151
|
mTORC1 as the main gateway to autophagy. Essays Biochem 2017; 61:565-584. [PMID: 29233869 PMCID: PMC5869864 DOI: 10.1042/ebc20170027] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
Cells and organisms must coordinate their metabolic activity with changes in their environment to ensure their growth only when conditions are favourable. In order to maintain cellular homoeostasis, a tight regulation between the synthesis and degradation of cellular components is essential. At the epicentre of the cellular nutrient sensing is the mechanistic target of rapamycin complex 1 (mTORC1) which connects environmental cues, including nutrient and growth factor availability as well as stress, to metabolic processes in order to preserve cellular homoeostasis. Under nutrient-rich conditions mTORC1 promotes cell growth by stimulating biosynthetic pathways, including synthesis of proteins, lipids and nucleotides, and by inhibiting cellular catabolism through repression of the autophagic pathway. Its close signalling interplay with the energy sensor AMP-activated protein kinase (AMPK) dictates whether the cell actively favours anabolic or catabolic processes. Underlining the role of mTORC1 in the coordination of cellular metabolism, its deregulation is linked to numerous human diseases ranging from metabolic disorders to many cancers. Although mTORC1 can be modulated by a number of different inputs, amino acids represent primordial cues that cannot be compensated for by any other stimuli. The understanding of how amino acids signal to mTORC1 has increased considerably in the last years; however this area of research remains a hot topic in biomedical sciences. The current ideas and models proposed to explain the interrelationship between amino acid sensing, mTORC1 signalling and autophagy is the subject of the present review.
Collapse
|
152
|
Abstract
Ubiquitination is a widespread post-translational modification that controls multiple steps in autophagy, a major lysosome-mediated intracellular degradation pathway. A variety of ubiquitin chains are attached as selective labels on protein aggregates and dysfunctional organelles, thus promoting their autophagy-dependent degradation. Moreover, ubiquitin modification of autophagy regulatory components is essential to positively or negatively regulate autophagy flux in both non-selective and selective pathways. We review the current findings that elucidate the components, timing, and kinetics of the multivalent role of ubiquitin signals in control of amplitude and selectivity of autophagy pathways as well as their impact on the development of human diseases.
Collapse
Affiliation(s)
- Paolo Grumati
- From the Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main and
| | - Ivan Dikic
- From the Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main and .,the Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt-Riedberg Campus, 60438 Frankfurt am Main, Germany
| |
Collapse
|
153
|
Lou JS, Bi WC, Chan GKL, Jin Y, Wong CW, Zhou ZY, Wang HY, Yao P, Dong TTX, Tsim KWK. Ginkgetin induces autophagic cell death through p62/SQSTM1-mediated autolysosome formation and redox setting in non-small cell lung cancer. Oncotarget 2017; 8:93131-93148. [PMID: 29190983 PMCID: PMC5696249 DOI: 10.18632/oncotarget.21862] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022] Open
Abstract
Promoting cell death by autophagy could be a novel treatment for cancer. The major player in autophagy, p62, serves as a good therapeutic target. Ginkgetin, a biflavonoid from Ginkgo biloba leaves, exhibited promising anticancer activity in non-small cell lung cancer cell lines, with an IC50 lower than that of cisplatin. This anticancer effect of ginkgetin was illustrated in a xenograft nude mouse model. Ginkgetin induced autophagic cell death in A549 cells, and this effect was markedly reversed by chemical and genetic approaches. Ginkgetin showed potential binding affinity to p62. Upregulation of p62 through chemical and genetic means decreased cell death, lysosome acidification, and autophagosome formation, which consequently disrupted autolysosome formation. In addition, the decreased autophagy induced by p62 overexpression increased Nrf2/ARE activity and the oxygen consumption rate and decreased on formation of reactive oxygen species. These phenomena were exhibited in a reciprocal manner when p62 was knocked down. Thus, p62 may be a potential target in ginkgetin-induced autophagic cell death, and ginkgetin could be developed as a novel anticancer drug.
Collapse
Affiliation(s)
- Jian-Shu Lou
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wen-Chuan Bi
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gallant K L Chan
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yan Jin
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chau-Wing Wong
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhong-Yu Zhou
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huai-You Wang
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ping Yao
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina T X Dong
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl W K Tsim
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
154
|
The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun 2017; 8:254. [PMID: 28811467 PMCID: PMC5557982 DOI: 10.1038/s41467-017-00348-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/12/2017] [Indexed: 01/24/2023] Open
Abstract
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1–4E-BP–eIF4E axis, secondary to aberrant assembly of a raptor–p62–TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity. Excessive expansion of the T follicular helper (TFH) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of TFH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Collapse
|
155
|
Dou Y, Shen H, Feng D, Li H, Tian X, Zhang J, Wang Z, Chen G. Tumor necrosis factor receptor-associated factor 6 participates in early brain injury after subarachnoid hemorrhage in rats through inhibiting autophagy and promoting oxidative stress. J Neurochem 2017; 142:478-492. [PMID: 28543180 DOI: 10.1111/jnc.14075] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/24/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family and an important multifunctional intracellular adaptin of the tumor necrosis factor superfamily and toll/IL-1 receptor (TIR) superfamily. TRAF6 has been studied in several central nervous system diseases, including ischemic stroke, traumatic brain injury, and neurodegenerative diseases, but its role in subarachnoid hemorrhage (SAH) has not been fully illustrated. This study was designed to explore changes of expression level and potential roles and mechanisms of TRAF6 in early brain injury (EBI) after SAH using a Sprague-Dawley rat model of SAH induced in 0.3 mL non-heparinized autologous arterial blood injected into the pre-chiasmatic cistern. First, compared with the sham group, we found that the expression levels of TRAF6 increased gradually and peaked at 24 h after SAH. Second, the results showed that application of TRAF6 over-expression plasmid and genetic silencing siRNA could increase or decrease expression of TRAF6, respectively, and severely exacerbate or relieve EBI after SAH, including neuronal death, brain edema, and blood-brain barrier injury. Meanwhile, the levels of autophagy and oxidative stress were reduced and increased separately. Finally, GFP-TRAF6-C70A, which is a TRAF6 mutant that lacks E3 ubiquitin ligase activity, was used to explore the mechanism of TRAF6 in SAH, and the results showed that EBI and oxidative stress were reduced, but the levels of autophagy were increased under this condition. Collectively, these results indicated that TRAF6 affected the degree of EBI after SAH by inhibiting autophagy and promoting oxidative stress.
Collapse
Affiliation(s)
- Yang Dou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaodi Tian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
156
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
157
|
Manni M, Ricker E, Pernis AB. Regulation of systemic autoimmunity and CD11c + Tbet + B cells by SWEF proteins. Cell Immunol 2017; 321:46-51. [PMID: 28780965 DOI: 10.1016/j.cellimm.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed the existence of a T-bet dependent subset of B cells, which expresses unique phenotypic and functional characteristics including high levels of CD11c and CD11b. In the murine system this B cell subset has been termed Age/autoimmune-associated B cells (ABCs) since it expands with age in non-autoimmune mice and it prematurely accumulates in autoimmune-prone strains. The molecular mechanisms that promote the expansion and function of ABCs are largely unknown. This review will focus on the SWEF proteins, a small family of Rho GEFs comprised of SWAP-70 and its homolog DEF6, a newly identified risk variant for human SLE. We will first provide an overview of the SWEF proteins and then discuss the complex array of biological processes that they control and the autoimmune phenotypes that spontaneously develop in their absence, highlighting the emerging involvement of these proteins in regulating ABCs. A better understanding of the pathways controlled by the SWEF proteins could help provide new insights into the mechanisms responsible for the expansion of ABCs in autoimmunity and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
158
|
Karki R, Malireddi RKS, Zhu Q, Kanneganti TD. NLRC3 regulates cellular proliferation and apoptosis to attenuate the development of colorectal cancer. Cell Cycle 2017; 16:1243-1251. [PMID: 28598238 DOI: 10.1080/15384101.2017.1317414] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleotide-binding domain, leucine-rich-repeat-containing proteins (NLRs) are intracellular innate immune sensors of pathogen-associated and damage-associated molecular patterns. NLRs regulate diverse biologic processes such as inflammatory responses, cell proliferation and death, and gut microbiota to attenuate tumorigenesis. In a recent publication in Nature, we identified NLRC3 as a negative regulator of PI3K-mTOR signaling and characterized its potential tumor suppressor function. Enterocytes lacking NLRC3 cannot control cellular proliferation because they are unable to suppress activation of PI3K-mTOR signaling pathways. In this Extra-View, we explore possible mechanisms through which NLRC3 regulates cellular proliferation and cell death. Besides interacting with PI3K, NLRC3 associates with TRAF6 and mTOR, confirming our recent finding that NLRC3 negatively regulates the PI3K-mTOR axis. Herein, we show that NLRC3 suppresses c-Myc expression and activation of PI3K-AKT targets FoxO3a and FoxO1 in the colon of Nlrc3-/- mice, suggesting that additional signaling pathways contribute to increased cellular proliferation. Moreover, NLRC3 suppresses colorectal tumorigenesis by promoting cellular apoptosis. Genes encoding intestinal stem cell markers BMI1 and OLFM4 are upregulated in the colon of Nlrc3-/- mice. Herein, we discuss recent findings and explore mechanisms through which NLRC3 regulates PI3K-mTOR signaling. Our studies highlight the therapeutic potential of modulating NLRC3 to prevent and treat cancer.
Collapse
Affiliation(s)
- Rajendra Karki
- a Department of Immunology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | | | - Qifan Zhu
- a Department of Immunology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | | |
Collapse
|
159
|
Bouhamdani N, Joy A, Barnett D, Cormier K, Léger D, Chute IC, Lamarre S, Ouellette R, Turcotte S. Quantitative proteomics to study a small molecule targeting the loss of von Hippel-Lindau in renal cell carcinomas. Int J Cancer 2017; 141:778-790. [PMID: 28486780 DOI: 10.1002/ijc.30774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022]
Abstract
Inactivation of the tumor suppressor gene, von Hippel-Lindau (VHL), is known to play an important role in the development of sporadic clear cell renal cell carcinomas (ccRCCs). Even if available targeted therapies for metastatic RCCs (mRCCs) have helped to improve progression-free survival rates, they have no durable clinical response. We have previously shown the feasibility of specifically targeting the loss of VHL with the identification of a small molecule, STF-62247. Understanding its functionality is crucial for developing durable personalized therapeutic agents differing from those available targeting hypoxia inducible factor (HIF-) pathways. By using SILAC proteomics, we identified 755 deregulated proteins in response to STF-62247 that were further analyzed by ingenuity pathway analysis (IPA). Bioinformatics analyses predicted alterations in 37 signaling pathways in VHL-null cells in response to treatment. Validation of some altered pathways shows that STF-62247's selectivity is linked to an important inhibition of mTORC1 activation in VHL-null cells leading to protein synthesis arrest, a mechanism differing from two allosteric inhibitors Rapamycin and Everolimus. Altogether, our study identified signaling cascades driving STF-62247 response and brings further knowledge for this molecule that shows selectivity for the loss of VHL. The use of a global SILAC approach was successful in identifying novel affected signaling pathways that could be exploited for the development of new personalized therapeutic strategies to target VHL-inactivated RCCs.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Andrew Joy
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - David Barnett
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Kevin Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Daniel Léger
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Ian C Chute
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Simon Lamarre
- Department of Biology, Université de Moncton, Moncton, E1A 3E9, Canada
| | - Rodney Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| |
Collapse
|
160
|
Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, Guo J, Zhang J, North BJ, Dai X, Cheng X, Bian X, Zhang L, Harper JW, Sun SC, Wei W. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 2017; 545:365-369. [PMID: 28489822 DOI: 10.1038/nature22344] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
The mechanistic target of rapamycin (mTOR) has a key role in the integration of various physiological stimuli to regulate several cell growth and metabolic pathways. mTOR primarily functions as a catalytic subunit in two structurally related but functionally distinct multi-component kinase complexes, mTOR complex 1 (mTORC1) and mTORC2 (refs 1, 2). Dysregulation of mTOR signalling is associated with a variety of human diseases, including metabolic disorders and cancer. Thus, both mTORC1 and mTORC2 kinase activity is tightly controlled in cells. mTORC1 is activated by both nutrients and growth factors, whereas mTORC2 responds primarily to extracellular cues such as growth-factor-triggered activation of PI3K signalling. Although both mTOR and GβL (also known as MLST8) assemble into mTORC1 and mTORC2 (refs 11, 12, 13, 14, 15), it remains largely unclear what drives the dynamic assembly of these two functionally distinct complexes. Here we show, in humans and mice, that the K63-linked polyubiquitination status of GβL dictates the homeostasis of mTORC2 formation and activation. Mechanistically, the TRAF2 E3 ubiquitin ligase promotes K63-linked polyubiquitination of GβL, which disrupts its interaction with the unique mTORC2 component SIN1 (refs 12, 13, 14) to favour mTORC1 formation. By contrast, the OTUD7B deubiquitinase removes polyubiquitin chains from GβL to promote GβL interaction with SIN1, facilitating mTORC2 formation in response to various growth signals. Moreover, loss of critical ubiquitination residues in GβL, by either K305R/K313R mutations or a melanoma-associated GβL(ΔW297) truncation, leads to elevated mTORC2 formation, which facilitates tumorigenesis, in part by activating AKT oncogenic signalling. In support of a physiologically pivotal role for OTUD7B in the activation of mTORC2/AKT signalling, genetic deletion of Otud7b in mice suppresses Akt activation and Kras-driven lung tumorigenesis in vivo. Collectively, our study reveals a GβL-ubiquitination-dependent switch that fine-tunes the dynamic organization and activation of the mTORC2 kinase under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| | - Donghyun Joo
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
161
|
Sugiyama M, Yoshizumi T, Yoshida Y, Bekki Y, Matsumoto Y, Yoshiya S, Toshima T, Ikegami T, Itoh S, Harimoto N, Okano S, Soejima Y, Shirabe K, Maehara Y. p62 Promotes Amino Acid Sensitivity of mTOR Pathway and Hepatic Differentiation in Adult Liver Stem/Progenitor Cells. J Cell Physiol 2017; 232:2112-2124. [PMID: 27748507 DOI: 10.1002/jcp.25653] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Autophagy is a homeostatic process regulating turnover of impaired proteins and organelles, and p62 (sequestosome-1, SQSTM1) functions as the autophagic receptor in this process. p62 also functions as a hub for intracellular signaling such as that in the mammalian target of rapamycin (mTOR) pathway. Liver stem/progenitor cells have the potential to differentiate to form hepatocytes or cholangiocytes. In this study, we examined effects of autophagy, p62, and associated signaling on hepatic differentiation. Adult stem/progenitor cells were isolated from the liver of mice with chemically induced liver injury. Effects of autophagy, p62, and related signaling pathways on hepatic differentiation were investigated by silencing the genes for autophagy protein 5 (ATG5) and/or SQSTM1/p62 using small interfering RNAs. Hepatic differentiation was assessed based on increased albumin and hepatocyte nuclear factor 4α, as hepatocyte markers, and decreased cytokeratin 19 and SOX9, as stem/progenitor cell markers. These markers were measured using quantitative RT-PCR, immunofluorescence, and Western blotting. ATG5 silencing decreased active LC3 and increased p62, indicating inhibition of autophagy. Inhibition of autophagy promoted hepatic differentiation in the stem/progenitor cells. Conversely, SQSTM1/p62 silencing impaired hepatic differentiation. A suggested mechanism for p62-dependent hepatic differentiation in our study was activation of the mTOR pathway by amino acids. Amino acid activation of mTOR signaling was enhanced by ATG5 silencing and suppressed by SQSTM1/p62 silencing. Our findings indicated that promoting amino acid sensitivity of the mTOR pathway is dependent on p62 accumulated by inhibition of autophagy and that this process plays an important role in the hepatic differentiation of stem/progenitor cells. J. Cell. Physiol. 232: 2112-2124, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masakazu Sugiyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Yoshida
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Okano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Shirabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
162
|
Schimmack G, Schorpp K, Kutzner K, Gehring T, Brenke JK, Hadian K, Krappmann D. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB. eLife 2017; 6. [PMID: 28244869 PMCID: PMC5340530 DOI: 10.7554/elife.22416] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/26/2017] [Indexed: 12/25/2022] Open
Abstract
The ubiquitin ligase TRAF6 is a key regulator of canonical IκB kinase (IKK)/NF-κB signaling in response to interleukin-1 (IL-1) stimulation. Here, we identified the deubiquitinating enzyme YOD1 (OTUD2) as a novel interactor of TRAF6 in human cells. YOD1 binds to the C-terminal TRAF homology domain of TRAF6 that also serves as the interaction surface for the adaptor p62/Sequestosome-1, which is required for IL-1 signaling to NF-κB. We show that YOD1 competes with p62 for TRAF6 association and abolishes the sequestration of TRAF6 to cytosolic p62 aggregates by a non-catalytic mechanism. YOD1 associates with TRAF6 in unstimulated cells but is released upon IL-1β stimulation, thereby facilitating TRAF6 auto-ubiquitination as well as NEMO/IKKγ substrate ubiquitination. Further, IL-1 triggered IKK/NF-κB signaling and induction of target genes is decreased by YOD1 overexpression and augmented after YOD1 depletion. Hence, our data define that YOD1 antagonizes TRAF6/p62-dependent IL-1 signaling to NF-κB. DOI:http://dx.doi.org/10.7554/eLife.22416.001
Collapse
Affiliation(s)
- Gisela Schimmack
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kerstin Kutzner
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jara Kerstin Brenke
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
163
|
Evans TD, Sergin I, Zhang X, Razani B. Target acquired: Selective autophagy in cardiometabolic disease. Sci Signal 2017; 10:eaag2298. [PMID: 28246200 PMCID: PMC5451512 DOI: 10.1126/scisignal.aag2298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of damaged or excess proteins and organelles is a defining feature of metabolic disease in nearly every tissue. Thus, a central challenge in maintaining metabolic homeostasis is the identification, sequestration, and degradation of these cellular components, including protein aggregates, mitochondria, peroxisomes, inflammasomes, and lipid droplets. A primary route through which this challenge is met is selective autophagy, the targeting of specific cellular cargo for autophagic compartmentalization and lysosomal degradation. In addition to its roles in degradation, selective autophagy is emerging as an integral component of inflammatory and metabolic signaling cascades. In this Review, we focus on emerging evidence and key questions about the role of selective autophagy in the cell biology and pathophysiology of metabolic diseases such as obesity, diabetes, atherosclerosis, and steatohepatitis. Essential players in these processes are the selective autophagy receptors, defined broadly as adapter proteins that both recognize cargo and target it to the autophagosome. Additional domains within these receptors may allow integration of information about autophagic flux with critical regulators of cellular metabolism and inflammation. Details regarding the precise receptors involved, such as p62 and NBR1, and their predominant interacting partners are just beginning to be defined. Overall, we anticipate that the continued study of selective autophagy will prove to be informative in understanding the pathogenesis of metabolic diseases and to provide previously unrecognized therapeutic targets.
Collapse
Affiliation(s)
- Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
164
|
Sun A, Wei J, Childress C, Shaw JH, Peng K, Shao G, Yang W, Lin Q. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy 2017; 13:522-537. [PMID: 28085563 DOI: 10.1080/15548627.2016.1268301] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.
Collapse
Affiliation(s)
- Aiqin Sun
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Jing Wei
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Chandra Childress
- b Department of Biology , Susquehanna University , Selinsgrove , PA , USA
| | - John H Shaw
- c Department of Pathology , Geisinger Clinic , Danville , PA , USA
| | - Ke Peng
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Genbao Shao
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Wannian Yang
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Qiong Lin
- a School of Medicine, Jiangsu University , Zhenjiang , China
| |
Collapse
|
165
|
Gao J, Li M, Qin S, Zhang T, Jiang S, Hu Y, Deng Y, Zhang C, You D, Li H, Mu D, Zhang Z, Jiang C. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress. Autophagy 2016; 12:632-47. [PMID: 27050454 DOI: 10.1080/15548627.2016.1147667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During proteasomal stress, cells can alleviate the accumulation of polyubiquitinated proteins by targeting them to perinuclear aggresomes for autophagic degradation, but the mechanism underlying the activation of this compensatory pathway remains unclear. Here we report that PINK1-s, a short form of Parkinson disease (PD)-related protein kinase PINK1 (PTEN induced putative kinase 1), is a major regulator of aggresome formation. PINK1-s is extremely unstable due to its recognition by the N-end rule pathway, and tends to accumulate in the cytosol during proteasomal stress. Overexpression of PINK1-s induces aggresome formation in cells with normal proteasomal activities, while loss of PINK1-s function leads to a significant decrease in the efficiency of aggresome formation induced by proteasomal inhibition. PINK1-s exerts its effect through phosphorylation of the ubiquitin-binding protein SQSTM1 (sequestosome 1) and increasing its ability to sequester polyubiquitinated proteins into aggresomes. These findings pinpoint PINK1-s as a sensor of proteasomal activities that transduces the proteasomal impairment signal to the aggresome formation machinery.
Collapse
Affiliation(s)
- Ju Gao
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,c Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong , China
| | - Mengen Li
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Siyue Qin
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Ting Zhang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Sicong Jiang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Yuan Hu
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Yongkang Deng
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Chenliang Zhang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Dujuan You
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Hongchang Li
- c Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong , China
| | - Dezhi Mu
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Zhuohua Zhang
- e State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University , Changsha , Hunan , China
| | - Changan Jiang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,c Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
166
|
Abstract
Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.
Collapse
Affiliation(s)
- Vinod K Mony
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA
| | - Shawna Benjamin
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA
| | - Eyleen J O'Rourke
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA.,c Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
167
|
Moscat J, Karin M, Diaz-Meco MT. p62 in Cancer: Signaling Adaptor Beyond Autophagy. Cell 2016; 167:606-609. [PMID: 27768885 DOI: 10.1016/j.cell.2016.09.030] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/17/2016] [Accepted: 09/16/2016] [Indexed: 12/15/2022]
Abstract
Adaptor proteins participate in selective autophagy, which is critical for cellular detoxification and stress relief. However, new evidence supports an autophagy-independent key role of the adaptor p62 (encoded by the gene Sqstm1) in signaling functions central to tumor initiation in the epithelium and suppression of tumor progression in the stroma.
Collapse
Affiliation(s)
- Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Michael Karin
- Laboratory of Signal Transduction and Gene Regulation Departments of Pharmacology and Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla Ca 92093, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
168
|
Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol 2016; 33:113-128. [PMID: 27900566 PMCID: PMC5325845 DOI: 10.1007/s10565-016-9371-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022]
Abstract
Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.
Collapse
|
169
|
Suppression of Host Innate Immune Response by Hepatitis C Virus via Induction of Autophagic Degradation of TRAF6. J Virol 2016; 90:10928-10935. [PMID: 27681126 DOI: 10.1128/jvi.01365-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an important adaptor molecule that mediates the TNFR family and interleukin-1 (IL-1)/Toll-like receptor (TLR) signaling cascades. These pathways are important for the host to control viral infections. In this report, we demonstrated that hepatitis C virus (HCV) depleted TRAF6 from its host cells through a posttranslational mechanism. This depletion was independent of proteasomes, as it was not affected by the proteasome inhibitor MG132, but it was suppressed by bafilomycin A1, which led to the association of TRAF6 with autophagosomes. As bafilomycin A1 is a vacuolar ATPase inhibitor that inhibits autophagic protein degradation, these results suggested that HCV depleted TRAF6 via autophagy. The degradation of TRAF6 was apparently mediated by the p62 sequestosome protein, which is a factor important for selective autophagy, as it could bind to TRAF6 and its silencing stabilized TRAF6. The depletion of TRAF6 suppressed activation of NF-κB and induction of proinflammatory cytokines and enhanced HCV replication. In contrast, the overexpression of TRAF6 suppressed HCV replication. These results revealed a novel mechanism that was used by HCV to disrupt the host innate immune responses for viral replication and persistence. IMPORTANCE HCV can cause severe liver diseases and is one of the most important human pathogens. It establishes chronic infections in the great majority of patients that it infects, indicating that it has evolved sophisticated mechanisms to evade host immunity. TRAF6 is an important signaling molecule that mediates activation of NF-κB and expression of proinflammatory cytokines and interferons. In this study, we found that HCV infection suppressed the host innate immune response through the induction of autophagic degradation of TRAF6. This finding provided important information for further understanding how HCV evades host immunity to establish persistence.
Collapse
|
170
|
Hu Y, Carraro-Lacroix LR, Wang A, Owen C, Bajenova E, Corey PN, Brumell JH, Voronov I. Lysosomal pH Plays a Key Role in Regulation of mTOR Activity in Osteoclasts. J Cell Biochem 2016. [PMID: 26212375 DOI: 10.1002/jcb.25287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in the regulation of cell growth. It has been shown to play an important role in osteoclast differentiation, particularly at the earlier stages of osteoclastogenesis. mTOR activation and function, as part of mTORC1 complex, is dependent on lysosomal localization and the vacuolar H(+) -ATPase (V-ATPase) activity; however, the precise mechanism is still not well understood. Using primary mouse osteoclasts that are known to have higher lysosomal pH due to R740S mutation in the V-ATPase a3 subunit, we investigated the role of lysosomal pH in mTORC1 signaling. Our results demonstrated that +/R740S cells had increased basal mTOR protein levels and mTORC1 activity compared to +/+ osteoclasts, while mTOR gene expression was decreased. Treatment with lysosomal inhibitors chloroquine and ammonium chloride, compounds known to raise lysosomal pH, significantly increased mTOR protein levels in +/+ cells, confirming the importance of lysosomal pH in mTOR signaling. These results also suggested that mTOR could be degraded in the lysosome. To test this hypothesis, we cultured osteoclasts with chloroquine or proteasomal inhibitor MG132. Both chloroquine and MG132 increased mTOR and p-mTOR protein levels in +/+ osteoclasts, suggesting that mTOR undergoes both lysosomal and proteasomal degradation. Treatment with cycloheximide, an inhibitor of new protein synthesis, confirmed that mTOR is constitutively expressed and degraded. These results show that, in osteoclasts, the lysosome plays a key role not only in mTOR activation but also in its deactivation through protein degradation, representing a novel molecular mechanism of mTOR regulation.
Collapse
Affiliation(s)
- Yingwei Hu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, China
| | | | - Andrew Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Celeste Owen
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Elena Bajenova
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Paul N Corey
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
171
|
Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T, Karin M, Diaz-Meco MT, Moscat J. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell 2016; 30:595-609. [PMID: 27728806 PMCID: PMC5081228 DOI: 10.1016/j.ccell.2016.09.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/07/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Abstract
Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSCs inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSCs, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSCs and enhances inflammation, fibrosis, and HCC progression. p62 directly interacts with VDR and RXR promoting their heterodimerization, which is critical for VDR:RXR target gene recruitment. Loss of p62 in HSCs impairs the repression of fibrosis and inflammation by VDR agonists. This demonstrates that p62 is a negative regulator of liver inflammation and fibrosis through its ability to promote VDR signaling in HSCs, whose activation supports HCC.
Collapse
Affiliation(s)
- Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eloy D. Hernandez
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Sanford Burnham Prebys Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elias A. Castilla
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shankar Subramaniam
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sindhu Raghunandan
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lewis R. Roberts
- Department of Bioengineering, Department of Cellular and Molecular Medicine, and Department of Chemistry and Biochemistry, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA
| | - Tatiana Kisseleva
- Department of Surgery, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA
| | - Maria T. Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding authors: Maria T. Diaz Meco ()
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding authors: Maria T. Diaz Meco ()
| |
Collapse
|
172
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
173
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
174
|
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016; 10:1021-40. [DOI: 10.1080/17435390.2016.1189614] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Jui-Chen Tsai
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Chun-Wan Chen
- Institute of Labor, Occupational Safety and Health Ministry of Labor, Sijhih District, New Taipei City, Taiwan ROC,
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung City, Taiwan ROC,
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan ROC
| |
Collapse
|
175
|
Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, Venuprasad K. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat Immunol 2016; 17:997-1004. [PMID: 27322655 DOI: 10.1038/ni.3488] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
Dysregulated expression of interleukin 17 (IL-17) in the colonic mucosa is associated with colonic inflammation and cancer. However, the cell-intrinsic molecular mechanisms by which IL-17 expression is regulated remain unclear. We found that deficiency in the ubiquitin ligase Itch led to spontaneous colitis and increased susceptibility to colon cancer. Itch deficiency in the TH17 subset of helper T cells, innate lymphoid cells and γδ T cells resulted in the production of elevated amounts of IL-17 in the colonic mucosa. Mechanistically, Itch bound to the transcription factor ROR-γt and targeted ROR-γt for ubiquitination. Inhibition or genetic inactivation of ROR-γt attenuated IL-17 expression and reduced spontaneous colonic inflammation in Itch(-/-) mice. Thus, we have identified a previously unknown role for Itch in regulating IL-17-mediated colonic inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Mahesh Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Prashant Khare
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Minghui Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Brandi Cantarel
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiying Zhang
- Department of Pathology, Baylor University Medical Center, Dallas, Texas, USA
| | - Hideki Ueno
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| |
Collapse
|
176
|
Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48:405-33. [PMID: 27320797 DOI: 10.1080/03602532.2016.1195403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.
Collapse
Affiliation(s)
- Sung-Mi Kim
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - YongQiang Wang
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Noushin Nabavi
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Yi Liu
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Maria Almira Correia
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;,b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;,c Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , San Francisco , CA , USA ;,d The Liver Center, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
177
|
Umemura A, He F, Taniguchi K, Nakagawa H, Yamachika S, Font-Burgada J, Zhong Z, Subramaniam S, Raghunandan S, Duran A, Linares JF, Reina-Campos M, Umemura S, Valasek MA, Seki E, Yamaguchi K, Koike K, Itoh Y, Diaz-Meco MT, Moscat J, Karin M. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell 2016; 29:935-948. [PMID: 27211490 PMCID: PMC4907799 DOI: 10.1016/j.ccell.2016.04.006] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
Abstract
p62 is a ubiquitin-binding autophagy receptor and signaling protein that accumulates in premalignant liver diseases and most hepatocellular carcinomas (HCCs). Although p62 was proposed to participate in the formation of benign adenomas in autophagy-deficient livers, its role in HCC initiation was not explored. Here we show that p62 is necessary and sufficient for HCC induction in mice and that its high expression in non-tumor human liver predicts rapid HCC recurrence after curative ablation. High p62 expression is needed for activation of NRF2 and mTORC1, induction of c-Myc, and protection of HCC-initiating cells from oxidative stress-induced death.
Collapse
Affiliation(s)
- Atsushi Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hayato Nakagawa
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shankar Subramaniam
- Departments of Bioengineering, Cellular and Molecular Medicine, and Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sindhu Raghunandan
- Departments of Bioengineering, Cellular and Molecular Medicine, and Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan F Linares
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shiori Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mark A Valasek
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ekihiro Seki
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
178
|
Liebl MP, Hoppe T. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin. Am J Physiol Cell Physiol 2016; 311:C166-78. [PMID: 27225656 DOI: 10.1152/ajpcell.00074.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases.
Collapse
Affiliation(s)
- Martina P Liebl
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
179
|
Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Ma A, Watanabe M. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 2016; 11:1052-62. [PMID: 26043155 DOI: 10.1080/15548627.2015.1055439] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.
Collapse
Key Words
- 4-OHT, 4-hydroxytamoxifen
- ACTB/bACT, actin, β
- AKT, v-akt murine thymoma viral oncogene homolog
- ATG, autophagy related
- ATG5
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL10, B-cell CLL/lymphoma 10
- BCL2, B-cell CLL/lymphoma 2
- CD28, CD28 antigen
- CD3E, CD3 antigen, epsilon polypeptide
- CD4
- CD44, CD44 antigen
- CD69, CD69 antigen
- CHX, cycloheximide
- EIF4EBP1, eukaryotic translation inhibition factor 4E binding protein 1
- ESR, estrogen receptor
- IFNG, interferon, gamma
- IL2, interleukin 2
- LPS, lipopolysaccharide
- MALT1, MALT1 paracaspase
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MCL1, myeloid cell leukemia 1
- MFI, mean fluorescence intensity
- MTOR
- MTOR, mechanistic target of rapamycin (serine/threonine kinase)
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- PBS, phosphate-buffered saline
- PI3K, class I phosphoinositide 3-kinase
- PLA, proximity ligation assay
- PRKAA/AMPK, protein kinase, AMP-activated
- RIPK1, receptor (TNFRSF)-interacting serine-threonine kinase 1
- ROS, reactive oxygen species
- RPS6KB1, ribosomal protein S6 kinase, polypeptide 1
- TCR, T cell receptor
- TNFAIP3
- TNFAIP3/A20, tumor necrosis factor, α-induced protein 3
- TRAF6, TNF receptor-associated factor 6, E3 ubiquitin protein ligase
- autophagy
- ubiquitin
Collapse
Affiliation(s)
- Yu Matsuzawa
- a Department of Gastroenterology and Hepatology; Graduate School; Tokyo Medical and Dental University ; Tokyo , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Wang H, Sun RQ, Camera D, Zeng XY, Jo E, Chan SMH, Herbert TP, Molero JC, Ye JM. Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy. FASEB J 2016; 30:2549-56. [PMID: 27022162 DOI: 10.1096/fj.201500119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
The accumulation of unfolded proteins within the endoplasmic reticulum (ER) causes ER stress and activation of unfolded protein response (UPR). This response can trigger ER-associated degradation and autophagy, which clear unfolded proteins and restore protein homeostasis. Recently, it has become clear that ubiquitination plays an important role in the regulation of autophagy. In the present study, we investigated how the E3 ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 (Nedd4-2) interacts with ER stress and autophagy. In mice, we found that an increase in the expression of Nedd4-2, which was concomitant with the activation of the UPR and autophagy, was caused by a prolonged high-fructose and high-fat diet that induces ER stress in the liver. Pharmacologic induction of ER stress also led to an increase in Nedd4-2 expression in cultured cells, which was coincident with UPR and autophagy activation. The inhibition of inositol-requiring enzyme 1 significantly suppressed Nedd4-2 expression. Moreover, increased Nedd4-2 expression in vivo was closely associated with the activation of inositol-requiring enzyme 1 and increased expression of the spliced form of X-box binding protein 1. Furthermore, knockdown of Nedd4-2 in cultured cells suppressed both basal autophagy and ER stress-induced autophagy, whereas overexpression of Nedd4-2-induced autophagy. Taken together, our findings provide evidence that Nedd4-2 is up-regulated in response to ER stress by the spliced form of X-box binding protein 1 and that this is important in the induction of an appropriate autophagic response.-Wang, H. Sun, R.-Q., Camera, D., Zeng, X.-Y., Jo, E., Chan, S. M. H., Herbert, T. P., Molero, J. C., Ye, J.-M. Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy.
Collapse
Affiliation(s)
- Hao Wang
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Ruo-Qiong Sun
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Daria Camera
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Xiao-Yi Zeng
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Eunjung Jo
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Stanley M H Chan
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Terence P Herbert
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Juan C Molero
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Ji-Ming Ye
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| |
Collapse
|
181
|
Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, Yu G, Xiao W, Xu H, Ye Z. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci 2016; 129:817-30. [PMID: 26743088 PMCID: PMC4760374 DOI: 10.1242/jcs.178756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
The signaling adaptor sequestosome 1 (SQSTM1)/p62 is frequently overexpressed in tumors and plays an important role in the regulation of tumorigenesis. Although great progress has been made, biological roles of p62 and relevant molecular mechanisms responsible for its pro-tumor activity remain largely unknown. Here, we show that p62 knockdown reduces cell growth and the expression of glycolytic genes in a manner that depends on HIF1α activity in renal cancer cells. Knockdown of p62 decreases HIF1α levels and transcriptional activity by regulating mTORC1 activity and NF-κB nuclear translocation. Furthermore, p62 interacts directly with the von Hippel-Lindau (VHL) E3 ligase complex to modulate the stability of HIF1α. Mechanistically, p62 binds to the VHL complex and competes with HIF1α. Expression of p62 inhibits the interaction of DCNL1 (also known as DCUN1D1) with CUL2 and attenuates the neddylation of CUL2, and thus downregulates the VHL E3 ligase complex activity. Functionally, HIF1α expression is required for p62-induced glucose uptake, lactate production and soft agar colony growth. Taken together, our findings demonstrate that p62 is a crucial positive regulator of HIF1α, which is a facilitating factor in p62-enhanced tumorigenesis.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunhua Huang
- College of Basic Medicine Science, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Junhui Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
182
|
Mathis BJ, Cui T. CDDO and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:291-314. [PMID: 27771930 DOI: 10.1007/978-3-319-41342-6_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a continued interest in translational research focused on both natural products and manipulation of functional groups on these compounds to create novel derivatives with higher desired activities. Oleanolic acid, a component of traditional Chinese medicine used in hepatitis therapy, was modified by chemical processes to form 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO). This modification increased anti-inflammatory activity significantly and additional functional groups on the CDDO backbone have shown promise in treating conditions ranging from kidney disease to obesity to diabetes. CDDO's therapeutic effect is due to its upregulation of the master antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) through conformational change of Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and multiple animal and human studies have verified subsequent activation of Nrf2-controlled antioxidant genes via upstream Antioxidant Response Element (ARE) regions. At the present time, positive results have been obtained in the laboratory and clinical trials with CDDO derivatives treating conditions such as lung injury, inflammation and chronic kidney disease. However, clinical trials for cancer and cardiovascular disease have not shown equally positive results and further exploration of CDDO and its derivatives is needed to put these shortcomings into context for the purpose of future therapeutic modalities.
Collapse
Affiliation(s)
- Bryan J Mathis
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Rd., Columbia, South Carolina, 29209, USA.
| |
Collapse
|
183
|
Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 2015; 282:4672-8. [PMID: 26432171 DOI: 10.1111/febs.13540] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Abstract
p62/SQSTM1 is a stress-inducible cellular protein that is conserved among metazoans but not in plants and fungi. p62/SQSTM1 has multiple domains that mediate its interactions with various binding partners and it serves as a signaling hub for diverse cellular events such as amino acid sensing and the oxidative stress response. In addition, p62/SQSTM1 functions as a selective autophagy receptor for degradation of ubiqutinated substrates. In the present review, we describe the current knowledge about p62 with regard to mammalian target of rapamycin complex 1 activation, the Keap1-Nrf2 pathway and selective autophagy.
Collapse
Affiliation(s)
- Yoshinori Katsuragi
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshinobu Ichimura
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
184
|
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel EM, Coers J. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci U S A 2015; 112:E5628-37. [PMID: 26417105 PMCID: PMC4611635 DOI: 10.1073/pnas.1515966112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Clémence Foltz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eric M Feeley
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Danielle M Pilla-Moffett
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Masaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, Niigata-shi, 951-8510, Japan
| | - Eva-Maria Frickel
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
185
|
Navarro-Yepes J, Anandhan A, Bradley E, Bohovych I, Yarabe B, de Jong A, Ovaa H, Zhou Y, Khalimonchuk O, Quintanilla-Vega B, Franco R. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Mol Neurobiol 2015; 53:5229-51. [PMID: 26409479 DOI: 10.1007/s12035-015-9414-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the dysfunction of Ub-dependent protein degradation pathways.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.,Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA
| | - Erin Bradley
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bo Yarabe
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - You Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico.
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.
| |
Collapse
|
186
|
Fingar DC. Rag Ubiquitination Recruits a GATOR1: Attenuation of Amino Acid-Induced mTORC1 Signaling. Mol Cell 2015; 58:713-5. [PMID: 26046644 DOI: 10.1016/j.molcel.2015.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent issues of Molecular Cell, two reports identify that K63-linked RagA polyubiquitination and subsequent recruitment of GATOR1, a complex with GAP activity toward RagA/B GTPases, can attenuate amino acid-induced mTORC1 signaling.
Collapse
Affiliation(s)
- Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
187
|
Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade. Cell Rep 2015; 12:1339-52. [PMID: 26279575 DOI: 10.1016/j.celrep.2015.07.045] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/08/2015] [Accepted: 07/23/2015] [Indexed: 12/24/2022] Open
Abstract
The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation.
Collapse
|
188
|
Hua F, Li K, Yu JJ, Lv XX, Yan J, Zhang XW, Sun W, Lin H, Shang S, Wang F, Cui B, Mu R, Huang B, Jiang JD, Hu ZW. TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations. Nat Commun 2015; 6:7951. [PMID: 26268733 PMCID: PMC4557121 DOI: 10.1038/ncomms8951] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022] Open
Abstract
High insulin/IGF is a biologic link between diabetes and cancers, but the underlying molecular mechanism remains unclear. Here we report a previously unrecognized tumour-promoting mechanism for stress protein TRB3, which mediates a reciprocal antagonism between autophagic and proteasomal degradation systems and connects insulin/IGF to malignant promotion. We find that several human cancers express higher TRB3 and phosphorylated insulin receptor substrate 1, which correlates negatively with patient's prognosis. TRB3 depletion protects against tumour-promoting actions of insulin/IGF and attenuates tumour initiation, growth and metastasis in mice. TRB3 interacts with autophagic receptor p62 and hinders p62 binding to LC3 and ubiquitinated substrates, which causes p62 deposition and suppresses autophagic/proteasomal degradation. Several tumour-promoting factors accumulate in cancer cells to support tumour metabolism, proliferation, invasion and metastasis. Interrupting TRB3/p62 interaction produces potent antitumour efficacies against tumour growth and metastasis. Our study opens possibility of targeting this interaction as a potential novel strategy against cancers with diabetes.
Collapse
Affiliation(s)
- Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ke Li
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jun Yan
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Wei Sun
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Heng Lin
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Rong Mu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Bo Huang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jian-Dong Jiang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
189
|
Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with aβ and tau pathology. J Neuropathol Exp Neurol 2015; 74:345-58. [PMID: 25756588 DOI: 10.1097/nen.0000000000000179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endosomal-lysosomal and autophagic dysregulation occurs in the hippocampus in prodromal Alzheimer disease (AD), but its relationship with β-amyloid (Aβ) and tau pathology remains unclear. To investigate this issue, we performed immunoblot analysis of hippocampal homogenates from cases with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment (MCI), and AD. Western blot analysis revealed significant increases in the acid hydrolase cathepsin D and early endosome marker rabaptin5 in the MCI group compared with AD, whereas levels of phosphorylated mammalian target of rapamycin proteins (pmTOR), total mammalian target of rapamycin (mTOR), p62, traf6, and LilrB2 were comparable across clinical groups. Hippocampal Aβ1-40 and Aβ1-42 concentrations and AT8-immunopositive neurofibrillary tangle density were not significantly different across the clinical groups. Greater cathepsin D expression was associated with global cognitive score and episodic memory score but not with mini mental state examination or advanced neuropathology criteria. These results indicate that alterations in hippocampal endosomal-lysosomal proteins in MCI are independent of tau or Aβ pathology.
Collapse
|
190
|
Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell 2015; 58:804-18. [PMID: 25936802 DOI: 10.1016/j.molcel.2015.03.033] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 11/15/2022]
Abstract
mTORC1 is essential for regulating cell growth and metabolism in response to various environmental stimuli. Heterodimeric Rag GTPases are required for amino-acid-mediated mTORC1 activation at the lysosome. However, the mechanism by which amino acids regulate Rag activation remains not fully understood. Here, we identified the lysosome-anchored E3 ubiquitin ligase RNF152 as an essential negative regulator of the mTORC1 pathway by targeting RagA for K63-linked ubiquitination. RNF152 interacts with and ubiquitinates RagA in an amino-acid-sensitive manner. The mutation of RagA ubiquitination sites abolishes this effect of RNF152 and enhances the RagA-mediated activation of mTORC1. Ubiquitination by RNF152 generates an anchor on RagA to recruit its inhibitor GATOR1, a GAP complex for Rag GTPases. RNF152 knockout results in the hyperactivation of mTORC1 and protects cells from amino-acid-starvation-induced autophagy. Thus, this study reveals a mechanism for regulation of mTORC1 signaling by RNF152-mediated K63-linked polyubiquitination of RagA.
Collapse
Affiliation(s)
- Lu Deng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cong Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiali Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linlin Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Minghui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongshang Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinbo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China.
| |
Collapse
|
191
|
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34:856-80. [PMID: 25712477 PMCID: PMC4388596 DOI: 10.15252/embj.201490784] [Citation(s) in RCA: 943] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Federico Pietrocola
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark IRCCS Fondazione Santa Lucia and Department of Biology University of Rome Tor Vergata, Rome, Italy
| | - Patrice Codogno
- Université Paris Descartes Sorbonne Paris Cité, Paris, France Institut Necker Enfants-Malades (INEM), Paris, France INSERM U1151, Paris, France CNRS UMR8253, Paris, France
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - David A Gewirtz
- Department of Pharmacology, Toxicology and Medicine, Virginia Commonwealth University, Richmond Virginia, VA, USA
| | | | - Alec Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Chiara Maiuri
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Seamus J Martin
- Department of Genetics, Trinity College, The Smurfit Institute, Dublin, Ireland
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Rome, Italy
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andrew M Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Madrid, Spain Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
192
|
Yan H, Zhou HF, Hu Y, Pham CTN. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. ACTA ACUST UNITED AC 2015; 1:5. [PMID: 26120598 DOI: 10.23937/2469-5726/1510005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Autophagy plays a central role in various disease processes. However, its contribution to inflammatory arthritides such as rheumatoid arthritis (RA) is unclear. We observed that autophagy is engaged in the K/BxN serum transfer model of RA but autophagic flux is severely impaired. Metformin is an anti-diabetic drug that has been shown to stimulate autophagy. Induction of autophagic flux, through metformin-mediated AMP-activated protein kinase (AMPK) activation and interruption of mammalian target of rapamycin (mTOR) signaling mitigated the inflammation in experimental arthritis. Further investigation into the effects of metformin suggest that the drug directly activates AMPK and dose-dependently suppressed the release of TNF-α, IL-6, and MCP-1 by macrophages while enhancing the release of IL-10 in vitro. In vivo, metformin treatment significantly suppressed clinical arthritis and inflammatory cytokine production. Mechanistic studies suggest that metformin exerts its anti-inflammatory effects by correcting the impaired autophagic flux observed in the K/BxN arthritis model and suppressing NF-κB-mediated signaling through selective degradation of IκB kinase (IKK). These findings establish a central role for autophagy in inflammatory arthritis and argue that autophagy modulators such as metformin may represent potential therapeutic agents for the treatment of RA.
Collapse
Affiliation(s)
- Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri
| | | | | | | |
Collapse
|
193
|
Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene 2015; 34:5662-76. [PMID: 25772235 PMCID: PMC4573377 DOI: 10.1038/onc.2015.23] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
Deregulation of autophagy has been linked to multiple degenerative diseases and cancer, thus the identification of novel autophagy regulators for potential therapeutic intervention is important. To meet this need, we developed a high content image-based shRNA screen monitoring levels of the autophagy substrate p62/SQSTM1. We identified 186 genes whose loss caused p62 accumulation indicative of autophagy blockade, and 67 genes whose loss enhanced p62 elimination indicative of autophagy stimulation. One putative autophagy stimulator, PFKFB4, drives flux through pentose phosphate pathway. Knockdown of PFKFB4 in prostate cancer cells increased p62 and reactive oxygen species (ROS), but surprisingly increased autophagic flux. Addition of the ROS scavenger N-acetyl cysteine prevented p62 accumulation in PFKFB4-depleted cells, suggesting that the upregulation of p62 and autophagy was a response to oxidative stress caused by PFKFB4 elimination. Thus, PFKFB4 suppresses oxidative stress and p62 accumulation, without which autophagy is stimulated likely as a ROS detoxification response.
Collapse
|
194
|
Li Z, Younger K, Gartenhaus R, Joseph AM, Hu F, Baer MR, Brown P, Davila E. Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies. J Clin Invest 2015; 125:1081-97. [PMID: 25642772 DOI: 10.1172/jci75821] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022] Open
Abstract
Signaling via the MyD88/IRAK pathway in T cells is indispensable for cell survival; however, it is not known whether this pathway functions in the progression of T acute lymphoblastic leukemia (T-ALL). Here, we determined that compared with thymic and peripheral T cells, T-ALL cells from patients have elevated levels of IRAK1 and IRAK4 mRNA as well as increased total and phosphorylated protein. Targeted inhibition of IRAK1 and IRAK4, either with shRNA or with a pharmacological IRAK1/4 inhibitor, dramatically impeded proliferation of T-ALL cells isolated from patients and T-ALL cells in a murine leukemia model; however, IRAK1/4 inhibition had little effect on cell death. We screened several hundred FDA-approved compounds and identified a set of drugs that had enhanced cytotoxic activity when combined with IRAK inhibition. Administration of an IRAK1/4 inhibitor or IRAK knockdown in combination with either ABT-737 or vincristine markedly reduced leukemia burden in mice and prolonged survival. IRAK1/4 signaling activated the E3 ubiquitin ligase TRAF6, increasing K63-linked ubiquitination and enhancing stability of the antiapoptotic protein MCL1; therefore, IRAK inhibition reduced MCL1 stability and sensitized T-ALL to combination therapy. These studies demonstrate that IRAK1/4 signaling promotes T-ALL progression through stabilization of MCL1 and suggest that impeding this pathway has potential as a therapeutic strategy to enhance chemotherapeutic efficacy.
Collapse
|
195
|
PCAF-mediated Akt1 acetylation enhances the proliferation of human glioblastoma cells. Tumour Biol 2014; 36:1455-62. [PMID: 25501279 DOI: 10.1007/s13277-014-2522-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is the most aggressive malignant primary brain tumor in humans. The activation of PI3K/Akt1 signaling pathway is involved in the proliferation of glioblastoma; however, the underlying mechanism of Akt1 activation during the development of glioblastoma remains largely unclear. Recently, the modification of molecular molecules at protein level such as acetylation has been shown to be related to the function of these molecules. Thus, in our present studies, the acetylation of Akt1 molecule and its role in the proliferation of glioblastoma cells was explored. The results showed that Akt1 was markedly acetylated in glioblastoma cells compared to normal human astrocytes. Mechanistically, PCAF-mediated Akt1 acetylation enhanced Akt1 phosphorylation at both sites of Thr(308) and Ser(473) and further promoted the proliferation of glioblastoma cells. Together, these data implicate that, as a post-translational regulation, PCAF-mediated Akt1 acetylation plays an important role in the proliferation of human glioblastoma, suggesting a novel target for clinical application.
Collapse
|
196
|
Kenific CM, Debnath J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 2014; 25:37-45. [PMID: 25278333 DOI: 10.1016/j.tcb.2014.09.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022]
Abstract
Autophagy is a lysosomal degradation pathway that acts as a dynamic regulator of tumorigenesis. Specifically, autophagy has been shown to impede early cancer development while facilitating advanced tumor progression. Recent studies have uncovered several tumor-promoting functions for autophagy; these include the maintenance of multiple metabolic pathways critical for aggressive tumor growth and the promotion of tumor cell survival downstream of the unfolded protein response. Furthermore, autophagy supports anoikis resistance and cancer cell invasion. At the same time, because autophagy cargo receptors, which are essential for selective autophagy, lie upstream of diverse cancer-promoting signaling pathways, they may profoundly influence how alterations in autophagy affect tumor development. This review focuses on how these tumor cell autonomous functions of autophagy broadly impact tumorigenesis.
Collapse
Affiliation(s)
- Candia M Kenific
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA.
| |
Collapse
|
197
|
Wu X, Zhang W, Font-Burgada J, Palmer T, Hamil AS, Biswas SK, Poidinger M, Borcherding N, Xie Q, Ellies LG, Lytle NK, Wu LW, Fox RG, Yang J, Dowdy SF, Reya T, Karin M. Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade. Proc Natl Acad Sci U S A 2014; 111:13870-5. [PMID: 25189770 PMCID: PMC4183333 DOI: 10.1073/pnas.1414358111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metastatic spread is the leading cause of cancer mortality. Breast cancer (BCa) metastatic recurrence can happen years after removal of the primary tumor. Here we show that Ubc13, an E2 enzyme that catalyzes K63-linked protein polyubiquitination, is largely dispensable for primary mammary tumor growth but is required for metastatic spread and lung colonization by BCa cells. Loss of Ubc13 inhibited BCa growth and survival only at metastatic sites. Ubc13 was dispensable for transforming growth factor β (TGFβ)-induced SMAD activation but was required for activation of non-SMAD signaling via TGFβ-activating kinase 1 (TAK1) and p38, whose activity controls expression of numerous metastasis promoting genes. p38 activation restored metastatic activity to Ubc13-deficient cells, and its pharmacological inhibition attenuated BCa metastasis in mice, suggesting it is a therapeutic option for metastatic BCa.
Collapse
Affiliation(s)
- Xuefeng Wu
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and
| | - Weizhou Zhang
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and
| | | | - Alexander S Hamil
- Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648; Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Nicholas Borcherding
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Qing Xie
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | - Nikki K Lytle
- Departments of Pharmacology, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093; and
| | - Li-Wha Wu
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Raymond G Fox
- Departments of Pharmacology, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093; and
| | | | - Steven F Dowdy
- Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Tannishtha Reya
- Departments of Pharmacology, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093; and
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and
| |
Collapse
|
198
|
Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 2014; 36:79-90. [PMID: 25242279 DOI: 10.1016/j.semcdb.2014.09.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Abstract
The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered.
Collapse
Affiliation(s)
- Kezhen Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States; Division of Metabolism, Endocrinology, and Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
199
|
Chen S, Zhou L, Zhang Y, Leng Y, Pei XY, Lin H, Jones R, Orlowski RZ, Dai Y, Grant S. Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 2014; 34:3435-3449. [PMID: 25002530 PMCID: PMC4135623 DOI: 10.1128/mcb.01383-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/29/2013] [Accepted: 06/22/2014] [Indexed: 02/05/2023] Open
Abstract
In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Liang Zhou
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Yu Zhang
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Yun Leng
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Xin-Yan Pei
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Hui Lin
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Richard Jones
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yun Dai
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Steven Grant
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Biochemistry, Virginia Commonwealth University and Massey Cancer Center and Virginia Institute of Molecular Medicine, Richmond, Virginia, USA
| |
Collapse
|
200
|
Fang J, Barker B, Bolanos L, Liu X, Jerez A, Makishima H, Christie S, Chen X, Rao DS, Grimes HL, Komurov K, Weirauch MT, Cancelas JA, Maciejewski JP, Starczynowski DT. Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network. Cell Rep 2014; 8:1328-38. [PMID: 25199827 DOI: 10.1016/j.celrep.2014.07.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 06/05/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023] Open
Abstract
Chromosome 5q deletions (del[5q]) are common in high-risk (HR) myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML); however, the gene regulatory networks that sustain these aggressive diseases are unknown. Reduced miR-146a expression in del(5q) HR MDS/AML and miR-146a(-/-) hematopoietic stem/progenitor cells (HSPCs) results in TRAF6/NF-κB activation. Increased survival and proliferation of HSPCs from miR-146a(low) HR MDS/AML is sustained by a neighboring haploid gene, SQSTM1 (p62), expressed from the intact 5q allele. Overexpression of p62 from the intact allele occurs through NF-κB-dependent feedforward signaling mediated by miR-146a deficiency. p62 is necessary for TRAF6-mediated NF-κB signaling, as disrupting the p62-TRAF6 signaling complex results in cell-cycle arrest and apoptosis of MDS/AML cells. Thus, del(5q) HR MDS/AML employs an intrachromosomal gene network involving loss of miR-146a and haploid overexpression of p62 via NF-κB to sustain TRAF6/NF-κB signaling for cell survival and proliferation. Interfering with the p62-TRAF6 signaling complex represents a therapeutic option in miR-146a-deficient and aggressive del(5q) MDS/AML.
Collapse
Affiliation(s)
- Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Brenden Barker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaona Liu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andres Jerez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|