151
|
Ren D, Huang Y, Li S, Wang Z, Zhang S, Zhang X, Gong X. Removal mechanism of persistent organic pollutants by Fe-C micro-electrolysis. ENVIRONMENTAL TECHNOLOGY 2022; 43:1050-1067. [PMID: 32838686 DOI: 10.1080/09593330.2020.1814426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The degradation of persistent organic pollutants (POPs) in the simulated wastewaters was investigated by Fe-C micro-electrolysis system. With phenanthrene (PHE) and 2,4-dichlorophenol (2,4-DCP) as target pollutants, different iron-carbon (Fe-C) micro-electrolysis systems have been established. The effects of initial pH, Fe/C mass ratio, and intake air flow on the degradation and mineralization of PHE and 2,4-DCP were studied. At the initial pH of 5.0, Fe/C of 1.5:1, and an aeration flow rate of 1.5 L/min, after 120 min of reaction, the removal efficiency of FHE and COD was 94.3% and 73%, respectively. Under the conditions of initial pH is 3.0, Fe/C is 1:2, aeration flow rate of 1.5 L/min, and reaction time of 90 min, the best removal efficiency of 2,4-DCP can be obtained in the Fe-C micro-electrolysis system as 97% and COD removal efficiency can reach 76%. The results of kinetic studies show that the Fe-C micro-electrolysis process of PHE and 2,4-DCP follows pseudo-first-order kinetics. Commercial activated carbon (AC) was used for comparison under the same condition. The results indicated that the removal rate of organic pollutants and chemical oxygen demand (COD) of Fe-C micro-electrolysis were superior to that of AC. Analyze the structure of iron after reaction by SEM and XRD. The degradation pathway and mechanism for PHE and 2,4-DCP were proposed based on LC-MS analyses of treated wastewater.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Yongwei Huang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Sheng Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangyi Gong
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
152
|
Magalhães-Ghiotto GAV, Natal JPS, Nishi L, Barbosa de Andrade M, Gomes RG, Bergamasco R. Okara and okara modified and functionalized with iron oxide nanoparticles for the removal of Microcystis aeruginosa and cyanotoxin. ENVIRONMENTAL TECHNOLOGY 2022:1-16. [PMID: 35138230 DOI: 10.1080/09593330.2022.2041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Eutrophicating compounds promote the growth of cyanobacteria, which has the potential of releasing toxic compounds. Alternative raw materials, such as residues, have been used in efficient adsorption systems in water treatment. The aim of the present study was to apply the residue Okara in its original form and modified by hydrolysis with immobilization of magnetic nanoparticles as an adsorbent. For the removal, the cyanobacteria Microcystis aeruginosa was chosen, as well as its secondary metabolites, L-amino acids leucine and arginine (MC-LR microcystin), from aqueous solutions. The adsorbents presented a negative surface charge, and the x-ray diffraction (DRX) outcomes successfully demonstrated the immobilization of iron oxide nanoparticles on the adsorbents. The adsorbent with the best result was the Okara hydrolyzed and functionalized with iron oxide, which showed a 47% (qe = 804.166 cel/g) and 85% (qe = 116.94 µg/L) removal for the cyanobacteria cells and chlorophyll-a, respectively. The kinetics study demonstrated a pseudo-first-order adsorption with maximal adsorption in 480 minutes, removing 761 µg/L of chlorophyll-a. In this trial, a low organic material removal has occurred, with a removal rate of 5% (qe = 0.024 mg/g) in the analysis of compounds in absorbance by ultraviolet light (UV) monitored by optical density determination in 254 nm (OD254). Nevertheless, the reaction system with the presence of organic material removed 53,28% of the MC-LR toxin, with adsorption capacities of 2.84 µg/L in a preliminary trial conducted for two hours, arising as a potential and alternative adsorbent with a capacity of removing cyanobacteria and cyanotoxin cells simultaneously.
Collapse
Affiliation(s)
- Grace A V Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringa, Maringa, Brazil
| | - Jean P S Natal
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringa, Maringa, Brazil
| | - Letícia Nishi
- Department of Health Science, Technology Center, State University of Maringa, Maringa, Brazil
| | | | - Raquel G Gomes
- Department of Food Engineering, Technology Center, State University of Maringa, Maringa, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringa, Maringa, Brazil
| |
Collapse
|
153
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Can Exposure to Environmental Pollutants Be Associated with Less Effective Chemotherapy in Cancer Patients? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042064. [PMID: 35206262 PMCID: PMC8871977 DOI: 10.3390/ijerph19042064] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Since environmental pollutants are ubiquitous and many of them are resistant to degradation, we are exposed to many of them on a daily basis. Notably, these pollutants can have harmful effects on our health and be linked to the development of disease. Epidemiological evidence together with a better understanding of the mechanisms that link toxic substances with the development of diseases, suggest that exposure to some environmental pollutants can lead to an increased risk of developing cancer. Furthermore, several studies have raised the role of low-dose exposure to environmental pollutants in cancer progression. However, little is known about how these compounds influence the treatments given to cancer patients. In this work, we present a series of evidences suggesting that environmental pollutants such as bisphenol A (BPA), benzo[a]pyrene (BaP), persistent organic pollutants (POPs), aluminum chloride (AlCl3), and airborne particulate matter may reduce the efficacy of some common chemotherapeutic drugs used in different types of cancer. We discuss the potential underlying molecular mechanisms that lead to the generation of this chemoresistance, such as apoptosis evasion, DNA damage repair, activation of pro-cancer signaling pathways, drug efflux and action of antioxidant enzymes, among others.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Correspondence: (F.A.L.-R.); (H.B.S.)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str. Moscow, 119991 Moscow, Russia
- Correspondence: (F.A.L.-R.); (H.B.S.)
| |
Collapse
|
154
|
López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants (Basel) 2022; 11:antiox11020369. [PMID: 35204251 PMCID: PMC8868406 DOI: 10.3390/antiox11020369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aquaculture production as an important source of protein for our diet is sure to continue in the coming years. However, marine pollution will also likely give rise to serious problems for the food safety of molluscs. Seafood is widely recognized for its high nutritional value in our diet, leading to major health benefits. However, the threat of marine pollution including heavy metals, persistent organic pollutants and other emerging pollutants is of ever-growing importance and seafood safety may not be guaranteed. New approaches for the search of biomarkers would help us to monitor pollutants and move towards a more global point of view; protocols for the aquaculture industry would also be improved. Rapid and accurate detection of food safety problems in bivalves could be carried out easily by protein biomarkers. Hence, proteomic technologies could be considered as a useful tool for the discovery of protein biomarkers as a first step to improve the protocols of seafood safety. It has been demonstrated that marine pollutants are altering the bivalve proteome, affecting many biological processes and molecular functions. The main response mechanism of bivalves in a polluted marine environment is based on the antioxidant defense system against oxidative stress. All these proteomic data provided from the literature suggest that alterations in oxidative stress due to marine pollution are closely linked to robust and confident biomarkers for seafood safety.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - J. Ángel Fernández
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence:
| |
Collapse
|
155
|
Lei H, Liu Q, Leng J, Liu H, Wang C, Xu M, An W, Bao C, Wang Z. Highly sensitive and selective detection of butachlor based on the resonance light scattering of doped carbon quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:652-660. [PMID: 35081194 DOI: 10.1039/d1ay01356d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a new method of resonance light scattering was developed for the sensitive and selective detection of butachlor. Firstly, buckwheat was used as the main carbon source to prepare a new type of doped carbon quantum dot using the hydrothermal method. A new method for the determination of butachlor was then established by the change in resonance light scattering intensity after the addition of butachlor into the doped carbon quantum dot solution. The detection effect was successfully optimized by investigating the optimum reaction conditions. Under the optimum conditions, the resonance light scattering intensity of doped carbon quantum dots was greatly enhanced at 460 nm after the addition of butachlor, and the intensity changes were linearly correlated with the butachlor concentration in the range of 1-7 μg L-1. The detection limit was 0.136 μg L-1, and the recoveries ranged between 98.6% and 101.8%. This method was also used for butachlor detection in environmental water.
Collapse
Affiliation(s)
- Han Lei
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Qinghao Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Jiapeng Leng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agriculture Sciences, Zhengzhou 450002, China
| | - Cundong Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Mingyue Xu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Wenqing An
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Chenning Bao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Zhen Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| |
Collapse
|
156
|
Ge Y, Wu S, Yan K. Concentrations, influencing factors, risk assessment methods, health hazards and analyses of polycyclic aromatic hydrocarbons in dairies: a review. Crit Rev Food Sci Nutr 2022; 63:6168-6181. [PMID: 35139701 DOI: 10.1080/10408398.2022.2028717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in dairies has been widely reported. Consumers may be overly exposed to PAHs through dairies causing health risks. Hazards can be reduced by controlling influencing factors in the full-chain of dairy production. This review briefly introduces research trends and analytical methods concerning PAHs in dairies. Additionally, this review discusses influencing factors of PAH concentrations in various dairies to avoid PAHs' formation and accumulation during manufacture. Relevant regulations are referred to and the reported risk assessment methods are summarized. Furthermore, indicators of health risks including TEQBaP, the number and the rate of over-standard are calculated based on PAH concentrations. Through analyses, we find PAH and BaP contamination in dairies are complex problems depending on environment, processing and storage. There was a significant correlation between fat contents and PAH concentrations. Results of infant formula in certain research were worrying and those of smoked cheeses are remarkably high indicating the dangerous smoking process. It is significant to monitor PAHs and calculate TEQBaP from meadows to feeders. Moreover, the existing regulations are insufficient and need strengthening. The data and discussions in this review contribute to worldwide Big Data, further scientific investigation and regulations for PAHs in dairies.
Collapse
Affiliation(s)
- Yuxing Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Yan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
157
|
Ángel-Moreno Briones Á, Hernández-Guzmán FA, González-Armas R, Galván-Magaña F, Marmolejo-Rodríguez AJ, Sánchez-González A, Ramírez-Álvarez N. Organochlorine pesticides in immature scalloped hammerheads Sphyrna lewini from the western coast of the Gulf of California, Mexico: Bioaccumulation patterns and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151369. [PMID: 34740652 DOI: 10.1016/j.scitotenv.2021.151369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Despite the intensive use of organochlorine pesticides (OCPs) in the proximity of the Gulf of California, there is no information regarding their levels in predatory shark species, which could be exposed to relatively high concentrations. In this area, neonates and juveniles of the critically endangered scalloped hammerhead Sphyrna lewini are caught for consumption, so the examination of the accumulation of OCPs is necessary for future conservation, as well as to assess the exposure to humans. Levels and accumulation patterns of 29 OCPs were analyzed in the liver and muscle of 20 immature scalloped hammerheads. Twenty-three compounds were detected in liver and 17 OCPs were found in muscle. In the latter tissue, only p,p'-DDE presented concentrations above the detection limit in all samples (0.59 ± 0.21 ng/g w.w.), while in the liver, DDTs were also the main group of pesticides (215 ± 317 ng/g w.w.), followed by ∑Chlordanes > ∑Chlorobenzenes > Mirex > HCBD > Others. One of the two analyzed neonates presented high concentrations of OCPs in the liver (1830 ng/g w.w.), attributed to a bioamplification process. No differences in accumulation of OCPs were found between juveniles of both sexes, where an increase in the concentration of various compounds related with size and age was observed. Additionally, juveniles under 2 years of age may undergo a growth dilution process. Our results suggest that the consumption of this species does not imply risks to human health (chronic or carcinogenic effects) associated with OCPs. Likewise, we recommend further monitoring due to the possible recent inputs of some OCPs (e.g. dicofol, median of ratio o, p'-DDT/p, p'-DDT = 0.7) into the environment.
Collapse
Affiliation(s)
- Ángela Ángel-Moreno Briones
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Félix Augusto Hernández-Guzmán
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Alberto Sánchez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, Baja California C. P. 22860, Mexico.
| |
Collapse
|
158
|
Hamid N, Junaid M, Manzoor R, Duan JJ, Lv M, Xu N, Pei DS. Tissue distribution and endocrine disruption effects of chronic exposure to pharmaceuticals and personal care products mixture at environmentally relevant concentrations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106040. [PMID: 34856459 DOI: 10.1016/j.aquatox.2021.106040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) as emerging contaminants are ubiquitously present in the aquatic environment. Using in vivo and in silico techniques, this study aims to elucidate tissue distribution and endocrine disruption effects of chronic exposure (120 days) to PPCP mixture at environmentally relevant concentrations (ERCs) in adult zebrafish. Results from UHPLC-MS/MS analyses showed elevated distribution of PPCPs in zebrafish tissues in the order of liver > gonad > brain. Upregulation of steroid hormone receptors, both gonadotropin, and steroidogenic genes perturb the HPG axis pathway in females, while male fish exhibited significantly downregulated expressions of vtg, cyp17, and 17βhsd genes with inhibited fecundity. The Spearman correlation indicated a significant positive relationship between PPCPs bioaccumulation and mRNA levels of HPG axis genes. In silico molecular docking (MD) revealed specific amino acid residues of PPCPs binding with zebrafish estrogen receptors. Furthermore, the strongest binding energies of sulfamethoxazole, carbamazepine, and triclosan were discovered in erα and erβ estrogen receptors, confirming PPCPs' xenoestrogenic behavior. To summarize, chronic exposure to ERCs resulted in a high accumulation of PPCPs in the liver and gonad tissues of adult zebrafish, as well as associated perturbed genetic responses. As a result, strict environmental regulations for the disposal of PPCPs should be ensured to protect ecological and public health.
Collapse
Affiliation(s)
- Naima Hamid
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rakia Manzoor
- University of Chinese Academy of Sciences, Beijing 100049, China; State key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Jing Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Ming Lv
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
159
|
Sajid M, Sajid Jillani SM, Baig N, Alhooshani K. Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects. CHEMOSPHERE 2022; 287:132140. [PMID: 34523432 DOI: 10.1016/j.chemosphere.2021.132140] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) represent an exciting class of two-dimensional inorganic materials with unique physicochemical properties. They have been widely employed in water treatment due to their high surface areas, excellent ion exchange capacities, and highly tunable structures. They have also been employed in the fabrication and development of membranes for water treatment. 2D nanostructures as well as tailorable "structure forming units", surface functionalization with desired moieties, and interlayer galleries with adjustable heights and internal compositions make them attractive materials for membrane separations. This paper critically overviews the recent advancements in the synthesis and applications of LDH based membranes in water purification. The synthesis techniques and the effect of LDH incorporation into different membrane compositions have been described. LDH-based membranes showed excellent antifouling capability and improved water flux due to enhanced hydrophilicity. Such membranes have been successfully used for the treatment of inorganics, organics from environmental water samples. This review will be useful for understanding the current state of the LDH-based membranes for water purification and defining future research dimensions. In the end, we highlight some challenges and future prospects for the efficient application of LDH-based membranes in water decontamination.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Khalid Alhooshani
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
160
|
Suresh R, Rajendran S, Kumar PS, Dutta K, Vo DVN. Current advances in microbial fuel cell technology toward removal of organic contaminants - A review. CHEMOSPHERE 2022; 287:132186. [PMID: 34509759 DOI: 10.1016/j.chemosphere.2021.132186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 05/27/2023]
Abstract
At present, water pollution and demand for clean energy are most pressing global issues. On a daily basis, huge quantity of organic wastes gets released into the water ecosystems, causing health related problems. The need-of-the-hour is to utilize proficient and cheaper techniques for complete removal of harmful organic contaminants from water. In this regard, microbial fuel cell (MFC) has emerged as a promising technique, which can produce useful electrical energy from organic wastes and decontaminate polluted water. Herein, we have systematically reviewed recently published results, observations and progress made on the applications of MFCs in degradation of organic contaminants, including organic synthetic dyes, agro pollutants, health care contaminants and other organics (such as phenols and their derivatives, polyhydrocarbons and caffeine). MFC-based hybrid technologies, including MFC-constructed wetland, MFC-photocatalysis, MFC-catalysis, MFC-Fenton process, etc., developed to obtain high removal efficiency and bioelectricity production simultaneously have been discussed. Further, this review assessed the influence of factors, such as nature of electrode catalysts, organic pollutants, electrolyte, microbes and operational conditions, on the performance of pristine and hybrid MFC reactors in terms of pollutant removal efficiency and power generation simultaneously. Moreover, the limitations and future research directions of MFCs for wastewater treatment have been discussed. Finally, a conclusive summary of the findings has been outlined.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
161
|
Shen P, Ji S, Li X, Yang Q, Xu B, Wong CKC, Wang L, Li L. LPS-Induced Systemic Inflammation Caused mPOA-FSH/LH Disturbance and Impaired Testicular Function. Front Endocrinol (Lausanne) 2022; 13:886085. [PMID: 35813649 PMCID: PMC9259990 DOI: 10.3389/fendo.2022.886085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Male reproductive function is key to the continuation of species and is under sophisticated regulation, challenged by various stressors including inflammation. In the lipopolysaccharide (LPS) intraperitoneal injection-induced acute systemic inflammation, male fecundity was compromised with decreased testosterone level, damaged spermatogenesis, and downregulations of testicular gene expression levels involved in steroidogenesis regulation and blood-testis barrier. It is also noteworthy that the testis is more sensitive to acute stress caused by LPS-induced systemic inflammation. LPS treatment resulted in lower testicular gene expression levels of steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and cytochrome P450 family 11 subfamily B member 1 after LPS treatment, while no such decrease was found in the adrenal gland. In parallel to the significant decreases in testicular intercellular adhesion molecule 1, tight junction protein 1, and gap junction alpha-1 protein gene expression with LPS treatment, no decrease was found in the epididymis. In the brain, LPS treatment caused higher medial preoptic area (mPOA) activation in the hypothalamus, which is accompanied by elevated blood follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, suggesting a disturbed hypothalamic-pituitary-gonad axis function. Besides mPOA, brain c-fos mapping and quantitative analysis demonstrated a broad activation of brain nuclei by LPS, including the anterior cingulate cortex, lateral septum, paraventricular nucleus of the hypothalamus, basolateral amygdala, ventral tegmental area, lateral habenular nucleus, locus coeruleus, Barrington's nucleus, and the nucleus of the solitary tract, accompanied by abnormal animal behavior. Our data showed that LPS-induced inflammation caused not only local testicular damage but also a systemic disturbance at the brain-testis axis level.
Collapse
Affiliation(s)
- Peilei Shen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqin Ji
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xulin Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bingxian Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong SAR, China
- *Correspondence: Chris Kong Chu Wong, ; Liping Wang, ; Lei Li,
| | - Liping Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- *Correspondence: Chris Kong Chu Wong, ; Liping Wang, ; Lei Li,
| | - Lei Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- *Correspondence: Chris Kong Chu Wong, ; Liping Wang, ; Lei Li,
| |
Collapse
|
162
|
Köse K, Tüysüz M, Aksüt D, Uzun L. Modification of cyclodextrin and use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:182-209. [PMID: 34212318 DOI: 10.1007/s11356-021-15005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Water pollution, which has become a global problem in parallel with environmental pollution, is a problem that needs to be solved urgently, considering the gradual depletion of water resources. The inadequacy of the water treatment methods and the materials used somehow directed the researchers to look for dual character structures such as biocompatible and biodegradable β-cyclodextrin (β-CD). β-CD, which is normally insoluble in water, is used in demanding wastewater applications by being modified with the help of different agents to be water soluble or transformed into polymeric adsorbents as a result of co-polymerization via cross-linkers. In this way, in addition to the host-guest interactions offered by β-CD, secondary forces arising from these interactions provide advantages in terms of regeneration and reusability. However, the adsorption efficiency and synthesis steps need to be improved. Based on the current studies presented in this review, in which cross-linkers and modification methods are also mentioned, suggestions for novel synthesis methods of new-generation β-CD-based materials, criticisms, and recent methods of removal of micropollutants such as heavy metals, industrial dyes, harmful biomolecules, and pharmaceutics wastes are mentioned.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, 19040, Çorum, Turkey.
| | - Miraç Tüysüz
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Davut Aksüt
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
163
|
Riaz R, Malik RN, de Wit CA. Soil-air partitioning of semivolatile organic compounds in the Lesser Himalaya region: Influence of soil organic matter, atmospheric transport processes and secondary emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118006. [PMID: 34543955 DOI: 10.1016/j.envpol.2021.118006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
After decades of imposed regulations about reducing the primary emissions of persistent organic pollutants (POPs), these pollutants are still present in the environment. Soils are important repositories of such persistent semivolatile organic contaminants (SVOCs), and it is assumed that SVOCs sequestered in these reservoirs are being re-mobilized due to anthropogenic influence. In this study, concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in soil and air, their fugacities, fluxes and the soil-air partition coefficient (KSA) were determined for three different land cover types (glacial, remote/mountainous and urban) of the Lesser Himalayan Region (LHR). The concentrations of OCPs, PCBs and PBDEs in soils and air ranged between 0.01 and 2.8, 0.81-4.8, 0.089-0.75 ng g-1; 0.2-106, 0.027-182, and 0.011-7.26 pg m-3, respectively. The levels of SVOCs in the soil were correlated with soil organic matter (SOM) indicating that SOM is a substrate for the organic pollutants in soils. The Clausius-Clapeyron plots between ln P and inverse of temperature (1000/T) suggested that long range atmospheric transport was the major input source of PBDEs and higher chlorinated PCBs over the LHR. The uneven and wide distribution of local sources in LHR and up-slope enrichment of SVOCs explained the spatial variability and altitudinal patterns. The soils near mountain and urban lakes act as local sinks of SVOCs such as β-HCH, pp΄-DDT, CB-28, -118, -153, BDE-47, -99, and -154, with soil-air exchange fluxes tending more toward deposition. However, the soils near glacial lakes acted as local sources of more volatile congeners of α-HCH, γ-HCH, op'-DDT, pp'-DDE and lower to medium chlorinated PCBs such as CB-18, -28, -53, -42 and BDE-47, -99, with soil-air exchange tending more toward volatilization flux.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan.
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
164
|
Cerium-, Europium- and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review. Catalysts 2021. [DOI: 10.3390/catal11121520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the last decades photocatalysis has become one of the most employed technologies for the implementation of the so-called Advanced Oxidation Processes (AOPs) for the removal of harmful pollutants from wastewaters. The materials identified as the best photocatalysts are transition metal oxides, in which the band structure allows charge carrier separation upon solar irradiation. The photoinduced charge carrier can thus cause oxidative and reductive redox reactions at the surface, inducing the formation of the radical species able to initiate the AOPs. Despite the great advantages of this process (non-toxic, cheap and environmentally clean), the main drawback lies in the fact that the most efficient semiconductors are only able to absorb UV irradiation, which accounts for only 5% of the total solar irradiation at the Earth’s surface and not enough to generate the required amount of electron-hole pairs. On the other hand, many efforts have been devoted to the sensitization of wide band gap transition metal oxides to visible light, which represents a higher percentage (almost 45%) in the solar electromagnetic spectrum. Among all the strategies to sensitize transition metal oxides to visible irradiation, doping with lanthanides has been less explored. In this regard, lanthanides offer a unique electronic configuration, consisting in 4f orbitals shielded by a 5s5p external shell. This occurrence, coupled with the different occupation of the localized 4f orbitals would provide an astounding opportunity to tune these materials’ properties. In this review we will focus in depth on the modification of two promising photocatalytic transition metal oxides, namely ZnO and ZrO2, with cerium, europium and erbium atoms. The aim of the work is to provide a comprehensive overview of the influence of lanthanides on the structural, optical and electronic properties of the modified materials, emphasizing the effect of the different 4f orbital occupation in the three considered doping atoms. Moreover, a large portion of the discussion will be devoted to the structural-properties relationships evidencing the improved light absorption working mechanism of each system and the resulting enhanced photocatalytic performance in the abatement of contaminants in aqueous environments.
Collapse
|
165
|
Jarcovis RDLM, Taniguchi S, da Silva J, Lourenço RA. Persistent organic pollutants and stable isotopes in the liver of Chelonia mydas stranded on the southeastern Brazilian coast. MARINE POLLUTION BULLETIN 2021; 173:113075. [PMID: 34741921 DOI: 10.1016/j.marpolbul.2021.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Among the various pollutants released into the environment, there are persistent organic pollutants (POPs). Chelonia mydas are one of the species that can be exposed to these pollutants and it is classified in the IUCN Red List as "endangered". The present study evaluated the occurrence of POPs in 49liver tissue samples of C. mydas juveniles collected on the southeastern Brazilian coast. Furthermore, the concentrations were correlated with carbon and nitrogen isotopic ratio, biometrics, and ecological factors. The main POPs found were ƴ-HCH and PCBs. Overall, the concentrations found were low and there were no significant correlations among POPs, isotopic ratios, size and weight, which may be related to the fact that the studied individuals are juveniles and occupy similar trophic positions despite the individual variations found. Despite the low concentrations, the presence of POPs, mainly PCBs, in the sea turtles' liver indicates their exposure to these compounds.
Collapse
Affiliation(s)
- Raphael De Lucca Marcello Jarcovis
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| | - Rafael André Lourenço
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| |
Collapse
|
166
|
Bisaria K, Sinha S, Singh R, Iqbal HMN. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation - A comprehensive review. CHEMOSPHERE 2021; 284:131263. [PMID: 34198058 DOI: 10.1016/j.chemosphere.2021.131263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Over the last few years, industrial and anthropogenic activities have increased the presence of organic pollutants such as dyes, herbicides, pesticides, analgesics, and antibiotics in the water that adversely affect human health and the environment worldwide. Photocatalytic treatment is considered a promising, economical, effective, and sustainable process that utilizes light energy to degrade the pollutants in water. However, certain drawbacks like rapid recombination and low migration capability of photogenerated electrons and holes have restricted the use of photo-catalysts in industries. Hence, despite the abundance of lab-scale research, the technology is still not much commercialized in the mainstream. Several structural modifications in the photo-catalysts have been adopted to enhance the pollutant degradation performance to overcome the same. In this context, the present review article outlines the different advanced heterostructures synthesized to date for improved degradation of three major organic pollutants: antibiotics, dyes, and pesticides. Moreover, the article also emphasizes the degradation kinetics of photo-catalysts and the publication trend in the past decade along with the roadblocks preventing the transfer of technology from the laboratory to industry and new age photo-catalysts for the profitable implications in industrial sectors.
Collapse
Affiliation(s)
- Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
167
|
Fang Y, Yang Y, Yang Z, Li H, Roesky HW. Advances in design of metal-organic frameworks activating persulfate for water decontamination. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
168
|
Chen CH, Lin YC, Peng YP, Lin MH. Simultaneous hydrogen production and ibuprofen degradation by green synthesized Cu 2O/TNTAs photoanode. CHEMOSPHERE 2021; 284:131360. [PMID: 34217925 DOI: 10.1016/j.chemosphere.2021.131360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to produce a clean energy, hydrogen, and to remove pollutants simultaneously in water by photoelectrochemical (PEC) method. The photo-anode of cuprous oxide modified titanate nanotube arrays (Cu2O/TNTAs) was synthesized by using lactic acid, green tea, and coffee as reductants individually. The characterizations of Cu2O/TNTAs were performed by ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) to investigate the physical and chemical properties such as structure, crystallization, element contents, and optical performance. The electrochemical analyses of Cu2O/TNTAs showed the photo-current of Cu2O/TNTAs-t (using green tea as reductant) was 2.4 times higher than pure TNTAs, illustrating the effective separation of electron-hole pairs after Cu2O modification. The photoelectrochemical performances of Cu2O/TNTAs-t and Cu2O/TNTAs-c (using coffee as the reductant) were better than Cu2O/TNTAs-L (using lactic acid as the reductant) in terms of photo-current density, Ibuprofen degradation, and hydrogen generation, implying that depositing Cu2O on TNTAs can significantly improve the electron mobility by reducing the recombination rate of electron-hole pairs, which is beneficial to simultaneously ibuprofen degradation and hydrogen production.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Ching Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yen-Ping Peng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Ming-Hsun Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
169
|
Tian Y, Pan L, Miao J, Lei F, Xu R, Zhang X. The mechanism of apoptosis of Chlamys farreri hemocytes under benzopyrene stress in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148731. [PMID: 34217077 DOI: 10.1016/j.scitotenv.2021.148731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Hemocytes are critical to the immune defense system of bivalves, and polycyclic aromatic hydrocarbons (PAHs) can mediate the immunity of bivalves by affecting the apoptosis of hemocytes. However, the underlying mechanism is still unclear. Chlamys farreri, as an important economic bivalve, was selected as the research subject for this experimentation. The hemocytes were exposed to typical PAHs-benzopyrene (B[a]P) in vitro to explore the apoptosis mechanism through detecting oxidative stress and oxidative damage-related indicators, apoptosis pathway factors, and apoptosis rate within 24 h. The results showed that the reactive oxygen species (ROS) and benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) content in hemocytes increased significantly under B[a]P exposure, while antioxidant genes, glutathione peroxidase content and total antioxidant capacity all showed a trend of first rising and subsequent falling. B[a]P also caused serious damage to DNA and lysosomal membrane stability. The proapoptotic factors genes in the mitochondrial apoptosis pathway were significantly up-regulated, and the anti-apoptotic gene Bcl-2 was significantly down-regulated. Besides, mitochondrial membrane potential stability was significantly reduced and caspase 9 enzyme activity was significantly improved with the B[a]P stimulation. The factors of death receptor pathway were also significantly up-regulated by B[a]P. Moreover, the expression levels of Mitogen-Activated Protein Kinases were also induced. The gene expression and enzyme activity of the caspase 3 and the apoptosis rate were significantly increased under B[a]P exposure. In conclusion, these results indicated that ROS was induced by B[a]P, and further triggered the oxidative stress and oxidative damage in hemocytes. B[a]P induced hemocyte apoptosis was mediated by both mitochondrial apoptosis pathway and death receptor apoptosis, and the activation of mitochondrial apoptosis pathway was affected by ROS. In addition, BPDE and MAPKs may play important roles in the B[a]P-mediated apoptosis pathway. This study deepens understanding of the apoptosis pathway and the immunotoxicity mechanism in bivalves hemocytes stimulated by persistent organic pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
170
|
Okolo BI, Adeyi O, Oke EO, Agu CM, Nnaji P, Akatobi KN, Onukwuli DO. Coagulation kinetic study and optimization using response surface methodology for effective removal of turbidity from paint wastewater using natural coagulants. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
171
|
Song YJ, Li Y, Leng Y, Li SW. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52032-52045. [PMID: 33999324 DOI: 10.1007/s11356-021-14404-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution has attracted global concern. In the present study, the biochemical mechanisms underlying the amelioration of 24-epibrassinolide (eBL) and abscisic acid (ABA) on Cd tolerance of roots, stems, and leaves in mung bean seedlings were comparatively analyzed. Foliar application of eBL markedly ameliorated the growth of mung bean seedling exposed to 100 μM Cd. eBL alone had no significant effects on the activities of antioxidative enzymes and the contents of glutathione (GSH) and polyphenols in the three organs whereas significantly increased the root, stem, and leaf proline contents on average by 54.9%, 39.9%, and 94.4%, respectively, and leaf malondialdehyde (MDA) content on average by 69.0% compared with the controls. When the plants were exposed to Cd, eBL significantly reversed the Cd-increased root ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities, root polyphenol, proline, and GSH levels, leaf chlorophyll contents, and MDA levels in the three organs. eBL significantly restored the Cd-decreased leaf catalase (CAT) activity and leaf polyphenol levels. These results indicated that eBL played roles in maintaining cellular redox homeostasis and evidently alleviated Cd-caused membrane lipid peroxidation via controlling the activity of antioxidative systems. eBL mediated the differential responses of cellular biochemical processes in the three organs to Cd exposure. Furthermore, a comparative analysis revealed that, under Cd stress, the effects of eBL on the biochemical processes were very similar to those of ABA, suggesting that ABA and eBL improve plant Cd tolerance via some common downstream pathways.
Collapse
Affiliation(s)
- Ya-Juan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yi Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China.
| |
Collapse
|
172
|
Areco MM, Salomone VN, Afonso MDS. Ulva lactuca: A bioindicator for anthropogenic contamination and its environmental remediation capacity. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105468. [PMID: 34507027 DOI: 10.1016/j.marenvres.2021.105468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Coastal regions are subjected to degradation due to anthropogenic pollution. Effluents loaded with variable concentrations of heavy metal, persistent organic pollutant, as well as nutrients are discharged in coastal areas leading to environmental degradation. In the past years, many scientists have studied, not only the effect of different contaminants on coastal ecosystems but also, they have searched for organisms tolerant to pollutants that can be used as bioindicators or for biomonitoring purposes. Furthermore, many researchers have demonstrated the capacity of different marine organisms to remove heavy metals and persistent organic pollutants, as well as to reduce nutrient concentration, which may lead to eutrophication. In this sense, Ulva lactuca, a green macroalgae commonly found in coastal areas, has been extensively studied for its capacity to accumulate pollutants; as a bioindicator; as well as for its remediation capacity. This paper aims to review the information published regarding the use of Ulva lactuca in environmental applications. The review was focused on those studies that analyse the role of this macroalga as a biomonitor or in bioremediation experiments.
Collapse
Affiliation(s)
- María M Areco
- Instituto de Investigación e Ingeniería Ambiental -IIIA, UNSAM, CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. CONICET, Argentina.
| | - Vanesa N Salomone
- Instituto de Investigación e Ingeniería Ambiental -IIIA, UNSAM, CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. CONICET, Argentina
| | - María Dos Santos Afonso
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, Int. Guiraldes, 2160, C1428EHA Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
173
|
Sajid M, Asif M, Ihsanullah I. Dispersive liquid–liquid microextraction of multi-elements in seawater followed by inductively coupled plasma-mass spectrometric analysis and evaluation of its greenness. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
174
|
Wu KJ, Wu C, Fang M, Ding B, Liu PP, Zhou MX, Gong ZY, Ma DL, Leung CH. Application of metal–organic framework for the adsorption and detection of food contamination. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
175
|
Hsu YC, Chang SH, Chang MB. Emissions of PAHs, PCDD/Fs, dl-PCBs, chlorophenols and chlorobenzenes from municipal waste incinerator cofiring industrial waste. CHEMOSPHERE 2021; 280:130645. [PMID: 33933998 DOI: 10.1016/j.chemosphere.2021.130645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Concentrations and distributions of PAHs and chlorinated aromatic compounds including PCDD/Fs, dl-PCBs, chlorophenols (CPs), and chlorobenzenes (CBz) in the municipal waste incinerator are investigated to characterize their formation and emission via intensive stack sampling. In addition, the toxicity of fly ash contribution by PCDD/Fs and dl-PCBs is evaluated in this study. The results reveal that concentrations of PCDD/Fs and dl-PCBs in flue gas are significantly lower than those of CPs, CBz, and PAHs. Additionally, the removal efficiencies of PAHs and chlorinated aromatic compounds achieved with existing air pollution control devices are evaluated, indicating that the removal efficiencies achieved with activated carbon injection + baghouse (95-99%) are higher than those with semi-dry scrubber (SDS). Besides, PCDD/Fs and PCBs TEQ concentrations in SDS and BH ashes are within 1.61-2.66 WHO-TEQ/g and 0.09-0.19 WHO-TEQ/g, respectively. Furthermore, the calculated mass flow rates suggest that the input rate of PCDD/Fs and dl-PCBs of SDS are 60.24 mg/h and 59.74 mg/h, respectively. The mass flow rates of PCDD/Fs and dl-PCBs after SDS in flue gas are 32.47 mg/h and 49.73 mg/h, respectively. However, the discharge rates of PCDD/Fs and dl-PCBs from SDS are 120.60 mg/h and 27.05 mg/h, respectively, indicating that PCDD/Fs are significantly formed within the SDS. PCDD/Fs formation is attributed to the operating temperature of SDS (240 ± 11.5 °C), which is within the temperature window for de novo synthesis. Thus, operating parameters of the APCDs should be optimized to reduce the formation of PAHs and chlorinated aromatic pollutants from MWI.
Collapse
Affiliation(s)
- Yen-Chen Hsu
- Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan, 320
| | - Shu-Hao Chang
- Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan, 320
| | - Moo Been Chang
- Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan, 320.
| |
Collapse
|
176
|
Lian Q, Islam F, Ahmad ZU, Lei X, Depan D, Zappi M, Gang DD, Holmes W, Yan H. Enhanced adsorption of resorcinol onto phosphate functionalized graphene oxide synthesized via Arbuzov Reaction: A proposed mechanism of hydrogen bonding and π-π interactions. CHEMOSPHERE 2021; 280:130730. [PMID: 33964756 DOI: 10.1016/j.chemosphere.2021.130730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Phosphate functionalized graphene oxide (PGO) was successfully prepared by Arbuzov reaction and employed for adsorption of resorcinol from an aqueous phase. The phosphate functional groups were successfully incorporated onto the PGO surface by the formation of P-C bonds as identified by the analysis of FTIR and XPS spectra. The evaluation of adsorption capacity of resorcinol onto PGO exhibited significant improvement of resorcinol removal, achieving an adsorption capacity of 50.25 mg/g in the pH range of 4-7 which was 15 times higher than pristine graphene oxide. The addition of 2.4 M and 5 M NaCl in the adsorption system significantly increased the adsorption capacity towards resorcinol from 50.25 mg/g to 82.10 mg/g and 128.10 mg/g, respectively. Based on kinetics and adsorption isotherm studies, Pseudo-First-Order and Langmuir model are the best model to describe the adsorption process indicating that the adsorption is dominantly controlled by physisorption. The thermodynamic analysis suggested that the adsorption process was the favorable, spontaneous, and endothermic process. Besides, the interplay of hydrogen bonding and π-π interactions is proposed to be the governing physisorption mechanism. The outstanding reusability and better adsorption performance make PGO a promising adsorbent for environmental remediation of resorcinol.
Collapse
Affiliation(s)
- Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Fahrin Islam
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA; Wastewater Infrastructure Planning, Houston Water, Houston Public Works, 611 Walker Street, 18th Floor, Houston, TX, 77002, USA
| | - Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Dilip Depan
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Mark Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Daniel D Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Hui Yan
- Department of Chemistry, University of Louisiana at Lafayette, P. O. Box 43700, Lafayette, LA, 70504, USA
| |
Collapse
|
177
|
de Moraes NP, Goes CM, Rocha RDS, Gouvêa MEV, de Siervo A, Silva MLCPD, Rodrigues LA. Tannin-based carbon xerogel as a promising co-catalyst for photodegradation processes based on solar light: a case study using the tin (IV) oxide/carbon xerogel composite. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1978076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nicolas Perciani de Moraes
- Department of Chemical Engineering, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho S/N, Lorena, São Paulo, Brazil
| | - Clarice Moreira Goes
- Department of Chemical Engineering, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho S/N, Lorena, São Paulo, Brazil
| | - Robson da Silva Rocha
- Department of Chemical Engineering, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho S/N, Lorena, São Paulo, Brazil
| | - Maira Elizabeth Vicente Gouvêa
- Department of Chemical Engineering, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho S/N, Lorena, São Paulo, Brazil
| | - Abner de Siervo
- Institute of Physics “Gleb Wataghin”, Applied Physics Department, State University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Lucia Caetano Pinto da Silva
- Department of Chemical Engineering, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho S/N, Lorena, São Paulo, Brazil
| | - Liana Alvares Rodrigues
- Department of Chemical Engineering, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho S/N, Lorena, São Paulo, Brazil
| |
Collapse
|
178
|
Lee S, Ko E, Lee H, Kim KT, Choi M, Shin S. Mixed Exposure of Persistent Organic Pollutants Alters Oxidative Stress Markers and Mitochondrial Function in the Tail of Zebrafish Depending on Sex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189539. [PMID: 34574462 PMCID: PMC8469042 DOI: 10.3390/ijerph18189539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
Persistent organic pollutants (POPs) are lipid-soluble toxins that are not easily degraded; therefore, they accumulate in the environment and the human body. Several studies have indicated a correlation between POPs and metabolic diseases; however, their effects on mitochondria as a central organelle in cellular metabolism and the usage of mitochondria as functional markers for metabolic disease are barely understood. In this study, a zebrafish model system was exposed to two subclasses of POPs, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), under two different conditions (solitary OCPs or OCPs with PCBs (Aroclor 1254)), and changes in the oxidative stress marker levels and mitochondrial enzyme activities in the electron transport chain of the tail were measured to observe the correlation between POPs and representative biomarkers for metabolic disease. The results indicated different responses upon exposure to OCPs and OCPs with Aroclor 1254, and accelerated toxicity was observed following exposure to mixed POPs (OCPs with Aroclor 1254). Males were more sensitive to changes in the levels of oxidative stress markers induced by POP exposure, whereas females were more susceptible to the toxic effects of POPs on the levels of mitochondrial activity markers. These results demonstrate that the study reflects real environmental conditions, with low-dose and multiple-toxin exposure for a long period, and that POPs alter major mitochondrial enzymes’ functions with an imbalance of redox homeostasis in a sex-dependent manner.
Collapse
Affiliation(s)
- Songhee Lee
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Eun Ko
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Hyojin Lee
- Department of Environmental Energy Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea; (H.L.); (K.-T.K.)
| | - Ki-Tae Kim
- Department of Environmental Energy Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea; (H.L.); (K.-T.K.)
| | - Moonsung Choi
- Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea
- Convergence Institute of Biomaterials and Bioengineering, Seoul National University of Science and Technology, Seoul 01811, Korea
- Correspondence: (M.C.); (S.S.)
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (M.C.); (S.S.)
| |
Collapse
|
179
|
Zhang X, Wang J, Duan B, Jiang S. Degradation of sulfamethoxazole in water by a combined system of ultrasound/PW12/KI/H2O2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
180
|
Kadiya K, Vuggili SB, Gaur UK, Sharma M. Comparative photocatalytic dye and drug degradation study using efficient visible light-induced silver phosphate nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46390-46403. [PMID: 33010013 DOI: 10.1007/s11356-020-10982-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The industrialization, growing population, and human activities (e.g., liquid waste of households, industrial units, and agricultural lands) are the main causes to contaminate fresh water sources. To overcome this issue, many techniques have been applied for water purification and chemical oxidation is one of the effective ways to treat the wastewater called as advanced oxidation process (AOPs). In the present study, synthesized silver phosphate nanoparticles were employed as catalysts in the photocatalytic advanced oxidation process for the degradation of various dyes (RhB, MB, MO, and OG) and drug (SMZ). The photocatalyst was characterized through different analytical tools, e.g., PXRD, FTIR, UV-Vis DRS, DLS, FESEM, and HRTEM. The chemical behavior or interaction of dye molecule with catalyst surface has also been explored to understand the mechanism of photodegradation reaction. All the organic dyes and drugs showed pseudo first-order rate kinetics and it was found that RhB dye and SMZ drug degraded so fast by the photocatalyst. The maximum observed photodegradation rate was 0.0744 min-1 for SMZ drug and 0.0532 min-1 for RhB dye, respectively. The minimum dye degradation was observed ~ 0.0036 min-1 for OG, which is ~ 15 times lesser than the degradation rate of RhB dye. From the comparative dye degradation study, it was found that the photodegradation efficiency of organic pollutants depends on the surface charge of the photocatalyst. The role of photogenerated reactive species (holes, superoxides, and hydroxyl free radicals) was also studied using different types of scavengers which helped to understand the photochemical reactions and mechanism by photocatalyst. The real sample analysis of textile effluent was also performed using the best photocatalyst in the presence of light.
Collapse
Affiliation(s)
- Kaushal Kadiya
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sai Bhargava Vuggili
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Umesh Kumar Gaur
- Dr BR Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Manu Sharma
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
181
|
Wibowo A, Marsudi MA, Pramono E, Belva J, Parmita AWYP, Patah A, Eddy DR, Aimon AH, Ramelan A. Recent Improvement Strategies on Metal-Organic Frameworks as Adsorbent, Catalyst, and Membrane for Wastewater Treatment. Molecules 2021; 26:5261. [PMID: 34500695 PMCID: PMC8434549 DOI: 10.3390/molecules26175261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of pollutants in water is dangerous for the environment and human lives. Some of them are considered as persistent organic pollutants (POPs) that cannot be eliminated from wastewater effluent. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose are metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. This review provides an up-to-date and comprehensive description of MOFs and their crucial role as adsorbent, catalyst, and membrane in wastewater treatment. This study also highlighted several strategies to improve their capability to remove pollutants from water effluent.
Collapse
Affiliation(s)
- Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Maradhana A. Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
| | - Edi Pramono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36, Surakarta 57126, Central Java, Indonesia;
| | - Jeremiah Belva
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
| | - Ade W. Y. P. Parmita
- Materials and Metallurgy Engineering, Institut Teknologi Kalimantan, Jl. Soekarno Hatta 15, Balikpapan 76127, East Kalimantan, Indonesia;
| | - Aep Patah
- Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Sumedang 45363, West Java, Indonesia;
| | - Akfiny Hasdi Aimon
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Aditianto Ramelan
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
| |
Collapse
|
182
|
Sun Y, Zou M, Li C, Li X, Mao T, Zheng C. The solubilization of naphthalene using tea saponin as a biosurfactant: Effect of temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
183
|
Chengli Z, Ronghua M, Qi W, Mingrui Y, Rui C, Xiaonan Z. Photocatalytic degradation of organic pollutants in wastewater by heteropolyacids: a review. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1940982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhang Chengli
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Ma Ronghua
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - We Qi
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yang Mingrui
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Cao Rui
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Zong Xiaonan
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
184
|
Hardneck F, de Villiers C, Maree L. Effect of Copper Sulphate and Cadmium Chloride on Non-Human Primate Sperm Function In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6200. [PMID: 34201151 PMCID: PMC8228149 DOI: 10.3390/ijerph18126200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023]
Abstract
In order to address the large percentage of unexplained male infertility in humans, more detailed investigations using sperm functional tests are needed to identify possible causes for compromised fertility. Since many environmental and lifestyle factors might be contributing to infertility, future studies aiming to elucidate the effect of such factors on male fertility will need the use of appropriate research models. The current study aimed to assess the effects of two heavy metals, namely copper sulphate, and cadmium chloride, on non-human primate (NHP) sperm function in order to establish the possibility of using these primate species as models for reproductive studies. Our combined results indicated that the functionality of NHP spermatozoa is inhibited by the two heavy metals investigated. After in vitro exposure, detrimental effects, and significant lowered values (p < 0.05) were obtained for sperm motility, viability and vitality, acrosome intactness, and hyperactivation. These metals, at the tested higher concentrations, therefore, have the ability to impair sperm quality thereby affecting sperm fertilizing capability in both humans and NHPs.
Collapse
Affiliation(s)
- Farren Hardneck
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Charon de Villiers
- PUDAC-Delft Animal Facility, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Liana Maree
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
185
|
Lèche A, Gismondi E, Martella MB, Navarro JL. First assessment of persistent organic pollutants in the Greater rhea (Rhea americana), a near-threatened flightless herbivorous bird of the Pampas grasslands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27681-27693. [PMID: 33515150 DOI: 10.1007/s11356-021-12614-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) are still globally distributed and can exert different effects on ecosystems. Little is known about the occurrence of these contaminants in terrestrial birds from South America. In this study, POPs were assessed for the first time in a flightless herbivorous species from the Pampas grasslands, the Greater rhea (Rhea americana). Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were determined in 18 samples of feathers from free-ranging and captive individuals inhabiting four sites with different land uses in central Argentina. Among the 16 POPs tested in those feathers, 6 PCBs (28, 52, 101, 138, 153, and 180) and 8 OCPs (α-HCH, β-HCH, γ-HCH, p,p'-DDE, p,p'-DDD, o,p'-DDT, p,p'-DDT, and HCB) were quantified. No PBDEs were detected. The total concentration of POPs was higher in populations living in an intensive crop production area (agriculture 159 ng g -1 and farm: 97.53 ng g-1) compared with the population in an urban area (zoo 45.86 ng g-1) and an agroecosystem with extensive rearing of livestock (cattle rearing 36.77 ng g-1). PCBs were the most abundant pollutants in all the populations studied. Lower chlorinated CB 52 and CB 101 were the principal PCB congeners detected, representing at least 70% of the total quantified. All populations studied showed a DDE + DDD/DDT ratio > 1, indicating a historical application of this insecticide. This study provides a new contribution to the scarce data on POP concentrations in South American bird species. Further investigations are needed to evaluate their potential effects on the health of individuals and populations.
Collapse
Affiliation(s)
- Alvina Lèche
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, CP 5000, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Rondeau 798, 5000, Cordoba, CP, Argentina.
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Liège, Belgium
| | - Mónica B Martella
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, CP 5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Rondeau 798, 5000, Cordoba, CP, Argentina
| | - Joaquín L Navarro
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, CP 5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Rondeau 798, 5000, Cordoba, CP, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecología, Cátedra de Problemática Ambiental, Cordoba, Argentina
| |
Collapse
|
186
|
van der Schyff V, Kwet Yive NSC, Polder A, Cole NC, Tatayah V, Kylin H, Bouwman H. Persistent organic pollutants in sea bird eggs from the Indian Ocean's Mascarene Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145348. [PMID: 33540163 DOI: 10.1016/j.scitotenv.2021.145348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
We report the concentrations of persistent organic pollutants (POPs) in seabird eggs from St. Brandon's Atoll, a tropical island system in the western Indian Ocean. Ten eggs each of sooty terns (Onychoprion fuscatus), fairy terns (Gygis alba), and common noddies (Anous stolidus) were collected from the atoll. For a terrestrial reference, we analysed three feral chicken (Gallus gallus domesticus) eggs from the same location. Sooty tern eggs contained the highest mean concentrations of three chemical classes: ƩCHL3 (0.21 ng/g wm; wet mass), ƩPCB10 (1.5 ng/g wm), and ƩPBDE6 (1.1 ng/g wm). Fairy tern eggs contained the highest mean concentrations of HCB (0.68 ng/g wm) and ƩCHB5 (0.83 ng/g wm). The chicken eggs contained the highest mean concentrations of ƩDDT3 (2.6 ng/g wm), while common noddy eggs contained the highest mean concentrations of ƩHCH2 (0.5 ng/g wm). We surmise that the differences in chemical composition between species reflect different pollutant compositions in prey from the bird's different foraging ranges. The sooty terns foraging offshore contained higher POPs concentrations than the nearshore-foraging common noddies. Fairy tern eggs contained intermediate concentrations, commensurate with their intermediate foraging. Inter-island differences in contaminant concentrations were seen between eggs of the common noddies from St. Brandon's Atoll and Rodrigues Island, 520 km to the south-east. Concentrations of contaminants found in this study were lower than values quantified by other studies, making St. Brandon's Atoll an ideal reference site to monitor background concentrations of POPs in the tropical Indian Ocean.
Collapse
Affiliation(s)
- Veronica van der Schyff
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | | | - Anuschka Polder
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0033 Oslo, Norway
| | - Nik C Cole
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey Channel Islands, UK; Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius
| | - Henrik Kylin
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Department of Water and Environmental Studies, Linköping University, Linköping, Sweden
| | - Hindrik Bouwman
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
187
|
Wen G, Pan S, Gan M, Liang A, Jiang Z. Aptamer-Regulated Gold Nanosol Plasmonic SERS/RRS Dimode Assay of Trace Organic Pollutants Based on TpPa-Loaded PdNC Catalytic Amplification. ACS APPLIED BIO MATERIALS 2021; 4:4582-4590. [PMID: 35006795 DOI: 10.1021/acsabm.1c00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As with excellent catalytic performance, palladium nanoclusters (PdNCs) have a wide range of applications. However, the traditional PdNCs are easy to agglomerate in the analysis system and lose their catalytic activity. A covalent organic framework (COF) has a definite structure, good stability, and easy surface functionalization. So, it is of great significance to develop stable PdNCs with high catalytic activity and then combine with advanced analysis techniques to analyze ultratrace small-molecule pollutants in the environment. In this research, a stable PdNC dispersed on a COF (PdTpPa) catalyst is prepared and we find it with strong catalysis for the NaH2PO2-HAuCl4 catalytic reaction. Furthermore, this nanocatalytic indicator reaction can be tracked by surface-enhanced Raman spectroscopy (SERS) and resonance Rayleigh scattering (RRS) dual-mode. Combined with a highly specific aptamer-modifying technique, a highly sensitive and selective SERS/RRS dimode assay platform for trace organic pollutants has been developed. The detection limits of oxytetracycline (OTC), glyphosate (GLY), tetracycline (TEC), and bisphenol A (BPA) are 0.64, 0.03, 6.2 × 10-3, and 0.53 × 10-3 ng/mL, respectively. This work also provides ideas for the application of COF materials and Pd nanocatalysts in the molecular spectral detection of trace pollutants.
Collapse
Affiliation(s)
- Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Siqi Pan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Mei Gan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
188
|
Nemiwal M, Zhang TC, Kumar D. Recent progress in g-C 3N 4, TiO 2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144896. [PMID: 33636763 DOI: 10.1016/j.scitotenv.2020.144896] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 05/27/2023]
Abstract
Water contamination by dyes is a matter of concern for human health and the environment. Various methods (membrane separation, coagulation and adsorption) have been explored to remove/degrade dyes. However, now the exploitation of semiconductor assisted materials using renewable solar energy has emerged as a potential candidate to resolve the issue. Although, single component photocatalysts (ZnO, TiO2, ZrO2) were experimented, due to their low efficiency and stability due to the high recombination rate electron-hole pair and inefficient visible light absorption, composites of semiconductor materials are being used. Semiconductor heterojunction systems are developed by coupling two or more semiconductor components. The synergistic effect of their properties, such as adsorption and improved charge carrier migration, is observed to increase overall stability. This review covers recent progress in advanced nanocomposite materials based on g-C3N4, TiO2 and ZnO used as photocatalysts with details of enhancing the photocatalytic properties by heterojunctions, crystallinity and doping. The conclusion at the end displays a summary, research gaps and future outlook. A holistic analysis of recent progress to demonstrate the efficient heterojunctions for photodegradation with optimal conditions, this review will be helpful for the development of efficient heterostructured systems for photodegradation. This review covers references from the year 2017-2020.
Collapse
Affiliation(s)
- Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India.
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, USA
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
189
|
Adithya S, Jayaraman RS, Krishnan A, Malolan R, Gopinath KP, Arun J, Kim W, Govarthanan M. A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams. CHEMOSPHERE 2021; 271:129866. [PMID: 33736213 DOI: 10.1016/j.chemosphere.2021.129866] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
The environmental impacts of persistent organic pollutants (POPs) is an increasingly prominent topic in the scientific community. POPs are stable chemicals that are accumulated in living beings and can act as endocrine disruptors or carcinogens on prolonged exposure. Although efforts have been taken to minimize or ban the use of certain POPs, their use is still widespread due to their importance in several industries. As a result, it is imperative that POPs in the ecosystem are degraded efficiently and safely in order to avoid long-lasting environmental damage. This review focuses on the degradation techniques of hexachlorocyclohexane (HCH), a pollutant that has strong adverse effects on a variety of organisms. Different technologies such as adsorption, bioremediation and advanced oxidation process have been critically analyzed in this study. All 3 techniques have exhibited near complete removal of HCH under ideal conditions, and the median removal efficiency values for adsorption, bioremediation and advanced oxidation process were found to be 80%, 93% and 82% respectively. However, it must be noted that there is no ideal HCH removal technique and the selection of removal method depends on several factors. Furthermore, the fates of HCH in the environment and challenges faced by HCH degradation have also been explained in this study. The future scope for research in this field has also received attention.
Collapse
Affiliation(s)
- Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Abhishek Krishnan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
190
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
191
|
Lesharadevi K, Parthasarathi T, Muneer S. Silicon biology in crops under abiotic stress: A paradigm shift and cross-talk between genomics and proteomics. J Biotechnol 2021; 333:21-38. [PMID: 33933485 DOI: 10.1016/j.jbiotec.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/26/2023]
Abstract
Silicon is a beneficial element to improve the biological process, growth, development, and crop productivity. The review mainly focuses on the advantage of crops supplemented with silicon, how Si alleviate abiotic stress as well as regulate the genes and proteins involved in metabolic and biological functions in plants. Abiotic stress causes damage to the proteins, nucleic acids, affect transpiration rate, stomatal conductance, alter the nutrient balance, and cell desiccation which could reduce the growth and development of the plants. To overcome from this problem researchers, focus on beneficial element like silicon to protect the plants against various abiotic stresses. The previous review reports are based on the application of silicon on salinity and drought stress, plant defense mechanism, the elevation of plant metabolism, enhancement of the biochemical and physiological properties, regulation of secondary metabolites and plant hormone. Here, we discuss about the silicon uptake and accumulation in plants, and silicon regulates the reactive oxygen species under abiotic stress, further we mainly focus on the genes and proteins which play a vital role in plants with silicon supplementation. The study can help the researchers to focus further on plants to improve the advancement in them under abiotic stress.
Collapse
Affiliation(s)
- Kuppan Lesharadevi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Plant Genomics and Biochemistry Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil-Nadu, India
| | - Theivasigamani Parthasarathi
- Plant Genomics and Biochemistry Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil-Nadu, India.
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, India.
| |
Collapse
|
192
|
Kiani A, Ahmadloo M, Moazzen M, Shariatifar N, Shahsavari S, Arabameri M, Hasani MM, Azari A, Abdel‐Wahhab MA. Monitoring of polycyclic aromatic hydrocarbons and probabilistic health risk assessment in yogurt and butter in Iran. Food Sci Nutr 2021; 9:2114-2128. [PMID: 33841828 PMCID: PMC8020939 DOI: 10.1002/fsn3.2180] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/07/2022] Open
Abstract
This study was conducted to determine the polycyclic aromatic hydrocarbons (PAHs) levels and health risk of yogurt and butter samples collected from Tehran using MSPE/GC-MS (magnetic solid-phase extraction/gas chromatography-mass spectrometry). The results revealed that the limit of detection (LOD) and limit of quantification (LOQ) were ranged from 0.040 to 0.060 and 0.121 to 0.181 μg/kg, respectively; with recoveries ranged from 86.1% to 100.3%. The highest mean of total PAHs was higher in butter (6.87 ± 1.21 μg/kg) than in yogurt (3.82 ± 0.54 μg/kg). The level of benzo (a)pyrene in all samples was lower than of standard levels of the European Union (EU). The highest value of all PAHs in samples was recorded in the winter season and also in the expiration date. The percentile 95% of the total hazard quotient (THQ) due to the consumption of yogurt and butter recorded 1.33E-02 and 3.69E-04 in adults and 6.12E-02 and 1.75E-03 in children, respectively. The percentile of 95% incremental lifetime of cancer risk (ILCR) due to the ingestion of yogurt and butter recorded 1.17E-06 and 2.02E-08 for adults and 5.51E-06 and 9.46E-08 for children, respectively. The rank order of 7 PAHs in adult and children based on P95% Hazard Quotient (HQ) in all samples was benzo(a)anthracene (BaA) > pyrene (P) > fluorene (F) > fluoranthene (Fl) > acenaphthylene (Ace) > anthracene (A) > naphthalene (NA). According to the Monte Carlo Simulation (MCS) method, health-risk assessment showed that children and adults are not at significant health risk.
Collapse
Affiliation(s)
- Amin Kiani
- Department of Public HealthSchool of Public HealthFasa University of Medical SciencesFasaIran
| | - Mahsa Ahmadloo
- Department of Food Safety and HygieneSchool of Public HealthQazvin University of Medical SciencesQazvinIran
| | - Mojtaba Moazzen
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nabi Shariatifar
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Saeed Shahsavari
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Majid Arabameri
- Food Safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| | - Mohammad Mahdi Hasani
- Department of Environmental Health EngineeringFaculty of HealthTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Ali Azari
- Department of Environmental Health EngineeringFaculty of HealthKashan University of Medical SciencesKashanIran
| | | |
Collapse
|
193
|
Zhu M, Chen H, Dai Y, Wu X, Han Z, Zhu Y. Novel n‐p‐n heterojunction of AgI/BiOI/UiO‐66 composites with boosting visible light photocatalytic activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Min Zhu
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Huimin Chen
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Yu Dai
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Xuanyu Wu
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Zhiguo Han
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing Taizhou University Taizhou China
| | - Yu Zhu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing Taizhou University Taizhou China
| |
Collapse
|
194
|
Riaz R, de Wit CA, Malik RN. Persistent organic pollutants (POPs) in fish species from different lakes of the lesser Himalayan region (LHR), Pakistan: The influence of proximal sources in distribution of POPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143351. [PMID: 33183795 DOI: 10.1016/j.scitotenv.2020.143351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Fish dwelling in remote mountain water systems are sensitive to long term exposure of POPs and can be used as an important bioindicator of POPs pollution in fragile mountain ecosystems. Current study aimed to investigate the concentrations and patterns of organic pollutants in fish tissues from different lakes of the Lesser Himalayan Region (LHR). OCPs, PCBs, PBDEs were analyzed in four common edible fish species of the LHR: Oncorhynchus mykiss, Labeo rohita, Hypophthalmichthys molitrix and Orechromis aureus. The fish were collected from lakes with different types of catchment areas (glacial, non-glacial mountain region and urban region) and extent of anthropogenic influence. The levels OCPs, PCBs and PBDEs analyzed in the selected fish species were in range of 0.21-587, 6.4-138 and 1.2-14 ng g-1 lw, respectively. The ∑DDTs, higher chlorinated PCBs, tetra- and penta-BDEs were more prevalent in urban and remote lakes whereas pp'-DDE, lower chlorinated PCBs and BDE-47 and -99 were predominant in fish species from glacial lakes. ∑DDTs, ∑PCBs and ∑PBDEs showed statistically significant differences (p < 0.05) among species, trophic guilds (carnivore, herbivore and omnivore) and feeding regimes (surface, bottom and column feeder) and ∑HCH showed a significant difference only among trophic guilds. The stable isotope values of δ 15N and δ13C differed significantly among species for ∑HCH, ∑PCBs, ∑PBDEs (p < 0.05) and ∑DDT (p < 0.01). The range of δ13C values (-34 to -19‰) indicated the importance of littoral and pelagic sources of dietary carbon. Trophic position and dietary proxies were identified as important variables for explaining the variability of the studied compounds. Kohonen self-organizing maps (SOM) showed that in addition to trophic position and other physiological characteristics of fish, that the type of lakes and proximal sources of POPs were the most important predictors for distribution of organic contaminants in fish samples from LHR.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden..
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| |
Collapse
|
195
|
Quadri-Adrogué A, Seco Pon JP, García GO, Castano MV, Copello S, Favero M, Beatriz Miglioranza KS. Chlorpyrifos and persistent organic pollutants in feathers of the near threatened Olrog's Gull in southeastern Buenos Aires Province, Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115918. [PMID: 33143978 DOI: 10.1016/j.envpol.2020.115918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The use of bird feathers to assess environmental contamination has steadily increased in ecotoxicological monitoring programs over the past decade. The Olrog's Gull (Larus atlanticus) is a species endemic to the Atlantic coast of southern South America, constituting one of the three threatened gull species listed in the entire American continent. The aim of this study was to assess the exposure to Persistent Organic Pollutants (POPs) and chlorpyrifos in the Near Threatened Olrog's Gull through the analysis of body feathers sampled at the Mar Chiquita coastal lagoon, the main wintering area of the species in Argentina, controlling for sex and age class. Chlorpyrifos showed the highest concentrations among all contaminants and groups of individuals (X¯ = 263 ng g-1), while among POPs the concentration of organochlorine pesticides was higher than polychlorinated biphenyls and polybrominated diphenyl ethers, likely indicating the current use of these agricultural contaminant in the region. The highest values of total POP concentrations (males X¯ = 280 ng g-1, females X¯ = 301 ng g-1) were found in juvenile gulls, likely as a consequence of the incorporation of pollutants during the breeding season. Subadult and adult birds showed difference between sexes in the concentration of contaminants, with higher levels in males than females. The results highlight the need to include birds of different sex and age classes in order to better understand the variation in pollutants loads. The present study provides relevant information to improve the conservation status of the Olrog's Gull and new insights about the environmental health of the Mar Chiquita coastal lagoon, Argentina, a MAB-UNESCO World Biosphere Reserve. However, there is a continued need for long-term monitoring programs focusing on this threatened species to understand the effects of pollutants on its population.
Collapse
Affiliation(s)
- Agustina Quadri-Adrogué
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina
| | - Juan Pablo Seco Pon
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina.
| | - Germán Oscar García
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Melina Vanesa Castano
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Sofia Copello
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Marco Favero
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| |
Collapse
|
196
|
Thakali A, MacRae JD. A review of chemical and microbial contamination in food: What are the threats to a circular food system? ENVIRONMENTAL RESEARCH 2021; 194:110635. [PMID: 33347866 DOI: 10.1016/j.envres.2020.110635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A circular food system is one in which food waste is processed to recover plant nutrients and returned to the soil to enable the production of more food, rather than being diverted to landfill or incineration. The approach may be used to reduce energy and water use in food production and contribute to the sustainability of the system. Anaerobic digestion and composting are common food waste treatment technologies used to stabilize waste and produce residual materials that can replenish the soil, thus contributing to a circular food system. This approach can only be deemed safe and feasible, however, if food waste is uncontaminated or any contaminants are destroyed during treatment. This review brings together information on several contaminant classes at different stages of the food supply chain, their possible sources, and their fates during composting and digestion. The main aim is to identify factors that could impede the transition towards a safe, reliable and efficient circular food system. We investigated heavy metals, halogenated organic compounds, foodborne pathogens and antibiotic resistance genes (ARGs) in the food system and their fates during digestion and composting. Production and processing stages were identified as major entry points for these classes of contaminants. Heavy metals and foodborne pathogens pose less risk in a circular system than halogenated organics or antibiotic resistance. Given the diversity of properties among halogenated organic compounds, there is conflicting evidence about their fate during treatment. There are relatively few studies on the fate of ARGs during treatment, and these have produced variable results, indicating a need for more research to clarify their fate in the final products. Repeated land application of contaminated food waste residuals can increase the risk of accumulation and jeopardize the safety of a circular food system. Thus, careful management of the system and research into the fate of the contaminants during treatment is needed.
Collapse
Affiliation(s)
- Astha Thakali
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| |
Collapse
|
197
|
Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116201] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
198
|
Xu H, Yang H, Ge Q, Jiang Z, Wu Y, Yu Y, Han D, Cheng J. Long-term study of heavy metal pollution in the northern Hangzhou Bay of China: temporal and spatial distribution, contamination evaluation, and potential ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10718-10733. [PMID: 33099735 DOI: 10.1007/s11356-020-11110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Coastal ecosystem is vulnerable to heavy metal contamination. The northern Hangzhou Bay is under intensifying impact of anthropogenic activities. To reveal the heavy metal pollution status in the coastal environment of the Hangzhou Bay, a long-term investigation into the heavy metal contamination during 2011 to 2016 was initiated. Seawater and sediment samples of 25 locations depending on the sewage outlet locations in the northern Hangzhou Bay were collected to analyze the concentrations and temporal and spatial distribution of Cu, Pb, Zn, Cd, Hg, and As. Pollution condition, ecological risk, and potential sources were additionally analyzed. Results show that the annual mean concentrations of Cu, Pb, Zn, Cd, Hg, and As were 2.13-4.59, 0.212-1.480, 7.81-20.34, 0.054-0.279, 0.026-0.090, and 1.08-2.57 μg/L in the seawater, and were 16.34-28.35, 16.25-26.33, 67.32-97.61, 0.084-0.185, 0.029-0.061, and 6.09-14.08 μg/L in the sediments. A decreasing trend in Cu, Pb, Zn, Cd, and Hg concentrations and an increasing trend in As of the seawater were observed. However, in the sediment, the heavy metals demonstrated a rising trend, except for Hg. The single-factor pollution index showed an increasing trend in Cd and As in the seawater, depicting an enhanced pollution of Cd and As, while in the sediments, Cu, Pb, and As were in pollution-free level (average Geo-accumulation index (Igeo) values below 0) in general, and only occasional slight pollution occurred in individual years, e.g., As with 0.403 in 2016. The mean Igeo values of Cd ranged from - 0.865 to 0.274 during 2011 to 2016, indicating that the pollution level of Cd was slight, but is likely to increase in the forthcoming years. The level of heavy metal contamination in sediments was low in 2011 (5.853) and 2012 (5.172), and moderate during 2013 to 2016 (in the range of 6.107 to 7.598), while the degree of potential ecological risk was low in the study period, except moderate in 2013 (125.107). The highest contamination degree and potential ecological risk appeared in 2013 (Cd = 7.598; RI = 125.107), while Cd and Hg contributed over 75% of the ecological risk. Overall, the results show low pollution level and low potential ecological risk in the northern Hangzhou Bay; however, more attention should be paid to the potential ecological risk due to Hg and Cd. Graphical abstract Spatial distribution of the heavy metal levels in the sediment of the coastal environment of the northern Hangzhou Bay on a long-term basis.
Collapse
Affiliation(s)
- Hao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huahong Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- Marine Forecast Center of East China Sea, State Oceanic Administration, Shanghai, 200081, China
| | - Qiyun Ge
- Administrative Service Center, Shanghai Municipal Oceanic Bureau, Shanghai, 200050, China
| | - Zhenyi Jiang
- Administrative Service Center, Shanghai Municipal Oceanic Bureau, Shanghai, 200050, China
| | - Yang Wu
- Administrative Service Center, Shanghai Municipal Oceanic Bureau, Shanghai, 200050, China
| | - Yamei Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Deming Han
- School of Environmental, Tsinghua University, Beijing, 100084, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
199
|
Senathirajah K, Attwood S, Bhagwat G, Carbery M, Wilson S, Palanisami T. Estimation of the mass of microplastics ingested - A pivotal first step towards human health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124004. [PMID: 33130380 DOI: 10.1016/j.jhazmat.2020.124004] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 05/07/2023]
Abstract
The ubiquitous presence of microplastics in the food web has been established. However, the mass of microplastics exposure to humans is not defined, impeding the human health risk assessment. Our objectives were to extract the data from the available evidence on the number and mass of microplastics from various sources, to determine the uncertainties in the existing data, to set future research directions, and derive a global average rate of microplastic ingestion to assist in the development of human health risk assessments and effective management and policy options. To enable the comparison of microplastics exposure across a range of sources, data extraction and standardization was coupled with the adoption of conservative assumptions. Following the analysis of data from fifty-nine publications, an average mass for individual microplastics in the 0-1 mm size range was calculated. Subsequently, we estimated that globally on average, humans may ingest 0.1-5 g of microplastics weekly through various exposure pathways. This was the first attempt to transform microplastic counts into a mass value relevant to human toxicology. The determination of an ingestion rate is fundamental to assess the human health risks of microplastic ingestion. These findings will contribute to future human health risk assessment frameworks.
Collapse
Affiliation(s)
- Kala Senathirajah
- Global Innovative Centre for Advanced Nanomaterials(GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Simon Attwood
- The World Wide Fund for Nature (WWF), 354 Tanglin Road, Singapore, Singapore
| | - Geetika Bhagwat
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maddison Carbery
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Scott Wilson
- Department of Environmental Science, Macquarie University, Sydney, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials(GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
200
|
Xu R, Liu W, Cai J, Li Z. Robust RGO composite aerogels with high adsorption capabilities for organic pollutants in water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|