151
|
Corbin JG, Gaiano N, Juliano SL, Poluch S, Stancik E, Haydar TF. Regulation of neural progenitor cell development in the nervous system. J Neurochem 2008; 106:2272-87. [PMID: 18819190 PMCID: PMC2640107 DOI: 10.1111/j.1471-4159.2008.05522.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian telencephalon, which comprises the cerebral cortex, olfactory bulb, hippocampus, basal ganglia, and amygdala, is the most complex and intricate region of the CNS. It is the seat of all higher brain functions including the storage and retrieval of memories, the integration and processing of sensory and motor information, and the regulation of emotion and drive states. In higher mammals such as humans, the telencephalon also governs our creative impulses, ability to make rational decisions, and plan for the future. Despite its massive complexity, exciting work from a number of groups has begun to unravel the developmental mechanisms for the generation of the diverse neural cell types that form the circuitry of the mature telencephalon. Here, we review our current understanding of four aspects of neural development. We first begin by providing a general overview of the broad developmental mechanisms underlying the generation of neuronal and glial cell diversity in the telencephalon during embryonic development. We then focus on development of the cerebral cortex, the most complex and evolved region of the brain. We review the current state of understanding of progenitor cell diversity within the cortical ventricular zone and then describe how lateral signaling via the Notch-Delta pathway generates specific aspects of neural cell diversity in cortical progenitor pools. Finally, we review the signaling mechanisms required for development, and response to injury, of a specialized group of cortical stem cells, the radial glia, which act both as precursors and as migratory scaffolds for newly generated neurons.
Collapse
Affiliation(s)
- Joshua G. Corbin
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC 20010, USA
| | - Nicholas Gaiano
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Sylvie Poluch
- Program in Neuroscience, USUHS, Bethesda, Maryland 20814
| | - Elizabeth Stancik
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC 20010, USA
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC 20010, USA
| |
Collapse
|
152
|
The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci U S A 2008; 105:11802-7. [PMID: 18689674 DOI: 10.1073/pnas.0805180105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most neurons of the cerebral cortex are generated in the germinal zones near the embryonic cerebral ventricle and migrate radially to the overlying cortical plate. Initially, all dividing cells are attached to the surface of the embryonic ventricle (ventricular zone) until a subset of dividing cells (basal or intermediate neuronal progenitors, INPs), recognized by their immunoreactivity to Tbr2, detach from the ventricular surface and migrate a short distance to establish a secondary proliferative compartment (the subventricular zone). The mechanism that regulates migration of the Tbr2(+) INPs from the ventricular to the subventricular zones is unknown. Here, we show that INPs, unlike the postmitotic neurons that tend to lose the ATP response, continue to express the purinergic P2Y1 receptor. Furthermore, blocking ATP signaling by the P2Y1 blockers, MRS2176, suramin, and apyrase, reduces Ca(2+) transients and retards INP migration to the subventricular zone. In addition, genetic knockdown of the P2Y1 receptor by in vivo application of short hairpin RNA selectively impairs the migration of INPs to the subventricular zone. Together, these results suggest that intercellular ATP signaling is essential for the migration of INPs and the proper formation of the subventricular zone. Interference of ATP signaling or abnormal Ca(2+) fluctuations in INPs may play a significant role in variety of genetic or acquired cortical malformations.
Collapse
|
153
|
Postsynaptically different inhibitory postsynaptic currents in Cajal–Retzius cells in the developing neocortex. Neuroreport 2008; 19:1213-6. [DOI: 10.1097/wnr.0b013e328308daa0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
154
|
Attardo A, Calegari F, Haubensak W, Wilsch-Bräuninger M, Huttner WB. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 2008; 3:e2388. [PMID: 18545663 PMCID: PMC2398773 DOI: 10.1371/journal.pone.0002388] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 04/29/2008] [Indexed: 12/14/2022] Open
Abstract
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors.
Collapse
Affiliation(s)
- Alessio Attardo
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Federico Calegari
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wulf Haubensak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
155
|
Tiveron MC, Cremer H. CXCL12/CXCR4 signalling in neuronal cell migration. Curr Opin Neurobiol 2008; 18:237-44. [DOI: 10.1016/j.conb.2008.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 06/25/2008] [Indexed: 11/15/2022]
|
156
|
Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 2008; 26:1663-72. [PMID: 18467663 DOI: 10.1634/stemcells.2007-0884] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pax6 is a highly conserved transcription factor among vertebrates and is important in various developmental processes in the central nervous system (CNS), including patterning of the neural tube, migration of neurons, and formation of neural circuits. In this review, we focus on the role of Pax6 in embryonic and postnatal neurogenesis, namely, production of new neurons from neural stem/progenitor cells, because Pax6 is intensely expressed in these cells from the initial stage of CNS development and in neurogenic niches (the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricle) throughout life. Pax6 is a multifunctional player regulating proliferation and differentiation through the control of expression of different downstream molecules in a highly context-dependent manner.
Collapse
Affiliation(s)
- Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
157
|
PACAP decides neuronal laminar fate via PKA signaling in the developing cerebral cortex. Biochem Biophys Res Commun 2008; 369:1144-9. [DOI: 10.1016/j.bbrc.2008.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/04/2008] [Indexed: 11/20/2022]
|
158
|
Cooper JA. A mechanism for inside-out lamination in the neocortex. Trends Neurosci 2008; 31:113-9. [PMID: 18255163 DOI: 10.1016/j.tins.2007.12.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 01/16/2023]
Abstract
We outline a unified model for inside-out layering of the neocortex, hinging on a new interpretation for the effects of Reelin on neuronal migrations. The effects of Reelin on cortical structure have been analyzed in great detail, but it has been unclear how individual migrating cells respond to Reelin. In our opinion, many published results might be explained if Reelin acts on neurons when their leading processes reach the marginal zone. Reelin then stimulates two parallel events: detachment from radial glia and translocation of the cell soma to the top of the developing cortical plate. This 'detach and go' model explains many aspects of inside-out lamination, defects in the Reeler mutant and results of recent genetic and in utero experiments.
Collapse
Affiliation(s)
- Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
159
|
Galpha12/Galpha13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices. Mol Cell Biol 2007; 28:1480-8. [PMID: 18086886 DOI: 10.1128/mcb.00651-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric G proteins G(12) and G(13) link G-protein-coupled receptors to the regulation of the actin cytoskeleton and the induction of actomyosin-based cellular contractility. Here we show that conditional ablation of the genes encoding the alpha-subunits of G(12) and G(13) in the nervous system results in neuronal ectopia of the cerebral and cerebellar cortices due to overmigration of cortical plate neurons and cerebellar Purkinje cells, respectively. The organization of the radial glia and the basal lamina was not disturbed, and the Cajal-Retzius cell layer had formed normally in mutant mice. Embryonic cortical neurons lacking G(12)/G(13) were unable to retract their neurites in response to lysophosphatidic acid and sphingosine-1-phosphate, indicating that they had lost the ability to respond to repulsive mediators acting via G-protein-coupled receptors. Our data indicate that G(12)/G(13)-coupled receptors mediate stop signals and are required for the proper positioning of migrating cortical plate neurons and Purkinje cells during development.
Collapse
|
160
|
Kirmse K, Dvorzhak A, Henneberger C, Grantyn R, Kirischuk S. Cajal Retzius cells in the mouse neocortex receive two types of pre- and postsynaptically distinct GABAergic inputs. J Physiol 2007; 585:881-95. [PMID: 17962325 DOI: 10.1113/jphysiol.2007.145003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cajal-Retzius (CR) cells are principal cells of layer I in the developing neocortex. They are able to generate action potentials, make synaptic contacts in layer I and receive excitatory GABAergic inputs before birth. Although CR cells participate in neuronal network activity in layer I, the properties of their synaptic inputs are not yet characterized. We recorded miniature (mIPSCs) and evoked (eIPSCs) postsynaptic currents using the whole-cell patch-clamp technique. Most of CR cells displayed two types of mIPSCs, namely those with fast (mIPSC(F)) and slow (mIPSC(S)) rise kinetics. The mIPSC(F) mean amplitude was significantly larger than that of mIPSC(S), while their decay rates were not different. Peak-scaled non-stationary noise analysis revealed that mIPSC(S) and mIPSC(F) differed in their weighted single-channel conductance. In addition, zolpidem (100 nm), a modulator of alpha(1) subunit-containing GABA(A) receptors, selectively affected mIPSC(S) suggesting that different postsynaptic GABA(A) receptors mediate mIPSC(F) and mIPSC(S). eIPSCs also split into two populations with different rise kinetics. Fast eIPSCs (eIPSC(F)) displayed higher paired-pulse ratio (PPR) and lower GABA release probability than slowly rising eIPSCs (eIPSC(S)). As CGP55845, a GABA(B) receptor antagonist, eliminated the observed difference in PPR, the lower release probability at IPSC(F) connections probably reflects a stronger tonic GABA(B) receptor-mediated inhibition of IPSC(F) synapses. At low (0.1 Hz) stimulation frequency both inputs can effectively convert presynaptic action potentials into postsynaptic ones; however, only IPSC(F) connections reliably transfer the presynaptic activity patterns at higher stimulation rates. Thus, CR cells receive two GABAergic inputs, which differ in the quantal amplitude, the probability of GABA release and the frequency dependence of signal transfer.
Collapse
Affiliation(s)
- Knut Kirmse
- Institute of Neurophysiology, Johannes-Mueller-Center of Physiology, Charité-University-Medicine Berlin, Tucholskystrasse 2, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
161
|
Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M. Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 2007; 134:3883-91. [PMID: 17913789 DOI: 10.1242/dev.005447] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reelin, its lipoprotein receptors [very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (ApoER2; also known as Lrp8)], and the cytoplasmic adaptor protein disabled 1 (Dab1) are important for the correct formation of layers in the cerebral cortex. Reeler mice lacking the reelin protein show altered radial neuronal migration resulting in an inversion of cortical layers. ApoER2 Vldlr double-knockout mutants and Dab1 mutants show a reeler-like phenotype, whereas milder phenotypes are found if only one of the two lipoprotein receptors for reelin is absent. However, the precise role of the individual reelin receptors in neuronal migration remained unclear. In the study reported here, we performed fate mapping of newly generated cortical neurons in single and double receptor mutants using bromodeoxyuridine-labeling and layer-specific markers. We present evidence for divergent roles of the two reelin receptors Vldlr and ApoER2, with Vldlr mediating a stop signal for migrating neurons and ApoER2 being essential for the migration of late generated neocortical neurons.
Collapse
Affiliation(s)
- Iris Hack
- Institut für Anatomie und Zellbiologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A, Luhmann HJ, Kilb W. Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J Neurosci 2007; 27:8616-27. [PMID: 17687039 PMCID: PMC6672936 DOI: 10.1523/jneurosci.5041-06.2007] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA, the main inhibitory neurotransmitter in the adult nervous system, evokes depolarizing membrane responses in immature neurons, which are crucial for the generation of early network activity. Although it is well accepted that depolarizing GABA actions are caused by an elevated intracellular Cl- concentration ([Cl-]i), the mechanisms of Cl- accumulation in immature neurons are still a matter of debate. Using patch-clamp, microfluorimetric, immunohistochemical, and molecular biological approaches, we studied the mechanism of Cl- uptake in Cajal-Retzius (CR) cells of immature [postnatal day 0 (P0) to P3] rat neocortex. Gramicidin-perforated patch-clamp and 6-methoxy-N-ethylquinolinium-microfluorimetric measurements revealed a steady-state [Cl-]i of approximately 30 mM that was reduced to values close to passive distribution by bumetanide or Na+-free solutions, suggesting a participation of Na+-K+-2Cl- cotransport isoform 1 (NKCC1) in maintaining elevated [Cl-]i. Expression of NKCC1 was found in CR cells on the mRNA and protein levels. To determine the contribution of NKCC1 to [Cl-]i homeostasis in detail, Cl- uptake rates were analyzed after artificial [Cl-]i depletion. Active Cl- uptake was relatively slow (47.2 +/- 5.0 microM/s) and was abolished by bumetanide or Na+-free solution. Accordingly, whole-cell patch-clamp recordings revealed a low Cl- conductance in CR cells. The low capacity of NKCC1-mediated Cl- uptake was sufficient to maintain excitatory GABAergic membrane responses, however, only at low stimulation frequencies. In summary, our results demonstrate that NKCC1 is abundant in CR cells of immature rat neocortex and that the slow Cl- uptake mediated by this transporter is sufficient to maintain high [Cl-]i required to render GABA responses excitatory.
Collapse
Affiliation(s)
- Katharina Achilles
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Akihito Okabe
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, 55128 Mainz, Germany
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan, and
| | - Masahiko Ikeda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chigusa Shimizu-Okabe
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Junko Yamada
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Atsuo Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Heiko J. Luhmann
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
163
|
Nakano Y, Kohno T, Hibi T, Kohno S, Baba A, Mikoshiba K, Nakajima K, Hattori M. The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling. J Biol Chem 2007; 282:20544-52. [PMID: 17504759 DOI: 10.1074/jbc.m702300200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reelin is a very large secreted glycoprotein essential for correct development of the mammalian brain. It is also implicated in higher functions and diseases of human brain. However, whether or not secretion of Reelin is regulated and how Reelin transmits signals remain largely unknown. Reelin protein is composed of an N-terminal F-spondin-like domain, Reelin repeats, and a short and highly basic C-terminal region (CTR). The primary sequence of CTR is almost completely conserved among vertebrates except fishes, indicating its importance. A prevailing idea regarding the function of CTR is that it is required for the secretion of Reelin, although this remains unproven. Here we aimed to clarify the function of Reelin CTR. Neither deleting most of CTR nor replacing CTR with unrelated amino acids affected secretion efficiency, indicating that CTR is not absolutely required for the secretion of Reelin. We also found that Reelin mutants without CTR were less potent in activating the downstream signaling in cortical neurons. Although these mutants were able to bind to the Reelin receptor ectodomain as efficiently as wild-type Reelin, quite interestingly, their ability to bind to the isolated cell membrane bearing Reelin receptors or receptor-expressing cells (including cortical neurons) was much weaker than that of wild-type Reelin. Therefore, it is concluded that the CTR of Reelin is not essential for its secretion but is required for efficient activation of downstream signaling events, presumably via binding to an unidentified "co-receptor" molecule(s) on the cell membrane.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Hu H, Yang Y, Eade A, Xiong Y, Qi Y. Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease. J Comp Neurol 2007; 501:168-83. [PMID: 17206611 DOI: 10.1002/cne.21238] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal overmigration is the underlying cellular mechanism of cerebral cortical malformations in syndromes of congenital muscular dystrophies caused by defects in O-mannosyl glycosylation. Overmigration involves multiple developmental abnormalities in the brain surface basement membrane, Cajal-Retzius cells, and radial glia. We tested the hypothesis that breaches in basement membrane and the underlying glia limitans are the key initial events of the cellular pathomechanisms by carrying out a detailed developmental study with a mouse model of muscle-eye-brain disease, mice deficient in O-mannose beta31,2-N-acetylglucosaminyltransferase 1 (POMGnT1). The pial basement membrane was normal in the knockout mouse at E11.5. It was breached during rapid cerebral cortical expansion at E13.5. Radial glial endfeet, which comprise glia limitans, grew out of the neural boundary. Neurons moved out of the neural boundary through these breaches. The overgrown radial glia and emigrated neurons disrupted the overlying pia mater. The overmigrated neurons did not participate in cortical plate (CP) development; rather they formed a diffuse cell zone (DCZ) outside the original cortical boundary. Together, the DCZ and the CP formed the knockout cerebral cortex, with disappearance of the basement membrane and the glia limitans. These results suggest that disappearance of the basement membrane and the glia limitans at the cerebral cortical surface during development underlies cortical lamination defects in congenital muscular dystrophies and a cellular mechanism of cortical malformation distinct from that of the reeler mouse, double cortex syndrome, and periventricular heterotopia.
Collapse
Affiliation(s)
- Huaiyu Hu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | |
Collapse
|
165
|
Luque JM. Puzzling out the reeler brainteaser: Does reelin signal to unique neural lineages? Brain Res 2007; 1140:41-50. [PMID: 16566902 DOI: 10.1016/j.brainres.2006.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/13/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Much has been learnt about the reeler mutant since its inclusion in the celebrated Catalog of the Neurological Mutants of the Mouse in the mid-sixties. The pace of discovery was most definitively agitated after the identification of reelin, the genuine gene product mutated in reeler (first expressed by a monolayer of cells in the marginal zone of the developing brain), and the subsequent establishment of the so-called reelin signaling pathway (including the reelin receptor machinery expressed by migrating newborn neurons). Yet little is known as to how the reelin signaling events, which are critically involved in neuronal migration, are linked to the in vivo behavior of individual neurons. Lately, the results of the forced ectopic expression of reelin in the neurogenic zone jeopardized all proposed models regarding its mechanism of action. Our studies suggest that earlier than newborn neurons, the radial glia neuronal progenitors may receive a functional reelin signal. Here I show evidence of an enriched localization of the reelin receptor machinery in radial glial cells of the lateral, but not the median, ganglionic eminence. This precise compartmentalization suggests that, unlike radial migration of cortical projection neurons, reelin signaling is not directly related with the tangential migration of the bulk of cortical interneurons. I hereby submit a personal glimpse of reeler morphogenesis which embodies a testable hypothesis; namely, that reelin signals to unique neural lineages to regulate migration.
Collapse
Affiliation(s)
- Juan M Luque
- Instituto de Neurociencias, UMH-CSIC, San Juan de Alicante, Spain.
| |
Collapse
|
166
|
Deng JB, Yu DM, Wu P, Li MS. The tracing study of developing entorhino-hippocampal pathway. Int J Dev Neurosci 2007; 25:251-8. [PMID: 17493779 DOI: 10.1016/j.ijdevneu.2007.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 12/12/2022] Open
Abstract
The entorhino-hippocampal pathway is the major excitatory input from neurons of the entorhinal cortex on both ipsilateral and contralateral hippocampus/dentate gyrus. This fiber tract consists of the alvear path, the perforant path and a crossed commissural projection. In this study, the histogenesis and development of the various subsets of the entorhino-hippocampal projection have been investigated. DiI, DiO, Fast Blue tracing and calretinin immunocytochemistry as well as were carried out with pre and postnatal rats at different developmental stages. The alvear path and the commissural pathway start to develop as early as embryonic day E16, while the first perforant afferents reach the stratum lacunosum-moleculare of the hippocampus at E17 and at outer molecular layer of the denate gyrus at postnatal day 2. Retrograde tracing with DiI identifies entorhinal neurons in layer II-IV as the developmental origin of the entorhino-hippocampal pathway. Furthermore, calretinin immunocytochemistry revealed transitory Cajal-Retzius cells in the stratum lacunosum-moleculare of the hippocampus from E16. DiI labeling of entorhinal cortex fibers and combined calretinin-immunocytochemistry reveal a close relationship between Cajal-Retzius cells and entorhinal afferents. This temporal and spatial relationship suggests that Cajal-Retzius cell serves as a guiding cue for entorhinal afferents at early cortical development.
Collapse
Affiliation(s)
- Jin-Bo Deng
- Institute of Neurobiology, Henan University, Kaifeng 475004, Henan Province, PR China.
| | | | | | | |
Collapse
|
167
|
Abstract
Interneurons are GABAergic neurons responsible for inhibitory activity in the adult hippocampus, thereby controlling the activity of principal excitatory cells through the activation of postsynaptic GABAA receptors. Subgroups of GABAergic neurons innervate specific parts of excitatory neurons. This specificity indicates that particular interneuron subgroups are able to recognize molecules segregated on the membrane of the pyramidal neuron. Once these specific connections are established, a quantitative regulation of their strength must be performed to achieve the proper balance of excitation and inhibition. We will review when and where interneurons are generated. We will then detail their migration toward and within the hippocampus, and the maturation of their morphological and neurochemical characteristics. We will finally review potential mechanisms underlying the development of GABAergic interneurons.
Collapse
Affiliation(s)
- Lydia Danglot
- Laboratoire de Biologie de la Synapse Normale et Pathologique, Unité Inserm U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
168
|
Fukumitsu H, Ohtsuka M, Murai R, Nakamura H, Itoh K, Furukawa S. Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J Neurosci 2007; 26:13218-30. [PMID: 17182772 PMCID: PMC6675008 DOI: 10.1523/jneurosci.4251-06.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lamina formation in the developing cerebral cortex requires precisely regulated generation and migration of the cortical progenitor cells. To test the possible involvement of brain-derived neurotrophic factor (BDNF) in the formation of the cortical lamina, we investigated the effects of BDNF protein and anti-BDNF antibody separately administered into the telencephalic ventricular space of 13.5-d-old mouse embryos. BDNF altered the position, gene-expression properties, and projections of neurons otherwise destined for layer IV to those of neurons for the deeper layers, V and VI, of the cerebral cortex, whereas anti-BDNF antibody changed some of those of neurons of upper layers II/III. Additional analysis revealed that BDNF altered the laminar fate of neurons only if their parent progenitor cells were exposed to it at approximately S-phase and that it hastened the timing of the withdrawal of their daughter neurons from the ventricular proliferating pool by accelerating the completion of S-phase, downregulation of the Pax6 (paired box gene 6) expression, an essential transcription factor for generation of the upper layer neurons, and interkinetic nuclear migration of cortical progenitors in the ventricular zone. These observations suggest that BDNF participates in the processes forming the neuronal laminas in the developing cerebral cortex. BDNF can therefore be counted as one of the key extrinsic factors that regulate the laminar fate of cortical neurons.
Collapse
Affiliation(s)
- Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| | - Masanari Ohtsuka
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| | - Rina Murai
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| | - Hiroyuki Nakamura
- Department of Morphological Neuroscience, Gifu University Graduate School of Medical Science, Gifu 501-1194, Japan
| | - Kazuo Itoh
- Department of Morphological Neuroscience, Gifu University Graduate School of Medical Science, Gifu 501-1194, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan, and
| |
Collapse
|
169
|
Rymar VV, Sadikot AF. Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype. J Comp Neurol 2007; 501:369-80. [PMID: 17245711 DOI: 10.1002/cne.21250] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pioneering work indicates that the final position of neurons in specific layers of the mammalian cerebral cortex is determined primarily by birthdate. Glutamatergic projection neurons are born in the cortical proliferative zones of the dorsal telencephalon, and follow an "inside-out" neurogenesis gradient: later-born cohorts migrate radially past earlier-born neurons to populate more superficial layers. GABAergic interneurons, the major source of cortical inhibition, comprise a heterogeneous population and are produced in proliferative zones of the ventral telencephalon. Mechanisms by which interneuron subclasses find appropriate layer-specific cortical addresses remain largely unexplored. Major cortical interneuron subclasses can be identified based on expression of distinct calcium-binding proteins including parvalbumin, calretinin, or calbindin. We determined whether cortical layer-patterning of interneurons is dependent on phenotype. Parvalbumin-positive interneurons populate cortical layers with an inside-out gradient, and birthdate is isochronous to projection neurons in the same layers. In contrast, another major GABAergic subtype, labeled using calretinin, populates the cerebral cortex using an opposite "outside-in" gradient, heterochronous to neighboring neurons. In addition to birthdate, phenotype is also a determinant of cortical patterning. Discovery of a cortical subpopulation that does not follow the well-established inside-out gradient has important implications for mechanisms of layer formation in the cerebral cortex.
Collapse
Affiliation(s)
- Vladimir V Rymar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
170
|
Anliker B, Müller U. The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. NEURODEGENER DIS 2006; 3:239-46. [PMID: 17047363 DOI: 10.1159/000095262] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is well established that proteolytic processing of the beta-amyloid precursor protein (APP) generates beta-amyloid which plays a central role in the pathogenesis of Alzheimer's disease. In contrast, the physiological role of APP and the question of whether a loss of these functions contributes to Alzheimer's disease are still unclear. For a long time, the characterization of APP functions was markedly hampered by the high redundancy between APP and the related APP family members amyloid precursor-like proteins 1 and 2. The generation and analyses of combined gene deficiencies for APP and amyloid precursor-like proteins in mice finally marked the beginning of uncovering the in vivo roles of these proteins in mammals. In the current review, we summarize recent insights into the functions of the APP gene family from mice lacking one, two or all three family members.
Collapse
Affiliation(s)
- Brigitte Anliker
- Department of Neurochemistry, Max Planck Institute for Brain Research, Frankfurt, Germany
| | | |
Collapse
|
171
|
Baba K, Dekimoto H, Muraoka D, Agata K, Terashima T, Katsuyama Y. A mouse homologue of Strawberry Notch is transcriptionally regulated by Reelin signal. Biochem Biophys Res Commun 2006; 350:842-9. [PMID: 17045962 DOI: 10.1016/j.bbrc.2006.09.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 09/16/2006] [Indexed: 11/20/2022]
Abstract
Reelin is a glycoprotein secreted by specific neuronal populations of the adult and developing nervous system of vertebrates. The morphological abnormalities in the brain of reeler, the Reelin deficient mutant mice, indicate that Reelin is essential for the brain morphogenesis. However, biochemical function of Reelin signal is not well understood. Here, we examined possible function of Reelin signal in regulation of gene expression by performing a microarray analysis. We found that expression level of a mouse homologue of Strawberry Notch (mSno1) is markedly reduced in the reeler embryos. In situ hybridization showed that mSno1 is expressed in the developing nervous system colocalizing with expression of ApoER2, a Reelin receptor. Treatment of P19 cells with Reelin protein enhanced mSno1 expression. Overexpression of ApoER2 with Reelin treatment gave a synergistic effect on mSno1 expression level. These observations suggest that Reelin signal is involved in embryonic expression of a novel vertebrate gene, mSno1.
Collapse
Affiliation(s)
- Kousuke Baba
- Department of Anatomy and Developmental Neurobiology, Kobe University School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
172
|
Zhao T, Kraemer N, Oldekamp J, Cankaya M, Szabó N, Conrad S, Skutella T, Alvarez-Bolado G. Emx2 in the developing hippocampal fissure region. Eur J Neurosci 2006; 23:2895-907. [PMID: 16819978 DOI: 10.1111/j.1460-9568.2006.04819.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mice deficient in transcription factor gene Emx2 show developmental alterations in the hippocampal dentate gyrus. Emx2, however, is also expressed in the region around the developing hippocampal fissure. The developing fissure contains a radial glial scaffolding, and is surrounded by the outer marginal zone and the dentate marginal zone, which become specifically colonized by neurons and differentiate into stratum lacunosum-moleculare and molecular layer of the dentate, respectively. In this study we show that the Emx2 mutant lacks the glial scaffolding of the fissure and has an outer marginal zone (precursor of the stratum lacunosum-moleculare), as well as a dentate marginal zone severely reduced in size while most of the reelin (Reln)-expressing cells that should occupy it fail to be generated. We have also identified a subpopulation of hippocampal Reln-expressing cells of the marginal zone, probably born in the hem, expressing a specific combination of markers, and for which Emx2 is not essentially required. Additionally, we show differential mutant phenotypes of both Emx2 and Pax6 in neocortical vs. hippocampal Reln-expressing cells, indicating differential development of both subpopulations.
Collapse
Affiliation(s)
- Tianyu Zhao
- Max Planck Institute of Experimental Endocrinology, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Borrell V, Marín O. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 2006; 9:1284-93. [PMID: 16964252 DOI: 10.1038/nn1764] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/14/2006] [Indexed: 11/09/2022]
Abstract
Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | |
Collapse
|
174
|
Pla R, Borrell V, Flames N, Marín O. Layer acquisition by cortical GABAergic interneurons is independent of Reelin signaling. J Neurosci 2006; 26:6924-34. [PMID: 16807322 PMCID: PMC6673924 DOI: 10.1523/jneurosci.0245-06.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functioning of the cerebral cortex requires the coordinated assembly of circuits involving glutamatergic projection neurons and GABAergic interneurons. Despite their segregated origin in different regions of the telencephalon, projection neurons and interneurons born synchronically end up adopting the same cortical layer, suggesting that layer acquisition is highly coordinated for both neuronal types. The radial migration and laminar arrangement of projection neurons depends on Reelin, a secreted glycoprotein expressed near the pial surface during embryogenesis. In contrast, the mechanisms controlling layer acquisition by cortical interneurons remain essentially unknown. Here, we have used an ultrasound-guided transplantation approach to analyze the mechanisms underlying the acquisition of laminar locations by cortical interneurons. We found that layer acquisition by cortical GABAergic interneurons does not directly depend on Reelin signaling. Moreover, interneurons invade their target layers well after synchronically generated projection neurons reach their final destination. These results suggest a model in which cues provided by projection neurons guide cortical interneurons to their appropriate layer, and reveal that, at least for some neuronal types, long-range radial migration does not directly require Reelin.
Collapse
|
175
|
Aboitiz F, Montiel J, García RR. Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations? Rev Neurosci 2006; 16:359-76. [PMID: 16519011 DOI: 10.1515/revneuro.2005.16.4.359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mammalian cortical development is preceded by the elaboration of a transient preplate, which is split into a superficial marginal zone and a deep subplate after the arrival of the cortical plate. There has been some controversy in the evolutionary interpretation of this transient structure, as some propose it to represent the ancestral cortex or pallium of non-mammals, while others consider it to be a phylogenetic novelty. The preplate and its derivatives contain components derived by both tangential and radial migration. Tangentially migrating elements include pioneer neurons and interneurons, both of subpallial origin, and Cajal-Retzius cells, mostly of pallial origin. Pioneer neurons were probably present in the ancestors of mammals, but may have changed their original superficial position to one below the developing cortex, thus attracting thalamic afferents in the subcortical white matter, and making them penetrate the cortex radially. In mammals, Cajal-Retzius cells appear to have increased both in number and on their level of reelin expression, perhaps in the context of controlling the final stages of migration in a radially expanding neoocortex. Radial-migrating cells are partly represented by the pyramidal-like cells of the subplate. These neurons resemble the excitatory elements of the adult reptilian cortex, but is not clear whether they are their true homologues. One possibility is that these cells appeared by virtue of a heterochronic process in which the earliest radial elements of the cortical plate began to be produced at progressively earlier developmental stages. Thus, we conclude that the mammalian preplate and its derivatives contain both ancestral and derived elements, all of which have been modified in the course of mammalian evolution to support an increasingly complex cortical plate development.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | | | |
Collapse
|
176
|
D'Arcangelo G. Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 2006; 8:81-90. [PMID: 16266828 DOI: 10.1016/j.yebeh.2005.09.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/09/2005] [Accepted: 09/10/2005] [Indexed: 11/23/2022]
Abstract
Developmental defects in neuronal positioning and synaptic connectivity are commonly found in neurological diseases, and they are believed to underlie many cognitive and affective disorders. Several mouse mutants are currently available that model at least some aspects of human developmental brain disorders. With the identification of the genes mutated in these animals and the study of the cellular basis of the phenotypes, we have taken significant strides toward an understanding of the mechanisms controlling proper brain development and the consequences of their dysfunction. In particular, mouse mutants deficient in the Reelin gene have provided valuable insights into the mechanisms of cortical development. Absence of Reelin expression in the spontaneous mutant mouse reeler leads to extensive defects in neuronal position and dendrite development. In humans, loss of Reelin results in a type of lissencephaly with severe cortical and cerebellar malformation. Genetic and biochemical studies using mouse mutants suggest that the Lis1 protein may participate in the Reelin signaling pathway controlling cortical development. Reduced levels of Reelin are also present in postmortem brains of patients with schizophrenia, suggesting a possible link with this cognitive disorder. The regulation of the Reelin gene may thus provide insights into the mechanisms of this disease.
Collapse
Affiliation(s)
- Gabriella D'Arcangelo
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
177
|
Guénette S, Chang Y, Hiesberger T, Richardson JA, Eckman CB, Eckman EA, Hammer RE, Herz J. Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J 2006; 25:420-31. [PMID: 16407979 PMCID: PMC1383510 DOI: 10.1038/sj.emboj.7600926] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/28/2005] [Indexed: 01/09/2023] Open
Abstract
Targeted deletion of two members of the FE65 family of adaptor proteins, FE65 and FE65L1, results in cortical dysplasia. Heterotopias resembling those found in cobblestone lissencephalies in which neuroepithelial cells migrate into superficial layers of the developing cortex, aberrant cortical projections and loss of infrapyramidal mossy fibers arise in FE65/FE65L1 compound null animals, but not in single gene knockouts. The disruption of pial basal membranes underlying the heterotopias and poor organization of fibrillar laminin by isolated meningeal fibroblasts from double knockouts suggests that FE65 proteins are involved in basement membrane assembly. A similar phenotype is observed in triple mutant mice lacking the APP family members APP, APLP1 and APLP2, all of which interact with FE65 proteins, suggesting that this phenotype may be caused by decreased transmission of an APP-dependent signal through the FE65 proteins. The defects observed in the double knockout may also involve the family of Ena/Vasp proteins, which participate in actin cytoskeleton remodeling and interact with the WW domains of FE65 proteins.
Collapse
Affiliation(s)
- Suzanne Guénette
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129-4404, USA.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Guillemot F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol 2005; 17:639-47. [PMID: 16226447 DOI: 10.1016/j.ceb.2005.09.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The mammalian telencephalon exhibits an amazing diversity of neuronal types. The generation of this diversity relies on multiple developmental strategies, including the regional patterning of progenitors, their temporal specification, and the generation of intermediate progenitor populations. Progress has recently been made in characterizing some of the mechanisms involved. In particular, intermediate progenitors have been shown to play important roles in the generation of neurons in the cerebral cortex, and the properties and lineage relationships between radial glial cells and these intermediate progenitors have recently been examined by elegant time-lapse microscopic studies. Multiple pathways control the progression of neural lineages from multipotent stem cells to intermediate progenitors, postmitotic precursors and finally mature neurons. The regulation of two essential steps, neuronal commitment and specification of subtype identities, is increasingly well understood. These two steps are clearly distinct but co-ordinately regulated by common transcription factors such as neurogenins and Pax6. As our knowledge of the mechanisms of subtype specification of telencephalic neurons progresses, it will become possible to direct stem cells into generating particular telencephalic neuronal populations, opening the way to efficient neuronal replacement therapies.
Collapse
Affiliation(s)
- François Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
179
|
McQuillen PS, Ferriero DM. Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathol 2005; 15:250-60. [PMID: 16196392 PMCID: PMC8096042 DOI: 10.1111/j.1750-3639.2005.tb00528.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Perinatal brain injury may result in widespread deficits in visual, motor and cognitive systems suggesting disrupted brain development. Neurosensory and cognitive impairment are observed at increasing frequency with decreasing gestational ages, suggesting a unique vulnerability of the developing brain. The peak of human subplate neuron development coincides with the gestational ages of highest vulnerability to perinatal brain injury in the premature infant. At the same time, human thalamocortical connections are forming and being refined by activity-dependent mechanisms during critical periods. Subplate neurons are the first cortical neurons to mature and are selectively vulnerable to early hypoxic-ischemic brain injury in animal models. Timing of subplate neuron death determines the resulting defect in thalamocortical development: very early excitotoxic subplate neuron death results in failure of thalamocortical innervation, while later subplate neuron death interferes with the refinement of thalamocortical connections into mature circuits. We suggest that subplate neuron injury may be a central component of perinatal brain injury resulting in specific neurodevelopmental consequences.
Collapse
Affiliation(s)
- P S McQuillen
- Department of Pediatrics, Box 0106, University of California San Francisco Medical Center, San Francisco, CA 94143-0106, USA.
| | | |
Collapse
|