151
|
Dubois Cauwelaert N, Baldwin SL, Orr MT, Desbien AL, Gage E, Hofmeyer KA, Coler RN. Antigen presentation by B cells guides programing of memory CD4 + T-cell responses to a TLR4-agonist containing vaccine in mice. Eur J Immunol 2016; 46:2719-2729. [PMID: 27701733 DOI: 10.1002/eji.201646399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/29/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
The contribution of B cells to immunity against many infectious diseases is unquestionably important and well characterized. Here, we sought to determine the role of B cells in the induction of T-helper 1 (TH 1) CD4+ T cells upon vaccination with a tuberculosis (TB) antigen combined with a TLR4 agonist. We used B-cell deficient mice (μMT-/- ), tetramer-positive CD4+ T cells, markers of memory "precursor" effector cells (MPECs), and T-cell adoptive transfers and demonstrated that the early antigen-specific cytokine-producing TH 1 responses are unaffected in the absence of B cells, however MPEC induction is strongly impaired resulting in a deficiency of the memory TH 1 response in μMT-/- mice. We further show that antigen-presentation by B cells is necessary for their role in MPEC generation using B-cell adoptive transfers from wt or MHC class II knock-out mice into μMT-/- mice. Our study challenges the view that B-cell deficiency exclusively alters the TH 1 response at memory time-points. Collectively, our results provide new insights on the multifaceted roles of B cells that will have a high impact on vaccine development against several pathogens including those requiring TH 1 cell-mediated immunity.
Collapse
Affiliation(s)
| | | | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Anthony L Desbien
- Infectious Disease Research Institute, Seattle, WA, USA
- Aduro Biotech, Berkeley, CA, USA
| | - Emily Gage
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- PAI Life Sciences, Seattle, WA, USA
| |
Collapse
|
152
|
Wali S, Sahoo A, Puri S, Alekseev A, Nurieva R. Insights into the development and regulation of T follicular helper cells. Cytokine 2016; 87:9-19. [PMID: 27339151 PMCID: PMC5108526 DOI: 10.1016/j.cyto.2016.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
T follicular helper (Tfh) cells are specialized subset of T helper (Th) cells necessary for germinal center reaction, affinity maturation and the differentiation of germinal center B cells to antibody-producing plasma B cells and memory B cells. The differentiation of Tfh cells is a multistage, multifactorial process involving a variety of cytokines, surface molecules and transcription factors. While Tfh cells are critical components of protective immune responses against pathogens, regulation of these cells is crucial to prevent autoimmunity and airway inflammation. Recently, it has been noted that Tfh cells could be potentially implicated either in cancer progression or prevention. Thus, the elucidation of the mechanisms that regulate Tfh cell differentiation, function and fate should highlight potential targets for novel therapeutic approaches. In this review, we summarize the latest advances in our understanding of the regulation of Tfh cell differentiation and their role in health and disease.
Collapse
Affiliation(s)
- Shradha Wali
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Anupama Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Sushant Puri
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrei Alekseev
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Roza Nurieva
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.
| |
Collapse
|
153
|
Bautista BL, Devarajan P, McKinstry KK, Strutt TM, Vong AM, Jones MC, Kuang Y, Mott D, Swain SL. Short-Lived Antigen Recognition but Not Viral Infection at a Defined Checkpoint Programs Effector CD4 T Cells To Become Protective Memory. THE JOURNAL OF IMMUNOLOGY 2016; 197:3936-3949. [PMID: 27798159 DOI: 10.4049/jimmunol.1600838] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/19/2016] [Indexed: 01/20/2023]
Abstract
Although memory CD4 T cells are critical for effective immunity to pathogens, the mechanisms underlying their generation are still poorly defined. We find that following murine influenza infection, most effector CD4 T cells undergo apoptosis unless they encounter cognate Ag at a defined stage near the peak of effector generation. Ag recognition at this memory checkpoint blocks default apoptosis and programs their transition to long-lived memory. Strikingly, we find that viral infection is not required, because memory formation can be restored by the addition of short-lived, Ag-pulsed APC at this checkpoint. The resulting memory CD4 T cells express an enhanced memory phenotype, have increased cytokine production, and provide protection against lethal influenza infection. Finally, we find that memory CD4 T cell formation following cold-adapted influenza vaccination is boosted when Ag is administered during this checkpoint. These findings imply that persistence of viral Ag presentation into the effector phase is the key factor that determines the efficiency of memory generation. We also suggest that administering Ag at this checkpoint may improve vaccine efficacy.
Collapse
Affiliation(s)
- Bianca L Bautista
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Tara M Strutt
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael C Jones
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Daniel Mott
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
154
|
Lewis GM, Wehrens EJ, Labarta-Bajo L, Streeck H, Zuniga EI. TGF-β receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest 2016; 126:3799-3813. [PMID: 27599295 PMCID: PMC5096797 DOI: 10.1172/jci87041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Suppression of CD8 and CD4 T cells is a hallmark in chronic viral infections, including hepatitis C and HIV. While multiple pathways are known to inhibit CD8 T cells, the host molecules that restrict CD4 T cell responses are less understood. Here, we used inducible and CD4 T cell-specific deletion of the gene encoding the TGF-β receptor during chronic lymphocytic choriomeningitis virus infection in mice, and determined that TGF-β signaling restricted proliferation and terminal differentiation of antiviral CD4 T cells. TGF-β signaling also inhibited a cytotoxic program that includes granzymes and perforin expression at both early and late stages of infection in vivo and repressed the transcription factor eomesodermin. Overexpression of eomesodermin was sufficient to recapitulate in great part the phenotype of TGF-β receptor-deficient CD4 T cells, while SMAD4 was necessary for CD4 T cell accumulation and differentiation. TGF-β signaling also restricted accumulation and differentiation of CD4 T cells and reduced the expression of cytotoxic molecules in mice and humans infected with other persistent viruses. These data uncovered an eomesodermin-driven CD4 T cell program that is continuously suppressed by TGF-β signaling. During chronic viral infection, this program limits CD4 T cell responses while maintaining CD4 T helper cell identity.
Collapse
Affiliation(s)
- Gavin M. Lewis
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| | - Ellen J. Wehrens
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| | | | - Hendrik Streeck
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Elina I. Zuniga
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| |
Collapse
|
155
|
Miller ML, Chen J, Daniels MD, McKeague MG, Wang Y, Yin D, Vu V, Chong AS, Alegre ML. Adoptive Transfer of Tracer-Alloreactive CD4 + T Cell Receptor Transgenic T Cells Alters the Endogenous Immune Response to an Allograft. Am J Transplant 2016; 16:2842-2853. [PMID: 27063351 PMCID: PMC5065388 DOI: 10.1111/ajt.13821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/09/2016] [Accepted: 04/01/2016] [Indexed: 01/25/2023]
Abstract
T cell receptor transgenic (TCR-Tg) T cells are often used as tracer populations of antigen-specific responses to extrapolate findings to endogenous T cells. The extent to which TCR-Tg T cells behave purely as tracer cells or modify the endogenous immune response is not clear. To test the impact of TCR-Tg T cell transfer on endogenous alloimmunity, recipient mice were seeded with CD4+ or CD8+ TCR-Tg or polyclonal T cells at the time of cardiac allograft transplantation. Only CD4+ TCR-Tg T cells accelerated rejection and, unexpectedly, led to a dose-dependent decrease in both transferred and endogenous T cells infiltrating the graft. In contrast, recipients of CD4+ TCR-Tg T cells exhibited enhanced endogenous donor-specific CD8+ T cell activation in the spleen and accelerated alloantibody production. Introduction of CD4+ TCR-Tg T cells also perturbed the intragraft accumulation of innate cell populations. Transferred CD4+ TCR-Tg T cells alter many aspects of endogenous alloimmunity, suggesting that caution should be used when interpreting experiments using these adoptively transferred cells because the overall nature of allograft rejection may be altered. These results also may have implications for adoptive CD4+ T cell immunotherapy in tumor and infectious clinical settings because cell infusion may have additional effects on natural immune responses.
Collapse
Affiliation(s)
| | - Jianjun Chen
- Section of Transplantation, Department of Surgery, University of Chicago
| | - Melvin D. Daniels
- Section of Transplantation, Department of Surgery, University of Chicago
| | | | - Ying Wang
- Section of Rheumatology, Department of Medicine, University of Chicago
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, University of Chicago
| | - Vinh Vu
- Section of Transplantation, Department of Surgery, University of Chicago
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago,To whom correspondence should be addressed: Maria-Luisa Alegre, M.D., Ph.D., The University of Chicago, Department of Medicine, 924 E. 57 St., JFK-R312, Chicago, IL 60637; tel: 773-834-4317; fax: 773-702-4394;
| |
Collapse
|
156
|
Lykken EA, Li QJ. The MicroRNA miR-191 Supports T Cell Survival Following Common γ Chain Signaling. J Biol Chem 2016; 291:23532-23544. [PMID: 27634043 DOI: 10.1074/jbc.m116.741264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
To ensure lifelong immunocompetency, naïve and memory T cells must be adequately maintained in the peripheral lymphoid tissues. Homeostatic maintenance of T cells is controlled by tonic signaling through T cell antigen receptors and common γ chain cytokine receptors. In this study, we identify the highly expressed microRNA miR-191 as a key regulator of naïve, memory, and regulatory T cell homeostasis. Conditional deletion of miR-191 using LckCre resulted in preferential loss of peripheral CD4+ regulatory T cells as well as naïve and memory CD8+ T cells. This preferential loss stemmed from reduced survival following deficient cytokine signaling and STAT5 activation. Mechanistically, insulin receptor substrate 1 (Irs1) is a direct target of miR-191, and dysregulated IRS1 expression antagonizes STAT5 activation. Our study identifies a novel role for microRNAs in fine-tuning immune homeostasis and thereby maintaining the lymphocyte reservoir necessary to mount productive immune responses.
Collapse
Affiliation(s)
- Erik Allen Lykken
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | - Qi-Jing Li
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
157
|
Villegas-Mendez A, Inkson CA, Shaw TN, Strangward P, Couper KN. Long-Lived CD4+IFN-γ+ T Cells rather than Short-Lived CD4+IFN-γ+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:3152-3164. [PMID: 27630165 PMCID: PMC5055201 DOI: 10.4049/jimmunol.1600968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Abstract
CD4+ T cells that produce IFN-γ are the source of host-protective IL-10 during primary infection with a number of different pathogens, including Plasmodium spp. The fate of these CD4+IFN-γ+IL-10+ T cells following clearance of primary infection and their subsequent influence on the course of repeated infections is, however, presently unknown. In this study, utilizing IFN-γ-yellow fluorescent protein (YFP) and IL-10-GFP dual reporter mice, we show that primary malaria infection-induced CD4+YFP+GFP+ T cells have limited memory potential, do not stably express IL-10, and are disproportionately lost from the Ag-experienced CD4+ T cell memory population during the maintenance phase postinfection. CD4+YFP+GFP+ T cells generally exhibited a short-lived effector rather than effector memory T cell phenotype postinfection and expressed high levels of PD-1, Lag-3, and TIGIT, indicative of cellular exhaustion. Consistently, the surviving CD4+YFP+GFP+ T cell-derived cells were unresponsive and failed to proliferate during the early phase of secondary infection. In contrast, CD4+YFP+GFP- T cell-derived cells expanded rapidly and upregulated IL-10 expression during secondary infection. Correspondingly, CD4+ T cells were the major producers within an accelerated and amplified IL-10 response during the early stage of secondary malaria infection. Notably, IL-10 exerted quantitatively stronger regulatory effects on innate and CD4+ T cell responses during primary and secondary infections, respectively. The results in this study significantly improve our understanding of the durability of IL-10-producing CD4+ T cells postinfection and provide information on how IL-10 may contribute to optimized parasite control and prevention of immune-mediated pathology during repeated malaria infections.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Colette A Inkson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Tovah N Shaw
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Patrick Strangward
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin N Couper
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
158
|
Kim C, Fang F, Weyand CM, Goronzy JJ. The life cycle of a T cell after vaccination - where does immune ageing strike? Clin Exp Immunol 2016; 187:71-81. [PMID: 27324743 DOI: 10.1111/cei.12829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Abstract
Vaccination is the optimal intervention to prevent the increased morbidity and mortality from infection in older individuals and to maintain immune health during ageing. To optimize benefits from vaccination, strategies have to be developed that overcome the defects in an adaptive immune response that occur with immune ageing. Most current approaches are concentrated on activating the innate immune system by adjuvants to improve the induction of a T cell response. This review will focus upon T cell-intrinsic mechanisms that control how a T cell is activated, expands rapidly to differentiate into short-lived effector cells and into memory precursor cells, with short-lived effector T cells then mainly undergoing apoptosis and memory precursor cells surviving as long-lived memory T cells. Insights into each step of this longitudinal course of a T cell response that takes place over a period of several weeks is beginning to allow identifying interventions that can improve this process of T cell memory generation and specifically target defects that occur with ageing.
Collapse
Affiliation(s)
- C Kim
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA and the Department of Medicine, VAPAHCS, Palo Alto, CA, USA
| | - F Fang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA and the Department of Medicine, VAPAHCS, Palo Alto, CA, USA
| | - C M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA and the Department of Medicine, VAPAHCS, Palo Alto, CA, USA
| | - J J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA and the Department of Medicine, VAPAHCS, Palo Alto, CA, USA
| |
Collapse
|
159
|
Glennie ND, Scott P. Memory T cells in cutaneous leishmaniasis. Cell Immunol 2016; 309:50-54. [PMID: 27493096 DOI: 10.1016/j.cellimm.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/05/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023]
Abstract
Leishmania causes a spectrum of diseases that range from self-healing to fatal infections. Control of leishmania is dependent upon generating CD4+ Th1 cells that produce IFNγ, leading to macrophage activation and killing of the intracellular parasites. Following resolution of the disease, short-lived effector T cells, as well as long-lived central memory T cells and skin resident memory T cells, are retained and able to mediate immunity to a secondary infection. However, there is no vaccine for leishmaniasis, and the drugs used to treat the disease can be toxic and ineffective. While a live infection generates immunity, a successful vaccine will depend upon generating memory T cells that can be maintained without the continued presence of parasites. Since both central memory and skin resident memory T cells are long-lived, they may be the appropriate targets for a leishmaniasis vaccine.
Collapse
Affiliation(s)
- Nelson D Glennie
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
160
|
Japp AS, Hoffmann K, Schlickeiser S, Glauben R, Nikolaou C, Maecker HT, Braun J, Matzmohr N, Sawitzki B, Siegmund B, Radbruch A, Volk HD, Frentsch M, Kunkel D, Thiel A. Wild immunology assessed by multidimensional mass cytometry. Cytometry A 2016; 91:85-95. [PMID: 27403624 DOI: 10.1002/cyto.a.22906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
A great part of our knowledge on mammalian immunology has been established in laboratory settings. The use of inbred mouse strains enabled controlled studies of immune cell and molecule functions in defined settings. These studies were usually performed in specific-pathogen free (SPF) environments providing standardized conditions. In contrast, mammalians including humans living in their natural habitat are continuously facing pathogen encounters throughout their life. The influences of environmental conditions on the signatures of the immune system and on experimental outcomes are yet not well defined. Thus, the transferability of results obtained in current experimental systems to the physiological human situation has always been a matter of debate. Studies elucidating the diversity of "wild immunology" imprintings in detail and comparing it with those of "clean" lab mice are sparse. Here, we applied multidimensional mass cytometry to dissect phenotypic and functional differences between distinct groups of laboratory and pet shop mice as a source for "wild mice". For this purpose, we developed a 31-antibody panel for murine leukocyte subsets identification and a 35-antibody panel assessing various cytokines. Established murine leukocyte populations were easily identified and diverse immune signatures indicative of numerous pathogen encounters were classified particularly in pet shop mice and to a lesser extent in quarantine and non-SPF mice as compared to SPF mice. In addition, unsupervised analysis identified distinct clusters that associated strongly with the degree of pathogenic priming, including increased frequencies of activated NK cells and antigen-experienced B- and T-cell subsets. Our study unravels the complexity of immune signatures altered under physiological pathogen challenges and highlights the importance of carefully adapting laboratory settings for immunological studies in mice, including drug and therapy testing. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Alberto Sada Japp
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Hoffmann
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- BCRT Flow Cytometry Lab (BCRT-FCL), BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Glauben
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christos Nikolaou
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Julian Braun
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Matzmohr
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany.,Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Birgit Sawitzki
- Transplantation Tolerance, Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Hans-Dieter Volk
- Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Frentsch
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Desiree Kunkel
- BCRT Flow Cytometry Lab (BCRT-FCL), BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BCRT, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
161
|
Tian Y, Mollo SB, Harrington LE, Zajac AJ. IL-10 Regulates Memory T Cell Development and the Balance between Th1 and Follicular Th Cell Responses during an Acute Viral Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:1308-21. [PMID: 27402701 DOI: 10.4049/jimmunol.1502481] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
T cells provide protective immunity against infections by differentiating into effector cells that contribute to rapid pathogen control and by forming memory populations that survive over time and confer long-term protection. Thus, understanding the factors that regulate the development of effective T cell responses is beneficial for the design of vaccines and immune-based therapies against infectious diseases. Cytokines play important roles in shaping T cell responses, and IL-10 has been shown to modulate the differentiation of CD4 and CD8 T cells. In this study, we report that IL-10 functions in a cell-extrinsic manner early following acute lymphocytic choriomeningitis virus infection to suppress the magnitude of effector Th1 responses as well as the generation of memory CD4 and CD8 T cells. We further demonstrate that the blockade of IL-10 signaling during the priming phase refines the functional quality of memory CD4 and CD8 T cells. This inhibition strategy resulted in a lower frequency of virus-specific follicular Th (Tfh) cells and increased the Th1 to Tfh ratio. Nevertheless, neither germinal center B cells nor lymphocytic choriomeningitis virus-specific Ab levels were influenced by the blockade. Thus, our studies show that IL-10 influences the balance between Th1 and Tfh cell differentiation and negatively regulates the development of functionally mature memory T cells.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Sarah B Mollo
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laurie E Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
162
|
Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Hammer SE, Saalmüller A, Gerner W. Expression of T-bet, Eomesodermin and GATA-3 in porcine αβ T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:115-126. [PMID: 26920461 DOI: 10.1016/j.dci.2016.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The transcription factors GATA-3, T-bet and Eomesodermin play important roles in T-cell development, differentiation and memory formation. However, their expression has not been studied in great detail in porcine T cells. We report on protein expression at the single cell-level of these transcription factors in thymocytes and mature αβ T cells. GATA-3 expression was found in γδ(-) thymocytes, with decreasing expression from the CD4(-)CD8α(-) stage towards single-positive stages. Extra-thymic CD4(+) T cells but not CD8β(+) T cells expressed low levels of GATA-3, which decreased with age. CD4(+) and CD8β(+) T-bet(+) cells mainly displayed a CD8α(+)CD27(-) and perforin(+)CD27(dim/-) phenotype, respectively and had the capacity for IFN-γ production; indicative of an effector/effector memory phenotype. Eomesodermin(+) αβ T cells had mixed phenotypes in regard to CD8α, CD27 and perforin expression. In conclusion, our data so far support the hitherto reported roles for GATA-3 in T-cell development and T-bet for Th1 effector-differentiation, but question the role of Eomesodermin for memory formation of porcine T-cells.
Collapse
Affiliation(s)
- Irene M Rodríguez-Gómez
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Stephanie C Talker
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Tobias Käser
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
163
|
Lefebvre JS, Lorenzo EC, Masters AR, Hopkins JW, Eaton SM, Smiley ST, Haynes L. Vaccine efficacy and T helper cell differentiation change with aging. Oncotarget 2016; 7:33581-94. [PMID: 27177221 PMCID: PMC5085104 DOI: 10.18632/oncotarget.9254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022] Open
Abstract
Influenza and pneumonia are leading causes of death in elderly populations. With age, there is an increased inflammatory response and slower viral clearance during influenza infection which increases the risk of extended illness and mortality. Here we employ a preclinical murine model of influenza infection to examine the protective capacity of vaccination with influenza nucleoprotein (NP). While NP vaccination reduces influenza-induced lung inflammation in young mice, aged mice do not show this reduction, but are protected from influenza-induced mortality. Aged mice do make a significant amount of NP-specific IgG and adoptive transfer experiments show that NP antibody can protect from death but cannot reduce lung inflammation. Furthermore, young but not aged vaccinated mice generate significant numbers of NP-specific T cells following subsequent infection and few of these T cells are found in aged lungs early during infection. Importantly, aged CD4 T cells have a propensity to differentiate towards a T follicular helper (Tfh) phenotype rather than a T helper 1 (Th1) phenotype that predominates in the young. Since Th1 cells are important in viral clearance, reduced Th1 differentiation in the aged is critical and could account for some or all of the age-related differences in vaccine responses and infection resolution.
Collapse
Affiliation(s)
- Julie S. Lefebvre
- The Trudeau Institute, Saranac Lake, NY, United States of America
- Département de Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, QC, Canada
| | - Erica C. Lorenzo
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| | - April R. Masters
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Jacob W. Hopkins
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Sheri M. Eaton
- The Trudeau Institute, Saranac Lake, NY, United States of America
| | - Stephen T. Smiley
- The Trudeau Institute, Saranac Lake, NY, United States of America
- NIAID/NIH, Bethesda, MD, USA
| | - Laura Haynes
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| |
Collapse
|
164
|
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| | - Ton N.M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| |
Collapse
|
165
|
Hojyo S, Sarkander J, Männe C, Mursell M, Hanazawa A, Zimmel D, Zhu J, Paul WE, Fillatreau S, Löhning M, Radbruch A, Tokoyoda K. B Cells Negatively Regulate the Establishment of CD49b(+)T-bet(+) Resting Memory T Helper Cells in the Bone Marrow. Front Immunol 2016; 7:26. [PMID: 26870041 PMCID: PMC4735404 DOI: 10.3389/fimmu.2016.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
During an immune reaction, some antigen-experienced CD4 T cells relocate from secondary lymphoid organs (SLOs) to the bone marrow (BM) in a CD49b-dependent manner and reside and rest there as professional memory CD4 T cells. However, it remains unclear how the precursors of BM memory CD4 T cells are generated in the SLOs. While several studies have so far shown that B cell depletion reduces the persistence of memory CD4 T cells in the spleen, we here show that B cell depletion enhances the establishment of memory CD4 T cells in the BM and that B cell transfer conversely suppresses it. Interestingly, the number of antigen-experienced CD4 T cells in the BM synchronizes the number of CD49b+T-bet+ antigen-experienced CD4 T cells in the spleen. CD49b+T-bet+ antigen-experienced CD4 T cells preferentially localize in the red pulp area of the spleen and the BM in a T-bet-independent manner. We suggest that B cells negatively control the generation of CD49b+T-bet+ precursors of resting memory CD4 T cells in the spleen and may play a role in bifurcation of activated effector and resting memory CD4 T cell lineages.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Jana Sarkander
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Christian Männe
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Mathias Mursell
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Asami Hanazawa
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - David Zimmel
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Max Löhning
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| |
Collapse
|
166
|
Fang F, Yu M, Cavanagh MM, Hutter Saunders J, Qi Q, Ye Z, Le Saux S, Sultan W, Turgano E, Dekker CL, Tian L, Weyand CM, Goronzy JJ. Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. Cell Rep 2016; 14:1218-1231. [PMID: 26832412 PMCID: PMC4851554 DOI: 10.1016/j.celrep.2016.01.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/23/2015] [Accepted: 12/24/2015] [Indexed: 01/25/2023] Open
Abstract
In an immune response, CD4+ T cells expand into effector T cells and then contract to survive as long-lived memory cells. To identify age-associated defects in memory cell formation, we profiled activated CD4+ T cells and found an increased induction of the ATPase CD39 with age. CD39+ CD4+ T cells resembled effector T cells with signs of metabolic stress and high susceptibility to undergo apoptosis. Pharmacological inhibition of ATPase activity dampened effector cell differentiation and improved survival, suggesting that CD39 activity influences T cell fate. Individuals carrying a low-expressing CD39 variant responded better to vaccination with an increase in vaccine-specific memory T cells. Increased inducibility of CD39 after activation may contribute to the impaired vaccine response with age.
Collapse
Affiliation(s)
- Fengqin Fang
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Mingcan Yu
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Mary M Cavanagh
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Jessica Hutter Saunders
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Qian Qi
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Zhongde Ye
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Sabine Le Saux
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - William Sultan
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Emerson Turgano
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Cornelia L Dekker
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Tian
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Jörg J Goronzy
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
167
|
Radford F, Tyagi S, Gennaro ML, Pine R, Bushkin Y. Flow Cytometric Characterization of Antigen-Specific T Cells Based on RNA and Its Advantages in Detecting Infections and Immunological Disorders. Crit Rev Immunol 2016; 36:359-378. [PMID: 28605344 PMCID: PMC5548664 DOI: 10.1615/critrevimmunol.2017018316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescence in situ hybridization coupled with flow cytometry (FISH-Flow) is a highly quantitative, high-throughput platform allowing precise quantification of total mRNA transcripts in single cells. In undiagnosed infections posing a significant health burden worldwide, such as latent tuberculosis or asymptomatic recurrent malaria, an important challenge is to develop accurate diagnostic tools. Antigen-specific T cells create a persistent memory to pathogens, making them useful for diagnosis of infection. Stimulation of memory response initiates T-cell transitions between functional states. Numerous studies have shown that changes in protein levels lag real-time T-cell transitions. However, analysis at the single-cell transcriptional level can determine the differences. FISH-Flow is a powerful tool with which to study the functional states of T-cell subsets and to identify the gene expression profiles of antigen-specific T cells during disease progression. Advances in instrumentation, fluorophores, and FISH methodologies will broaden and deepen the use of FISH-Flow, changing the immunological field by allowing determination of functional immune signatures at the mRNA level and the development of new diagnostic tools.
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Richard Pine
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
168
|
Kaji T, Hijikata A, Ishige A, Kitami T, Watanabe T, Ohara O, Yanaka N, Okada M, Shimoda M, Taniguchi M, Takemori T. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation. Int Immunol 2015; 28:267-82. [PMID: 26714588 DOI: 10.1093/intimm/dxv071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022] Open
Abstract
Memory CD4(+) T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4(+) T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells.
Collapse
Affiliation(s)
- Tomohiro Kaji
- Laboratory for Immunological Memory, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Hijikata
- Immunogenomics, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Ishige
- Laboratory for Immunological Memory, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences RCAI, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Toshimori Kitami
- Cellular Bioenegetic Network, RIKEN Center for Integrative Medical Sciences RCAI (IMS-RCAI), 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences RCAI, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences RCAI, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Mariko Okada
- Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences RCAI, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Masaru Taniguchi
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences RCAI, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Toshitada Takemori
- Laboratory for Immunological Memory, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan Drug Discovery Antibody Platform Unit, RIKEN Center for Integrative Medical Sciences RCAI, 1-7-22, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
169
|
Abstract
Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime-challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal-fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Michael D Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143, USA
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | - Abul K Abbas
- Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
170
|
Pietrosimone KM, Liu P. Contributions of neutrophils to the adaptive immune response in autoimmune disease. World J Transl Med 2015; 4:60-68. [PMID: 27042404 PMCID: PMC4816207 DOI: 10.5528/wjtm.v4.i3.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation.
Collapse
|
171
|
Ramiscal RR, Parish IA, Lee-Young RS, Babon JJ, Blagih J, Pratama A, Martin J, Hawley N, Cappello JY, Nieto PF, Ellyard JI, Kershaw NJ, Sweet RA, Goodnow CC, Jones RG, Febbraio MA, Vinuesa CG, Athanasopoulos V. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. eLife 2015; 4. [PMID: 26496200 PMCID: PMC4716841 DOI: 10.7554/elife.08698] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN–AMPK metabolic signaling nexus essential for selectively promoting Tfh responses. DOI:http://dx.doi.org/10.7554/eLife.08698.001 The immune system protects the body from invading microbes like bacteria and viruses. Upon recognizing the presence of these microbes, cells in the immune system are activated to destroy the foreign threat and clear it from the body. A type of immune cell called T follicular helper cells (or Tfh for short) are formed during an infection and are essential for coordinating other immune cells to produce high-quality antibody proteins that attack the microbes. Without Tfh cells, life-long production of these protective antibodies is severely crippled, which can cause common variable immune deficiency and other serious immunodeficiency diseases. On the other hand, the body must also avoid generating excessive numbers of Tfh cells, which can lead to the production of antibodies that attack healthy cells of the body. ROQUIN is a protein that inhibits the formation of Tfh cells and other types of active T cells. A region on the protein called the ROQ domain destabilizes particular molecules of ribonucleic acid (RNA) that are required for these specialist T cells to form and work properly. ROQUIN belongs to a large family of enzymes that have a so-called RING domain, which is a feature that enables these enzymes to attach tags onto specific target proteins to modify their activity or stability. However, it was not known whether the RING domain of ROQUIN was active. Ramiscal et al. now address this question in mice. Unexpectedly, the experiments show that the RING domain is required to promote the formation of Tfh cells, but not other types of active T cells. This domain allows ROQUIN to repress an enzyme called AMPK, which normally blocks cell growth by regulating cell metabolism. The findings suggest that the different roles of the ROQ and RING domains allow ROQUIN to fine-tune the numbers of Tfh cells so that they remain within a safe range. In the future, these findings may aid the development of vaccines that are more efficient at generating protective Tfh cells to prevent infectious diseases. DOI:http://dx.doi.org/10.7554/eLife.08698.002
Collapse
Affiliation(s)
- Roybel R Ramiscal
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ian A Parish
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jeffrey J Babon
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Julianna Blagih
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Alvin Pratama
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jaime Martin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Naomi Hawley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jean Y Cappello
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pablo F Nieto
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julia I Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nadia J Kershaw
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Rebecca A Sweet
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Christopher C Goodnow
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Immunology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Russell G Jones
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
172
|
Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD, Gray SM, Laidlaw BJ, Araki K, Ahmed R, Kaech SM, Craft J. The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity 2015; 43:690-702. [PMID: 26410627 PMCID: PMC4618086 DOI: 10.1016/j.immuni.2015.08.017] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023]
Abstract
The differentiation of CD4(+) helper T cell subsets with diverse effector functions is accompanied by changes in metabolism required to meet their bioenergetic demands. We find that follicular B helper T (Tfh) cells exhibited less proliferation, glycolysis, and mitochondrial respiration, accompanied by reduced mTOR kinase activity compared to T helper 1 (Th1) cells in response to acute viral infection. IL-2-mediated activation of the Akt kinase and mTORc1 signaling was both necessary and sufficient to shift differentiation away from Tfh cells, instead promoting that of Th1 cells. These findings were not the result of generalized signaling attenuation in Tfh cells, because they retained the ability to flux calcium and activate NFAT-transcription-factor-dependent cytokine production. These data identify the interleukin-2 (IL-2)-mTORc1 axis as a critical orchestrator of the reciprocal balance between Tfh and Th1 cell fates and their respective metabolic activities after acute viral infection.
Collapse
Affiliation(s)
- John P Ray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew M Staron
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin A Shyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Atlanta, GA 30322, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
173
|
Arsenio J, Metz PJ, Chang JT. Asymmetric Cell Division in T Lymphocyte Fate Diversification. Trends Immunol 2015; 36:670-683. [PMID: 26474675 DOI: 10.1016/j.it.2015.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Abstract
Immunological protection against microbial pathogens is dependent on robust generation of functionally diverse T lymphocyte subsets. Upon microbial infection, naïve CD4(+) or CD8(+) T lymphocytes can give rise to effector- and memory-fated progeny that together mediate a potent immune response. Recent advances in single-cell immunological and genomic profiling technologies have helped elucidate early and late diversification mechanisms that enable the generation of heterogeneity from single T lymphocytes. We discuss these findings here and argue that one such mechanism, asymmetric cell division, creates an early divergence in T lymphocyte fates by giving rise to daughter cells with a propensity towards the terminally differentiated effector or self-renewing memory lineages, with cell-intrinsic and -extrinsic cues from the microenvironment driving the final maturation steps.
Collapse
Affiliation(s)
- Janilyn Arsenio
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
174
|
IFN-γ Priming Effects on the Maintenance of Effector Memory CD4(+) T Cells and on Phagocyte Function: Evidences from Infectious Diseases. J Immunol Res 2015; 2015:202816. [PMID: 26509177 PMCID: PMC4609814 DOI: 10.1155/2015/202816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Although it has been established that effector memory CD4+ T cells play an important role in the protective immunity against chronic infections, little is known about the exact mechanisms responsible for their functioning and maintenance, as well as their effects on innate immune cells. Here we review recent data on the role of IFN-γ priming as a mechanism affecting both innate immune cells and effector memory CD4+ T cells. Suboptimal concentrations of IFN-γ are seemingly crucial for the optimization of innate immune cell functions (including phagocytosis and destruction of reminiscent pathogens), as well as for the survival and functioning of effector memory CD4+ T cells. Thus, IFN-γ priming can thus be considered an important bridge between innate and adaptive immunity.
Collapse
|
175
|
Lebrun A, Portocarrero C, Kean RB, Barkhouse DA, Faber M, Hooper DC. T-bet Is Required for the Rapid Clearance of Attenuated Rabies Virus from Central Nervous System Tissue. THE JOURNAL OF IMMUNOLOGY 2015; 195:4358-68. [PMID: 26408670 DOI: 10.4049/jimmunol.1501274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022]
Abstract
Much of our understanding of CNS immunity has been gained from models involving pathological inflammation. Attenuated rabies viruses (RABV) are unique tools to study CNS immunity in the absence of conventional inflammatory mechanisms, as they spread from the site of inoculation to the CNS transaxonally, thereby bypassing the blood-brain barrier (BBB), and are cleared without neutrophil or monocyte infiltration. To better understand the role of CD4 T cell subsets in the clearance of the virus from CNS tissues, we examined the development of antiviral immunity in wild-type (WT) and T-bet knockout mice (T-bet(-/-)), which lack Th1 cells. Early control of RABV replication in the CNS tissues of WT mice is associated with the production of IFN-γ, with antiviral effects likely mediated through the enhanced expression of type I IFNs. Of interest, IFN-α and -γ are overexpressed in the infected T-bet(-/-) by comparison with WT CNS tissues, and the initial control of RABV infection is similar. Ultimately, attenuated RABV are cleared from the CNS tissues of WT mice by Ab locally produced by the activities of infiltrating T and B cells. Although T and B cell infiltration into the CNS of infected T-bet(-/-) mice is comparable, their activities are not, the consequence being delayed, low-level Ab production and prolonged RABV replication. More importantly, neither T-bet(-/-) mice immunized with an attenuated virus, nor WT mice with Th2 RABV-specific immunity induced by immunization with inactivated virus, are protected in the long term against challenge with a pathogenic RABV.
Collapse
Affiliation(s)
- Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Carla Portocarrero
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rhonda B Kean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Darryll A Barkhouse
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
176
|
Manlove LS, Berquam-Vrieze KE, Pauken KE, Williams RT, Jenkins MK, Farrar MA. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4028-37. [PMID: 26378075 DOI: 10.4049/jimmunol.1501291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells.
Collapse
Affiliation(s)
- Luke S Manlove
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Katherine E Berquam-Vrieze
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Kristen E Pauken
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Institute for Immunology, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19444
| | | | - Marc K Jenkins
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Microbiology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
177
|
Jaigirdar SA, MacLeod MKL. Development and Function of Protective and Pathologic Memory CD4 T Cells. Front Immunol 2015; 6:456. [PMID: 26441961 PMCID: PMC4561815 DOI: 10.3389/fimmu.2015.00456] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022] Open
Abstract
Immunological memory is one of the defining features of the adaptive immune system. As key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority of adaptive immune responses. Generated following an immune response, memory CD4 T cells retain pertinent information about their activation environment enabling them to make rapid effector responses upon reactivation. These responses can either benefit the host by hastening the control of pathogens or cause damaging immunopathology. Here, we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the transition of activated T cells into that pool, and highlight how activation requirements differ between naïve and memory CD4 T cells. A greater understanding of these factors has the potential to aid the design of more effective vaccines and to improve regulation of pathologic CD4 T cells, such as in the context of autoimmunity and allergy.
Collapse
Affiliation(s)
- Shafqat Ahrar Jaigirdar
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - Megan K L MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| |
Collapse
|
178
|
The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat Immunol 2015. [PMID: 26214740 DOI: 10.1038/ni.3229] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Induction of the transcriptional repressor Bcl-6 in CD4(+) T cells is critical for the differentiation of follicular helper T cells (T(FH) cells), which are essential for B cell-mediated immunity. In contrast, the transcription factor Blimp1 (encoded by Prdm1) inhibits T(FH) differentiation by antagonizing Bcl-6. Here we found that the transcription factor TCF-1 was essential for both the initiation of T(FH) differentiation and the effector function of differentiated T(FH) cells during acute viral infection. Mechanistically, TCF-1 bound directly to the Bcl6 promoter and Prdm1 5' regulatory regions, which promoted Bcl-6 expression but repressed Blimp1 expression. TCF-1-null T(FH) cells upregulated genes associated with non-T(FH) cell lineages. Thus, TCF-1 functions as an important hub upstream of the Bcl-6-Blimp1 axis to initiate and secure the differentiation of T(FH) cells during acute viral infection.
Collapse
|
179
|
Bergsbaken T, Bevan MJ. Cutting Edge: Caspase-11 Limits the Response of CD8+ T Cells to Low-Abundance and Low-Affinity Antigens. THE JOURNAL OF IMMUNOLOGY 2015; 195:41-5. [PMID: 25980012 DOI: 10.4049/jimmunol.1500812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022]
Abstract
Inflammatory caspases, including caspase-11, are upregulated in CD8(+) T cells after Ag-specific activation, but little is known about their function in T cells. We report that caspase-11-deficient (Casp11(-/-)) T cells proliferated more readily in response to low-affinity and low-abundance ligands both in vitro and in vivo due to an increased ability to signal through the TCR. In addition to increased numbers, Casp11(-/-) T cells had enhanced effector function compared with wild-type cells, including increased production of IL-2 and reduced expression of CD62L. Casp11(-/-) T cells specific for endogenous Ags were more readily deleted than wild-type cells. These data indicate that caspase-11 negatively regulates TCR signaling, possibly through its ability to regulate actin polymerization, and inhibiting its activity could enhance the expansion and function of low-affinity T cells.
Collapse
Affiliation(s)
- Tessa Bergsbaken
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| | - Michael J Bevan
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| |
Collapse
|
180
|
Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C, Higdon LE, Cambier CJ, Sissons JR, Gallegos AM, Fink PJ, Urdahl KB. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. ACTA ACUST UNITED AC 2015; 212:715-28. [PMID: 25918344 PMCID: PMC4419347 DOI: 10.1084/jem.20141518] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Protective CD4 T cells specific for M. tuberculosis (Mtb) are maintained in the lungs during active Mtb infection. Similar to memory CD4 T cells, persistence of these Mtb-specific cells requires intrinsic expression of Bcl6 and ICOS. Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB.
Collapse
Affiliation(s)
- Albanus O Moguche
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109 Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| | - Shahin Shafiani
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109
| | - Corey Clemons
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109 Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| | - Ryan P Larson
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109 Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| | - Crystal Dinh
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109
| | - Lauren E Higdon
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| | - C J Cambier
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| | - James R Sissons
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109
| | - Alena M Gallegos
- Department of Immunology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pamela J Fink
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| | - Kevin B Urdahl
- Seattle Biomedical Research Institute (renamed Center for Infectious Disease Research), Seattle, WA 98109 Department of Immunology, University of Washington School of Medicine, Seattle, WA 98104
| |
Collapse
|
181
|
Opata MM, Carpio VH, Ibitokou SA, Dillon BE, Obiero JM, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5346-54. [PMID: 25911759 DOI: 10.4049/jimmunol.1403216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/18/2015] [Indexed: 01/25/2023]
Abstract
CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.
Collapse
Affiliation(s)
- Michael M Opata
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Victor H Carpio
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Samad A Ibitokou
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Brian E Dillon
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Joshua M Obiero
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
182
|
Abstract
Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance.
Collapse
Affiliation(s)
- David J Gasper
- Department of Pathobiological Sciences; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Melba Marie Tejera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
183
|
Hu Z, Blackman MA, Kaye KM, Usherwood EJ. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. THE JOURNAL OF IMMUNOLOGY 2015; 194:2746-56. [PMID: 25662997 DOI: 10.4049/jimmunol.1401928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CD4(+) T cells are critical for the control of virus infections, T cell memory, and immune surveillance. We studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4(+) T cells using gp150-specific TCR-transgenic mice. This allowed a more detailed study of the characteristics of the CD4(+) T cell response than did previously available approaches for this virus. Most gp150-specific CD4(+) T cells expressed T-bet and produced IFN-γ, indicating that MHV-68 infection triggered differentiation of CD4(+) T cells largely into the Th1 subset, whereas some became follicular Th cells and Foxp3(+) regulatory T cells. These CD4(+) T cells were protective against MHV-68 infection in the absence of CD8(+) T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4(+) T cells, based on lymphocyte Ag 6C (Ly6C) expression. Ly6C expression positively correlated with IFN-γ, TNF-α, and granzyme B production; T-bet and KLRG1 expression; proliferation; and CD4(+) T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression, and secondary expansion potential. Ly6C(+) and Ly6C(-) gp150-specific CD4(+) T cells were able to interconvert in a bidirectional manner upon secondary Ag exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4(+) T cells but is inversely correlated with memory potential. Interconversion between Ly6C(+) and Ly6C(-) cells may maintain a balance between the two Ag-specific CD4(+) T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4(+) T cells during persistent virus infection.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | | | - Kenneth M Kaye
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
184
|
Abstract
T follicular helper (Tfh) cells are the subset of CD4 T helper cells that are required for generation and maintenance of germinal center reactions and the generation of long-lived humoral immunity. This specialized T helper subset provides help to cognate B cells via their expression of CD40 ligand, IL-21, IL-4, and other molecules. Tfh cells are characterized by their expression of the chemokine receptor CXCR5, expression of the transcriptional repressor Bcl6, and their capacity to migrate to the follicle and promote germinal center B cell responses. Until recently, it remained unclear whether Tfh cells differentiated into memory cells and whether they maintain Tfh commitment at the memory phase. This review will highlight several recent studies that support the idea of Tfh-committed CD4 T cells at the memory stage of the immune response. The implication of these findings is that memory Tfh cells retain their capacity to recall their Tfh-specific effector functions upon reactivation to provide help for B cell responses and play an important role in prime and boost vaccination or during recall responses to infection. The markers that are useful for distinguishing Tfh effector and memory cells, as well as the limitations of using these markers will be discussed. Tfh effector and memory generation, lineage maintenance, and plasticity relative to other T helper lineages (Th1, Th2, Th17, etc.) will also be discussed. Ongoing discoveries regarding the maintenance and lineage stability versus plasticity of memory Tfh cells will improve strategies that utilize CD4 T cell memory to modulate antibody responses during prime and boost vaccination.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine , Atlanta, GA , USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
185
|
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015; 520:553-7. [PMID: 25642965 PMCID: PMC4409480 DOI: 10.1038/nature14156] [Citation(s) in RCA: 1323] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity.
Collapse
Affiliation(s)
- A Phillip West
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Matthew Staron
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Michal C Tal
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristiana M Pineda
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Sabine M Lang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan Bestwick
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Brett A Duguay
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Nuno Raimundo
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Donna A MacDuff
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Susan M Kaech
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| | - James R Smiley
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Robert E Means
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Akiko Iwasaki
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| | - Gerald S Shadel
- 1] Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
186
|
Beura LK, Anderson KG, Schenkel JM, Locquiao JJ, Fraser KA, Vezys V, Pepper M, Masopust D. Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution. J Leukoc Biol 2015; 97:217-25. [PMID: 25395301 PMCID: PMC4304422 DOI: 10.1189/jlb.1hi0314-154r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 01/12/2023] Open
Abstract
Vaccines are desired that maintain abundant memory T cells at nonlymphoid sites of microbial exposure, where they may be anatomically positioned for immediate pathogen interception. Here, we test the impact of antigen persistence on mouse CD8 and CD4 T cell distribution and differentiation by comparing responses to infections with different strains of LCMV that cause either acute or chronic infections. We used in vivo labeling techniques that discriminate between T cells present within tissues and abundant populations that fail to be removed from vascular compartments, despite perfusion. LCMV persistence caused up to ∼30-fold more virus-specific CD8 T cells to distribute to the lung compared with acute infection. Persistent infection also maintained mucosal-homing α4β7 integrin expression, higher granzyme B expression, alterations in the expression of the TRM markers CD69 and CD103, and greater accumulation of virus-specific CD8 T cells in the large intestine, liver, kidney, and female reproductive tract. Persistent infection also increased LCMV-specific CD4 T cell quantity in mucosal tissues and induced maintenance of CXCR4, an HIV coreceptor. This study clarifies the relationship between viral persistence and CD4 and CD8 T cell distribution and mucosal phenotype, indicating that chronic LCMV infection magnifies T cell migration to nonlymphoid tissues.
Collapse
Affiliation(s)
- Lalit K Beura
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kristin G Anderson
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason M Schenkel
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeremiah J Locquiao
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kathryn A Fraser
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vaiva Vezys
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marion Pepper
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Masopust
- Department of Microbiology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
187
|
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2015; 41:529-42. [PMID: 25367570 DOI: 10.1016/j.immuni.2014.10.004] [Citation(s) in RCA: 1383] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high-affinity antibodies and memory B cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
188
|
Marshall HD, Ray JP, Laidlaw BJ, Zhang N, Gawande D, Staron MM, Craft J, Kaech SM. The transforming growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa. eLife 2015; 4:e04851. [PMID: 25569154 PMCID: PMC4337607 DOI: 10.7554/elife.04851] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
T follicular helper cells (Tfh) are crucial for the initiation and maintenance of germinal center (GC) reactions and high affinity, isotype-switched antibody responses. In this study, we demonstrate that direct TGF-β signaling to CD4 T cells is important for the formation of influenza-specific Tfh cells, GC reactions, and development of isotype-switched, flu-specific antibody responses. Early during infection, TGF-β signaling suppressed the expression of the high affinity IL-2 receptor α chain (CD25) on virus-specific CD4 T cells, which tempered IL-2 signaling and STAT5 and mammalian target of rapamycin (mTOR) activation in Tfh precursor CD4 T cells. Inhibition of mTOR allowed for the differentiation of Tfh cells in the absence of TGF-βR signaling, suggesting that TGF-β insulates Tfh progenitor cells from IL-2-delivered mTOR signals, thereby promoting Tfh differentiation during acute viral infection. These findings identify a new pathway critical for the generation of Tfh cells and humoral responses during respiratory viral infections. DOI:http://dx.doi.org/10.7554/eLife.04851.001 The influenza virus is thought to cause illness in up to 10% of adults and 30% of children each year worldwide. Most of these cases resolve on their own and don’t require treatment, but three to five million people are hospitalized and up to half a million people die each year. Unfortunately, the vaccines currently available to protect against influenza only target particular varieties or “strains” of the virus. The strains that circulate vary from year-to-year so it is necessary to develop new influenza vaccines every year. However, it is difficult to correctly predict which strains will circulate, so a more effective solution would be to develop a new vaccine that can help the body defend itself against many, or ideally any influenza strain. During a viral infection, a type of immune cell in the host can specialize into two different types of cells to help fight the virus: T helper 1 cells and CD4 T follicular helper cells. T helper 1 cells help to kill host cells that have become infected. CD4 T follicular helper cells promote the production of proteins called antibodies, which identify and neutralize the virus. Here, Marshall et al. studied how T helper 1 cells and CD4 T follicular helper cells form in mice suffering from a lung infection similar to influenza. It was already known that a protein called transforming growth factor beta (TGF-β) helps the immune response to mount an effective defense against an infection without causing too much harm to the host. Marshall et al. show that TGF-β increases the number of CD4 T follicular helper cells in the mice by suppressing the production of another protein—called IL-2—on the surface of CD4 T cells. Treating mice lacking the ability to detect TGF-β with a drug that blocks a protein controlled by IL-2 also allows more CD4 T follicular helper cells to be produced. Marshall et al.’s findings reveal that TGF-β is involved in controlling the balance of T helper 1 cells and CD4 T follicular helper cells produced during viral infections of the respiratory tract. Since TGF-β also has other roles in immune responses against viruses, it is now an attractive target for the development of a vaccine that may protect us against all strains of the influenza virus. DOI:http://dx.doi.org/10.7554/eLife.04851.002
Collapse
Affiliation(s)
- Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - John P Ray
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - Nianzhi Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - Dipika Gawande
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - Matthew M Staron
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States
| | - Susan M Kaech
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
189
|
Harms Pritchard G, Hall AO, Christian DA, Wagage S, Fang Q, Muallem G, John B, Glatman Zaretsky A, Dunn WG, Perrigoue J, Reiner SL, Hunter CA. Diverse roles for T-bet in the effector responses required for resistance to infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:1131-40. [PMID: 25556247 DOI: 10.4049/jimmunol.1401617] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transcription factor T-bet has been most prominently linked to NK and T cell production of IFN-γ, a cytokine required for the control of a diverse array of intracellular pathogens. Indeed, in mice challenged with the parasite Toxoplasma gondii, NK and T cell responses are characterized by marked increases of T-bet expression. Unexpectedly, T-bet(-/-) mice infected with T. gondii develop a strong NK cell IFN-γ response that controls parasite replication at the challenge site, but display high parasite burdens at secondary sites colonized by T. gondii and succumb to infection. The loss of T-bet had a modest effect on T cell production of IFN-γ but did not impact on the generation of parasite-specific T cells. However, the absence of T-bet resulted in lower T cell expression of CD11a, Ly6C, KLRG-1, and CXCR3 and fewer parasite-specific T cells at secondary sites of infection, associated with a defect in parasite control at these sites. Together, these data highlight T-bet-independent pathways to IFN-γ production and reveal a novel role for this transcription factor in coordinating the T cell responses necessary to control this infection in peripheral tissues.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aisling O'Hara Hall
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gaia Muallem
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beena John
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Arielle Glatman Zaretsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William G Dunn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jacqueline Perrigoue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Steven L Reiner
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032; and Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
190
|
Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog 2014; 10:e1004538. [PMID: 25473946 PMCID: PMC4256462 DOI: 10.1371/journal.ppat.1004538] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
In contrast to the ability of long-lived CD8+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44+CD62L−T-bet+Ly6C+ effector (TEFF) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C+ TEFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44+CD62L−Ly6C− effector memory or CD44+CD62L+Ly6C− central memory cells. During chronic infection, Ly6C+ TEFF cells were maintained at high frequencies via reactivation of TCM and the TEFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing TEFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies. Naturally acquired resistance to reinfection by numerous infectious pathogens including Leishmania, Plasmodium, Mycobacterium, and parasitic worms, typically coincides with an ongoing primary infection. This natural resistance to reinfection, termed concomitant immunity, is often referred to as a memory response and provides the rationale for the vaccine effort against these infectious pathogens. However, immune memory is mediated by populations of long-lived cells that do not require an ongoing primary infection to mediate protection. The requirement for chronic infection to maintain concomitant immunity suggests that the critical cells that mediate this immunity are not memory cells. In the present study we define short-lived effector T cells that pre-exist secondary challenge, not memory cells, as the critical cells that mediate concomitant immunity. These observations provide direct evidence on a cellular level that conventional vaccination strategies against chronic infectious diseases, whose development is predicated upon the belief that concomitant immunity can be mediated by long-lived memory cells, are unlikely to succeed.
Collapse
|
191
|
Brucklacher-Waldert V, Carr EJ, Linterman MA, Veldhoen M. Cellular Plasticity of CD4+ T Cells in the Intestine. Front Immunol 2014; 5:488. [PMID: 25339956 PMCID: PMC4188036 DOI: 10.3389/fimmu.2014.00488] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/22/2014] [Indexed: 01/07/2023] Open
Abstract
Barrier sites such as the gastrointestinal tract are in constant contact with the environment, which contains both beneficial and harmful components. The immune system at the epithelia must make the distinction between these components to balance tolerance, protection, and immunopathology. This is achieved via multifaceted immune recognition, highly organized lymphoid structures, and the interaction of many types of immune cells. The adaptive immune response in the gut is orchestrated by CD4+ helper T (Th) cells, which are integral to gut immunity. In recent years, it has become apparent that the functional identity of these Th cells is not as fixed as initially thought. Plasticity in differentiated T cell subsets has now been firmly established, in both health and disease. The gut, in particular, utilizes CD4+ T cell plasticity to mold CD4+ T cell phenotypes to maintain its finely poised balance of tolerance and inflammation and to encourage biodiversity within the enteric microbiome. In this review, we will discuss intestinal helper T cell plasticity and our current understanding of its mechanisms, including our growing knowledge of an evolutionarily ancient symbiosis between microbiota and malleable CD4+ T cell effectors.
Collapse
Affiliation(s)
| | - Edward J Carr
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute , Cambridge , UK
| | - Michelle A Linterman
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute , Cambridge , UK
| | - Marc Veldhoen
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute , Cambridge , UK
| |
Collapse
|
192
|
Antigen affinity and antigen dose exert distinct influences on CD4 T-cell differentiation. Proc Natl Acad Sci U S A 2014; 111:14852-7. [PMID: 25267612 DOI: 10.1073/pnas.1403271111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cumulative T-cell receptor signal strength and ensuing T-cell responses are affected by both antigen affinity and antigen dose. Here we examined the distinct contributions of these parameters to CD4 T-cell differentiation during infection. We found that high antigen affinity positively correlates with T helper (Th)1 differentiation at both high and low doses of antigen. In contrast, follicular helper T cell (TFH) effectors are generated after priming with high, intermediate, and low affinity ligand. Unexpectedly, memory T cells generated after priming with very low affinity antigen remain impaired in their ability to generate secondary Th1 effectors, despite being recalled with high affinity antigen. These data challenge the view that only strongly stimulated CD4 T cells are capable of differentiating into the TFH and memory T-cell compartments and reveal that differential strength of stimulation during primary T-cell activation imprints unique and long lasting T-cell differentiation programs.
Collapse
|
193
|
Winstead CJ. Follicular helper T cell-mediated mucosal barrier maintenance. Immunol Lett 2014; 162:39-47. [PMID: 25149860 DOI: 10.1016/j.imlet.2014.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
The basic functions of the immune system are protection from pathogens and maintenance of tolerance to self. The maintenance of commensal microbiota at mucosal surfaces adds a layer of complexity to these basic functions. Recent reports suggest follicular helper T cells (Tfh), a CD4(+) T cell subset specialized to provide help to B cells undergoing isotype switching and affinity maturation in germinal centers (GC), interact with the microbiota and are essential to maintenance of mucosal barriers. Complicating the issue is ongoing controversy in the field regarding origin of the Tfh subset and its distinction from other effector CD4 T cell phenotypes (Th1/Th17/Treg). This review focuses on the differentiation, phenotypic plasticity, and function of CD4 T cells, with an emphasis on commensal-specific GC responses in the gut.
Collapse
Affiliation(s)
- Colleen J Winstead
- University of Alabama at Birmingham, Department of Pathology, Birmingham, AL, United States.
| |
Collapse
|
194
|
Pallikkuth S, Pahwa S. Interleukin-21 and T follicular helper cells in HIV infection: research focus and future perspectives. Immunol Res 2014; 57:279-91. [PMID: 24242760 DOI: 10.1007/s12026-013-8457-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-21 is a member of the γ chain-receptor cytokine family along with IL-2, IL-4, IL-7, IL-9, and IL-15. The effects of IL-21 are pleiotropic, owing to the broad cellular distribution of the IL-21 receptor. IL-21 is secreted by activated CD4 T cells and natural killer T cells. Within CD4 T cells, its secretion is restricted mainly to T follicular helper (Tfh) cells and Th17 cells to a lesser extent. Our research focus has been on the role of IL-21 and more recently of Tfh in immunopathogenesis of HIV infection. This review focuses on first the influence of IL-21 in regulation of T cell, B cell, and NK cell responses and its immunotherapeutic potential in viral infections and as a vaccine adjuvant. Second, we discuss the pivotal role of Tfh in generation of antibody responses in HIV-infected persons in studies using influenza vaccines as a probe. Lastly, we review data supporting ability of HIV to infect Tfh and the role of these cells as reservoirs for HIV and their contribution to viral persistence.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, BCRI 712, Miami, FL, 33136, USA
| | | |
Collapse
|
195
|
Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc Natl Acad Sci U S A 2014; 111:11792-7. [PMID: 25071203 DOI: 10.1073/pnas.1404671111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In primary humoral responses, B-cell lymphoma 6 (Bcl6) is a master regulator of follicular helper T (TFH) cell differentiation; however, its activation mechanisms and role in memory responses remain unclear. Here we demonstrate that survival of CXCR5(+) TFH memory cells, and thus subsequent recall antibody response, require Bcl6 expression. Furthermore, we show that, upon rechallenge with soluble antigen Bcl6 in memory TFH cells is rapidly induced in a dendritic cell-independent manner and that peptide:class II complexes (pMHC) on cognate memory B cells significantly contribute to this induction. Given the previous evidence that antigen-specific B cells residing in the follicles acquire antigens within minutes of injection, our results suggest that memory B cells present antigens to the cognate TFH memory cells, thereby contributing to rapid Bcl6 reexpression and differentiation of the TFH memory cells during humoral memory responses.
Collapse
|
196
|
Parish IA, Marshall HD, Staron MM, Lang PA, Brüstle A, Chen JH, Cui W, Tsui YC, Perry C, Laidlaw BJ, Ohashi PS, Weaver CT, Kaech SM. Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J Clin Invest 2014; 124:3455-68. [PMID: 25003188 DOI: 10.1172/jci66108] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.
Collapse
|
197
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
198
|
Schenten D, Nish SA, Yu S, Yan X, Lee HK, Brodsky I, Pasman L, Yordy B, Wunderlich FT, Brüning JC, Zhao H, Medzhitov R. Signaling through the adaptor molecule MyD88 in CD4+ T cells is required to overcome suppression by regulatory T cells. Immunity 2014; 40:78-90. [PMID: 24439266 DOI: 10.1016/j.immuni.2013.10.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/30/2013] [Indexed: 10/25/2022]
Abstract
Innate immune recognition controls adaptive immune responses through multiple mechanisms. The MyD88 signaling adaptor operates in many cell types downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptor family members. Cell-type-specific functions of MyD88 signaling remain poorly characterized. Here, we have shown that the T cell-specific ablation of MyD88 in mice impairs not only T helper 17 (Th17) cell responses, but also Th1 cell responses. MyD88 relayed signals of TLR-induced IL-1, which became dispensable for Th1 cell responses in the absence of T regulatory (Treg) cells. Treg cell-specific ablation of MyD88 had no effect, suggesting that IL-1 acts on naive CD4(+) T cells instead of Treg cells themselves. Together, these findings demonstrate that IL-1 renders naive CD4(+) T cells refractory to Treg cell-mediated suppression in order to allow their differentiation into Th1 cells. In addition, IL-1 was also important for the generation of functional CD4(+) memory T cells.
Collapse
Affiliation(s)
- Dominik Schenten
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA.
| | - Simone A Nish
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Xiting Yan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Heung Kyu Lee
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Igor Brodsky
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Lesley Pasman
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Brian Yordy
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA
| | - F Thomas Wunderlich
- Max Planck Institute for Neurological Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Neurological Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06519, USA.
| |
Collapse
|
199
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
200
|
Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 2014; 40:367-77. [PMID: 24631156 DOI: 10.1016/j.immuni.2014.02.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/19/2014] [Indexed: 12/21/2022]
Abstract
Follicular helper T (Tfh) cells are required for the establishment of T-dependent B cell memory and high affinity antibody-secreting cells. We have revealed herein opposing roles for signal transducer and activator of transcription 3 (STAT3) and type I interferon (IFN) signaling in the differentiation of Tfh cells following viral infection. STAT3-deficient CD4(+) T cells had a profound defect in Tfh cell differentiation, accompanied by decreased germinal center (GC) B cells and antigen-specific antibody production during acute infection with lymphocytic choriomeningitis virus. STAT3-deficient Tfh cells had strikingly increased expression of a number of IFN-inducible genes, in addition to enhanced T-bet synthesis, thus adopting a T helper 1 (Th1) cell-like effector phenotype. Conversely, IFN-αβ receptor blockade restored Tfh and GC B cell phenotypes in mice containing STAT3-deficient CD4(+) T cells. These data suggest mutually repressive roles for STAT3 and type I IFN signaling pathways in the differentiation of Tfh cells following viral infection.
Collapse
|