
Affiliation(s)
- Chika Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Radde BN, Ivanova MM, Mai HX, Salabei JK, Hill BG, Klinge CM. Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen. Biochem J 2015; 465:49-61. [PMID: 25279503 PMCID: PMC11995301 DOI: 10.1042/bj20131608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oestrogen receptor α (ERα+) breast tumours rely on mitochondria (mt) to generate ATP. The goal of the present study was to determine how oestradiol (E2) and 4-hydroxytamoxifen (4-OHT) affect cellular bioenergetic function in MCF-7 and T47D ERα+ breast cancer cells in serum-replete compared with dextran-coated charcoal (DCC)-stripped foetal bovine serum (FBS)-containing medium ('serum-starved'). Serum-starvation reduced oxygen consumption rate (OCR), extracellular acidification rate (ECAR), ATP-linked OCR and maximum mt capacity, reflecting lower ATP demand and mt respiration. Cellular respiratory stateapparent was unchanged by serum deprivation. 4-OHT reduced OCR independent of serum status. Despite having a higher mt DNA/nuclear DNA ratio than MCF-7 cells, T47D cells have a lower OCR and ATP levels and higher proton leak. T47D express higher nuclear respiratory factor-1 (NRF-1) and NRF-1-regulated, nuclear-encoded mitochondrial transcription factor TFAM and cytochrome c, but lower levels of cytochrome c oxidase, subunit IV, isoform 1 (COX4, COX4I1). Mitochondrial reserve capacity, reflecting tolerance to cellular stress, was higher in serum-starved T47D cells and was increased by 4-OHT, but was decreased by 4-OHT in MCF-7 cells. These data demonstrate critical differences in cellular energetics and responses to 4-OHT in these two ERα+ cell lines, likely reflecting cancer cell avoidance of apoptosis.
Collapse
Affiliation(s)
- Brandie N. Radde
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, U.S.A
| | - Margarita M. Ivanova
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, U.S.A
| | - Huy Xuan Mai
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, U.S.A
| | - Joshua K. Salabei
- Deptartment of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, U.S.A
| | - Bradford G. Hill
- Deptartment of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, U.S.A
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, U.S.A
| |
Collapse
|
196
|
Fiuza B, Subelzú N, Calcerrada P, Straliotto MR, Piacenza L, Cassina A, Rocha JBT, Radi R, de Bem AF, Peluffo G. Impact of SIN-1-derived peroxynitrite flux on endothelial cell redox homeostasis and bioenergetics: protective role of diphenyl diselenide via induction of peroxiredoxins. Free Radic Res 2014; 49:122-32. [PMID: 25373783 DOI: 10.3109/10715762.2014.983096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased production of reactive nitrogen (RNS) and oxygen (ROS) species and its detrimental effect to mitochondria are associated with endothelial dysfunction. This study was designed to determine the effect of a peroxynitrite flux, promoted by 1,3-morpholinosydnonimine (SIN-1), in mitochondrial function and some redox homeostasis parameters in bovine aortic endothelial cells (BAEC). Moreover, the effect of diphenyl diselenide (PhSe)2, a simple organic selenium compound, in preventing peroxynitrite-mediated cytotoxicity was also investigated. Our results showed that overnight exposure to SIN-1 (250 μM) caused a profound impairment of oxygen consumption, energy generation and reserve capacity in mitochondria of BAEC. Mitochondrial dysfunction resulted in an additional intracellular production of peroxynitrite, amplifying the phenomenon and leading to changes in redox homeostasis. Moreover, we observed an extensive decline in mitochondrial membrane potential (ΔΨm) induced by peroxynitrite and this event was associated with apoptotic-type cell death. Alternatively, the pretreatment of BAEC with (PhSe)2, hindered peroxynitrite-mediated cell damage by preserving mitochondrial and endothelial function and consequently preventing apoptosis. The protective effect of (PhSe)2 was related to its ability to improve the intracellular redox state by increasing the expression of different isoforms of peroxiredoxins (Prx-1-3), efficient enzymes in peroxynitrite detoxification.
Collapse
Affiliation(s)
- B Fiuza
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
198
|
Mooranian A, Negrulj R, Chen-Tan N, Fakhoury M, Arfuso F, Jones F, Al-Salami H. Advanced bile acid-based multi-compartmental microencapsulated pancreatic β-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:588-95. [PMID: 25358121 DOI: 10.3109/21691401.2014.971806] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study utilized the Seahorse Analyzer to examine the effect of the bile acid ursodeoxycholic acid (UDCA), on the morphology, swelling, stability, and size of novel microencapsulated β-cells, in real-time. UDCA was conjugated with fluorescent compounds, and its partitioning within the microcapsules was examined using confocal microscopy. UDCA produced microcapsules with good morphology, better mechanical strength (p < 0.01), and reduced swelling properties (p < 0.01), but lower cell viability (p < 0.05) and cell count per microcapsule (p < 0.01). UDCA reduced the cells' biochemical activities, mitochondrial respiration, and energy production, post-microencapsulation. This is the first time biological functions of microencapsulated β-cells have been analyzed in real-time.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Perth , Western Australia , Australia
| | - Rebecca Negrulj
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Perth , Western Australia , Australia
| | - Nigel Chen-Tan
- b Faculty of Science and Engineering, Department of Imaging and Applied Physics , Curtin University , Perth , Western Australia , Australia
| | - Marc Fakhoury
- c Faculty of Medicine, Department of Neuroscience , University of Montreal , Montreal , Quebec , Canada
| | - Frank Arfuso
- d Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University , Perth , Western Australia , Australia
| | - Franca Jones
- e Faculty of Science and Engineering, Department of Chemistry , Curtin University , Perth , Western Australia , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Perth , Western Australia , Australia
| |
Collapse
|
199
|
Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation. J Bioenerg Biomembr 2014; 47:53-61. [PMID: 25341378 DOI: 10.1007/s10863-014-9588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Exposure of rat cortical neurons to combined oxygen and glucose deprivation results in loss of NAD(P)H autofluorescence that is only partially reversible following restoration of oxygen and glucose, suggesting catabolism of pyridine nucleotides. This study tested the hypothesis that metabolic inhibition caused by cyanide-induced chemical anoxia plus glucose deprivation promotes both release of mitochondrial NAD(H) in response to opening of the permeability transition pore (PTP) and NAD(P)(H) degradation through activation of poly (ADP-ribose) polymerase (PARP). The NAD(P)H autofluorescence of rat neonatal cortical neurons was monitored during and following acute (10-30 min) exposure to the respiratory inhibitor, cyanide, in the absence and presence of glucose. Because nitric oxide-derived peroxynitrite is a known activator of PARP, we additionally assessed the effect of a nitric oxide generating agent on the NAD(P)H autofluorescence response to chemical anoxia plus glucose deprivation. Cyanide induced a rapid increase in autofluorescence, followed by a steady decline promoted by the presence of nitric oxide. This decline was primarily due to NAD(H) catabolism, as verified by measurements of total NAD(H) present in cellular extracts. Catabolism was partially blocked by an inhibitor of PARP, by a PTP inhibitor, and by either glucose or pyruvate as a source of reducing power. Overall, data suggest that metabolic, oxidative, and nitrosative stress during in vitro neuronal anoxia and glucose deprivation result in release of mitochondrial pyridine nucleotides in response to PTP opening and rapid, extensive NAD(H) degradation mediated by PARP activation. These events may contribute to the metabolic dysfunction that occurs in vivo during cerebral ischemia and reperfusion and therefore represent prime targets for neuroprotection.
Collapse
|
200
|
Hort MA, Straliotto MR, de Oliveira J, Amoêdo ND, da Rocha JBT, Galina A, Ribeiro-do-Valle RM, de Bem AF. Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: Involvement of mitochondrial function. Biochimie 2014; 105:172-81. [DOI: 10.1016/j.biochi.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022]
|