151
|
Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila. J Neurosci 2020; 40:9617-9633. [PMID: 33172977 DOI: 10.1523/jneurosci.1488-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolished the depolarization of l-LNvs in response to dopamine. This indicates that dopamine signals via Dop1R1 to the l-LNvs. Downregulation of Dop1R1 or Dop1R2 in the l-LNvs and s-LNvs does not affect sleep in males. Unexpectedly, we find a moderate decrease of daytime sleep with downregulation of Dop1R1 and of nighttime sleep with downregulation of Dop1R2. Since the l-LNvs do not use Dop1R2 receptors and the s-LNvs also respond to dopamine, we conclude that the s-LNvs are responsible for the observed decrease in nighttime sleep. In summary, dopamine signaling in the wake-promoting LNvs is not required for daytime arousal, but likely promotes nighttime sleep via the s-LNvs.SIGNIFICANCE STATEMENT In insect and mammalian brains, sleep-promoting networks are intimately linked to the circadian clock, and the mechanisms underlying sleep and circadian timekeeping are evolutionarily ancient and highly conserved. Here we show that dopamine, one important sleep modulator in flies and mammals, plays surprisingly complex roles in the regulation of sleep by clock-containing neurons. Dopamine inhibits neurons in a central brain sleep center to promote sleep and excites wake-promoting circadian clock neurons. It is therefore predicted to promote wakefulness through both of these networks. Nevertheless, our results reveal that dopamine acting on wake-promoting clock neurons promotes sleep, revealing a previously unappreciated complexity in the dopaminergic control of sleep.
Collapse
|
152
|
Insulin and Leptin/Upd2 Exert Opposing Influences on Synapse Number in Fat-Sensing Neurons. Cell Metab 2020; 32:786-800.e7. [PMID: 32976758 PMCID: PMC7642105 DOI: 10.1016/j.cmet.2020.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
Abstract
Energy-sensing neural circuits decide to expend or conserve resources based, in part, on the tonic, steady-state, energy-store information they receive. Tonic signals, in the form of adipose tissue-derived adipokines, set the baseline level of activity in the energy-sensing neurons, thereby providing context for interpretation of additional inputs. However, the mechanism by which tonic adipokine information establishes steady-state neuronal function has heretofore been unclear. We show here that under conditions of nutrient surplus, Upd2, a Drosophila leptin ortholog, regulates actin-based synapse reorganization to reduce bouton number in an inhibitory circuit, thus establishing a neural tone that is permissive for insulin release. Unexpectedly, we found that insulin feeds back on these same inhibitory neurons to conversely increase bouton number, resulting in maintenance of negative tone. Our results point to a mechanism by which two surplus-sensing hormonal systems, Upd2/leptin and insulin, converge on a neuronal circuit with opposing outcomes to establish energy-store-dependent neuron activity.
Collapse
|
153
|
Omamiuda-Ishikawa N, Sakai M, Emoto K. A pair of ascending neurons in the subesophageal zone mediates aversive sensory inputs-evoked backward locomotion in Drosophila larvae. PLoS Genet 2020; 16:e1009120. [PMID: 33137117 PMCID: PMC7605633 DOI: 10.1371/journal.pgen.1009120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Animals typically avoid unwanted situations with stereotyped escape behavior. For instance, Drosophila larvae often escape from aversive stimuli to the head, such as mechanical stimuli and blue light irradiation, by backward locomotion. Responses to these aversive stimuli are mediated by a variety of sensory neurons including mechanosensory class III da (C3da) sensory neurons and blue-light responsive class IV da (C4da) sensory neurons and Bolwig's organ (BO). How these distinct sensory pathways evoke backward locomotion at the circuit level is still incompletely understood. Here we show that a pair of cholinergic neurons in the subesophageal zone, designated AMBs, evoke robust backward locomotion upon optogenetic activation. Anatomical and functional analysis shows that AMBs act upstream of MDNs, the command-like neurons for backward locomotion. Further functional analysis indicates that AMBs preferentially convey aversive blue light information from C4da neurons to MDNs to elicit backward locomotion, whereas aversive information from BO converges on MDNs through AMB-independent pathways. We also found that, unlike in adult flies, MDNs are dispensable for the dead end-evoked backward locomotion in larvae. Our findings thus reveal the neural circuits by which two distinct blue light-sensing pathways converge on the command-like neurons to evoke robust backward locomotion, and suggest that distinct but partially redundant neural circuits including the command-like neurons might be utilized to drive backward locomotion in response to different sensory stimuli as well as in adults and larvae.
Collapse
Affiliation(s)
| | - Moeka Sakai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo
- * E-mail:
| |
Collapse
|
154
|
Amaral LDO, Lima VS, Soares SM, Bornhorst J, Lemos SS, Gatto CC, Burrow RA, Gubert P. Synthesis, structural characterization and evaluation of the chelating potential in C. elegans involving complexes of mercury (II) with Schiff bases derived from amino acids. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
155
|
Yoshinari Y, Ameku T, Kondo S, Tanimoto H, Kuraishi T, Shimada-Niwa Y, Niwa R. Neuronal octopamine signaling regulates mating-induced germline stem cell increase in female Drosophila melanogaster. eLife 2020; 9:57101. [PMID: 33077027 PMCID: PMC7591258 DOI: 10.7554/elife.57101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells fuel the development and maintenance of tissues. Many studies have addressed how local signals from neighboring niche cells regulate stem cell identity and their proliferative potential. However, the regulation of stem cells by tissue-extrinsic signals in response to environmental cues remains poorly understood. Here we report that efferent octopaminergic neurons projecting to the ovary are essential for germline stem cell (GSC) increase in response to mating in female Drosophila. The neuronal activity of the octopaminergic neurons is required for mating-induced GSC increase as they relay the mating signal from sex peptide receptor-positive cholinergic neurons. Octopamine and its receptor Oamb are also required for mating-induced GSC increase via intracellular Ca2+ signaling. Moreover, we identified Matrix metalloproteinase-2 as a downstream component of the octopamine-Ca2+ signaling to induce GSC increase. Our study provides a mechanism describing how neuronal system couples stem cell behavior to environmental cues through stem cell niche signaling.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
156
|
Bayer EA, Stecky RC, Neal L, Katsamba PS, Ahlsen G, Balaji V, Hoppe T, Shapiro L, Oren-Suissa M, Hobert O. Ubiquitin-dependent regulation of a conserved DMRT protein controls sexually dimorphic synaptic connectivity and behavior. eLife 2020; 9:59614. [PMID: 33021200 PMCID: PMC7538159 DOI: 10.7554/elife.59614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
Sex-specific synaptic connectivity is beginning to emerge as a remarkable, but little explored feature of animal brains. We describe here a novel mechanism that promotes sexually dimorphic neuronal function and synaptic connectivity in the nervous system of the nematode Caenorhabditis elegans. We demonstrate that a phylogenetically conserved, but previously uncharacterized Doublesex/Mab-3 related transcription factor (DMRT), dmd-4, is expressed in two classes of sex-shared phasmid neurons specifically in hermaphrodites but not in males. We find dmd-4 to promote hermaphrodite-specific synaptic connectivity and neuronal function of phasmid sensory neurons. Sex-specificity of DMD-4 function is conferred by a novel mode of posttranslational regulation that involves sex-specific protein stabilization through ubiquitin binding to a phylogenetically conserved but previously unstudied protein domain, the DMA domain. A human DMRT homolog of DMD-4 is controlled in a similar manner, indicating that our findings may have implications for the control of sexual differentiation in other animals as well.
Collapse
Affiliation(s)
- Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Rebecca C Stecky
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Lauren Neal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Phinikoula S Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Vishnu Balaji
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| | - Meital Oren-Suissa
- Weizmann Institute of Science, Department of Neurobiology, Rehovot, Israel
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
157
|
Hu SW, Yang YT, Sun Y, Zhan YP, Zhu Y. Serotonin Signals Overcome Loser Mentality in Drosophila. iScience 2020; 23:101651. [PMID: 33117967 PMCID: PMC7581928 DOI: 10.1016/j.isci.2020.101651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/03/2022] Open
Abstract
Traumatic experiences generate stressful neurological effects in the exposed persons and animals. Previous studies have demonstrated that in many species, including Drosophila, the defeated animal has a higher probability of losing subsequent fights. However, the neural basis of this “loser effect” is largely unknown. We herein report that elevated serotonin (5-HT) signaling helps a loser to overcome suppressive neurological states. Coerced activation of 5-HT neurons increases aggression in males and promotes losers to both vigorously re-engage in fights and even defeat the previous winners and regain mating motivation. P1 neurons act upstream and 5-HT1B neurons in the ellipsoid body act downstream of 5-HT neurons to arouse losers. Our results demonstrate an ancient neural mechanism of regulating depressive behavioral states after distressing events. Activating a small subset of serotonin neurons promotes losers to fight Serotonin is necessary and sufficient for modulating aggression in losers The neural circuit for motivating losers includes P1, 5-HT, and 5-HT1B neurons Elevating 5-HT signaling overcomes the depressive behavioral state in losers
Collapse
Affiliation(s)
- Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Peng Zhan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
158
|
Carpenter MA, Wang Y, Telmer CA, Schmidt BF, Yang Z, Bruchez MP. Protein Proximity Observed Using Fluorogen Activating Protein and Dye Activated by Proximal Anchoring (FAP-DAPA) System. ACS Chem Biol 2020; 15:2433-2443. [PMID: 32786268 DOI: 10.1021/acschembio.0c00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development and function of tissues, blood, and the immune system is dependent upon proximity for cellular recognition and communication. However, the detection of cell-to-cell contacts is limited due to a lack of reversible, quantitative probes that can function at these dynamic sites of irregular geometry. Described here is a novel chemo-genetic tool developed for fluorescent detection of protein-protein proximity and cell apposition that utilizes the Fluorogen Activating Protein (FAP) in combination with a Dye Activated by Proximal Anchoring (DAPA). The FAP-DAPA system has two protein components, the HaloTag and FAP, expressed on separate protein targets or in separate cells. The proteins function to bind and activate a compound that has the hexyl chloride (HexCl) ligand connected to malachite green (MG), the FAP fluorogen, via a poly(ethylene glycol) spacer spanning up to 28 nm. The dehalogenase protein, HaloTag, covalently binds the HexCl ligand, locally concentrating the attached MG. If the FAP is within range of the anchored fluorogen, it will bind and activate MG specifically when the bath concentration is too low to saturate the FAP receptor. A new FAP variant was isolated with a 1000-fold reduced KD of ∼10-100 nM so that the fluorogen activation reports proximity without artificially enhancing it. The system was characterized using purified FRB and FKBP fusion proteins and showed a doubling of fluorescence upon rapamycin induced complex formation. In cocultured HEK293 cells (HaloTag and FAP-expressing) fluorescence increased at contact sites across a broad range of labeling conditions, more reliably providing contact-specific fluorescence activation with the lower-affinity FAP variant. When combined with suitable targeting and expression constructs, this labeling system may offer significant improvements in on-demand detection of intercellular contacts, potentially applicable in neurological and immunological synapse measurements and other transient, dynamic biological appositions that can be perturbed using other labeling methods that stabilize these interactions.
Collapse
Affiliation(s)
- M. Alexandra Carpenter
- Carnegie Mellon University, Department of Chemistry, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Cheryl A. Telmer
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Carnegie Mellon University, Molecular Biosensor and Imaging Center, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F. Schmidt
- Carnegie Mellon University, Molecular Biosensor and Imaging Center, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zhipeng Yang
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P. Bruchez
- Carnegie Mellon University, Department of Chemistry, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Carnegie Mellon University, Molecular Biosensor and Imaging Center, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
159
|
Li J, Mahoney BD, Jacob MS, Caron SJC. Visual Input into the Drosophila melanogaster Mushroom Body. Cell Rep 2020; 32:108138. [PMID: 32937130 PMCID: PMC8252886 DOI: 10.1016/j.celrep.2020.108138] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
The patterns of neuronal connectivity underlying multisensory integration, a fundamental property of many brains, remain poorly characterized. The Drosophila melanogaster mushroom body-an associative center-is an ideal system to investigate how different sensory channels converge in higher order brain centers. The neurons connecting the mushroom body to the olfactory system have been described in great detail, but input from other sensory systems remains poorly defined. Here, we use a range of anatomical and genetic techniques to identify two types of input neuron that connect visual processing centers-the lobula and the posterior lateral protocerebrum-to the dorsal accessory calyx of the mushroom body. Together with previous work that described a pathway conveying visual information from the medulla to the ventral accessory calyx of the mushroom body, our study defines a second, parallel pathway that is anatomically poised to convey information from the visual system to the dorsal accessory calyx.
Collapse
Affiliation(s)
- Jinzhi Li
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84103, USA
| | - Brennan Dale Mahoney
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84103, USA
| | - Miles Solomon Jacob
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84103, USA
| | | |
Collapse
|
160
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
161
|
Kinoshita N, Huang AJY, McHugh TJ, Miyawaki A, Shimogori T. Diffusible GRAPHIC to visualize morphology of cells after specific cell-cell contact. Sci Rep 2020; 10:14437. [PMID: 32879377 PMCID: PMC7468259 DOI: 10.1038/s41598-020-71474-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
The ability to identify specific cell-cell contact in the highly heterogeneous mammalian body is crucial to revealing precise control of the body plan and correct function. To visualize local connections, we previously developed a genetically encoded fluorescent indicator, GRAPHIC, which labels cell-cell contacts by restricting the reconstituted green fluorescent protein (GFP) signal to the contact site. Here, we modify GRAPHIC to give the reconstituted GFP motility within the membrane, to detect cells that make contact with other specific cells. Removal of leucine zipper domains, located between the split GFP fragment and glycophosphatidylinositol anchor domain, allowed GFP reconstituted at the contact site to diffuse throughout the entire plasma membrane, revealing cell morphology. Further, depending on the structural spacers employed, the reconstituted GFP could be selectively targeted to N terminal (NT)- or C terminal (CT)-probe-expressing cells. Using these novel constructs, we demonstrated that we can specifically label NT-probe-expressing cells that made contact with CT-probe-expressing cells in an epithelial cell culture and in Xenopus 8-cell-stage blastomeres. Moreover, we showed that diffusible GRAPHIC (dGRAPHIC) can be used in neuronal circuits to trace neurons that make contact to reveal a connection map. Finally, application in the developing brain demonstrated that the dGRAPHIC signal remained on neurons that had transient contacts during circuit development to reveal the contact history. Altogether, dGRAPHIC is a unique probe that can visualize cells that made specific cell-cell contact.
Collapse
Affiliation(s)
- Nagatoki Kinoshita
- Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Saitama, Japan.,Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Tokyo, Japan
| | | | - Thomas J McHugh
- Circuit and Behavioral Physiology, CBS, RIKEN, Saitama, Japan
| | - Atsushi Miyawaki
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Tokyo, Japan.,Cell Function Dynamics, CBS, RIKEN, Saitama, Japan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Saitama, Japan.
| |
Collapse
|
162
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
163
|
Rangel Olguin AG, Rochon PL, Krishnaswamy A. New Optical Tools to Study Neural Circuit Assembly in the Retina. Front Neural Circuits 2020; 14:44. [PMID: 32848633 PMCID: PMC7424070 DOI: 10.3389/fncir.2020.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During development, neurons navigate a tangled thicket of thousands of axons and dendrites to synapse with just a few specific targets. This phenomenon termed wiring specificity, is critical to the assembly of neural circuits and the way neurons manage this feat is only now becoming clear. Recent studies in the mouse retina are shedding new insight into this process. They show that specific wiring arises through a series of stages that include: directed axonal and dendritic growth, the formation of neuropil layers, positioning of such layers, and matching of co-laminar synaptic partners. Each stage appears to be directed by a distinct family of recognition molecules, suggesting that the combinatorial expression of such family members might act as a blueprint for retinal connectivity. By reviewing the evidence in support of each stage, and by considering their underlying molecular mechanisms, we attempt to synthesize these results into a wiring model which generates testable predictions for future studies. Finally, we conclude by highlighting new optical methods that could be used to address such predictions and gain further insight into this fundamental process.
Collapse
|
164
|
Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Curr Biol 2020; 30:4128-4141.e5. [PMID: 32857970 PMCID: PMC7658809 DOI: 10.1016/j.cub.2020.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Sexually dimorphic circuits underlie behavioral differences between the sexes, yet the molecular mechanisms involved in their formation are poorly understood. We show here that sexually dimorphic connectivity patterns arise in C. elegans through local ubiquitin-mediated protein degradation in selected synapses of one sex but not the other. Specifically, synaptic degradation occurs via binding of the evolutionary conserved E3 ligase SEL-10/FBW7 to a phosphodegron binding site of the netrin receptor UNC-40/DCC (Deleted in Colorectal Cancer), resulting in degradation of UNC-40. In animals carrying an undegradable unc-40 gain-of-function allele, synapses were retained in both sexes, compromising the activity of the circuit without affecting neurite guidance. Thus, by decoupling the synaptic and guidance functions of the netrin pathway, we reveal a critical role for dimorphic protein degradation in controlling neuronal connectivity and activity. Additionally, the interaction between SEL-10 and UNC-40 is necessary not only for sex-specific synapse pruning, but also for other synaptic functions. These findings provide insight into the mechanisms that generate sex-specific differences in neuronal connectivity, activity, and function. Sex-specific synapse pruning during development is regulated by the ubiquitin pathway The E3 ligase SEL-10 targets the UNC-40 netrin receptor via binding to a CPD motif UNC-40 degradation leads to synapse removal only in hermaphrodites, not males CPD mutations disrupt synaptic functions of UNC-40, leaving axon guidance intact
Collapse
|
165
|
Cleveland JD, Tucker CL. Photo-SNAP-tag, a Light-Regulated Chemical Labeling System. ACS Chem Biol 2020; 15:2212-2220. [PMID: 32623878 DOI: 10.1021/acschembio.0c00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methods that allow labeling and tracking of proteins have been instrumental for understanding their function. Traditional methods for labeling proteins include fusion to fluorescent proteins or self-labeling chemical tagging systems such as SNAP-tag or Halo-tag. These latter approaches allow bright fluorophores or other chemical moieties to be attached to a protein of interest through a small fusion tag. In this work, we sought to improve the versatility of self-labeling chemical-tagging systems by regulating their activity with light. We used light-inducible dimerizers to reconstitute a split SNAP-tag (modified human O6-alkylguanine-DNA-alkyltransferase, hAGT) protein, allowing tight light-dependent control of chemical labeling. In addition, we generated a small split SNAP-tag fragment that can efficiently self-assemble with its complement fragment, allowing high labeling efficacy with a small tag. We envision these tools will extend the versatility and utility of the SNAP-tag chemical system for protein labeling applications.
Collapse
Affiliation(s)
- Joseph D. Cleveland
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Chandra L. Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
166
|
Damulewicz M, Ispizua JI, Ceriani MF, Pyza EM. Communication Among Photoreceptors and the Central Clock Affects Sleep Profile. Front Physiol 2020; 11:993. [PMID: 32848895 PMCID: PMC7431659 DOI: 10.3389/fphys.2020.00993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Light is one of the most important factors regulating rhythmical behavior of Drosophila melanogaster. It is received by different photoreceptors and entrains the circadian clock, which controls sleep. The retina is known to be essential for light perception, as it is composed of specialized light-sensitive cells which transmit signal to deeper parts of the brain. In this study we examined the role of specific photoreceptor types and peripheral oscillators located in these cells in the regulation of sleep pattern. We showed that sleep is controlled by the visual system in a very complex way. Photoreceptors expressing Rh1, Rh3 are involved in night-time sleep regulation, while cells expressing Rh5 and Rh6 affect sleep both during the day and night. Moreover, Hofbauer-Buchner (HB) eyelets which can directly contact with s-LN v s and l-LN v s play a wake-promoting function during the day. In addition, we showed that L2 interneurons, which receive signal from R1-6, form direct synaptic contacts with l-LN v s, which provides new light input to the clock network.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Juan I. Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| |
Collapse
|
167
|
Liao S, Nässel DR. Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:461. [PMID: 32849266 PMCID: PMC7396567 DOI: 10.3389/fendo.2020.00461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
In Drosophila melanogaster eight insulin-like peptides (DILP1-8) are encoded on separate genes. These DILPs are characterized by unique spatial and temporal expression patterns during the lifecycle. Whereas, functions of several of the DILPs have been extensively investigated at different developmental stages, the role of DILP8 signaling is primarily known from larvae and pupae where it couples organ growth and developmental transitions. In adult female flies, a study showed that a specific set of neurons that express the DILP8 receptor, Lgr3, is involved in regulation of reproductive behavior. Here, we further investigated the expression of dilp8/DILP8 and Lgr3 in adult female flies and the functional role of DILP8 signaling. The only site where we found both dilp8 expression and DILP8 immunolabeling was in follicle cells around mature eggs. Lgr3 expression was detected in numerous neurons in the brain and ventral nerve cord, a small set of peripheral neurons innervating the abdominal heart, as well as in a set of follicle cells close to the oviduct. Ovulation was affected in dilp8 mutants as well as after dilp8-RNAi using dilp8 and follicle cell Gal4 drivers. More eggs were retained in the ovaries and fewer were laid, indicating that DILP8 is important for ovulation. Our data suggest that DILP8 signals locally to Lgr3 expressing follicle cells as well as systemically to Lgr3 expressing efferent neurons in abdominal ganglia that innervate oviduct muscle. Thus, DILP8 may act at two targets to regulate ovulation: follicle cell rupture and oviduct contractions. Furthermore, we could show that manipulations of dilp8 expression affect starvation resistance suggesting effects on metabolism. Possibly this reflects a feedback signaling between ovaries and the CNS that ensures nutrients for ovary development. In summary, it seems that DILP8 signaling in regulation of reproduction is an ancient function, conserved in relaxin signaling in mammals.
Collapse
|
168
|
González‐Méndez L, Gradilla A, Sánchez‐Hernández D, González E, Aguirre‐Tamaral A, Jiménez‐Jiménez C, Guerra M, Aguilar G, Andrés G, Falcón‐Pérez JM, Guerrero I. Polarized sorting of Patched enables cytoneme-mediated Hedgehog reception in the Drosophila wing disc. EMBO J 2020; 39:e103629. [PMID: 32311148 PMCID: PMC7265244 DOI: 10.15252/embj.2019103629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) signal molecules play a fundamental role in development, adult stem cell maintenance and cancer. Hh can signal at a distance, and we have proposed that its graded distribution across Drosophila epithelia is mediated by filopodia-like structures called cytonemes. Hh reception by Patched (Ptc) happens at discrete sites along presenting and receiving cytonemes, reminiscent of synaptic processes. Here, we show that a vesicle fusion mechanism mediated by SNARE proteins is required for Ptc placement at contact sites. Transport of Ptc to these sites requires multivesicular bodies (MVBs) formation via ESCRT machinery, in a manner different to that regulating Ptc/Hh lysosomal degradation after reception. These MVBs include extracellular vesicle (EV) markers and, accordingly, Ptc is detected in the purified exosomal fraction from cultured cells. Blockage of Ptc trafficking and fusion to basolateral membranes result in low levels of Ptc presentation for reception, causing an extended and flattened Hh gradient.
Collapse
Affiliation(s)
- Laura González‐Méndez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Ana‐Citlali Gradilla
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - David Sánchez‐Hernández
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Esperanza González
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Adrián Aguirre‐Tamaral
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Carlos Jiménez‐Jiménez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Milagros Guerra
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Gustavo Aguilar
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
- Growth and DevelopmentBiozentrumUniversity of BaselBaselSwitzerland
| | - Germán Andrés
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Juan M Falcón‐Pérez
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Isabel Guerrero
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
169
|
Perez-Alvarez A, Fearey BC, O'Toole RJ, Yang W, Arganda-Carreras I, Lamothe-Molina PJ, Moeyaert B, Mohr MA, Panzera LC, Schulze C, Schreiter ER, Wiegert JS, Gee CE, Hoppa MB, Oertner TG. Freeze-frame imaging of synaptic activity using SynTagMA. Nat Commun 2020; 11:2464. [PMID: 32424147 PMCID: PMC7235013 DOI: 10.1038/s41467-020-16315-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Information within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. Here we introduce SynTagMA to tag active synapses in a user-defined time window. Upon 395-405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we show how to identify and track the fluorescence of thousands of individual synapses in an automated fashion. Together, these tools provide an efficient method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.
Collapse
Affiliation(s)
- Alberto Perez-Alvarez
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Brenna C Fearey
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Ryan J O'Toole
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Yang
- Research Group Synaptic Wiring and Information Processing, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Ignacio Arganda-Carreras
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Dept. of Computer Science and Artificial Intelligence, Basque Country University, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Paul J Lamothe-Molina
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | | | - Manuel A Mohr
- HHMI, Janelia Farm Research Campus, Ashburn, VA, 20147, USA
| | - Lauren C Panzera
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Christian Schulze
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | | | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Christine E Gee
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Thomas G Oertner
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany.
| |
Collapse
|
170
|
Zhang K, Yao E, Lin C, Chou YT, Wong J, Li J, Wolters PJ, Chuang PT. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. eLife 2020; 9:e53688. [PMID: 32394892 PMCID: PMC7217702 DOI: 10.7554/elife.53688] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Alveolar formation increases the surface area for gas-exchange and is key to the physiological function of the lung. Alveolar epithelial cells, myofibroblasts and endothelial cells undergo coordinated morphogenesis to generate epithelial folds (secondary septa) to form alveoli. A mechanistic understanding of alveologenesis remains incomplete. We found that the planar cell polarity (PCP) pathway is required in alveolar epithelial cells and myofibroblasts for alveologenesis in mammals. Our studies uncovered a Wnt5a-Ror2-Vangl2 cascade that endows cellular properties and novel mechanisms of alveologenesis. This includes PDGF secretion from alveolar type I and type II cells, cell shape changes of type I cells and migration of myofibroblasts. All these cellular properties are conferred by changes in the cytoskeleton and represent a new facet of PCP function. These results extend our current model of PCP signaling from polarizing a field of epithelial cells to conferring new properties at subcellular levels to regulate collective cell behavior.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Yu-Ting Chou
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Jianying Li
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Paul J Wolters
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
171
|
Imura E, Shimada-Niwa Y, Nishimura T, Hückesfeld S, Schlegel P, Ohhara Y, Kondo S, Tanimoto H, Cardona A, Pankratz MJ, Niwa R. The Corazonin-PTTH Neuronal Axis Controls Systemic Body Growth by Regulating Basal Ecdysteroid Biosynthesis in Drosophila melanogaster. Curr Biol 2020; 30:2156-2165.e5. [PMID: 32386525 DOI: 10.1016/j.cub.2020.03.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Steroid hormones play key roles in development, growth, and reproduction in various animal phyla [1]. The insect steroid hormone, ecdysteroid, coordinates growth and maturation, represented by molting and metamorphosis [2]. In Drosophila melanogaster, the prothoracicotropic hormone (PTTH)-producing neurons stimulate peak levels of ecdysteroid biosynthesis for maturation [3]. Additionally, recent studies on PTTH signaling indicated that basal levels of ecdysteroid negatively affect systemic growth prior to maturation [4-8]. However, it remains unclear how PTTH signaling is regulated for basal ecdysteroid biosynthesis. Here, we report that Corazonin (Crz)-producing neurons regulate basal ecdysteroid biosynthesis by affecting PTTH neurons. Crz belongs to gonadotropin-releasing hormone (GnRH) superfamily, implying an analogous role in growth and maturation [9]. Inhibition of Crz neuronal activity increased pupal size, whereas it hardly affected pupariation timing. This phenotype resulted from enhanced growth rate and a delay in ecdysteroid elevation during the mid-third instar larval (L3) stage. Interestingly, Crz receptor (CrzR) expression in PTTH neurons was higher during the mid- than the late-L3 stage. Silencing of CrzR in PTTH neurons increased pupal size, phenocopying the inhibition of Crz neuronal activity. When Crz neurons were optogenetically activated, a strong calcium response was observed in PTTH neurons during the mid-L3, but not the late-L3, stage. Furthermore, we found that octopamine neurons contact Crz neurons in the subesophageal zone (SEZ), transmitting signals for systemic growth. Together, our results suggest that the Crz-PTTH neuronal axis modulates ecdysteroid biosynthesis in response to octopamine, uncovering a regulatory neuroendocrine system in the developmental transition from growth to maturation.
Collapse
Affiliation(s)
- Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8577 Tsukuba, Japan.
| | | | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn 53115, Germany
| | - Yuya Ohhara
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn 53115, Germany
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8577 Tsukuba, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
172
|
Wu F, Deng B, Xiao N, Wang T, Li Y, Wang R, Shi K, Luo DG, Rao Y, Zhou C. A neuropeptide regulates fighting behavior in Drosophila melanogaster. eLife 2020; 9:54229. [PMID: 32314736 PMCID: PMC7173970 DOI: 10.7554/elife.54229] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/11/2020] [Indexed: 11/13/2022] Open
Abstract
Aggressive behavior is regulated by various neuromodulators such as neuropeptides and biogenic amines. Here we found that the neuropeptide Drosulfakinin (Dsk) modulates aggression in Drosophila melanogaster. Knock-out of Dsk or Dsk receptor CCKLR-17D1 reduced aggression. Activation and inactivation of Dsk-expressing neurons increased and decreased male aggressive behavior, respectively. Moreover, data from transsynaptic tracing, electrophysiology and behavioral epistasis reveal that Dsk-expressing neurons function downstream of a subset of P1 neurons (P1a-splitGAL4) to control fighting behavior. In addition, winners show increased calcium activity in Dsk-expressing neurons. Conditional overexpression of Dsk promotes social dominance, suggesting a positive correlation between Dsk signaling and winning effects. The mammalian ortholog CCK has been implicated in mammal aggression, thus our work suggests a conserved neuromodulatory system for the modulation of aggressive behavior.
Collapse
Affiliation(s)
- Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangchun Life Sciences Park, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Na Xiao
- State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yining Li
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangchun Life Sciences Park, Beijing, China.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Gen Luo
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Rao
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangchun Life Sciences Park, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
173
|
Kim JH, Ki Y, Lee H, Hur MS, Baik B, Hur JH, Nam D, Lim C. The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission. Commun Biol 2020; 3:174. [PMID: 32296133 PMCID: PMC7160125 DOI: 10.1038/s42003-020-0902-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Genes and neural circuits coordinately regulate animal sleep. However, it remains elusive how these endogenous factors shape sleep upon environmental changes. Here, we demonstrate that Shaker (Sh)-expressing GABAergic neurons projecting onto dorsal fan-shaped body (dFSB) regulate temperature-adaptive sleep behaviors in Drosophila. Loss of Sh function suppressed sleep at low temperature whereas light and high temperature cooperatively gated Sh effects on sleep. Sh depletion in GABAergic neurons partially phenocopied Sh mutants. Furthermore, the ionotropic GABA receptor, Resistant to dieldrin (Rdl), in dFSB neurons acted downstream of Sh and antagonized its sleep-promoting effects. In fact, Rdl inhibited the intracellular cAMP signaling of constitutively active dopaminergic synapses onto dFSB at low temperature. High temperature silenced GABAergic synapses onto dFSB, thereby potentiating the wake-promoting dopamine transmission. We propose that temperature-dependent switching between these two synaptic transmission modalities may adaptively tune the neural property of dFSB neurons to temperature shifts and reorganize sleep architecture for animal fitness. Ji-hyung Kim and Yoonhee Ki et al. show that low temperatures suppress sleep in Drosophila by increasing GABA transmission in Shaker-expressing GABAergic neurons projecting onto the dorsal fan-shaped body, while high temperatures potentiate dopamine-induced arousal by reducing GABA transmission. This study highlights a role for Shaker in sleep modulation via a temperature-dependent switch in GABA signaling.
Collapse
Affiliation(s)
- Ji-Hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoonhee Ki
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Moon Seong Hur
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bukyung Baik
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST Optical Biomed Imaging Center, UNIST, Ulsan, 44919, Republic of Korea
| | - Dougu Nam
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
174
|
Luo J, Ting CY, Li Y, McQueen P, Lin TY, Hsu CP, Lee CH. Antagonistic regulation by insulin-like peptide and activin ensures the elaboration of appropriate dendritic field sizes of amacrine neurons. eLife 2020; 9:50568. [PMID: 32175842 PMCID: PMC7075694 DOI: 10.7554/elife.50568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023] Open
Abstract
Establishing appropriate sizes and shapes of dendritic arbors is critical for proper wiring of the central nervous system. Here we report that Insulin-like Peptide 2 (DILP2) locally activates transiently expressed insulin receptors in the central dendrites of Drosophila Dm8 amacrine neurons to positively regulate dendritic field elaboration. We found DILP2 was expressed in L5 lamina neurons, which have axonal terminals abutting Dm8 dendrites. Proper Dm8 dendrite morphogenesis and synapse formation required insulin signaling through TOR (target of rapamycin) and SREBP (sterol regulatory element-binding protein), acting in parallel with previously identified negative regulation by Activin signaling to provide robust control of Dm8 dendrite elaboration. A simulation of dendritic growth revealed trade-offs between dendritic field size and robustness when branching and terminating kinetic parameters were constant, but dynamic modulation of the parameters could mitigate these trade-offs. We suggest that antagonistic DILP2 and Activin signals from different afferents appropriately size Dm8 dendritic fields.
Collapse
Affiliation(s)
- Jiangnan Luo
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Philip McQueen
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
175
|
Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring. Nat Commun 2020; 11:1325. [PMID: 32165611 PMCID: PMC7067798 DOI: 10.1038/s41467-020-14781-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.
Collapse
|
176
|
Badia-Soteras A, Octeau JC, Verheijen MHG, Khakh BS. Assessing Neuron-Astrocyte Spatial Interactions Using the Neuron-Astrocyte Proximity Assay. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 91:e91. [PMID: 32068967 PMCID: PMC7123847 DOI: 10.1002/cpns.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes are morphologically complex cells with numerous close contacts with neurons at the level of their somata, branches, and branchlets. The smallest astrocyte processes make discrete contacts with synapses at scales that cannot be observed by standard light microscopy. At such contact points, astrocytes are thought to perform both homeostatic and neuromodulatory roles-functions that are proposed to be determined by their close spatial apposition. To study such spatial interactions, we previously developed a Förster resonance energy transfer (FRET)-based approach, which enables observation and tracking of the static and dynamic proximity of astrocyte processes with synapses. The approach is compatible with standard imaging techniques such as confocal microscopy and permits assessment of the most proximate contacts between astrocytes and neurons in live tissues. In this protocol article we describe the approach to analyze the contacts between striatal astrocyte processes and corticostriatal neuronal projection terminals onto medium spiny neurons. We report the required protocols in detail, including adeno-associated virus microinjections, acute brain slice preparation, imaging, and post hoc FRET quantification. The article provides a detailed description that can be used to characterize and study astrocyte process proximity to synapses in living tissue. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Förster resonance energy transfer imaging in cultured cells Basic Protocol 2: Förster resonance energy transfer imaging with the neuron-astrocyte proximity assay in acute brain slices.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - J. Christopher Octeau
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Mark H. G. Verheijen
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| |
Collapse
|
177
|
Choi JE, Kim J, Kim J. Capturing activated neurons and synapses. Neurosci Res 2020; 152:25-34. [DOI: 10.1016/j.neures.2019.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
|
178
|
Bai Y, Suzuki T. Activity-Dependent Synaptic Plasticity in Drosophila melanogaster. Front Physiol 2020; 11:161. [PMID: 32158405 PMCID: PMC7052306 DOI: 10.3389/fphys.2020.00161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The Drosophila nervous system is a valuable model to examine the mechanisms of activity-dependent synaptic modification (plasticity) owing to its relatively simple organization and the availability of powerful genetic tools. The larval neuromuscular junction (NMJ) in particular is an accessible model for the study of synaptic development and plasticity. In addition to the NMJ, huge strides have also been made on understanding activity-dependent synaptic plasticity in the Drosophila olfactory and visual systems. In this review, we focus mainly on the underlying processes of activity-dependent synaptic plasticity at both pre-synaptic and post-synaptic terminals, and summarize current knowledge on activity-dependent synaptic plasticity in different parts of the Drosophila melanogaster nervous system (larval NMJ, olfactory system, larval visual system, and adult visual system). We also examine links between synaptic development and activity-dependent synaptic plasticity, and the relationships between morphological and physiological plasticity. We provide a point of view from which we discern that the underlying mechanism of activity-dependent plasticity may be common throughout the nervous systems in Drosophila melanogaster.
Collapse
Affiliation(s)
- Yiming Bai
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
179
|
Cebul ER, McLachlan IG, Heiman MG. Dendrites with specialized glial attachments develop by retrograde extension using SAX-7 and GRDN-1. Development 2020; 147:dev.180448. [PMID: 31988188 DOI: 10.1242/dev.180448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Dendrites develop elaborate morphologies in concert with surrounding glia, but the molecules that coordinate dendrite and glial morphogenesis are mostly unknown. C. elegans offers a powerful model for identifying such factors. Previous work in this system examined dendrites and glia that develop within epithelia, similar to mammalian sense organs. Here, we focus on the neurons BAG and URX, which are not part of an epithelium but instead form membranous attachments to a single glial cell at the nose, reminiscent of dendrite-glia contacts in the mammalian brain. We show that these dendrites develop by retrograde extension, in which the nascent dendrite endings anchor to the presumptive nose and then extend by stretching during embryo elongation. Using forward genetic screens, we find that dendrite development requires the adhesion protein SAX-7/L1CAM and the cytoplasmic protein GRDN-1/CCDC88C to anchor dendrite endings at the nose. SAX-7 acts in neurons and glia, while GRDN-1 acts in glia to non-autonomously promote dendrite extension. Thus, this work shows how glial factors can help to shape dendrites, and identifies a novel molecular mechanism for dendrite growth by retrograde extension.
Collapse
Affiliation(s)
- Elizabeth R Cebul
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Ian G McLachlan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
180
|
The Drosophila melanogaster as Genetic Model System to Dissect the Mechanisms of Disease that Lead to Neurodegeneration in Adrenoleukodystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:145-159. [PMID: 33417213 DOI: 10.1007/978-3-030-60204-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drosophila melanogaster is the most successful genetic model organism to study different human disease with a recent increased popularity to study neurological disorders. Drosophila melanogaster has a complex yet well-defined brain with defined anatomical regions with specific functions. The neuronal network in the adult brain has a structural organization highly similar to human neurons, but in a brain that is much more amenable for complex analyses. The availability of sophisticated genetic tools to study neurons permits to examine neuronal functions at the single cell level in the whole brain by confocal imaging, which does not require sections. Thus, Drosophila has been used to successfully study many neurological disorders such as Parkinson's disease and has been recently adopted to understand the complex networks leading to neurological disorders with metabolic origins such as Leigh disease and X-linked adrenoleukodystrophy (X-ALD).In this review, we will describe the genetic tools available to study neuronal structures and functions and also illustrate some limitations of the system. Finally, we will report the experimental efforts that in the past 10 years have established Drosophila melanogaster as an excellent model organism to study neurodegenerative disorders focusing on X-ALD.
Collapse
|
181
|
Bhardwaj A, Pandey P, Babu K. Control of Locomotory Behavior of Caenorhabditis elegans by the Immunoglobulin Superfamily Protein RIG-3. Genetics 2020; 214:135-145. [PMID: 31740450 PMCID: PMC6944407 DOI: 10.1534/genetics.119.302872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Cell surface immunoglobulin superfamily (IgSF) proteins play important roles in the development and function of the nervous system . Here we define the role of a Caenorhabditis elegans IgSF protein, RIG-3, in the function of the AVA command interneuron. This study reveals that RIG-3 regulates the abundance of the glutamate receptor subunit, GLR-1, in the AVA command interneuron and also regulates reversal behavior in C. elegans The mutant strain lacking rig-3 (rig-3 (ok2156)) shows increased reversal frequency during local search behaviors. Genetic and behavioral experiments suggest that RIG-3 functions through GLR-1 to regulate reversal behavior. We also show that the increased reversal frequency seen in rig-3 mutants is dependent on the increase in GLR-1 abundance at synaptic inputs to AVA, suggesting that RIG-3 alters the synaptic strength of incoming synapses through GLR-1 Consistent with the imaging experiments, altered synaptic strength was also reflected in increased calcium transients in rig-3 mutants when compared to wild-type control animals. Our results further suggest that animals lacking rig-3 show increased AVA activity, allowing the release of FLP-18 neuropeptide from AVA, which is an activity-dependent signaling molecule. Finally, we show that FLP-18 functions through the neuropeptide receptor, NPR-5, to modulate reversal behavior in C. elegans.
Collapse
Affiliation(s)
- Ashwani Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
182
|
Jin H, Emmons SW, Kim B. Expressional artifact caused by a co-injection marker rol-6 in C. elegans. PLoS One 2019; 14:e0224533. [PMID: 31800569 PMCID: PMC6892501 DOI: 10.1371/journal.pone.0224533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
In transgenic research, selection markers have greatly facilitated the generation of transgenic animals. A prerequisite for a suitable selection marker to be used along with a test gene of interest is that the marker should not affect the phenotype of interest in transformed animals. One of the most common selection markers used in C. elegans transgenic approaches is the rol-6 co-injection marker, which induces a behavioral roller phenotype due to a cuticle defect but is not known to have other side effects. However, we found that the rol-6 co-injection marker can cause expression of GFP in the test sequence in a male-specific interneuron called CP09. We found that the rol-6 gene sequence included in the marker plasmid is responsible for this unwanted expression. Accordingly, the use of the rol-6 co-injection marker is not recommended when researchers intend to examine precise expression or perform functional studies especially targeting male C. elegans neurons. The rol-6 sequence region we identified can be used to drive a specific expression in CP09 neuron for future research.
Collapse
Affiliation(s)
- HoYong Jin
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Scott W. Emmons
- Department of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (BK); (SE)
| | - Byunghyuk Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
- * E-mail: (BK); (SE)
| |
Collapse
|
183
|
Neurons that Function within an Integrator to Promote a Persistent Behavioral State in Drosophila. Neuron 2019; 105:322-333.e5. [PMID: 31810837 DOI: 10.1016/j.neuron.2019.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023]
Abstract
Innate behaviors involve both reflexive motor programs and enduring internal states, but how these responses are coordinated by the brain is not clear. In Drosophila, male-specific P1 interneurons promote courtship song, as well as a persistent internal state that prolongs courtship and enhances aggressiveness. However, P1 neurons themselves are not persistently active. Here, we identify pCd neurons as persistently active, indirect P1 targets that are required for P1-evoked persistent courtship and aggression. Acute activation of pCd neurons alone is inefficacious but enhances and prolongs courtship or aggression promoted by female cues. Brief female exposure induces a persistent increase in male aggressiveness, an effect abrogated by interruption of pCd activity. pCd activity is not sufficient but necessary for persistent physiological activity, implying an essential role in a persistence network. Thus, P1 neurons coordinate both command-like control of courtship song and a persistent internal state of social arousal mediated by pCd neurons.
Collapse
|
184
|
Sherer LM, Certel SJ. The fight to understand fighting: neurogenetic approaches to the study of aggression in insects. CURRENT OPINION IN INSECT SCIENCE 2019; 36:18-24. [PMID: 31302354 PMCID: PMC6906251 DOI: 10.1016/j.cois.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Aggression is an evolutionarily conserved behavior that evolved in the framework of defending or obtaining resources. When expressed out of context, unchecked aggression can have destructive consequences. Model systems that allow examination of distinct neuronal networks at the molecular, cellular, and circuit levels are adding immensely to our understanding of the biological basis of this behavior and should be relatable to other species up to and including man. Investigators have made particular use of insect models to both describe this quantifiable and stereotyped behavior and to manipulate genes and neuron function via numerous genetic and pharmacological tools. This review discusses recent advances in techniques that improve our ability to identify, manipulate, visualize, and compare the genes, neurons, and circuits that are required for the output of this complex and clinically relevant social behavior.
Collapse
Affiliation(s)
- Lewis M Sherer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
185
|
Portela M, Venkataramani V, Fahey-Lozano N, Seco E, Losada-Perez M, Winkler F, Casas-Tintó S. Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol 2019; 17:e3000545. [PMID: 31846454 PMCID: PMC6917273 DOI: 10.1371/journal.pbio.3000545] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, β-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.
Collapse
Affiliation(s)
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
186
|
Horowitz LB, Brandt JP, Ringstad N. Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in C. elegans. Development 2019; 146:dev.182873. [PMID: 31628111 DOI: 10.1242/dev.182873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Nervous system development is instructed by genetic programs and refined by distinct mechanisms that couple neural activity to gene expression. How these processes are integrated remains poorly understood. Here, we report that the regulated release of insulin-like peptides (ILPs) during development of the Caenorhabditis elegans nervous system accomplishes such an integration. We find that the p38 MAP kinase PMK-3, which is required for the differentiation of chemosensory BAG neurons, limits an ILP signal that represses expression of a BAG neuron fate. ILPs are released from BAGs themselves in an activity-dependent manner during development, indicating that ILPs constitute an autocrine signal that regulates the differentiation of BAG neurons. Expression of a specialized neuronal fate is, therefore, coordinately regulated by a genetic program that sets levels of ILP expression during development, and by neural activity, which regulates ILP release. Autocrine signals of this kind might have general and conserved functions as integrators of deterministic genetic programs with activity-dependent mechanisms during neurodevelopment.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Julia P Brandt
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
187
|
Oh Y, Lai JSY, Mills HJ, Erdjument-Bromage H, Giammarinaro B, Saadipour K, Wang JG, Abu F, Neubert TA, Suh GSB. A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 2019; 574:559-564. [PMID: 31645735 PMCID: PMC6857815 DOI: 10.1038/s41586-019-1675-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/16/2019] [Indexed: 01/08/2023]
Abstract
Although glucose-sensing neurons were identified more than 50 years ago, the physiological role of glucose sensing in metazoans remains unclear. Here we identify a pair of glucose-sensing neurons with bifurcated axons in the brain of Drosophila. One axon branch projects to insulin-producing cells to trigger the release of Drosophila insulin-like peptide 2 (dilp2) and the other extends to adipokinetic hormone (AKH)-producing cells to inhibit secretion of AKH, the fly analogue of glucagon. These axonal branches undergo synaptic remodelling in response to changes in their internal energy status. Silencing of these glucose-sensing neurons largely disabled the response of insulin-producing cells to glucose and dilp2 secretion, disinhibited AKH secretion in corpora cardiaca and caused hyperglycaemia, a hallmark feature of diabetes mellitus. We propose that these glucose-sensing neurons maintain glucose homeostasis by promoting the secretion of dilp2 and suppressing the release of AKH when haemolymph glucose levels are high.
Collapse
Affiliation(s)
- Yangkyun Oh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Jason Sih-Yu Lai
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- QPS-Qualitix Taiwan, Ren-Ai Road, Taipei, Taiwan
| | - Holly J Mills
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Ascend Public Charter Schools, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Benno Giammarinaro
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Vision Sciences Graduate Program, School of Optometry, UC Berkeley, Berkeley, CA, USA
| | - Khalil Saadipour
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Justin G Wang
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Farhan Abu
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Greg S B Suh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
188
|
Xie X, Tabuchi M, Corver A, Duan G, Wu MN, Kolodkin AL. Semaphorin 2b Regulates Sleep-Circuit Formation in the Drosophila Central Brain. Neuron 2019; 104:322-337.e14. [PMID: 31564592 DOI: 10.1016/j.neuron.2019.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/09/2019] [Accepted: 07/14/2019] [Indexed: 11/29/2022]
Abstract
The fan-shaped body (FB) neuropil in the Drosophila brain central complex (CX) controls a variety of adult behaviors, including navigation and sleep. How neuronal processes are organized into precise layers and columns in the FB and how alterations in FB neural-circuit wiring affect animal behaviors are unknown. We report here that secreted semaphorin 2b (Sema-2b) acts through its transmembrane receptor Plexin B (PlexB) to locally attract neural processes to specific FB laminae. Aberrant Sema-2b/PlexB signaling leads to select disruptions in neural lamination, and these disruptions result in the formation of ectopic inhibitory connections between subsets of FB neurons. These structural alternations and connectivity defects are associated with changes in fly sleep and arousal, emphasizing the importance of lamination-mediated neural wiring in a central brain region critical for normal sleep behavior.
Collapse
Affiliation(s)
- Xiaojun Xie
- Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Masashi Tabuchi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abel Corver
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Grace Duan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
189
|
Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 2019; 209:1-13. [PMID: 31555911 DOI: 10.1007/s00430-019-00635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality associated with systemic fungal infections in humans cannot be underestimated. The nematode Caenorhabditis elegans has become popular for the in vivo study of the pathogenesis of human fungal pathogens and as an antifungal drug-screening tool. C. elegans offers many advantages as a model organism for the study of human fungal diseases, including lack of ethics requirements, easy maintenance in the laboratory, fully sequenced genome, availability of genetic mutants, and the possibility of liquid assays for high-throughput antifungal screening. Its major drawbacks include the inability to grow at 37 °C and absence of an adaptive immune response. However, several virulence factors involved in the pathogenesis of medically important fungal pathogens have been identified using the C. elegans model, consequently providing new leads for drug discovery and potential drug targets. We review the use of C. elegans as a model animal to understand the pathogenesis of medically important human fungal pathogens and the discovery of novel antifungal compounds. The review makes a case for C. elegans as a suitable invertebrate model for a plethora of practical applications in the investigation of fungal pathogenesis as well as its amenability for liquid-based high-throughput screening of potential antifungal compounds.
Collapse
|
190
|
Feng S, Varshney A, Coto Villa D, Modavi C, Kohler J, Farah F, Zhou S, Ali N, Müller JD, Van Hoven MK, Huang B. Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Commun Biol 2019; 2:344. [PMID: 31552297 PMCID: PMC6749000 DOI: 10.1038/s42003-019-0589-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Self-associating split fluorescent proteins (FPs) are split FPs whose two fragments spontaneously associate to form a functional FP. They have been widely used for labeling proteins, scaffolding protein assembly and detecting cell-cell contacts. Recently developments have expanded the palette of self-associating split FPs beyond the original split GFP1-10/11. However, these new ones have suffered from suboptimal fluorescence signal after complementation. Here, by investigating the complementation process, we have demonstrated two approaches to improve split FPs: assistance through SpyTag/SpyCatcher interaction and directed evolution. The latter has yielded two split sfCherry3 variants with substantially enhanced overall brightness, facilitating the tagging of endogenous proteins by gene editing. Based on sfCherry3, we have further developed a new red-colored trans-synaptic marker called Neuroligin-1 sfCherry3 Linker Across Synaptic Partners (NLG-1 CLASP) for multiplexed visualization of neuronal synapses in living C. elegans, demonstrating its broad applications.
Collapse
Affiliation(s)
- Siyu Feng
- The UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
| | - Aruna Varshney
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Doris Coto Villa
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic Sciences, University of California in San Francisco, San Francisco, CA 94143 USA
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Fatima Farah
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Shuqin Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, CA 94143 USA
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Joachim D. Müller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Miri K. Van Hoven
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, CA 94143 USA
- Department Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
191
|
Sancer G, Kind E, Plazaola-Sasieta H, Balke J, Pham T, Hasan A, Münch LO, Courgeon M, Mathejczyk TF, Wernet MF. Modality-Specific Circuits for Skylight Orientation in the Fly Visual System. Curr Biol 2019; 29:2812-2825.e4. [DOI: 10.1016/j.cub.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 01/17/2023]
|
192
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A Student's Guide to Neural Circuit Tracing. Front Neurosci 2019; 13:897. [PMID: 31507369 PMCID: PMC6718611 DOI: 10.3389/fnins.2019.00897] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian nervous system is comprised of a seemingly infinitely complex network of specialized synaptic connections that coordinate the flow of information through it. The field of connectomics seeks to map the structure that underlies brain function at resolutions that range from the ultrastructural, which examines the organization of individual synapses that impinge upon a neuron, to the macroscopic, which examines gross connectivity between large brain regions. At the mesoscopic level, distant and local connections between neuronal populations are identified, providing insights into circuit-level architecture. Although neural tract tracing techniques have been available to experimental neuroscientists for many decades, considerable methodological advances have been made in the last 20 years due to synergies between the fields of molecular biology, virology, microscopy, computer science and genetics. As a consequence, investigators now enjoy an unprecedented toolbox of reagents that can be directed against selected subpopulations of neurons to identify their efferent and afferent connectomes. Unfortunately, the intersectional nature of this progress presents newcomers to the field with a daunting array of technologies that have emerged from disciplines they may not be familiar with. This review outlines the current state of mesoscale connectomic approaches, from data collection to analysis, written for the novice to this field. A brief history of neuroanatomy is followed by an assessment of the techniques used by contemporary neuroscientists to resolve mesoscale organization, such as conventional and viral tracers, and methods of selecting for sub-populations of neurons. We consider some weaknesses and bottlenecks of the most widely used approaches for the analysis and dissemination of tracing data and explore the trajectories that rapidly developing neuroanatomy technologies are likely to take.
Collapse
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
193
|
Bloss EB, Hunt DL. Revealing the Synaptic Hodology of Mammalian Neural Circuits With Multiscale Neurocartography. Front Neuroinform 2019; 13:52. [PMID: 31427940 PMCID: PMC6690003 DOI: 10.3389/fninf.2019.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
The functional features of neural circuits are determined by a combination of properties that range in scale from projections systems across the whole brain to molecular interactions at the synapse. The burgeoning field of neurocartography seeks to map these relevant features of brain structure—spanning a volume ∼20 orders of magnitude—to determine how neural circuits perform computations supporting cognitive function and complex behavior. Recent technological breakthroughs in tissue sample preparation, high-throughput electron microscopy imaging, and automated image analyses have produced the first visualizations of all synaptic connections between neurons of invertebrate model systems. However, the sheer size of the central nervous system in mammals implies that reconstruction of the first full brain maps at synaptic scale may not be feasible for decades. In this review, we outline existing and emerging technologies for neurocartography that complement electron microscopy-based strategies and are beginning to derive some basic organizing principles of circuit hodology at the mesoscale, microscale, and nanoscale. Specifically, we discuss how a host of light microscopy techniques including array tomography have been utilized to determine both long-range and subcellular organizing principles of synaptic connectivity. In addition, we discuss how new techniques, such as two-photon serial tomography of the entire mouse brain, have become attractive approaches to dissect the potential connectivity of defined cell types. Ultimately, principles derived from these techniques promise to facilitate a conceptual understanding of how connectomes, and neurocartography in general, can be effectively utilized toward reaching a mechanistic understanding of circuit function.
Collapse
Affiliation(s)
- Erik B Bloss
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, United States
| | - David L Hunt
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, United States
| |
Collapse
|
194
|
Adesnik H, Naka A. Cracking the Function of Layers in the Sensory Cortex. Neuron 2019; 100:1028-1043. [PMID: 30521778 DOI: 10.1016/j.neuron.2018.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted solidly in each layer's component cell types and fine circuit architecture and produces predictions that can be validated by specific perturbations. Here we briefly review the progress toward such a theory and suggest an experimental road map toward this goal. We discuss new methods for the all-optical interrogation of cortical layers, for correlating in vivo function with precise identification of transcriptional cell type, and for mapping local and long-range activity in vivo with synaptic resolution. The new technologies that can crack the function of cortical layers are finally on the immediate horizon.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Alexander Naka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
195
|
Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science 2019; 363:948-955. [PMID: 30819957 DOI: 10.1126/science.aat5053] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
We investigated the roles of components of neuronal synapses for development of the Drosophila air sac primordium (ASP). The ASP, an epithelial tube, extends specialized signaling filopodia called cytonemes that take up signals such as Dpp (Decapentaplegic, a homolog of the vertebrate bone morphogenetic protein) from the wing imaginal disc. Dpp signaling in the ASP was compromised if disc cells lacked Synaptobrevin and Synaptotagmin-1 (which function in vesicle transport at neuronal synapses), the glutamate transporter, and a voltage-gated calcium channel, or if ASP cells lacked Synaptotagmin-4 or the glutamate receptor GluRII. Transient elevations of intracellular calcium in ASP cytonemes correlate with signaling activity. Calcium transients in ASP cells depend on GluRII, are activated by l-glutamate and by stimulation of an optogenetic ion channel expressed in the wing disc, and are inhibited by EGTA and by the GluR inhibitor NASPM (1-naphthylacetyl spermine trihydrochloride). Activation of GluRII is essential but not sufficient for signaling. Cytoneme-mediated signaling is glutamatergic.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Songmei Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
196
|
Differential Regulation of Innate and Learned Behavior by Creb1/Crh-1 in Caenorhabditis elegans. J Neurosci 2019; 39:7934-7946. [PMID: 31413073 PMCID: PMC6774408 DOI: 10.1523/jneurosci.0006-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Memory formation is crucial for the survival of animals. Here, we study the effect of different crh-1 [Caenorhabditis elegans homolog of mammalian cAMP response element binding protein 1 (CREB1)] isoforms on the ability of C. elegans to form long-term memory (LTM). Null mutants in creb1/crh-1 are defective in LTM formation across phyla. We show that a specific isoform of CREB1/CRH-1, CRH-1e, is primarily responsible for memory related functions of the transcription factor in C. elegans. Silencing of CRH-1e-expressing neurons during training for LTM formation abolishes the LTM of the animal. Further, CRH-1e expression in RIM neurons is sufficient to rescue LTM defects of creb1/crh-1-null mutants. We go on to show that apart from being LTM defective, creb1/crh-1-null animals show defects in innate chemotaxis behavior. We further characterize the amino acids K247 and K266 as responsible for the LTM related functions of CREB1/CRH-1 while being dispensable for its innate chemotaxis behavior. These findings provide insight into the spatial and temporal workings of a crucial transcription factor that can be further exploited to find CREB1 targets involved in the process of memory formation. SIGNIFICANCE STATEMENT This study elucidates the role of a specific isoform of CREB1/CRH-1, CRH-1e, in Caenorhabditis elegans memory formation and chemosensation. Removal of this single isoform of creb1/crh-1 shows defects in long-term memory formation in the animal and expression of CREB1/CRH-1e in a single pair of neurons is sufficient to rescue the memory defects seen in the mutant animals. We further show that two specific amino acids of CRH-1 are required for the process of memory formation in the animal.
Collapse
|
197
|
Liu W, Ganguly A, Huang J, Wang Y, Ni JD, Gurav AS, Aguilar MA, Montell C. Neuropeptide F regulates courtship in Drosophila through a male-specific neuronal circuit. eLife 2019; 8:e49574. [PMID: 31403399 PMCID: PMC6721794 DOI: 10.7554/elife.49574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 12/02/2022] Open
Abstract
Male courtship is provoked by perception of a potential mate. In addition, the likelihood and intensity of courtship are influenced by recent mating experience, which affects sexual drive. Using Drosophila melanogaster, we found that the homolog of mammalian neuropeptide Y, neuropeptide F (NPF), and a cluster of male-specific NPF (NPFM) neurons, regulate courtship through affecting courtship drive. Disrupting NPF signaling produces sexually hyperactive males, which are resistant to sexual satiation, and whose courtship is triggered by sub-optimal stimuli. We found that NPFM neurons make synaptic connections with P1 neurons, which comprise the courtship decision center. Activation of P1 neurons elevates NPFM neuronal activity, which then act through NPF receptor neurons to suppress male courtship, and maintain the proper level of male courtship drive.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Anindya Ganguly
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Jia Huang
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Yijin Wang
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Jinfei D Ni
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Adishthi S Gurav
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Morris A Aguilar
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
198
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
199
|
Peng JJ, Lin SH, Liu YT, Lin HC, Li TN, Yao CK. A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. eLife 2019; 8:47372. [PMID: 31318331 PMCID: PMC6682402 DOI: 10.7554/elife.47372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) is known to mediate glutamate excitotoxicity in neurological diseases. However, how ROS burdens can influence neural circuit integrity remains unclear. Here, we investigate the impact of excitotoxicity induced by depletion of Drosophila Eaat1, an astrocytic glutamate transporter, on locomotor central pattern generator (CPG) activity, neuromuscular junction architecture, and motor function. We show that glutamate excitotoxicity triggers a circuit-dependent ROS feedback loop to sculpt the motor system. Excitotoxicity initially elevates ROS, thereby inactivating cholinergic interneurons and consequently changing CPG output activity to overexcite motor neurons and muscles. Remarkably, tonic motor neuron stimulation boosts muscular ROS, gradually dampening muscle contractility to feedback-enhance ROS accumulation in the CPG circuit and subsequently exacerbate circuit dysfunction. Ultimately, excess premotor excitation of motor neurons promotes ROS-activated stress signaling that alters neuromuscular junction architecture. Collectively, our results reveal that excitotoxicity-induced ROS can perturb motor system integrity through a circuit-dependent mechanism.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Han Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
200
|
Lyutova R, Selcho M, Pfeuffer M, Segebarth D, Habenstein J, Rohwedder A, Frantzmann F, Wegener C, Thum AS, Pauls D. Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nat Commun 2019; 10:3097. [PMID: 31308381 PMCID: PMC6629635 DOI: 10.1038/s41467-019-11092-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.
Collapse
Affiliation(s)
- Radostina Lyutova
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Maximilian Pfeuffer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Dennis Segebarth
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Würzburg, D-97078, Würzburg, Germany
| | - Jens Habenstein
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Department of Behavioral Physiology and Sociobiology, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Astrid Rohwedder
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Felix Frantzmann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Andreas S Thum
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|