151
|
Whitlock JR, Pfuhl G, Dagslott N, Moser MB, Moser EI. Functional split between parietal and entorhinal cortices in the rat. Neuron 2012; 73:789-802. [PMID: 22365551 DOI: 10.1016/j.neuron.2011.12.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 10/28/2022]
Abstract
Posterior parietal cortex (PPC) and medial entorhinal cortex (MEC) are important elements of the neural circuit for space, but whether representations in these areas are controlled by the same factors is unknown. We recorded single units simultaneously in PPC and MEC of freely foraging rats and found that a subset of PPC cells are tuned to specific modes of movement irrespective of the animals' location or heading, whereas grid cells in MEC expressed static spatial maps. The behavioral correlates of PPC cells switched completely when the same animals ran in a spatially structured maze or when they ran similar stereotypic sequences in an open arena. Representations in PPC were similar in identical mazes in different rooms where grid cells completely realigned their firing fields. The data suggest that representations in PPC are determined by the organization of actions while cells in MEC are driven by spatial inputs.
Collapse
Affiliation(s)
- Jonathan R Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
152
|
Li Y, Fan S, Yan J, Li B, Chen F, Xia J, Yu Z, Hu Z. Adenosine modulates the excitability of layer II stellate neurons in entorhinal cortex through A1 receptors. Hippocampus 2012; 21:265-80. [PMID: 20054814 DOI: 10.1002/hipo.20745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stellate neurons in layer II entorhinal cortex (EC) provide the main output from the EC to the hippocampus. It is believed that adenosine plays a crucial role in neuronal excitability and synaptic transmission in the CNS, however, the function of adenosine in the EC is still elusive. Here, the data reported showed that adenosine hyperpolarized stellate neurons in a concentration-dependent manner, accompanied by a decrease in firing frequency. This effect corresponded to the inhibition of the hyperpolarization-activated, cation nonselective (HCN) channels. Surprisingly, the adenosine-induced inhibition was blocked by 3 μM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) receptor antagonists, but not by 10 μM 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A(2) receptor antagonists, indicating that activation of adenosine A(1) receptors were responsible for the direct inhibition. In addition, adenosine reduced the frequency but not the amplitude of miniature EPSCs and IPSCs, suggesting that the global depression of glutamatergic and GABAergic transmission is mediated by a decrease in glutamate and GABA release, respectively. Again the presynaptic site of action was mediated by adenosine A(1) receptors. Furthermore, inhibition of spontaneous glutamate and GABA release by adenosine A(1) receptor activation was mediated by voltage-dependent Ca(2+) channels and extracellular Ca(2+) . Therefore, these findings revealed direct and indirect mechanisms by which activation of adenosine A(1) receptors on the cell bodies of stellate neurons and on the presynaptic terminals could regulate the excitability of these neurons.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Erdem UM, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci 2012; 35:916-31. [PMID: 22393918 DOI: 10.1111/j.1460-9568.2012.08015.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A goal-directed navigation model is proposed based on forward linear look-ahead probe of trajectories in a network of head direction cells, grid cells, place cells and prefrontal cortex (PFC) cells. The model allows selection of new goal-directed trajectories. In a novel environment, the virtual rat incrementally creates a map composed of place cells and PFC cells by random exploration. After exploration, the rat retrieves memory of the goal location, picks its next movement direction by forward linear look-ahead probe of trajectories in several candidate directions while stationary in one location, and finds the one activating PFC cells with the highest reward signal. Each probe direction involves activation of a static pattern of head direction cells to drive an interference model of grid cells to update their phases in a specific direction. The updating of grid cell spiking drives place cells along the probed look-ahead trajectory similar to the forward replay during waking seen in place cell recordings. Directions are probed until the look-ahead trajectory activates the reward signal and the corresponding direction is used to guide goal-finding behavior. We report simulation results in several mazes with and without barriers. Navigation with barriers requires a PFC map topology based on the temporal vicinity of visited place cells and a reward signal diffusion process. The interaction of the forward linear look-ahead trajectory probes with the reward diffusion allows discovery of never-before experienced shortcuts towards a goal location.
Collapse
Affiliation(s)
- Uğur M Erdem
- Center for Memory and Brain and Program in Neuroscience, Boston University, 2 Cummington Street, Boston, MA 02215, USA.
| | | |
Collapse
|
154
|
Brandon MP, Bogaard A, Andrews CM, Hasselmo ME. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus 2012; 22:604-18. [PMID: 21509854 PMCID: PMC3288437 DOI: 10.1002/hipo.20924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 11/10/2022]
Abstract
During slow-wave sleep (SWS) and rapid eye movement (REM) sleep, hippocampal place cells in the rat show replay of sequences previously observed during waking. We tested the hypothesis from computational modeling that the temporal structure of REM sleep replay could arise from an interplay of place cells with head direction cells in the postsubiculum. Physiological single-unit recording was performed simultaneously from five or more head direction or place by head direction cells in the postsubiculum during running on a circular track allowing sampling of a full range of head directions, and during sleep periods before and after running on the circular track. Data analysis compared the spiking activity during individual REM periods with waking as in previous analysis procedures for REM sleep. We also used a new procedure comparing groups of similar runs during waking with REM sleep periods. There was no consistent evidence for a statistically significant correlation of the temporal structure of spiking during REM sleep with spiking during waking running periods. Thus, the spiking activity of head direction cells during REM sleep does not show replay of head direction cell activity occurring during a previous waking period of running on the task. In addition, we compared the spiking of postsubiculum neurons during hippocampal sharp wave ripple events. We show that head direction cells are not activated during sharp wave ripples, whereas neurons responsive to place in the postsubiculum show reliable spiking at ripple events.
Collapse
Affiliation(s)
- Mark P. Brandon
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St., Boston, Massachusetts 02215, (617) 353-1397, FAX: (617) 353-1424
| | - Andrew Bogaard
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St., Boston, Massachusetts 02215, (617) 353-1397, FAX: (617) 353-1424
| | - Chris M. Andrews
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St., Boston, Massachusetts 02215, (617) 353-1397, FAX: (617) 353-1424
| | - Michael E. Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St., Boston, Massachusetts 02215, (617) 353-1397, FAX: (617) 353-1424
| |
Collapse
|
155
|
Wang S, Chen X, Kurada L, Huang Z, Lei S. Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex 2012; 22:584-94. [PMID: 21677028 PMCID: PMC3450593 DOI: 10.1093/cercor/bhr131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. The mGluR II-induced depression was due to a selective reduction of presynaptic release probability without alterations of the quantal size and the number of release sites. The mechanisms underlying mGluR II-mediated suppression of glutamate release included the inhibition of presynaptic release machinery and the depression of presynaptic P/Q-type Ca(2+) channels. Whereas mGluR II-induced depression required the function of Gα(i/o) proteins, protein kinase A (PKA) pathway was only involved in mGluR II-mediated inhibition of release machinery and thereby partially required for mGluR II-induced inhibition of glutamate release. Presynaptic stimulation at 5 Hz for 10 min also induced depression of glutamatergic transmission via activation of presynaptic mGluR II suggesting an endogenous role for mGluR II in modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Anesthesiology
| | - Xiaotong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, P. R. China
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, P. R. China
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
156
|
Canto CB, Witter MP. Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex. Hippocampus 2011; 22:1256-76. [PMID: 22162008 DOI: 10.1002/hipo.20997] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2011] [Indexed: 11/10/2022]
Abstract
The lateral entorhinal cortex (LEC) provides a major cortical input to the hippocampal formation, equaling that of the medial entorhinal cortex (MEC). To understand the functional contributions made by LEC, basic knowledge of individual neurons, in the context of the intrinsic network, is needed. The aim of this study is to compare physiological and morphological properties of principal neurons in different LEC layers in postnatal rats. Using in vitro whole cell current-clamp recordings from up to four post hoc morphologically identified neurons simultaneously, we established that principal neurons show layer specific physiological and morphological properties, similar to those reported previously in adults. Principal neurons in L(ayer) I, LII, and LIII have the majority of their dendrites and axonal collaterals alone in superficial layers. LV contains mainly pyramidal neurons with dendrites and axons extending throughout all layers. A minority of LV and all principal neurons in LVI are neurons with dendrites confined to deep layers and axons in superficial and deep layers. Physiologically, input resistances and time constants of LII neurons are lower and shorter, respectively, than those observed in LV neurons. Fifty-four percent of LII neurons have sag potentials, resonance properties, and rebounds at the offset of hyperpolarizing current injection, whereas LIII and LVI neurons do not have any of these. LV neurons show prominent spike-frequency adaptation and a decrease in spike amplitudes in response to strong depolarization. Despite the well-developed interlaminar communication in LEC, the laminar differences in the biophysical and morphological properties of neurons suggest that their in vivo firing patterns and functions differ, similar to what is known for neurons in different MEC layers.
Collapse
Affiliation(s)
- Cathrin B Canto
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
157
|
Canto CB, Witter MP. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex. Hippocampus 2011; 22:1277-99. [PMID: 22161956 DOI: 10.1002/hipo.20993] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2011] [Indexed: 11/05/2022]
Abstract
Principal neurons in different medial entorhinal cortex (MEC) layers show variations in spatial modulation that stabilize between 15 and 30 days postnatally. These in vivo variations are likely due to differences in intrinsic membrane properties and integrative capacities of neurons. The latter depends on inputs and thus potentially on the morphology of principal neurons. In this comprehensive study, we systematically compared the morphological and physiological characteristics of principal neurons in all MEC layers of newborn rats before and after weaning. We recorded simultaneously from up to four post-hoc morphologically identified MEC principal neurons in vitro. Neurons in L(ayer) I-LIII have dendritic and axonal arbors mainly in superficial layers, and LVI neurons mainly in deep layers. The dendritic and axonal trees of part of LV neurons diverge throughout all layers. Physiological properties of principal neurons differ between layers. In LII, most neurons have a prominent sag potential, resonance and membrane oscillations. Neurons in LIII and LVI fire relatively regular, and lack sag potentials and membrane oscillations. LV neurons show the most prominent spike-frequency adaptation and highest input resistance. The data indicate that adult-like principal neuron types can be differentiated early on during postnatal development. The results of the accompanying paper, in which principal neurons in the lateral entorhinal cortex (LEC) were described (Canto and Witter,2011), revealed that significant differences between LEC and MEC exist mainly in LII neurons. We therefore systematically analyzed changes in LII biophysical properties along the mediolateral axis of MEC and LEC. There is a gradient in properties typical for MEC LII neurons. These properties are most pronounced in medially located neurons and become less apparent in more laterally positioned ones. This gradient continues into LEC, such that in LEC medially positioned neurons share some properties with adjacent MEC cells.
Collapse
Affiliation(s)
- Cathrin B Canto
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
158
|
Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory. Science 2011; 334:1415-20. [DOI: 10.1126/science.1210125] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
159
|
The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiol Learn Mem 2011; 96:361-6. [DOI: 10.1016/j.nlm.2011.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/20/2011] [Accepted: 06/18/2011] [Indexed: 11/21/2022]
|
160
|
Park SS, Stranahan AM, Chadwick W, Zhou Y, Wang L, Martin B, Becker KG, Maudsley S. Cortical gene transcription response patterns to water maze training in aged mice. BMC Neurosci 2011; 12:63. [PMID: 21714909 PMCID: PMC3142531 DOI: 10.1186/1471-2202-12-63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/29/2011] [Indexed: 11/20/2022] Open
Abstract
Background The hippocampus mediates the acquisition of spatial memory, but the memory trace is eventually transferred to the cortex. We have investigated transcriptional activation of pathways related to cognitive function in the cortex of the aged mouse by analyzing gene expression following water maze training. Results We identified genes that were differentially responsive in aged mice with accurate spatial performance during probe trials or repeated swimming sessions, relative to home cage conditions. Effective learners exhibited significantly greater activation of several pathways, such as the mitogen-activated protein kinase and insulin receptor signaling pathways, relative to swimmers. The genes encoding activity-related cytoskeletal protein (Arc) and brain-derived neurotrophic factor (BDNF) were upregulated in proficient learners, relative to swimmers and home cage controls, while the gene encoding Rho GTPase activating protein 32 (GRIT) was downregulated. We explored the regulation of Arc, BDNF, and GRIT expression in greater morphological detail using in situ hybridization. Recall during probe trials enhanced Arc expression across multiple cortical regions involved in the cognitive component of water maze learning, while BDNF expression was more homogeneously upregulated across cortical regions involved in the associational and sensorimotor aspects of water maze training. In contrast, levels of GRIT expression were uniformly reduced across all cortical regions examined. Conclusions These results suggest that cortical gene transcription is responsive to learning in aged mice that exhibit behavioral proficiency, and support a distributed hypothesis of memory storage across multiple cortical compartments.
Collapse
Affiliation(s)
- Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Duffy AM, Schaner MJ, Wu SH, Staniszewski A, Kumar A, Arévalo JC, Arancio O, Chao MV, Scharfman HE. A selective role for ARMS/Kidins220 scaffold protein in spatial memory and trophic support of entorhinal and frontal cortical neurons. Exp Neurol 2011; 229:409-20. [PMID: 21419124 PMCID: PMC3100364 DOI: 10.1016/j.expneurol.2011.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
Abstract
Progressive cortical pathology is common to several neurodegenerative and psychiatric disorders. The entorhinal cortex (EC) and frontal cortex (FC) are particularly vulnerable, and neurotrophins have been implicated because they appear to be protective. A downstream signal transducer of neurotrophins, the ankyrin repeat-rich membrane spanning scaffold protein/Kidins 220 (ARMS) is expressed in the cortex, where it could play an important role in trophic support. To test this hypothesis, we evaluated mice with a heterozygous deletion of ARMS (ARMS(+/-) mice). Remarkably, the EC and FC were the regions that demonstrated the greatest defects. Many EC and FC neurons became pyknotic in ARMS(+/-) mice, so that large areas of the EC and FC were affected by 12 months of age. Areas with pyknosis in the EC and FC of ARMS(+/-) mice were also characterized by a loss of immunoreactivity to a neuronal antigen, NeuN, which has been reported after insult or injury to cortical neurons. Electron microscopy showed that there were defects in mitochondria, myelination, and multilamellar bodies in the EC and FC of ARMS(+/-) mice. Although primarily restricted to the EC and FC, pathology appeared to be sufficient to cause functional impairments, because ARMS(+/-) mice performed worse than wild-type on the Morris water maze. Comparisons of males and females showed that female mice were the affected sex in all comparisons. Taken together, the results suggest that the expression of a prominent neurotrophin receptor substrate normally protects the EC and FC, and that ARMS may be particularly important in females.
Collapse
Affiliation(s)
- Aine M Duffy
- The Nathan Kline Institute for Psychiatric Research, Center for Dementia Research, Orangeburg, New York, NY 10962, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Travis SG, Sparks FT, Arnold T, Lehmann H, Sutherland RJ, Whishaw IQ. Hippocampal damage produces retrograde but not anterograde amnesia for a cued location in a spontaneous exploratory task in rats. Hippocampus 2011; 20:1095-104. [PMID: 19957337 DOI: 10.1002/hipo.20710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Performance in several memory tasks is known to be unaffected by hippocampal damage sustained before learning, but is severely disrupted if the same damage occurs after learning. Memories for preferred locations, or home bases, in exploratory tasks can be formed by rats with hippocampal damage, but it is unknown if the memory for a home base survives hippocampal damage. To examine this question, for 30 min each day for five consecutive days, rats explored a circular open field containing one local cue. By Day 5 the rats preferentially went directly to that location, spent the majority of their time at that location, made rapid direct trips to that location when returning from an excursion and so demonstrated that the location was a home base. Memory for the cued location was examined after a 24 h or 14-day interval with the cue removed. In Experiments 1 and 2, control rats and rats with prior N-methyl-D-aspartic acid hippocampal lesions demonstrated memory of the home base location by making direct trips to that location. In Experiment 3, rats that had first explored the open field and cue and then received hippocampal lesions showed no memory for the cued location. The absence of anterograde impairment vs. the presence of retrograde impairment for memory of a spatial home base confirms a role for the hippocampus in the retention of spatial memory acquired during exploration.
Collapse
Affiliation(s)
- Scott G Travis
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
163
|
Burke SN, Maurer AP, Nematollahi S, Uprety AR, Wallace JL, Barnes CA. The influence of objects on place field expression and size in distal hippocampal CA1. Hippocampus 2011; 21:783-801. [PMID: 21365714 DOI: 10.1002/hipo.20929] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2010] [Indexed: 11/09/2022]
Abstract
The perirhinal and lateral entorhinal cortices send prominent projections to the portion of the hippocampal CA1 subfield closest to the subiculum, but relatively little is known regarding the contributions of these cortical areas to hippocampal activity patterns. The anatomical connections of the lateral entorhinal and perirhinal cortices, as well as lesion data, suggest that these brain regions may contribute to the perception of complex stimuli such as objects. The current experiments investigated the degree to which three-dimensional objects affect place field size and activity within the distal region (closest to the subiculum) of CA1. The activity of CA1 pyramidal cells was monitored as rats traversed a circular track that contained no objects in some conditions and three-dimensional objects in other conditions. In the area of CA1 that receives direct lateral entorhinal input, three factors differentiated the objects-on-track conditions from the no-object conditions: more pyramidal cells expressed place fields when objects were present, adding or removing objects from the environment led to partial remapping in CA1, and the size of place fields decreased when objects were present. In addition, a proportion of place fields remapped under conditions in which the object locations were shuffled, which suggests that at least some of the CA1 neurons' firing patterns were sensitive to a particular object in a particular location. Together, these data suggest that the activity characteristics of neurons in the areas of CA1 receiving direct input from the perirhinal and lateral entorhinal cortices are modulated by non-spatial sensory input such as three-dimensional objects. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Sara N Burke
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, USA
| | | | | | | | | | | |
Collapse
|
164
|
Ramirez JJ, Poulton WE, Knelson E, Barton C, King MA, Klein RL. Focal expression of mutated tau in entorhinal cortex neurons of rats impairs spatial working memory. Behav Brain Res 2011; 216:332-40. [PMID: 20727915 PMCID: PMC2975819 DOI: 10.1016/j.bbr.2010.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/06/2010] [Accepted: 08/12/2010] [Indexed: 01/21/2023]
Abstract
Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately 3 months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about 6 weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD.
Collapse
Affiliation(s)
- Julio J Ramirez
- Department of Psychology, Davidson College, Davidson, NC 28035, USA.
| | | | | | | | | | | |
Collapse
|
165
|
Sauvage MM, Beer Z, Ekovich M, Ho L, Eichenbaum H. The caudal medial entorhinal cortex: a selective role in recollection-based recognition memory. J Neurosci 2010; 30:15695-9. [PMID: 21084625 PMCID: PMC3073554 DOI: 10.1523/jneurosci.4301-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 11/21/2022] Open
Abstract
Recent studies have suggested that the caudal medial entorhinal cortex (cMEC) is specialized for path integration and spatial navigation. However, cMEC is part of a brain system that supports episodic memory for both spatial and nonspatial events, and so may play a role in memory function that goes beyond navigation. Here, we used receiver operating characteristic analysis to investigate the role of the cMEC in familiarity and recollection processes that underlie nonspatial recognition memory in rats. The results indicate that cMEC plays a critical and selective role in recollection-based performance, supporting the view that cMEC supports memory for the spatial and temporal context in which events occur.
Collapse
Affiliation(s)
- Magdalena M. Sauvage
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
- Functional Architecture of Memory Unit, Mercator Research Group, Faculty of Medecine, Ruhr University Bochum, Bochum 44 801, Germany
| | - Zachery Beer
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
- Functional Architecture of Memory Unit, Mercator Research Group, Faculty of Medecine, Ruhr University Bochum, Bochum 44 801, Germany
| | - Muriel Ekovich
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| | - Lucy Ho
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| | - Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| |
Collapse
|
166
|
Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, Palop JJ, Masliah E, Mucke L. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 2010; 68:428-41. [PMID: 21040845 PMCID: PMC3050043 DOI: 10.1016/j.neuron.2010.10.020] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2010] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is one of the earliest affected, most vulnerable brain regions in Alzheimer's disease (AD), which is associated with amyloid-β (Aβ) accumulation in many brain areas. Selective overexpression of mutant amyloid precursor protein (APP) predominantly in layer II/III neurons of the EC caused cognitive and behavioral abnormalities characteristic of mouse models with widespread neuronal APP overexpression, including hyperactivity, disinhibition, and spatial learning and memory deficits. APP/Aβ overexpression in the EC elicited abnormalities in synaptic functions and activity-related molecules in the dentate gyrus and CA1 and epileptiform activity in parietal cortex. Soluble Aβ was observed in the dentate gyrus, and Aβ deposits in the hippocampus were localized to perforant pathway terminal fields. Thus, APP/Aβ expression in EC neurons causes transsynaptic deficits that could initiate the cortical-hippocampal network dysfunction in mouse models and human patients with AD.
Collapse
Affiliation(s)
- Julie A. Harris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Laure Verret
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Brian Halabisky
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Myo T. Thwin
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Patricia Hamto
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Eliezer Masliah
- Departments of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
167
|
Clark BJ, Taube JS. Intact landmark control and angular path integration by head direction cells in the anterodorsal thalamus after lesions of the medial entorhinal cortex. Hippocampus 2010; 21:767-82. [PMID: 21049489 DOI: 10.1002/hipo.20874] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2010] [Indexed: 01/11/2023]
Abstract
The medial entorhinal cortex (MEC) occupies a central position within neural circuits devoted to the representation of spatial location and orientation. The MEC contains cells that fire as a function of the animal's head direction (HD), as well as grid cells that fire in multiple locations in an environment, forming a repeating hexagonal pattern. The MEC receives inputs from widespread areas of the cortical mantle including the ventral visual stream, which processes object recognition information, as well as information about visual landmarks. The role of the MEC in processing the HD signal or landmark information is unclear. We addressed this issue by neurotoxically damaging the MEC and recording HD cells within the anterodorsal thalamus (ADN). Direction-specific activity was present in the ADN of all animals with MEC lesions. Moreover, the discharge characteristics of ADN HD cells were only mildly affected by MEC lesions, with HD cells exhibiting greater anticipation of future HDs. Tests of landmark control revealed that HD cells in lesioned rats were capable of accurately updating their preferred firing directions in relation to a salient visual cue. Furthermore, cells from lesioned animals maintained stable preferred firing directions when locomoting in darkness and demonstrated stable HD cell tuning when locomoting into a novel enclosure, suggesting that MEC lesions did not disrupt the integration of idiothetic cues, or angular path integration, by HD cells. Collectively, these findings suggest that the MEC plays a limited role in the formation and spatial updating of the HD cell signal.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
168
|
Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse. Neuroscience 2010; 170:156-65. [PMID: 20600643 DOI: 10.1016/j.neuroscience.2010.06.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/08/2010] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
Modelling entorhinal function or evaluating the consequences of neuronal losses which accompany neurodegenerative disorders requires detailed information on the quantitative cellular composition of the normal entorhinal cortex. Using design-based stereological methods, we estimated the numbers, proportions, densities and sectional areas of layer II cells in the medial entorhinal area (MEA), and its constituent caudal entorhinal (CE) and medial entorhinal (ME) fields, in the rat and mouse. We estimated layer II of the MEA to contain approximately 58,000 neurons in the rat and approximately 24,000 neurons in the mouse. Field CE accounted for more than three-quarters of the total neuron population in both species. In the rat, layer II of the MEA is comprised of 38% ovoid stellate cells, 29% polygonal stellate cells and 17% pyramidal cells. The remainder is comprised of much smaller populations of horizontal bipolar, tripolar, oblique pyramidal and small round cells. In the mouse, MEA layer II is comprised of 52% ovoid stellate cells, 22% polygonal stellate cells and 14% pyramidal cells. Significant species differences in the proportions of ovoid and polygonal stellate cells suggest differences in physiological and functional properties. The majority of MEA layer II cells contribute to the entorhinal-hippocampal pathways. The degree of divergence from MEA layer II cells to the dentate granule cells was similar in the rat and mouse. In both rat and mouse, the only dorsoventral difference we observed is a gradient in polygonal stellate cell sectional area, which may relate to the dorsoventral increase in the size and spacing of individual neuronal firing fields. In summary, we found species-specific cellular compositions of MEA layer II, while, within a species, quantitative parameters other than cell size are stable along the dorsoventral and mediolateral axis of the MEA.
Collapse
|
169
|
Gusev PA, Gubin AN. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci 2010; 4:15. [PMID: 20577636 PMCID: PMC2889723 DOI: 10.3389/fnint.2010.00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/23/2010] [Indexed: 11/13/2022] Open
Abstract
The neocortex plays a critical role in the gradual formation and storage of remote declarative memories. Because the circuitry mechanisms of systems-level consolidation are not well understood, the precise cortical sites for memory storage and the nature of enduring memory correlates (mnemonic plasticity) are largely unknown. Detailed maps of neuronal activity underlying recent and remote memory recall highlight brain regions that participate in systems consolidation and constitute putative storage sites, and thus may facilitate detection of mnemonic plasticity. To localize cortical regions involved in the recall of a spatial memory task, we trained rats in a water-maze and then mapped mRNA expression patterns of a neuronal activity marker Arc/Arg3.1 (Arc) upon recall of recent (24 h after training) or remote (1 month after training) memories and compared them with swimming and naive controls. Arc gene expression was significantly more robust 24 h after training compared to 1 month after training. Arc expression diminished in the parietal, cingulate and visual areas, but select segments in the prefrontal, retrosplenial, somatosensory and motor cortical showed similar robust increases in the Arc expression. When Arc expression was compared across select segments of sensory, motor and associative regions within recent and remote memory groups, the overall magnitude and cortical laminar patterns of task-specific Arc expression were similar (stereotypical). Arc mRNA fractions expressed in the upper cortical layers (2/3, 4) increased after both recent and remote recall, while layer 6 fractions decreased only after the recent recall. The data suggest that robust recall of remote memory requires an overall smaller increase in neuronal activity within fewer cortical segments. This activity trend highlights the difficulty in detecting the storage sites and plasticity underlying remote memory. Application of the Arc maps may ameliorate this difficulty.
Collapse
Affiliation(s)
- Pavel A Gusev
- Blanchette Rockefeller Neurosciences Institute Rockville, MD, USA
| | | |
Collapse
|
170
|
Valerio S, Clark BJ, Chan JHM, Frost CP, Harris MJ, Taube JS. Directional learning, but no spatial mapping by rats performing a navigational task in an inverted orientation. Neurobiol Learn Mem 2010; 93:495-505. [PMID: 20109566 PMCID: PMC2862784 DOI: 10.1016/j.nlm.2010.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/01/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022]
Abstract
Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In Experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 29 days of training. Animals in the 1-start point group reached criterion after about six training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when navigating to the escape hole from a novel start point. This absence of flexibility while navigating upside-down was confirmed in Experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks.
Collapse
Affiliation(s)
| | | | - Jeremy H. M. Chan
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755
| | - Carlton P. Frost
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755
| | - Mark J. Harris
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755
| | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755
| |
Collapse
|
171
|
Boehlen A, Heinemann U, Erchova I. The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. J Neurosci 2010; 30:4585-9. [PMID: 20357109 PMCID: PMC6632313 DOI: 10.1523/jneurosci.4939-09.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 01/20/2023] Open
Abstract
In both humans and rodents, the external environment is encoded in the form of cognitive maps. Neurons in the medial entorhinal cortex (mEC) represent spatial locations in a sequence of grid-like patterns scaled along the dorsal-ventral axis. The grid spacing correlates with the intrinsic resonance frequencies of stellate cells in layer II of mEC. We investigated the development of frequency preferences in these cells from weaning to adulthood using patch-clamp and sharp microelectrode recordings. We found that the dorsal-ventral gradient of stellate cell properties and frequency preferences exists before animals are able to actively explore their environment. In the transition to adulthood, cells respond faster and become less excitable, and the range of intrinsic resonance frequencies in the population expands in the dorsal direction. This is likely to reflect both the growth of the brain and the expansion of the internal representation caused by new exploratory experience.
Collapse
Affiliation(s)
- Anne Boehlen
- Institute of Neurophysiology, Charité, and
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité, and
- NeuroCure Research Center, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and
| | - Irina Erchova
- Institute for Adaptive and Neural Computation, School of Informatics and Centre of Neuroscience Research, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| |
Collapse
|
172
|
Ramos JMJ. Preserved learning about allocentric cues but impaired flexible memory expression in rats with hippocampal lesions. Neurobiol Learn Mem 2010; 93:506-14. [PMID: 20109565 DOI: 10.1016/j.nlm.2010.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/20/2010] [Indexed: 11/15/2022]
Abstract
Several studies have shown that slight modifications in the standard reference spatial memory procedure normally used for allocentric learning in the Morris water maze and the radial maze, can overcome the classic deficit in allocentric navigation typically observed in rats with hippocampal damage. In these special paradigms, however, there is only intramaze manipulation of a salient stimulus. The present study was designed to investigate whether extramaze manipulations produce a similar outcome. With this aim a four-arm plus-shaped maze and a reference spatial memory paradigm were used, in which the goal arm was marked in two ways: by a prominent extramaze cue (intermittent light), which maintained a constant relation with the goal, and by the extramaze constellation of stimuli around the maze. Experiment 1 showed that, unlike the standard version of the task, using this special training procedure hippocampally-damaged rats could learn a place response as quickly as control animals; importantly, one day after reaching criterion, lesioned and control subjects performed the task perfectly during a transfer test in which the salient extramaze stimulus used during the acquisition was removed. However, although acquisition deficit was overcomed in these lesioned animals, a profound deficit in retention was detected 15 days later. Experiment 2 suggests that although under our special paradigm hippocampal rats can learn a place response, spatial memory only can be expressed when the requisites of behavioral flexibility are minimal. These findings suggest that, under certain circumstances, extrahippocampal structures are sufficient for building a coherent allocentric representation of space; however, flexible memory expression is dependent, fundamentally, on hippocampal functioning.
Collapse
Affiliation(s)
- Juan M J Ramos
- Departamento de Psicología Experimental y Fisiología del Comportamiento, Facultad de Psicología, Campus de Cartuja, Universidad de Granada, Granada 18071, Spain.
| |
Collapse
|
173
|
Abstract
One literature treats the hippocampus as a purely cognitive structure involved in memory; another treats it as a regulator of emotion whose dysfunction leads to psychopathology. We review behavioral, anatomical, and gene expression studies that together support a functional segmentation into three hippocampal compartments: dorsal, intermediate, and ventral. The dorsal hippocampus, which corresponds to the posterior hippocampus in primates, performs primarily cognitive functions. The ventral (anterior in primates) relates to stress, emotion, and affect. Strikingly, gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved in emotion and stress (amygdala and hypothalamus).
Collapse
Affiliation(s)
- Michael S. Fanselow
- Department of Psychology and the Brain Research Institute, University of California, Los Angeles, CA. 90095-1563
| | - Hong-Wei Dong
- Laboratory of Neuro Imaging and Department of Neurology, School of Medicine, University of California, Los Angeles, CA 90095-7334
| |
Collapse
|
174
|
Sil'kis IG. Paradoxical sleep as a tool for understanding the hippocampal mechanisms of contextual memory. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2009; 40:5-19. [PMID: 20012489 DOI: 10.1007/s11055-009-9230-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/27/2008] [Indexed: 11/30/2022]
Abstract
Existing data on the involvement of the hippocampus in contextual memory and the fact that contextual memory is impaired in dreams occurring during paradoxical sleep allowed us to suggest that one of the causes of this impairment consists of changes in the efficiency of synaptic transmission in the hippocampus due to increases (as compared with waking) in the concentrations of acetylcholine, dopamine, and cortisol, as well as the absence of serotonin and noradrenaline. Our previous analysis showed that in paradoxical sleep, long-term depression can be induced all components of the polysynaptic pathway through the hippocampal formation, while potentiation can occur at the inputs from the entorhinal cortex to hippocampal fields CA1 and CA3 and in the associative connections in field CA3. It is hypothesized that the correct functioning of episodic memory requires efficient transmission of signals in each component of the polysynaptic pathway through the hippocampus, allowing a neuronal representation of the context to be created within it. In the state of waking, reproduction of the context of an episode simultaneously activates the neuronal representation of the context remembered in the hippocampus and neuronal representations of the details of the episode remembered in those areas of the cortex in which they were processed. It follows from the proposed mechanism that any neurotransmitter or neuropeptide able to promote longterm potentiation in all components of the polysynaptic pathway through the hippocampus can improve episodic memory. As the consequences of the mechanism are consistent with experimental data, it can be used to seek agents improving episodic memory.
Collapse
Affiliation(s)
- I G Sil'kis
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
175
|
Hasselmo ME, Giocomo LM, Brandon MP, Yoshida M. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behav Brain Res 2009; 215:261-74. [PMID: 20018213 DOI: 10.1016/j.bbr.2009.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/05/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
176
|
Tsanov M, Manahan-Vaughan D. Visual cortex plasticity evokes excitatory alterations in the hippocampus. Front Integr Neurosci 2009; 3:32. [PMID: 19956399 PMCID: PMC2786298 DOI: 10.3389/neuro.07.032.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/05/2009] [Indexed: 11/26/2022] Open
Abstract
The integration of episodic sequences in the hippocampus is believed to occur during theta rhythm episodes, when cortico-hippocampal dialog results in reconfiguration of neuronal assemblies. As the visual cortex (VC) is a major source of sensory information to the hippocampus, information processing in the cortex may affect hippocampal network oscillations, facilitating the induction of synaptic modifications. We investigated to what degree the field activity in the primary VC, elicited by sensory or electrical stimulation, correlates with hippocampal oscillatory and synaptic responsiveness, in freely behaving adult rats. We found that the spectral power of theta rhythm (4–10 Hz) in the dentate gyrus (DG), increases in parallel with high-frequency oscillations in layer 2/3 of the VC and that this correlation depends on the degree of exploratory activity. When we mimic robust thalamocortical activity by theta-burst application to dorsal lateral geniculate nucleus, a hippocampal theta increase occurs, followed by a persistent potentiation of the DG granule field population spike. Furthermore, the potentiation of DG neuronal excitability tightly correlates with the concurrently occurring VC plasticity. The concurrent enhancement of VC and DG activity is also combined with a highly negative synchronization between hippocampal and cortical low-frequency oscillations. Exploration of familiar environment decreases the degree of this synchrony. Our data propose that novel visual information can induce high-power fluctuations in intrinsic excitability for both VC and hippocampus, potent enough to induce experience-dependent modulation of cortico-hippocampal connections. This interaction may comprise one of the endogenous triggers for long-term synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Marian Tsanov
- Department of Experimental Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
177
|
Hasselmo ME. A model of episodic memory: mental time travel along encoded trajectories using grid cells. Neurobiol Learn Mem 2009; 92:559-73. [PMID: 19615456 PMCID: PMC2825051 DOI: 10.1016/j.nlm.2009.07.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/20/2009] [Accepted: 07/12/2009] [Indexed: 11/25/2022]
Abstract
The definition of episodic memory includes the concept of mental time travel: the ability to re-experience a previously experienced trajectory through continuous dimensions of space and time, and to recall specific events or stimuli along this trajectory. Lesions of the hippocampus and entorhinal cortex impair human episodic memory function and impair rat performance in tasks that could be solved by retrieval of trajectories. Recent physiological data suggests a novel model for encoding and retrieval of trajectories, and for associating specific stimuli with specific positions along the trajectory. During encoding in the model, external input drives the activity of head direction cells. Entorhinal grid cells integrate the head direction input to update an internal representation of location, and drive hippocampal place cells. Trajectories are encoded by Hebbian modification of excitatory synaptic connections between hippocampal place cells and head direction cells driven by external action. Associations are also formed between hippocampal cells and sensory stimuli. During retrieval, a sensory input cue activates hippocampal cells that drive head direction activity via previously modified synapses. Persistent spiking of head direction cells maintains the direction and speed of the action, updating the activity of entorhinal grid cells that thereby further update place cell activity. Additional cells, termed arc length cells, provide coding of trajectory segments based on the one-dimensional arc length from the context of prior actions or states, overcoming ambiguity where the overlap of trajectory segments causes multiple head directions to be associated with one place. These mechanisms allow retrieval of complex, self-crossing trajectories as continuous curves through space and time.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St., Boston, MA 02215, United States.
| |
Collapse
|
178
|
Langston RF, Wood ER. Associative recognition and the hippocampus: Differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus 2009; 20:1139-53. [DOI: 10.1002/hipo.20714] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
179
|
Temporary inactivation of the dorsal entorhinal cortex impairs acquisition and retrieval of spatial information. Neurobiol Learn Mem 2009; 93:203-7. [PMID: 19800978 DOI: 10.1016/j.nlm.2009.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/08/2009] [Accepted: 09/26/2009] [Indexed: 11/20/2022]
Abstract
We tested the effects of temporary inactivation of the dorsal entorhinal cortex on spatial discrimination using a conditioned cue preference (CCP) paradigm. The three phases of the procedure were: pre-exposure: unreinforced exploration of the center platform and two adjacent arms of an eight-arm radial maze; training: rats were confined to the ends of the two arms on alternate days - one arm always contained food and the other never contained food; testing: unreinforced exploration of the center platform and the two arms. Rats that received bilateral infusions of saline into the dorsal entorhinal cortex before the training trials or before the test trial spent significantly more time in the arm that previously contained food than in the arm that never contained food, demonstrating that they had acquired and were able to express information that discriminated between the two adjacent maze arms. In contrast, rats that received bilateral, intra-entorhinal infusions of muscimol, a gamma-aminobutyric acid(a) (GABA(a)) agonist, before either training or testing spent equal amounts of time in the two arms, indicating that they failed to acquire and were unable to express this information. Interactions between the entorhinal cortex and hippocampus in the acquisition and expression of the information required for this discrimination are discussed.
Collapse
|
180
|
Hasselmo ME, Brandon MP, Yoshida M, Giocomo LM, Heys JG, Fransen E, Newman EL, Zilli EA. A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Netw 2009; 22:1129-38. [PMID: 19656654 PMCID: PMC2825042 DOI: 10.1016/j.neunet.2009.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/24/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Kesner RP, Hunsaker MR, Ziegler W. The role of the dorsal CA1 and ventral CA1 in memory for the temporal order of a sequence of odors. Neurobiol Learn Mem 2009; 93:111-6. [PMID: 19733676 DOI: 10.1016/j.nlm.2009.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 08/25/2009] [Accepted: 08/28/2009] [Indexed: 11/19/2022]
Abstract
Memory for the temporal order of a sequence of odors was assessed in male rats. A sequence of five odors mixed in sand was presented in digging cups one at a time to each rat in a sequence that varied on each trial. A reward was buried in each cup. Following the fifth odor, two of the previous five odors were presented simultaneously and the rat needed to choose the odor that occurred earliest in the sequence to receive a reward. Temporal separations of 1, 2, or 3 were used which represented the number of odors that occurred between the two odors in the sequence. Once pre-operative criterion was reached, rats received a control, dorsal CA1 (dCA1), or ventral CA1 (vCA1) lesion and were retested on the task. On post-operative trials, only the vCA1 group was impaired relative to both control and dCA1 groups. All groups of rats could discriminate between the odors. The data suggest that the vCA1, but not dorsal CA1, is involved in separating sensory events (odors) in time so that one odor can be remembered separate from another odor.
Collapse
Affiliation(s)
- Raymond P Kesner
- Department of Psychology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
182
|
Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 2009; 63:230-43. [PMID: 19640481 PMCID: PMC2735825 DOI: 10.1016/j.neuron.2009.06.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/23/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABA(B) receptor agonist, inhibited significantly neuronal excitability in the EC. GABA(B) receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K(+) channels, and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABA(B) receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABA(B) receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chuanxiu Yang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Lalida Rojanathammanee
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Laurel Grisanti
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - John Watt
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Jonathan D. Geiger
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - James E. Porter
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
183
|
Bellgowan PSF, Buffalo EA, Bodurka J, Martin A. Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learn Mem 2009; 16:433-8. [PMID: 19553381 DOI: 10.1101/lm.1357309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor temporal signal-to-noise (tSNR) and thus weak BOLD signal detectability. We have demonstrated that higher spatial resolution in the z-plane leads to improved BOLD fMRI signal quality in the anterior medial temporal lobes when using a 16-element surface coil array at 3 T (Tesla). Using this technique, the present study investigated the roles of the anterior medial temporal lobe, particularly the entorhinal and perirhinal cortices, in both object and spatial memory. Participants viewed a series of fractal images and were instructed to encode either the object's identity or location. Object and spatial recognition memory were tested after 18-sec delays. Both the perirhinal and entorhinal cortices were active during the object and spatial encoding tasks. In both regions, object encoding was biased to the left hemisphere, whereas spatial encoding was biased to the right. A similar hemispheric bias was evident for recognition memory. Recent animal studies suggest functional dissociations among regions of the entorhinal cortex for spatial vs. object processing. Our findings suggest that this process-specific distinction may be expressed in the human brain as a hemispheric division of labor.
Collapse
|
184
|
Xiao Z, Deng PY, Yang C, Lei S. Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats. J Neurophysiol 2009; 102:659-69. [PMID: 19494196 DOI: 10.1152/jn.00226.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse cholinergic innervations from the basal forebrain and activation of cholinergic receptors has been shown to modulate the activities of the principal neurons and promote the intrinsic oscillations in the EC, the effects of cholinergic receptor activation on GABAergic transmission in this brain region have not been determined. We examined the effects of muscarinic receptor activation on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of muscarine dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III via activation of M(3) muscarinic receptors. Muscarine slightly reduced the frequency but had no effects on the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Muscarine reduced the amplitude of IPSCs evoked by extracellular field stimulation and by depolarization of GABAergic interneurons in synaptically connected interneuron and pyramidal neuron pairs. Application of muscarine generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in GABAergic interneurons. Muscarine-induced depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels and independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Our results demonstrate that activation of muscarinic receptors exerts diverse effects on GABAergic transmission in the EC.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
185
|
Clark BJ, Taube JS. Deficits in landmark navigation and path integration after lesions of the interpeduncular nucleus. Behav Neurosci 2009; 123:490-503. [PMID: 19485555 PMCID: PMC2698129 DOI: 10.1037/a0015477] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experiments were designed to determine the role of the interpeduncular nucleus (IPN) in 3 forms of navigation: beacon, landmark, and path integration. In beacon navigation, animals reach goals using cues directly associated with them, whereas in landmark navigation animals use external cues to determine a direction and distance to goals. Path integration refers to the use of self-movement cues to obtain a trajectory to a goal. IPN-lesioned rats were tested in a food-carrying task in which they searched for food in an open field, and returned to a refuge after finding the food. Landmark navigation was evaluated during trials performed under lighted conditions and path integration was tested under darkened conditions, thus eliminating external cues. We report that IPN lesions increased the number of errors and reduced heading accuracy under both lighted and darkened conditions. Tests using a Morris water maze procedure indicated that IPN lesions produced moderate impairments in the landmark version of the water task, but left beacon navigation intact. These findings suggest that the IPN plays a fundamental role in landmark navigation and path integration.
Collapse
Affiliation(s)
- Benjamin J. Clark
- Department of Psychological and Brain Sciences Center for Cognitive Neuroscience Dartmouth College
| | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences Center for Cognitive Neuroscience Dartmouth College
| |
Collapse
|
186
|
Bast T, Wilson IA, Witter MP, Morris RGM. From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol 2009; 7:e1000089. [PMID: 19385719 PMCID: PMC2671558 DOI: 10.1371/journal.pbio.1000089] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional-anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping), failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial) place learning into navigational performance.
Collapse
Affiliation(s)
- Tobias Bast
- Centre for Cognitive and Neural Systems, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
187
|
Snyder JS, Radik R, Wojtowicz JM, Cameron HA. Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 2009; 19:360-70. [PMID: 19004012 PMCID: PMC2798730 DOI: 10.1002/hipo.20525] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hippocampal function varies in a subregion-specific fashion: spatial processing is thought to rely on the dorsal hippocampus, whereas anxiety-related behavior relies more on the ventral hippocampus. During development, neurogenesis in the dentate gyrus (DG) proceeds along ventral to dorsal as well as suprapyramidal to infrapyramidal gradients, but it is unclear whether regional differences in neurogenesis are maintained in adulthood. Moreover, it is unknown whether young neurons in the adult exhibit subregion-specific patterns of activation. We therefore examined the magnitude of neurogenesis and the activation of young and mature granule cells in DG subregions in adult rats that learned a spatial water maze task, swam with no platform, or were left untouched. We found that both adult neurogenesis and granule cell activation, as defined by c-fos expression in the granule cell population as a whole, were higher in the dorsal than the ventral DG. In contrast, c-fos expression in adult-born granule cells, identified by PSA-NCAM or location in the subgranular zone, occurred at a higher rate in the opposite subregion, the ventral DG. Interestingly, c-fos expression in the entire granule cell population was equivalent in water maze-trained rats and swim control rats, but was increased in the young granule cells only in the learning condition. These results provide new evidence that hippocampally-relevant experience activates young and mature neurons in different DG subregions and with different experiential specificity, and suggest that adult-born neurons may play a specific role in anxiety-related behavior or other nonspatial aspects of hippocampal function.
Collapse
Affiliation(s)
- Jason S Snyder
- National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
188
|
What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2009; 2008:381243. [PMID: 18769556 PMCID: PMC2526269 DOI: 10.1155/2008/381243] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 05/23/2008] [Indexed: 12/28/2022] Open
Abstract
The entorhinal cortex is commonly perceived as a major input and output structure of the hippocampal formation, entertaining the role of the nodal point of cortico-hippocampal circuits. Superficial layers receive convergent cortical information, which is relayed to structures in the hippocampus, and hippocampal output reaches deep layers of entorhinal cortex, that project back to the cortex. The finding of the grid cells in all layers and reports on interactions between deep and superficial layers indicate that this rather simplistic perception may be at fault. Therefore, an integrative approach on the entorhinal cortex, that takes into account recent additions to our knowledge database on entorhinal connectivity, is timely. We argue that layers in entorhinal cortex show different functional characteristics most likely not on the basis of strikingly different inputs or outputs, but much more likely on the basis of differences in intrinsic organization, combined with very specific sets of inputs. Here, we aim to summarize recent anatomical data supporting the notion that the traditional description of the entorhinal cortex as a layered input-output structure for the hippocampal formation does not give the deserved credit to what this structure might be contributing to the overall functions of cortico-hippocampal networks.
Collapse
|
189
|
Welinder PE, Burak Y, Fiete IR. Grid cells: the position code, neural network models of activity, and the problem of learning. Hippocampus 2009; 18:1283-300. [PMID: 19021263 DOI: 10.1002/hipo.20519] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We review progress on the modeling and theoretical fronts in the quest to unravel the computational properties of the grid cell code and to explain the mechanisms underlying grid cell dynamics. The goals of the review are to outline a coherent framework for understanding the dynamics of grid cells and their representation of space; to critically present and draw contrasts between recurrent network models of grid cells based on continuous attractor dynamics and independent-neuron models based on temporal interference; and to suggest open questions for experiment and theory.
Collapse
Affiliation(s)
- Peter E Welinder
- Computation and Neural Systems, California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
190
|
Abstract
Not all areas of neuronal systems investigation have matured to the stage where computation can be understood at the microcircuit level. In mammals, insights into cortical circuit functions have been obtained for the early stages of sensory systems, where signals can be followed through networks of increasing complexity from the receptors to the primary sensory cortices. These studies have suggested how neurons and neuronal networks extract features from the external world, but how the brain generates its own codes, in the higher-order nonsensory parts of the cortex, has remained deeply mysterious. In this terra incognita, a path was opened by the discovery of grid cells, place-modulated entorhinal neurons whose firing locations define a periodic triangular or hexagonal array covering the entirety of the animal's available environment. This array of firing is maintained in spite of ongoing changes in the animal's speed and direction, suggesting that grid cells are part of the brain's metric for representation of space. Because the crystal-like structure of the firing fields is created within the nervous system itself, grid cells may provide scientists with direct access to some of the most basic operational principles of cortical circuits.
Collapse
Affiliation(s)
- Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | |
Collapse
|
191
|
Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE, Lei S. Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels. J Biol Chem 2009; 284:10980-91. [PMID: 19244246 DOI: 10.1074/jbc.m806760200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The entorhinal cortex is closely associated with the consolidation and recall of memories, Alzheimer disease, schizophrenia, and temporal lobe epilepsy. Norepinephrine is a neurotransmitter that plays a significant role in these physiological functions and neurological diseases. Whereas the entorhinal cortex receives profuse noradrenergic innervations from the locus coeruleus of the pons and expresses high densities of adrenergic receptors, the function of norepinephrine in the entorhinal cortex is still elusive. Accordingly, we examined the effects of norepinephrine on neuronal excitability in the entorhinal cortex and explored the underlying cellular and molecular mechanisms. Application of norepinephrine-generated hyperpolarization and decreased the excitability of the neurons in the superficial layers with no effects on neuronal excitability in the deep layers of the entorhinal cortex. Norepinephrine-induced hyperpolarization was mediated by alpha(2A) adrenergic receptors and required the functions of Galpha(i) proteins, adenylyl cyclase, and protein kinase A. Norepinephrine-mediated depression on neuronal excitability was mediated by activation of TREK-2, a type of two-pore domain K(+) channel, and mutation of the protein kinase A phosphorylation site on TREK-2 channels annulled the effects of norepinephrine. Our results indicate a novel action mode in which norepinephrine depresses neuronal excitability in the entorhinal cortex by disinhibiting protein kinase A-mediated tonic inhibition of TREK-2 channels.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Huang CW, Cheng JT, Tsai JJ, Wu SN, Huang CC. Diabetic hyperglycemia aggravates seizures and status epilepticus-induced hippocampal damage. Neurotox Res 2009; 15:71-81. [PMID: 19384590 DOI: 10.1007/s12640-009-9008-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/19/2009] [Accepted: 01/26/2009] [Indexed: 11/26/2022]
Abstract
Epileptic seizures in diabetic hyperglycemia (DH) are not uncommon. This study aimed to determine the acute behavioral, pathological, and electrophysiological effects of status epilepticus (SE) on diabetic animals. Adult male Sprague-Dawley rats were first divided into groups with and without streptozotocin (STZ)-induced diabetes, and then into treatment groups given a normal saline (NS) (STZ-only and NS-only) or a lithium-pilocarpine injection to induce status epilepticus (STZ + SE and NS + SE). Seizure susceptibility, severity, and mortality were evaluated. Serial Morris water maze test and hippocampal histopathology results were examined before and 24 h after SE. Tetanic stimulation-induced long-term potentiation (LTP) in a hippocampal slice was recorded in a multi-electrode dish system. We also used a simulation model to evaluate intracellular adenosine triphosphate (ATP) and neuroexcitability. The STZ + SE group had a significantly higher percentage of severe seizures and SE-related death and worse learning and memory performances than the other three groups 24 h after SE. The STZ + SE group, and then the NS + SE group, showed the most severe neuronal loss and mossy fiber sprouting in the hippocampal CA3 area. In addition, LTP was markedly attenuated in the STZ + SE group, and then the NS + SE group. In the simulation, increased intracellular ATP concentration promoted action potential firing. This finding that rats with DH had more brain damage after SE than rats without diabetes suggests the importance of intensively treating hyperglycemia and seizures in diabetic patients with epilepsy.
Collapse
Affiliation(s)
- Chin-Wei Huang
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan City, Taiwan
| | | | | | | | | |
Collapse
|
193
|
Brandon MP, Hasselmo ME. Sources of the spatial code within the hippocampus. F1000 BIOLOGY REPORTS 2009; 1:3. [PMID: 20948656 PMCID: PMC2920688 DOI: 10.3410/b1-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neurons in the hippocampus are thought to provide information on an animal's location within its environment. Input to the hippocampus comes via afferents from the entorhinal cortex, which are separated into several major pathways serving different hippocampal regions. Recent studies show the significance of individual afferent pathways in location perception, enhancing our understanding of hippocampal function.
Collapse
Affiliation(s)
- Mark P Brandon
- Center for Memory and Brain, Department of Psychology and Program in NeuroscienceBoston University, 2 Cummington Street, Boston, MA 02215USA
| | - Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in NeuroscienceBoston University, 2 Cummington Street, Boston, MA 02215USA
| |
Collapse
|
194
|
Gresack JE, Schafe GE, Orr PT, Frick KM. Sex differences in contextual fear conditioning are associated with differential ventral hippocampal extracellular signal-regulated kinase activation. Neuroscience 2009; 159:451-67. [PMID: 19171181 DOI: 10.1016/j.neuroscience.2009.01.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 12/12/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Although sex differences have been reported in hippocampal-dependent learning and memory, including contextual fear memories, the underlying molecular mechanisms contributing to such differences are not well understood. The present study examined the extent to which sex differences in contextual fear conditioning are related to differential activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), a protein kinase critically involved in memory formation. We first show that male rats exhibit more long-term retention of contextual fear conditioning than female rats. During a tone test, females spent more time freezing than males, although both sexes exhibited robust retention of auditory fear learning. Using Western blot analysis, we then show that phosphorylated ERK levels in ventral, but not dorsal, hippocampus are higher in males than females, relative to same-sex controls, 60 minutes after fear conditioning. Post-conditioning increases in ERK activation were observed in the amygdala in both males and females, suggesting a selective effect of sex on hippocampal ERK activation. Together, these findings suggest that differential activation of the ERK signal transduction pathway in male and female rats, particularly in the ventral hippocampus, is associated with sex differences in contextual fear.
Collapse
Affiliation(s)
- J E Gresack
- Department of Psychology, Yale University, PO Box 208205, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
195
|
Ji J, Maren S. Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats. Behav Brain Res 2008; 194:201-6. [PMID: 18692093 PMCID: PMC2569853 DOI: 10.1016/j.bbr.2008.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/10/2008] [Indexed: 11/20/2022]
Abstract
Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.
Collapse
Affiliation(s)
- Jinzhao Ji
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043
| | - Stephen Maren
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-0520
| |
Collapse
|
196
|
Garden DLF, Dodson PD, O'Donnell C, White MD, Nolan MF. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 2008; 60:875-89. [PMID: 19081381 DOI: 10.1016/j.neuron.2008.10.044] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 08/14/2008] [Accepted: 10/23/2008] [Indexed: 11/21/2022]
Abstract
Neurons important for cognitive function are often classified by their morphology and integrative properties. However, it is unclear if within a single class of neuron these properties tune synaptic responses to the salient features of the information that each neuron represents. We demonstrate that for stellate neurons in layer II of the medial entorhinal cortex, the waveform of postsynaptic potentials, the time window for detection of coincident inputs, and responsiveness to gamma frequency inputs follow a dorsal-ventral gradient similar to the topographical organization of grid-like spatial firing fields of neurons in this area. We provide evidence that these differences are due to a membrane conductance gradient mediated by HCN and leak potassium channels. These findings suggest key roles for synaptic integration in computations carried out within the medial entorhinal cortex and imply that tuning of neural information processing by membrane ion channels is important for normal cognitive function.
Collapse
Affiliation(s)
- Derek L F Garden
- Centre for Neuroscience Research and Centre for Integrative Physiology, R(D)SVS, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, Scotland, UK
| | | | | | | | | |
Collapse
|
197
|
Complementary roles of hippocampus and medial entorhinal cortex in episodic memory. Neural Plast 2008; 2008:258467. [PMID: 18615199 PMCID: PMC2443546 DOI: 10.1155/2008/258467] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 03/13/2008] [Accepted: 05/20/2008] [Indexed: 11/17/2022] Open
Abstract
Spatial mapping and navigation are figured prominently in the extant literature that describes hippocampal function. The medial entorhinal cortex is likewise attracting increasing interest, insofar as evidence accumulates that this area also contributes to spatial information processing. Here, we discuss recent electrophysiological findings that offer an alternate view of hippocampal and medial entorhinal function. These findings suggest complementary contributions of the hippocampus and medial entorhinal cortex in support of episodic memory, wherein hippocampal networks encode sequences of events that compose temporally and spatially extended episodes, whereas medial entorhinal networks disambiguate overlapping episodes by binding sequential events into distinct memories.
Collapse
|
198
|
Hasselmo ME. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum. Eur J Neurosci 2008; 28:1301-15. [PMID: 18973557 PMCID: PMC2634752 DOI: 10.1111/j.1460-9568.2008.06437.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spiking activity of hippocampal neurons during rapid eye movement (REM) sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories. Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St, Boston, MA 02215, USA.
| |
Collapse
|
199
|
Deng PY, Lei S. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels. Mol Cell Neurosci 2008; 39:273-84. [PMID: 18687403 PMCID: PMC2634291 DOI: 10.1016/j.mcn.2008.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/23/2008] [Accepted: 07/08/2008] [Indexed: 11/20/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse serotonergic innervations from the raphe nuclei in the brain stem and is critically involved in the generation of temporal lobe epilepsy, the function of serotonin (5-hydroxytryptamine, 5-HT) in the EC and particularly its roles in temporal lobe epilepsy are still elusive. Here we explored the cellular and molecular mechanisms underlying 5-HT-mediated facilitation of GABAergic transmission and depression of epileptic activity in the superficial layers of the EC. Application of 5-HT increased sIPSC frequency and amplitude recorded from the principal neurons in the EC with no effects on mIPSCs recorded in the presence of TTX. However, 5-HT reduced the amplitude of IPSCs evoked by extracellular field stimulation and in synaptically connected interneuron and pyramidal neuron pairs. Application of 5-HT generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in presynaptic interneurons suggesting that 5-HT still increases GABA release whereas the depressant effects of 5-HT on evoked IPSCs could be explained by 5-HT-induced reduction in action potential amplitude. The depolarizing effect of 5-HT was mediated by inhibition of TASK-3 K(+) channels in interneurons and required the functions of 5-HT(2A) receptors and Galpha(q/11) but was independent of phospholipase C activity. Application of 5-HT inhibited low-Mg(2+)-induced seizure activity in slices via 5-HT(1A) and 5-HT(2A) receptors suggesting that 5-HT-mediated depression of neuronal excitability and increase in GABA release contribute to its anti-epileptic effects in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
200
|
Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. Neural Plast 2008; 2008:658323. [PMID: 18670635 PMCID: PMC2480478 DOI: 10.1155/2008/658323] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 05/14/2008] [Indexed: 11/29/2022] Open
Abstract
The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.
Collapse
|