151
|
Identification of a consensus motif in substrates bound by a Type I Hsp40. Proc Natl Acad Sci U S A 2009; 106:11073-8. [PMID: 19549854 DOI: 10.1073/pnas.0900746106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein aggregation is a hallmark of a large and diverse number of conformational diseases. Molecular chaperones of the Hsp40 family (Escherichia coli DnaJ homologs) recognize misfolded disease proteins and suppress the accumulation of toxic protein species. Type I Hsp40s are very potent at suppressing protein aggregation and facilitating the refolding of damaged proteins. Yet, the molecular mechanism for the recognition of nonnative polypeptides by Type I Hsp40s such as yeast Ydj1 is not clear. Here we computationally identify a unique motif that is selectively recognized by Ydj1p. The motif is characterized by the consensus sequence GX[LMQ]{P}X{P}{CIMPVW}, where [XY] denotes either X or Y and {XY} denotes neither X nor Y. We further verify the validity of the motif by site-directed mutagenesis and show that substrate binding by Ydj1 requires recognition of this motif. A yeast proteome screen revealed that many proteins contain more than one stretch of residues that contain the motif and are separated by varying numbers of amino acids. In light of our results, we propose a 2-site peptide-binding model and a plausible mechanism of peptide presentation by Ydj1p to the chaperones of the Hsp70 family. Based on our results, and given that Ydj1p and its human ortholog Hdj2 are functionally interchangeable, we hypothesize that our results can be extended to understanding human diseases.
Collapse
|
152
|
Patterson ST, Li J, Kang JA, Wickrema A, Williams DB, Reithmeier RAF. Loss of specific chaperones involved in membrane glycoprotein biosynthesis during the maturation of human erythroid progenitor cells. J Biol Chem 2009; 284:14547-57. [PMID: 19258325 PMCID: PMC2682903 DOI: 10.1074/jbc.m809076200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/23/2009] [Indexed: 11/06/2022] Open
Abstract
The production of erythrocytes requires the massive synthesis of red cell-specific proteins including hemoglobin, cytoskeletal proteins, as well as membrane glycoproteins glycophorin A (GPA) and anion exchanger 1 (AE1). We found that during the terminal differentiation of human CD34(+) erythroid progenitor cells in culture, key components of the endoplasmic reticulum (ER) protein translocation (Sec61alpha), glycosylation (OST48), and protein folding machinery, chaperones BiP, calreticulin (CRT), and Hsp90 were maintained to allow efficient red cell glycoprotein biosynthesis. Unexpected was the loss of calnexin (CNX), an ER glycoprotein chaperone, and ERp57, a protein-disulfide isomerase, as well as a major decrease of the cytosolic chaperones, Hsc70 and Hsp70, components normally involved in membrane glycoprotein folding and quality control. AE1 can traffic to the cell surface in mouse embryonic fibroblasts completely deficient in CNX or CRT, whereas disruption of the CNX/CRT-glycoprotein interactions in human K562 cells using castanospermine did not affect the cell-surface levels of endogenous GPA or expressed AE1. These results demonstrate that CNX and ERp57 are not required for major glycoprotein biosynthesis during red cell development, in contrast to their role in glycoprotein folding and quality control in other cells.
Collapse
Affiliation(s)
- Sian T Patterson
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
153
|
Ao L, Zou N, Cleveland JC, Fullerton DA, Meng X. Myocardial TLR4 is a determinant of neutrophil infiltration after global myocardial ischemia: mediating KC and MCP-1 expression induced by extracellular HSC70. Am J Physiol Heart Circ Physiol 2009; 297:H21-8. [PMID: 19448144 DOI: 10.1152/ajpheart.00292.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiac surgery with global myocardial ischemia-reperfusion (I/R) induces a myocardial inflammatory response that impairs cardiac recovery. Chemokines contribute to the overall myocardial inflammatory response through inducing leukocyte infiltration. Although Toll-like receptor 4 (TLR4) has an important role in postischemic myocardial injury, the relative roles of myocardial tissue and leukocyte TLR4 in leukocyte infiltration, as well as the role of TLR4 in myocardial chemokine expression, are unclear. Our recent study, in an isolated mouse heart model of global I/R, found that the 70-kDa heat shock cognate protein (HSC70) is released from cardiac cells and mediates the expression of cardiodepressant cytokines via a TLR4-dependent mechanism. In the present study, we tested the hypotheses that myocardial tissue TLR4 has a major role in mediating neutrophil infiltration and that myocardial TLR4 and extracellular HSC70 contribute to the mechanisms underlying cardiac chemokine response to global I/R. We subjected hearts isolated from TLR4-defective and TLR4-competent mice to global I/R and examined myocardial neutrophil infiltration and expression of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein-1 (MCP-1). TLR4-defective hearts exhibited reduced neutrophil infiltration regardless of the phenotypes of neutrophils perfused during reperfusion and expressed lower levels of KC and MCP-1. HSC70-specific antibody reduced myocardial expression of KC and MCP-1 after I/R. Furthermore, perfusion of HSC70 increased KC and MCP-1 expression in TLR4-competent hearts but not in TLR4-defective hearts, and HSC70 also induced the chemokine response in macrophages in a TLR4-dependent fashion. A recombinant HSC70 fragment lacking the substrate-binding domain was insufficient to induce chemokine expression in hearts and cells. This study demonstrates that myocardial tissue TLR4, rather than neutrophil TLR4, is the determinant of myocardial neutrophil infiltration after global I/R. TLR4 mediates myocardial chemokine expression, and the mechanisms involve extracellular HSC70. These results imply the HSC70-TLR4 interaction as a novel mechanism underlying the myocardial chemokine response to global I/R.
Collapse
Affiliation(s)
- Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
154
|
Chow AM, Steel R, Anderson RL. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis. Cell Stress Chaperones 2009; 14:253-63. [PMID: 18819021 PMCID: PMC2728260 DOI: 10.1007/s12192-008-0079-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 11/25/2022] Open
Abstract
In addition to its role as a molecular chaperone, heat shock protein 72 (Hsp72) protects cells against a wide range of apoptosis inducing stresses. However, it is unclear if these two roles are functionally related or whether Hsp72 inhibits apoptosis by a mechanism independent of chaperone activity. The N-terminal adenosine triphosphatase domain, substrate-binding domain and the C-terminal EEVD regulatory motif of Hsp72 are all essential for chaperone activity. In this study, we show that Hsp72 mutants with a functional substrate-binding domain but lacking chaperone activity retain their ability to protect cells against apoptosis induced by heat and tumor necrosis factor alpha. In contrast, a deletion mutant lacking a functional substrate-binding domain has no protective capacity. The ability of the Hsp72 substrate-binding domain to inhibit apoptosis independent of the regulatory effects of the adenosine triphosphate-binding domain indicates that the inhibition of apoptosis may involve a stable binding interaction with a regulatory substrate rather than Hsp72 chaperone activity.
Collapse
Affiliation(s)
- Ari M. Chow
- Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, 3002 Australia
| | - Rohan Steel
- Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, 3002 Australia
| | - Robin L. Anderson
- Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, 3002 Australia
- Peter MacCallum Cancer Centre, Locked Bag # 1, A’Beckett St., Melbourne, Victoria 8006 Australia
| |
Collapse
|
155
|
The yeast AAA+ chaperone Hsp104 is part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol Cell Biol 2009; 29:3738-45. [PMID: 19398583 DOI: 10.1128/mcb.00201-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast AAA(+) chaperone Hsp104 is essential for the development of thermotolerance and for the inheritance of prions. Recently, Hsp104, together with the actin cytoskeleton, has been implicated in the asymmetric distribution of carbonylated proteins. Here, we investigated the interplay between Hsp104 and actin by using a dominant-negative variant of Hsp104 (HAP/ClpP) that degrades substrate proteins instead of remodeling them. Coexpression of HAP/ClpP causes defects in morphology and the actin cytoskeleton. Taking a candidate approach, we identified Spa2, a member of the polarisome complex, as an Hsp104 substrate. Furthermore, we provided genetic evidence that links Spa2 and Hsp104 to Hof1, a member of the cytokinesis machinery. Spa2 and Hof1 knockout cells are affected in the asymmetric distribution of damaged proteins, suggesting that Hsp104, Spa2, and Hof1 are members of a network controlling the inheritance of carbonylated proteins.
Collapse
|
156
|
Rosati A, Khalili K, Deshmane SL, Radhakrishnan S, Pascale M, Turco MC, Marzullo L. BAG3 protein regulates caspase-3 activation in HIV-1-infected human primary microglial cells. J Cell Physiol 2009; 218:264-7. [PMID: 18821563 PMCID: PMC4503248 DOI: 10.1002/jcp.21604] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BAG3, a member of the BAG co-chaperones family, is expressed in several cell types subjected to stressful conditions, such as exposure to high temperature, heavy metals, drugs. Furthermore, it is constitutively expressed in some tumors. Among the biological activities of the protein, there is apoptosis downmodulation; this appears to be exerted through BAG3 interaction with the heat shock protein (Hsp) 70, that influences cell apoptosis at several levels. We recently reported that BAG3 protein was detectable in the cytoplasm of reactive astrocytes in HIV-1-associated encephalopathy biopsies. Here we report that downmodulation of BAG3 protein levels allows caspase-3 activation by HIV-1 infection in human primary microglial cells. This is the first reported evidence of a role for BAG3 in the balance of death versus survival during viral infection.
Collapse
Affiliation(s)
- Alessandra Rosati
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Satish L. Deshmane
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sujatha Radhakrishnan
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Maria Pascale
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| | - M. Caterina Turco
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| | | |
Collapse
|
157
|
Habib GM. p53 regulates Hsp90beta during arsenite-induced cytotoxicity in glutathione-deficient cells. Arch Biochem Biophys 2009; 481:101-9. [PMID: 18996350 PMCID: PMC2639750 DOI: 10.1016/j.abb.2008.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/02/2008] [Accepted: 10/16/2008] [Indexed: 02/06/2023]
Abstract
p53, a tumor suppressor and transcription factor, is a critical modulator in the cellular response to stress. Exposure of glutathione-deficient GCS-2 cells to arsenite significantly phosphorylated and stabilized p53. In addition, p53 transcriptionally repressed Hsp90beta gene expression. Mutation analysis revealed a p53 binding site in the 5' flanking region responsible for the regulation of Hsp90beta gene. Electrophoretic mobility shift assay showed that p53 is bound to Hsp90beta promoter region. ATM kinase, a major determinant in the modulation of p53 specifically affected its phosphorylation at Ser-15. ATM kinase-mediated phosphorylation of p53 is regulated through phosphorylation of Chk2. Down-regulation of ATM and Chk2 by their small interfering RNAs (siRNAs) attenuated the arsenite-induced phosphorylation of p53 and restored Hsp90beta mRNA levels. Taken together, these findings suggest that arsenite acts through ATM and Chk2 to induce phosphorylation of p53. This results in the transcriptional repression of Hsp90beta, under GSH-deficient conditions which may play a role in arsenic-mediated pathogenesis.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
158
|
Cazalé AC, Clément M, Chiarenza S, Roncato MA, Pochon N, Creff A, Marin E, Leonhardt N, Noël LD. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2653-64. [PMID: 19443614 DOI: 10.1093/jxb/erp109] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular chaperones of the heat shock cognate 70 kDa (HSC70) family are highly conserved in all living organisms and assist nascent protein folding in normal physiological conditions as well as in biotic and abiotic stress conditions. In the absence of specific inhibitors or viable knockout mutants, cytosolic/nuclear HSC70-1 overexpression (OE) and mutants in the HSC70 co-chaperone SGT1 (suppressor of G(2)/M allele of skp1) were used as genetic tools to identify HSC70/SGT1 functions in Arabidopsis development and abiotic stress responses. HSC70-1 OE caused a reduction in root and shoot meristem activities, thus explaining the dwarfism of those plants. In addition, HSC70-1 OE did not impair auxin-dependent phenotypes, suggesting that SGT1 functions previously identified in auxin signalling are HSC70 independent. While responses to abiotic stimuli such as UV-C exposure, phosphate starvation, or seedling de-etiolation were not perturbed by HSC70-1 OE, it specifically conferred gamma-ray hypersensitivity and tolerance to salt, cadmium (Cd), and arsenic (As). Cd and As perception was not perturbed, but plants overexpressing HSC70-1 accumulated less Cd, thus providing a possible molecular explanation for their tolerance phenotype. In summary, genetic evidence is provided for HSC70-1 involvement in a limited set of physiological processes, illustrating the essential and yet specific functions of this chaperone in development and abiotic stress responses in Arabidopsis.
Collapse
|
159
|
|
160
|
Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008; 456:611-6. [PMID: 19052621 PMCID: PMC3279746 DOI: 10.1038/nature07471] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/25/2008] [Indexed: 12/18/2022]
Abstract
Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.
Collapse
Affiliation(s)
- Heymut Omran
- Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg Mathildenstrasse 1, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Artemova NV, Kasakov AS, Bumagina ZM, Lyutova EM, Gurvits BY. Protein aggregates as depots for the release of biologically active compounds. Biochem Biophys Res Commun 2008; 377:595-599. [DOI: 10.1016/j.bbrc.2008.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023]
|
162
|
Xu Z, Page RC, Gomes MM, Kohli E, Nix JC, Herr AB, Patterson C, Misra S. Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat Struct Mol Biol 2008; 15:1309-17. [PMID: 19029896 PMCID: PMC2680549 DOI: 10.1038/nsmb.1518] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/23/2008] [Indexed: 11/09/2022]
Abstract
Cochaperones are essential for Hsp70- and Hsc70-mediated folding of proteins and include nucleotide-exchange factors (NEFs) that assist protein folding by accelerating ADP-ATP exchange on Hsp70. The cochaperone Bag2 binds misfolded Hsp70 clients and also acts as an NEF, but the molecular basis for its function is unclear. We show that, rather than being a member of the Bag domain family, Bag2 contains a new type of Hsp70 NEF domain, which we call the 'brand new bag' (BNB) domain. Free and Hsc70-bound crystal structures of Bag2-BNB show its dimeric structure, in which a flanking linker helix and loop bind to Hsc70 to promote nucleotide exchange. NMR analysis demonstrates that the client binding sites and Hsc70-interaction sites of the Bag2-BNB overlap, and that Hsc70 can displace clients from Bag2-BNB, indicating a distinct mechanism for the regulation of Hsp70-mediated protein folding by Bag2.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Molecular Cardiology, Lerner Research Institute, NB50, 9500 Euclid Avenue, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Förster JR, Lochnit G, Stöhr H. Proteomic analysis of the membrane palmitoylated protein-4 (MPP4)-associated protein complex in the retina. Exp Eye Res 2008; 88:39-48. [PMID: 18955048 DOI: 10.1016/j.exer.2008.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 12/26/2022]
Abstract
Membrane palmitoylated protein-4 (MPP4) is a retina-specific scaffolding protein of the membrane-associated guanylate kinase family that has been implicated in organizing presynaptic protein complexes in the photoreceptor ribbon synapse. To isolate the components of this complex we applied a proteomic approach based on immunoaffinity chromatography with a monoclonal anti-MPP4 antibody followed by two-dimensional electrophoresis and mass spectrometry. Among the identified molecules were previously reported proteins of the MPP4 scaffolding complex including adaptor proteins Veli3 and Psd95. Here we demonstrate a selective association between MPP4 and the Psd95-beta isoform that is mediated by interaction of their N-terminal L27 domains. In addition, we have identified recoverin and Hsc70 as novel associated proteins of the MPP4 multiprotein complex in the retina. This study demonstrates the utility of anti-MPP4 antibody precipitation for the elucidation of the MPP4-associated protein complex, which is essential in understanding its precise role in signal transmission at the photoreceptor synapse.
Collapse
Affiliation(s)
- Johanna R Förster
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
164
|
Abstract
The ATPase cycle of the chaperone Hsc70 is regulated by co-chaperones; Hsp40/DnaJ-related proteins stimulate ATP hydrolysis by Hsc70 and can bind unfolded polypeptides themselves. Conversely, various nucleotide exchange factors (NEFs) stimulate ADP-ATP exchange by Hsc70. We analyzed the purified Hsp40-related co-chaperones DJA1 (Hdj2) and DJA2 (Hdj3) and found that they had a distinct pattern of binding to a range of polypeptides. DJA2 alone could stimulate Hsc70-mediated refolding of luciferase in the absence of NEF, whereas DJA1 was much less active. The addition of the Bag1 NEF increased refolding by Hsc70 and DJA2, as did the newly characterized NEF Hsp110, but each NEF had a different optimal concentration ratio to Hsc70. Notably, the NEF HspBP1 could not increase refolding by Hsc70 and DJA2 at any concentration, and none of the NEFs improved the refolding activity with DJA1. Instead, DJA1 was inhibitory of refolding with DJA2 and Hsc70. All combinations of DJA1 or DJA2 with the three NEFs stimulated the Hsc70 ATPase rate, although Hsp110 became less effective with increasing concentrations. A chimeric DJA2 having its Hsc70-stimulatory J domain replaced with that of DJA1 was functional for polypeptide binding and ATPase stimulation of Hsc70. However, it could not support efficient Hsc70-mediated refolding and also inhibited refolding with DJA2 and Hsc70. These results suggest a more complex model of Hsc70 mechanism than has been previously thought, with notable functional divergence between Hsc70 co-chaperones.
Collapse
Affiliation(s)
- Stefan Tzankov
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Michael J. H. Wong
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Kun Shi
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Christina Nassif
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
165
|
Mycko MP, Cwiklinska H, Walczak A, Libert C, Raine CS, Selmaj KW. A heat shock protein gene (Hsp70.1) is critically involved in the generation of the immune response to myelin antigen. Eur J Immunol 2008; 38:1999-2013. [PMID: 18581325 DOI: 10.1002/eji.200737661] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protracted inflammation has been associated with the generation of autoimmune responses. In this respect, increase in the chaperonin, heat shock protein 70 (hsp70) is an outcome of prolonged inflammatory stress. Previous experiments have shown that overexpression of inducible hsp70 in vitro enhanced myelin autoantigen recognition. To prove the role of hsp70 in myelin-directed responses in vivo, we applied a mouse deficient in the major gene encoding inducible hsp70, hsp70.1. Hsp70.1(-/-) mice sensitized for experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, displayed almost complete resistance to the disease. This correlated with the loss of T cell proliferation and IFN-gamma production in response to MOG(35-55). T cell transfer experiments as well as antigen presentation assays in vitro demonstrated that hsp70 deficiency was associated with dysfunction in the activation of autoreactive T cells. Moreover, T cell responses to ovalbumin (OVA) peptide 323-339 were altered and CD4(+) T cells were more prone to TCR-induced apoptosis, suggesting broader spectrum of T cell defect in hsp70.1(-/-) mice. These results provide compelling evidence for generalized effect mediated by inducible hsp70 in the recognition of myelin self and non-self antigens that influences the cytokine profile of the immune response affecting autoimmune demyelination.
Collapse
Affiliation(s)
- Marcin P Mycko
- Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, 22 Kopcinskiego Street, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
166
|
Harrison B, Masson PH. ARG1 and ARL2 form an actin-based gravity-signaling chaperone complex in root statocytes? PLANT SIGNALING & BEHAVIOR 2008; 3:650-3. [PMID: 19704815 PMCID: PMC2634546 DOI: 10.4161/psb.3.9.5749] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 05/20/2023]
Abstract
Plants are acutely sensitive to the directional information provided by gravity. They have evolved statocytes, which are specialized cells that sense gravity and, upon integration of the corresponding information with that of other environmental stimuli, control the growth behavior of their organs. The cellular mechanisms that allow statocytes to sense and transduce gravitational information likely involve detecting the sedimentation of, or the tension/pressure exerted by, starch-filled amyloplasts-the presumptive statoliths-within their cytoplasm. Gravity signaling in root statocytes controls the direction of transport of signaling compounds, especially auxin, across the root cap, establishing a lateral gradient that is transmitted to cells in the elongation zone and results in gravitropic curvature. The Arabidopsis J-domain proteins ARG1 and ARL2 function as gravity-signal transducers in root statocytes. In the January issue of The Plant Journal, we reported that ARG1 and ARL2 function non-redundantly in a common gravity signaling pathway required for accumulation of the auxin efflux facilitator PIN3 on the new bottom side of statocytes following gravity stimulation, and lateral redistribution of auxin toward the new lower flank of stimulated roots. Here we present data suggesting that ARG1 physically associates with ARL2, the J-domain co-chaperone HSC70, and actin in vivo. We briefly discuss potential mechanisms by which ARG1 and ARL2 might function in gravity signaling in light of this information.
Collapse
|
167
|
Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria--physiological and pathological implications. Mol Cell Endocrinol 2008; 290:51-9. [PMID: 18571833 PMCID: PMC2737506 DOI: 10.1016/j.mce.2008.04.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
Estrogens are potent neuroprotective hormones and mitochondria are the site of cellular life-death decisions. As such, it is not surprising that we and others have shown that estrogens have remarkable effects on mitochondrial function. Herein we provide evidence for a primary effect of estrogens on mitochondrial function, achieved in part by the import of estrogen receptor beta (ERbeta) into the mitochondria where it mediates a number of estrogen actions on this vital organelle. ERbeta is imported into the mitochondria, through tethering to cytosolic chaperone protein and/or through direct interaction with mitochondrial import proteins. In the mitochondria, ERbeta can affect transcription of critical mitochondrial genes through the interaction with estrogen response elements (ERE) or through protein-protein interactions with mitochondrially imported transcription factors. The potent effects of estrogens on mitochondrial function, particularly during mitochondrial stress, argues for a role of estrogens in the treatment of mitochondrial defects in chronic neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) and more acute conditions of mitochondrial compromise, like cerebral ischemia and traumatic brain injury.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
168
|
Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 2008; 31:232-43. [PMID: 18550409 PMCID: PMC2892728 DOI: 10.1016/j.molcel.2008.05.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/30/2008] [Accepted: 05/13/2008] [Indexed: 11/28/2022]
Abstract
Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein's NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs.
Collapse
Affiliation(s)
- Jonathan P. Schuermann
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jianwen Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jorge Cuellar
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, Darwin, 3, 28049 Madrid, Spain
| | - Oscar Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, Darwin, 3, 28049 Madrid, Spain
| | - Liping Wang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Luis E. Gimenez
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Suping Jin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Alexander B. Taylor
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - P. John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jose M. Valpuesta
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, Darwin, 3, 28049 Madrid, Spain
| | - Eileen M. Lafer
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
169
|
Tucker DE, Gijón MA, Spencer DM, Qiu ZH, Gelb MH, Leslie CC. Regulation of cytosolic phospholipase A2alpha by hsp90 and a p54 kinase in okadaic acid-stimulated macrophages. J Leukoc Biol 2008; 84:798-806. [PMID: 18550790 DOI: 10.1189/jlb.0308197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In resident mouse peritoneal macrophages, group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) mediates arachidonic acid (AA) release and eicosanoid production in response to diverse agonists such as A23187, phorbol myristate acetate, zymosan, and the enterotoxin, okadaic acid (OA). cPLA(2)alpha is regulated by phosphorylation and by calcium that binds to the C2 domain and induces translocation from the cytosol to membranes. In contrast, OA activates cPLA(2)alpha-induced AA release and translocation to the Golgi in macrophages without an apparent increase in calcium. Inhibitors of heat shock protein 90 (hsp90), geldanamycin, and herbimycin blocked AA release in response to OA but not to A23187, PMA, or zymosan. OA, but not the other agonists, induced activation of a cytosolic serine/threonine 54-kDa kinase (p54), which phosphorylated cPLA(2)alpha in in-gel kinase assays and was associated with cPLA(2)alpha in immunoprecipitates. Activation of the p54 kinase was inhibited by geldanamycin. The kinase coimmunoprecipitated with hsp90 in unstimulated macrophages, and OA induced its loss from hsp90, concomitant with its association with cPLA(2)alpha. The results demonstrate a role for hsp90 in regulating cPLA(2)alpha-mediated AA release that involves association of a p54 kinase with cPLA(2)alpha upon OA stimulation.
Collapse
Affiliation(s)
- Dawn E Tucker
- Program in Cell Biology, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
170
|
Zou N, Ao L, Cleveland JC, Yang X, Su X, Cai GY, Banerjee A, Fullerton DA, Meng X. Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2008; 294:H2805-13. [PMID: 18441202 PMCID: PMC3137641 DOI: 10.1152/ajpheart.00299.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies showed that Toll-like receptor 4 (TLR4) modulates the myocardial inflammatory response to ischemia-reperfusion injury, and we recently found that cytokines link TLR4 to postischemic cardiac dysfunction. Although TLR4 can be activated in cultured cells by endogenous agents including heat shock protein 70, how it is activated during myocardial ischemia-reperfusion is unknown. In the present study, we examined 1) whether heat shock cognate protein 70 (HSC70), which is constitutively expressed in the myocardium, is released during ischemia-reperfusion; 2) whether extracellular HSC70 induces the myocardial inflammatory response and modulates cardiac function; and 3) whether HSC70 exerts these effects via TLR4. We subjected isolated mouse hearts to global ischemia-reperfusion via the Langendorff technique. Immunoblotting and immunostaining detected the release of HSC70 from the myocardium during reperfusion. Treatment with an antibody specific to HSC70 suppressed myocardial cytokine expression and improved cardiac functional recovery after ischemia-reperfusion. Recombinant HSC70 induced NF-kappaB activation and cytokine expression and depressed myocardial contractility in a TLR4-dependent manner. These effects required the substrate-binding domain of HSC70. Fluorescence resonance energy transfer analysis of isolated macrophages demonstrated that extracellular HSC70 interacts with TLR4. Therefore, this study demonstrates for the first time that 1) the myocardium releases HSC70 during ischemia-reperfusion, 2) extracellular HSC70 contributes to the postischemic myocardial inflammatory response and to cardiac dysfunction, 3) HSC70 exerts these effects through a TLR4-dependent mechanism, and 4) the substrate-binding domain of HSC70 is required to induce these effects. Thus extracellular HSC70 plays a critical role in regulating the myocardial innate immune response and cardiac function after ischemia-reperfusion.
Collapse
Affiliation(s)
- Ning Zou
- Department of Surgery, University of Colorado Denver, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Polier S, Dragovic Z, Hartl FU, Bracher A. Structural Basis for the Cooperation of Hsp70 and Hsp110 Chaperones in Protein Folding. Cell 2008; 133:1068-79. [PMID: 18555782 DOI: 10.1016/j.cell.2008.05.022] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/18/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
|
172
|
Chen HW, Kuo HT, Hwang LC, Kuo MF, Yang RC. Proteomic alteration of mitochondrial aldehyde dehydrogenase 2 in sepsis regulated by heat shock response. Shock 2008; 28:710-6. [PMID: 17607160 DOI: 10.1097/shk.0b013e318050c8c2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was designed to investigate the proteomic alteration of hepatic mitochondria during sepsis and to explore the possible effects induced by heat shock treatment. Sepsis was induced by cecal ligation and puncture in Sprague-Dawley rats. Liver mitochondrial proteins were isolated and evaluated by 2-dimensional electrophoresis with broad pH-ranged (pH 3 - 10) immobile DryStrip and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein spots were visualized with silver stain and analyzed by Bio-2D software. Results showed that around 120 dominant spots could be separated and visualized distinctly by 2-dimensional electrophoresis analysis. Among them, three spots with the same molecular weight (56.4 kd), mitochondrial protein 1 (MP1), MP2, and MP3, were significantly altered in septic specimens. When analyzed by liquid chromatography-tandem mass spectrometry, the three spots all revealed to be an identical enzyme: aldehyde dehydrogenase 2 (ALDH2, EC 1.2.1.3). During sepsis, MP1 and MP2 were downregulated, whereas MP3 was upregulated concomitantly. Interestingly, heat shock treatment could reverse this phenomenon. Phosphoprotein staining showed that the degree of phosphorylation is higher in MP1 and MP2 than that in MP3. The enzyme activity assay showed that ALDH2 activity was downregulated in nonheated septic rats of 18 h after cecal ligation and puncture operation, and preserved in heated septic rats. The results of this study suggest that posttranslation modification, highly possible the phosphorylation, in ALDH2 may play a functional role in the pathogenesis of sepsis and provide a novel protective mechanism of heat shock treatment.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- Department of Microbiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City, Taiwan
| | | | | | | | | |
Collapse
|
173
|
Goodarzi MO, Xu N, Cui J, Guo X, Chen YI, Azziz R. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), a candidate gene for polycystic ovary syndrome. Hum Reprod 2008; 23:1214-9. [PMID: 18332089 PMCID: PMC2767244 DOI: 10.1093/humrep/den065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogenic, complex common genetic disease. Multiple pathways are involved in its pathogenesis, including the androgen signaling pathway and insulin signaling pathway. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) is a putative member of the androgen receptor-chaperone-co-chaperone complex, and may play a role in androgen signaling as a co-chaperone. Polymorphisms in the SGTA gene have not been evaluated for a role in PCOS. METHODS Women with and without PCOS (287 cases, 187 controls) were genotyped for three single nucleotide polymorphisms (SNPs) in SGTA. SNPs and haplotypes were determined and tested for association with PCOS and component traits of PCOS. RESULTS For SNP rs1640262, homozygotes for the minor allele were protected against PCOS (P = 0.009). Haplotype 1 (G-A-T) was associated with increased risk of PCOS (P = 0.015). In women with PCOS, haplotype 2 (A-G-C) was associated with increased insulin resistance (P = 0.013), consequently resulting in increased insulin secretion (P = 0.014). CONCLUSIONS This study presents genetic evidence suggesting a potential role of SGTA in the pathogenesis of PCOS. SGTA may provide a connection between multiple pathways in PCOS.
Collapse
Affiliation(s)
- M. O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
| | - N. Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
| | - J. Cui
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
| | - X. Guo
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
| | - Y. I. Chen
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
| | - R. Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, U.S.A
- Department of Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
- Department of Obstetrics and Gynecology, the David Geffen School of Medicine at UCLA, Los Angeles, California 90095, U.S.A
| |
Collapse
|
174
|
Stuttmann J, Parker JE, Noël LD. Staying in the fold: The SGT1/chaperone machinery in maintenance and evolution of leucine-rich repeat proteins. PLANT SIGNALING & BEHAVIOR 2008; 3:283-5. [PMID: 19513219 PMCID: PMC2634259 DOI: 10.4161/psb.3.5.5576] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/16/2008] [Indexed: 05/02/2023]
Abstract
The conserved eukaryotic protein SGT1 (suppressor of G(2) allele of skp1) participates in diverse physiological processes such as cell cycle progression in yeast, plant immunity against pathogens and plant hormone signalling. Recent genetic and biochemical studies suggest that SGT1 functions as a novel co-chaperone for cytosolic/nuclear HSP90 and HSP70 molecular chaperones in the folding and maturation of substrate proteins. Since proteins containing the leucine-rich repeat (LRR) protein-protein interaction motif are overrepresented in SGT1-dependent phenomena, we consider whether LRR-containing proteins are preferential substrates of an SGT1/HSP70/HSP90 complex. Such a chaperone organisation is reminiscent of the HOP/HSP70/HSP90 machinery which controls maturation and activation of glucocorticoid receptors in animals. Drawing on this parallel, we discuss the possible contribution of an SGT1-chaperone complex in the folding and maturation of LRR-containing proteins and its evolutionary consequences for the emergence of novel LRR interaction surfaces.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Laboratoire de Biologie du Développement des Plantes; IBEB/SBVME; UMR 6191 CNRS-CEA-Université de la Méditerranée Aix-Marseille II; Saint-Paul-Lez-Durance, France
| | | | | |
Collapse
|
175
|
Dwivedi A, Karan BM, Das BN, Sinha RK. Digital-analog hybrid control model for eukaryotic heat shock response illustrating the dynamics of heat shock protein 70 on exposure to thermal stress. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2008; 90:17-24. [PMID: 18164096 DOI: 10.1016/j.cmpb.2007.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 10/06/2007] [Accepted: 11/15/2007] [Indexed: 05/25/2023]
Abstract
We are introducing in this paper a digital-analog hybrid model approach for the study of a complete gene regulatory network; the heat shock response (HSR) network of eukaryotes. HSR is a crucial and widely studied cellular phenomenon occurring due to various stresses on the cell, and is characterised by the induction of heat shock genes resulting in the production of heat shock proteins (HSPs) which restores cellular homeostasis by maintaining protein integrity. We are proposing a model which incorporates simple digital and analog components which mimic the functioning of biological molecules involved in HSR and model their dynamics and behaviour. The simulation result of the circuit for the production of HSP70 has been found to be consistent with published experimental results. The qualitative behaviour of the HSR is expressed through a truth table. Through this novel approach, the authors have tried to develop a level of understanding of the interactions of the parts of the HSR system and of this system as a whole.
Collapse
Affiliation(s)
- Anjana Dwivedi
- Department of Electrical and Electronics Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | | | | | | |
Collapse
|
176
|
A functional screen for genes involved in Xenopus pronephros development. Mech Dev 2008; 125:571-86. [PMID: 18472403 DOI: 10.1016/j.mod.2008.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/05/2008] [Accepted: 03/08/2008] [Indexed: 11/23/2022]
Abstract
In Xenopus, the pronephros is the functional larval kidney and consists of two identifiable components; the glomus, the pronephric tubules, which can be divided into four separate segments, based on marker gene expression. The simplicity of this organ, coupled with the fact that it displays the same basic organization and function as more complex mesonephros and metanephros, makes this an attractive model to study vertebrate kidney formation. In this study, we have performed a functional screen specifically to identify genes involved in pronephros development in Xenopus. Gain-of-function screens are performed by injecting mRNA pools made from a non-redundant X. tropicalis full-length plasmid cDNA library into X. laevis eggs, followed by sib-selection to identify the single clone that caused abnormal phenotypes in the pronephros. Out of 768 egg and gastrula stage cDNA clones, 31 genes, approximately 4% of the screened clones, affected pronephric marker expression examined by whole mount in situ hybridization or antibody staining. Most of the positive clones had clear expression patterns in pronephros and predicted/established functions highly likely to be involved in developmental processes. In order to carry out a more detailed study, we selected Sox7, Cpeb3, P53csv, Mecr and Dnajc15, which had highly specific expression patterns in the pronephric region. The over-expression of these five selected clones indicated that they caused pronephric abnormalities with different temporal and spatial effects. These results suggest that our strategy to identify novel genes involved in pronephros development was highly successful, and that this strategy is effective for the identification of novel genes involved in late developmental events.
Collapse
|
177
|
Lotz GP, Brychzy A, Heinz S, Obermann WMJ. A novel HSP90 chaperone complex regulates intracellular vesicle transport. J Cell Sci 2008; 121:717-23. [PMID: 18270269 DOI: 10.1242/jcs.015610] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock protein 90 (HSP90) is considered a specialized molecular chaperone that controls the folding of cell-regulatory proteins such as steroid receptors and kinases. However, its high abundance is suggestive of a more general function in other fundamental processes. Here, we show that HSP90 is required for vesicular protein transport in the cell. We have identified a novel chaperone complex comprising HSP90 and TPR1 that is recruited to the membrane protein VAP-33. Depletion of the TPR1 protein in mammalian cells inhibits transport of vesicular stomatitis virus glycoprotein (VSVG) and leads to accumulation of this cargo protein in the Golgi apparatus. Furthermore, trafficking of VSVG between Golgi stacks is dependent on the ATPase function of HSP90 and can be inhibited by drugs specific for HSP90. Our results identify a new role for HSP90 in protein sorting, pointing to a central role for this molecular chaperone in the cell.
Collapse
Affiliation(s)
- Gregor P Lotz
- Protein Folding Group, Institute for Genetics, University of Bonn, Römerstr. 164, 53117 Bonn, Germany
| | | | | | | |
Collapse
|
178
|
Oza J, Yang J, Chen KY, Liu AYC. Changes in the regulation of heat shock gene expression in neuronal cell differentiation. Cell Stress Chaperones 2008; 13:73-84. [PMID: 18347944 PMCID: PMC2666217 DOI: 10.1007/s12192-008-0013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/01/2007] [Accepted: 08/09/2007] [Indexed: 11/28/2022] Open
Abstract
Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA(hsp), and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stress-induced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.
Collapse
Affiliation(s)
- Jay Oza
- Department of Cell Biology and Neuroscience, Division of Life Sciences, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082 USA
| | - Jingxian Yang
- Department of Cell Biology and Neuroscience, Division of Life Sciences, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082 USA
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, NJ USA
| | - Alice Y.-C. Liu
- Department of Cell Biology and Neuroscience, Division of Life Sciences, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082 USA
| |
Collapse
|
179
|
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 2008; 35:105-18. [DOI: 10.1016/s1673-8527(08)60016-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/29/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
|
180
|
Wisén S, Androsavich J, Evans CG, Chang L, Gestwicki JE. Chemical modulators of heat shock protein 70 (Hsp70) by sequential, microwave-accelerated reactions on solid phase. Bioorg Med Chem Lett 2008; 18:60-5. [PMID: 18060774 DOI: 10.1016/j.bmcl.2007.11.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 10/31/2007] [Accepted: 11/06/2007] [Indexed: 12/20/2022]
Abstract
Molecular chaperones, such as Hsp70 and Hsp90, are responsible for a variety of protective, anti-apoptotic functions. While inhibitors of Hsp90, such as geldanamycin and its derivative 17-AAG, are well known and important anti-cancer leads, Hsp70 has received less attention. Interesting lead candidates for Hsp70 share a dihydropyrimidine core; however, the preferred display of pendant functionality is still not clear. Here, we take advantage of the versatility of peptides to explore the requirements for activity. An exploratory compound collection was assembled by performing a Biginelli cyclocondensation at the terminus of a resin-bound beta-peptide. Liberation from solid support yielded peptide-modified dihydropyrimidines and, within this series, we uncovered compounds that alter the ATPase activity of Hsp70 and its bacterial ortholog, DnaK. Moreover, we identified important contributions made by aromatic, hydrophobic groups. These chemical probes could be used to study the roles of this molecular chaperone in disease.
Collapse
Affiliation(s)
- Susanne Wisén
- University of Michigan, Department of Pathology and the Life Sciences Institute, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | |
Collapse
|
181
|
Greening DW, Glenister KM, Kapp EA, Moritz RL, Sparrow RL, Lynch GW, Simpson RJ. Comparison of human platelet membrane-cytoskeletal proteins with the plasma proteome: Towards understanding the platelet-plasma nexus. Proteomics Clin Appl 2008; 2:63-77. [DOI: 10.1002/prca.200780067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Indexed: 11/06/2022]
|
182
|
Noël LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. THE PLANT CELL 2007; 19:4061-76. [PMID: 18065690 PMCID: PMC2217652 DOI: 10.1105/tpc.107.051896] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 10/31/2007] [Accepted: 11/13/2007] [Indexed: 05/18/2023]
Abstract
The conserved eukaryotic protein SGT1 (for Suppressor of G2 allele of skp1) has characteristics of an HSP90 (for heat shock protein 90 kD) cochaperone and in plants regulates hormone responses and Resistance gene-triggered immunity. We affinity-purified SGT1-interacting proteins from Arabidopsis thaliana leaf extracts and identified by mass spectrometry cytosolic heat shock cognate 70 (HSC70) chaperones as the major stable SGT1 interactors. Arabidopsis SGT1a and SGT1b proteins associate with HSC70 in vivo and distribute with HSC70 in the cytosol and nucleus. An intact C-terminal SGT1-specific (SGS) domain that is required for all known SGT1b functions in immunity and development is needed for HSC70 interaction and for the nuclear accumulation of SGT1b. Interaction assays of transiently expressed proteins or their domains in Nicotiana benthamiana point to a role of SGT1 as a HSC70 cofactor. Expression of two HSC70 isoforms is upregulated by pathogen challenge, and while loss of function of individual cytosolic HSC70 genes has no defense phenotype, HSC70-1 overexpression disables resistance to virulent and avirulent pathogens. Moreover, mutations in SGT1b lead to a similar degree of heat shock tolerance as deregulation of HSC70-1. We conclude that an HSC70-SGT1 chaperone complex is important for multiple plant environmental responses and that the evolutionarily conserved SGS domain of SGT1 is a key determinant of the HSC70-SGT1 association.
Collapse
Affiliation(s)
- Laurent D Noël
- Institut de Biologie Environementale et Biotechnologie, Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique, Université de la Méditerranée Aix-Marseille II, Saint Paul-lez-Durance Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Moser C, Lang SA, Kainz S, Gaumann A, Fichtner-Feigl S, Koehl GE, Schlitt HJ, Geissler EK, Stoeltzing O. Blocking heat shock protein-90 inhibits the invasive properties and hepatic growth of human colon cancer cells and improves the efficacy of oxaliplatin in p53-deficient colon cancer tumors in vivo. Mol Cancer Ther 2007; 6:2868-78. [DOI: 10.1158/1535-7163.mct-07-0410] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
184
|
Williamson CL, Dabkowski ER, Dillmann WH, Hollander JM. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am J Physiol Heart Circ Physiol 2007; 294:H249-56. [PMID: 17982016 DOI: 10.1152/ajpheart.00775.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as preproteins containing a mitochondria import sequence. Preproteins traverse the outer mitochondrial membrane in an unfolded state and then translocate through the inner membrane into the matrix via import machinery that includes mitochondrial heat shock protein 70 (mtHSP70). Neonatal rat cardiac myocytes (NCM) infected with an adenoviral vector expressing mtHSP70 or an empty control (Adv(-)) for 48 h were submitted to 8 h of simulated ischemia (hypoxia) followed by 16 h of reperfusion (reoxygenation). Infection with mtHSP70 virus yielded an increase in mtHSP70 protein in NCM mitochondria compared with Adv(-) (P < 0.05). Cell viability after simulated ischemia/reperfusion (I/R) was decreased in both Adv(-) and mtHSP70 groups, relative to control (P < 0.05), but mtHSP70-infected NCM had enhanced viability after I/R relative to Adv-infected NCM (P < 0.05). Simulated I/R caused an increase in reactive oxygen species generation and lipid peroxidation in Adv-infected NCM (P < 0.05, for both) that was not observed in mtHSP70-infected NCM. Mitochondrial complex III and IV activities were greater in mtHSP70-infected NCM after simulated I/R compared with Adv(-) (P < 0.05 for both). After simulated I/R, ATP content increased in mtHSP70-infected NCM, compared with Adv(-) (P < 0.05). Apoptotic markers were decreased in mtHSP70-infected NCM compared with Adv(-) after simulated I/R (P < 0.05). These results indicate that overexpression of mtHSP70 protects the mitochondria against damage from simulated I/R that may be due to a decrease in reactive oxygen species leading to preservation of mitochondrial complex function activities and ATP formation.
Collapse
Affiliation(s)
- Courtney L Williamson
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Interdisciplinary Research in Cardiovascular Sciences, 1 Medical Center Drive, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
185
|
Che J, Doubrovin M, Serganova I, Ageyeva L, Beresten T, Finn R, Blasberg R. HSP70-Inducible hNIS-IRES-eGFP Reporter Imaging: Response to Heat Shock. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jiantu Che
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Mikhail Doubrovin
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Inna Serganova
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lyudmila Ageyeva
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Tatiana Beresten
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald Finn
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald Blasberg
- From the Departments of Neurology and Radiology, Memorial Hospital, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
186
|
Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast. Genetics 2007; 177:1679-89. [PMID: 17947402 DOI: 10.1534/genetics.107.081141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been used as a model for fungal biofilm formation due to its ability to adhere to plastic surfaces and to form mats on low-density agar petri plates. Mats are complex multicellular structures composed of a network of cables that form a central hub from which emanate multiple radial spokes. This reproducible and elaborate pattern is indicative of a highly regulated developmental program that depends on specific transcriptional programming, environmental cues, and possibly cell-cell communication systems. While biofilm formation and sliding motility were shown to be strictly dependent on the cell-surface adhesin Flo11p, little is known about the cellular machinery that controls mat formation. Here we show that Hsp70 molecular chaperones play key roles in this process with the assistance of the nucleotide exchange factors Fes1p and Sse1p and the Hsp40 family member Ydj1p. The disruption of these cofactors completely abolished mat formation. Furthermore, complex interactions among SSA genes were observed: mat formation depended mostly on SSA1 while minor defects were observed upon loss of SSA2; additional mutations in SSA3 or SSA4 further enhanced these phenotypes. Importantly, these mutations did not compromise invasive growth or Flo11p expression, suggesting that Flo11p-independent pathways are necessary to form mats.
Collapse
|
187
|
Weiss YG, Bromberg Z, Raj N, Raphael J, Goloubinoff P, Ben-Neriah Y, Deutschman CS. Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome. Crit Care Med 2007; 35:2128-38. [PMID: 17855826 DOI: 10.1097/01.ccm.0000278915.78030.74] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN Laboratory investigation. SETTING University medical center research laboratory. SUBJECTS Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Collapse
Affiliation(s)
- Yoram G Weiss
- Department of Anesthesiology and Critical Care Medicine and the Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University School of Medicine, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
188
|
Bazzaro M, Santillan A, Lin Z, Tang T, Lee MK, Bristow RE, Shih IM, Roden RBS. Myosin II co-chaperone general cell UNC-45 overexpression is associated with ovarian cancer, rapid proliferation, and motility. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1640-9. [PMID: 17872978 PMCID: PMC2043524 DOI: 10.2353/ajpath.2007.070325] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both tumor cell proliferation and metastasis are dependent on myosin II. Because UNC-45 is required to chaperone the assembly of a functional myosin II motor, we examined the expression of the general cell (GC) UNC-45 isoform in ovarian tumors. Serous carcinoma expressed elevated levels of GC UNC-45 compared with normal ovarian surface epithelium and benign cystadenoma. High-stage exhibited greater GC UNC-45 expression than low-stage serous carcinoma. Similarly, GC UNC-45 transcripts and protein levels were higher in ovarian cell lines than in immortalized ovarian surface epithelial cells. Elevation of GC UNC-45 levels by ectopic expression enhanced the rate of ovarian cancer cell proliferation, whereas siRNA knockdown of GC UNC-45 suppressed proliferation without altering myosin II levels. GC UNC-45 and myosin II were diffuse within the cytoplasm of confluent interphase cells, but both accumulated together at the cleavage furrow during cytokinesis. GC UNC-45 and myosin II also trafficked to the leading edges of ovarian cancer cells induced to move in a scratch assay. Knockdown of GC UNC-45 reduced the spreading ability of ovarian cancer cells whereas it was enhanced by GC UNC-45 overexpression. In sum, these findings implicate elevated GC UNC-45 protein expression in ovarian carcinoma proliferation and metastasis.
Collapse
Affiliation(s)
- Martina Bazzaro
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Chang L, Bertelsen EB, Wisén S, Larsen EM, Zuiderweg ERP, Gestwicki JE. High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Anal Biochem 2007; 372:167-76. [PMID: 17904512 DOI: 10.1016/j.ab.2007.08.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/04/2023]
Abstract
DnaK is a molecular chaperone of Escherichia coli that belongs to a family of conserved 70-kDa heat shock proteins. The Hsp70 chaperones are well known for their crucial roles in regulating protein homeostasis, preventing protein aggregation, and directing subcellular traffic. Given the complexity of functions, a chemical method for controlling the activities of these chaperones might provide a useful experimental tool. However, there are only a handful of Hsp70-binding molecules known. To build this area, we developed a robust, colorimetric, high-throughput screening (HTS) method in 96-well plates that reports on the ATPase activity of DnaK. Using this approach, we screened a 204-member focused library of molecules that share a dihydropyrimidine core common to known Hsp70-binding leads and uncovered seven new inhibitors. Intriguingly, the candidates do not appear to bind the hydrophobic groove that normally interacts with peptide substrates. In sum, we have developed a reliable HTS method that will likely accelerate discovery of small molecules that modulate DnaK/Hsp70 function. Moreover, because this family of chaperones has been linked to numerous diseases, this platform might be used to generate new therapeutic leads.
Collapse
Affiliation(s)
- Lyra Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
190
|
Qi W, Chen X, Gilbert RE, Zhang Y, Waltham M, Schache M, Kelly DJ, Pollock CA. High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:744-54. [PMID: 17675577 PMCID: PMC1959480 DOI: 10.2353/ajpath.2007.060813] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyperglycemia is a causative factor in the pathogenesis of diabetic nephropathy. Here, we demonstrate the transcriptional profiles of the human proximal tubule cell line (HK-2 cells) exposed to high glucose using cDNA microarray analysis. Thioredoxin-interacting protein (Txnip) was the gene most significantly increased among 10 strongly up-regulated and 15 down-regulated genes. Txnip, heat shock proteins 70 and 90, chemokine (C-C motif) ligand 20, and matrix metalloproteinase-7 were chosen for verification of gene expression. Real-time reverse transcriptase-polymerase chain reaction confirmed the mRNA expression levels of these five genes, consistent with microarray analysis. The increased protein expression of Txnip, CCL20, and MMP7 were also verified by Western blotting and enzyme-linked immunosorbent assay. Increased expression of Txnip and of nitrotyrosine, as a marker of oxidative stress, were confirmed in vivo in diabetic Ren-2 rats. Subsequent studies focused on the dependence of Txnip expression on up-regulation of transforming growth factor (TGF)-beta1 under high-glucose conditions. Overexpression of Txnip and up-regulation of Txnip promoter activity were observed in cells in which the TGF-beta1 gene was silenced in HK-2 cells using short interfering RNA technology. High glucose further increased both Txnip expression and its promoter activity in TGF-beta1 silenced cells compared with wild-type cells exposed to high glucose, suggesting that high glucose induced Txnip through a TGF-beta1-indepen-dent pathway.
Collapse
Affiliation(s)
- Weier Qi
- Dept. of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK. Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. PLANT MOLECULAR BIOLOGY 2007; 64:713-32. [PMID: 17558562 DOI: 10.1007/s11103-007-9193-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 05/23/2007] [Indexed: 05/15/2023]
Abstract
Pearl millet (Pennisetum glaucum), used as forage and grain crop is a stress tolerant species. Here we identify differentially regulated transcripts in response to abiotic (salinity, drought and cold) stresses from subtracted cDNA libraries by single-pass sequencing of cDNA clones. A total of 2,494 EST sequences were clustered and assembled into a collection of 1,850 unique sequences with 224 contigs and 1,626 singleton sequences. By sequence comparisons the putative functions of many ESTs could be assigned. Genes with stress related functions include those involved in cellular defense against abiotic stresses and transcripts for proteins involved in stress response signaling and transcription in addition to ESTs encoding unknown functions. These provide new candidate genes for investigation to elucidate their role in abiotic stress. The relative mRNA abundance of 38 selected genes, quantified using real time quantitative RT-PCR, demonstrated the existence of a complex gene regulatory network that differentially modulates gene expression in a kinetics-specific manner in response to different abiotic stresses. Notably, housekeeping and non-target genes were effectively reduced in these subtracted cDNA libraries constructed. These EST sequences are a rich source of stress-related genes and reveal a major part of the stress-response transcriptome that will provide the foundation for further studies into understanding Pennisetum's adaptability to harsh environmental conditions.
Collapse
Affiliation(s)
- Rabi N Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | | | | | | | | | | |
Collapse
|
192
|
Rosati A, Ammirante M, Gentilella A, Basile A, Festa M, Pascale M, Marzullo L, Belisario MA, Tosco A, Franceschelli S, Moltedo O, Pagliuca G, Lerose R, Turco MC. Apoptosis inhibition in cancer cells: A novel molecular pathway that involves BAG3 protein. Int J Biochem Cell Biol 2007; 39:1337-42. [PMID: 17493862 DOI: 10.1016/j.biocel.2007.03.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/06/2007] [Accepted: 03/07/2007] [Indexed: 12/16/2022]
Abstract
Stress-induced apoptosis regulates neoplasia pathogenesis and response to therapy. Indeed, cell transformation induces a stress response, that is overcome, in neoplastic cells, by alterations in apoptosis modulators; on the other hand, antineoplastic therapies largely trigger the apoptosis stress pathway, whose impairment results in resistance. Therefore, the study of the roles of apoptosis-modulating molecules in neoplasia development and response to therapy is of key relevance for our understanding of these processes. Among molecules that regulate apoptosis, a role is emerging for BAG3, a member of the BAG co-chaperone protein family. Proteins that share the BAG domain are characterized by their interaction with a variety of partners (heat shock proteins, steroid hormone receptors, Raf-1 and others), involved in regulating a number of cellular processes, including proliferation and apoptosis. BAG3, also known as CAIR-1 or Bis, forms a complex with the heat shock protein (Hsp) 70. This assists polypeptide folding, can mediate protein delivery to proteasome and is able to modulate apoptosis by interfering with cytochrome c release, apoptosome assembly and other events in the death process. It has been recently shown that, in human primary lymphoid and myeloblastic leukemias and other neoplastic cell types, BAG3 expression sustains cell survival and underlies resistance to therapy, through downmodulation of apoptosis. This review summarizes findings that assign an apoptotic role to BAG3 in some neoplastic cell types and identify the protein as a candidate target of therapy.
Collapse
Affiliation(s)
- Alessandra Rosati
- Department of Pharmaceutical Sciences, University of Salerno, via ponte don Melillo, 84084 Fisciano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Abell BM, Rabu C, Leznicki P, Young JC, High S. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J Cell Sci 2007; 120:1743-51. [PMID: 17456552 DOI: 10.1242/jcs.002410] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tail-anchored (TA) proteins provide an ideal model for studying post-translational integration at the endoplasmic reticulum (ER) of eukaryotes. There are multiple pathways for delivering TA proteins from the cytosol to the ER membrane yet, whereas an ATP-dependent route predominates, none of the cytosolic components involved had been identified. In this study we have directly addressed this issue and identify novel interactions between a model TA protein and the two cytosolic chaperones Hsp40 and Hsc70. To investigate their function, we have reconstituted the membrane integration of TA proteins using purified components. Remarkably, we find that a combination of Hsc70 and Hsp40 can completely substitute for the ATP-dependent factors present in cytosol. On the basis of this in vitro analysis, we conclude that this chaperone pair can efficiently facilitate the ATP-dependent integration of TA proteins.
Collapse
Affiliation(s)
- Benjamin M Abell
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
194
|
Abstract
Protein accumulation is a hallmark of many neurodegenerative disorders. In Alzheimer's disease (AD), a hyperphosphorylated form of the protein tau (p-tau) forms intracellular inclusions known as neurofibrillary tangles. Deposits of p-tau have also been found in the brains of patients with Down's syndrome, supranuclear palsy, and prion disease. Mutations in tau have been causally associated with at least one inherited neurologic disorder, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), implying that tau abnormalities by themselves can be a primary cause of degenerative diseases of the CNS. Removal of these p-tau species may occur by both chaperone-mediated refolding and degradation. In this issue of the JCI, Dickey and colleagues show that a cochaperone protein, carboxyl terminus of Hsp70-interacting protein (CHIP), in a complex with Hsp90 plays an important role in the removal of p-tau (see the related article beginning on page 648). Pharmacologic manipulation of Hsp90 may be used to alleviate p-tau accumulation in disease.
Collapse
Affiliation(s)
- Dmitry Goryunov
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
195
|
|
196
|
Ivanovic T, Agosto MA, Chandran K, Nibert ML. A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. J Biol Chem 2007; 282:12210-9. [PMID: 17284448 PMCID: PMC4822165 DOI: 10.1074/jbc.m610258200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
After crossing the cellular membrane barrier during cell entry, most animal viruses must undergo further disassembly before initiating viral gene expression. In many cases, these disassembly mechanisms remain poorly defined. For this report, we examined a final step in disassembly of the mammalian reovirus outer capsid: cytoplasmic release of the central, delta fragment of membrane penetration protein mu1 to yield the transcriptionally active viral core particle. An in vitro assay with reticulocyte lysate recapitulated the release of intact delta molecules. Requirements for activity in this system were shown to include a protein factor, ATP, and Mg(2+) and K(+) ions, consistent with involvement of a molecular chaperone such as Hsc70. Immunodepletion of Hsc70 and Hsp70 impaired delta release, which was then rescued by addition of purified Hsc70. Hsc70 was associated with released delta molecules not only in the lysate but also during cell entry. We conclude that Hsc70 plays a defined role in reovirus outer capsid disassembly, during or soon after membrane penetration, to prepare the entering particle for gene expression and replication.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Virology, Harvard University, Boston, Massachusetts 02115
| | - Melina A. Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115
| | - Kartik Chandran
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Virology, Harvard University, Boston, Massachusetts 02115
- Training Program in Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115
| |
Collapse
|
197
|
Schulte PM. Responses to environmental stressors in an estuarine fish: Interacting stressors and the impacts of local adaptation. J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
198
|
Whitham M, Fortes MB. Effect of blood handling on extracellular Hsp72 concentration after high-intensity exercise in humans. Cell Stress Chaperones 2007; 11:304-8. [PMID: 17278879 PMCID: PMC1712678 DOI: 10.1379/csc-212.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock protein 72 (Hsp72) has been detected in the peripheral circulation of humans. Because intracellular Hsp72 binds to aggregated proteins, we hypothesized that postexercise plasma-derived Hsp72 concentrations would be greater than serum-derived Hsp72 because of binding of Hsp72 to aggregated clotting proteins in serum. Postexercise serum, heparin, and ethylenediaminetetraacetic acid (EDTA) samples were collected from 9 recreationally active males and were analyzed for Hsp72 by enzyme-linked immunosorbent assay. In line with our hypothesis, EDTA-treated blood was significantly higher in Hsp72 concentration than all other treatments (P < or = 0.001), whilst heparin plasma (LH) was significantly higher than serum derived on ice (SI) and at room temperature (SR) (P < 0.05; EDTA: 6.46 +/- 0.76, LH: 2.73 +/- 2.26, SI: 0.13 +/- 0.24, SR: 0.20 +/- 0.32 ng/mL). Because previous research has tended to report serum data at the lowest point of the detectable range of the assay, it is recommended that EDTA specimen tubes be used in future investigations.
Collapse
Affiliation(s)
- M Whitham
- School of Sport, Health, and Exercise Sciences, University of Wales, Bangor, George Building, Holyhead Road, Bangor, Gwynedd LL57 2PZ, UK.
| | | |
Collapse
|
199
|
Ostling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L. Heat Shock Factor 2 (HSF2) Contributes to Inducible Expression of hsp Genes through Interplay with HSF1. J Biol Chem 2007; 282:7077-86. [PMID: 17213196 DOI: 10.1074/jbc.m607556200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock response is a defense reaction activated by proteotoxic damage induced by physiological or environmental stress. Cells respond to the proteotoxic damage by elevated expression of heat shock proteins (Hsps) that function as molecular chaperones and maintain the vital homeostasis of protein folds. Heat shock factors (HSFs) are the main transcriptional regulators of the stress-induced expression of hsp genes. Mammalian HSF1 was originally identified as the transcriptional regulator of the heat shock response, whereas HSF2 has not been implicated a role in the stress response. Previously, we and others have demonstrated that HSF1 and HSF2 interact through their trimerization domains, but the functional consequence of this interaction remained unclear. We have now demonstrated on chromatin that both HSF1 and HSF2 were able to bind the hsp70 promoter not only in response to heat shock but also during hemin-induced differentiation of K562 erythroleukemia cells. In both cases an intact HSF1 was required in order to reach maximal levels of promoter occupancy, suggesting that HSF1 influences the DNA binding activity of HSF2. The functional consequence of the HSF1-HSF2 interplay was demonstrated by real-time reverse transcription-PCR analyses, which showed that HSF2 was able to modulate the HSF1-mediated expression of major hsp genes. Our results reveal, contrary to the predominant model, that HSF2 indeed participates in the transcriptional regulation of the heat shock response.
Collapse
Affiliation(s)
- Päivi Ostling
- Department of Biochemistry, Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|
200
|
Galam L, Hadden MK, Ma Z, Ye Q, Yun BG, Blagg BSJ, Matts RL. High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase. Bioorg Med Chem 2007; 15:1939-46. [PMID: 17223347 PMCID: PMC1906718 DOI: 10.1016/j.bmc.2007.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/20/2006] [Accepted: 01/01/2007] [Indexed: 10/23/2022]
Abstract
Previously, we have demonstrated that the renaturation of heat denatured firefly luciferase is dependent upon the activity of Hsp90 in rabbit reticulocyte lysate. Here, we demonstrate that this assay may identify inhibitors that obstruct the chaperone activity of Hsp90 either by direct binding to its N-terminal or C-terminal nucleotide binding sites or by interference with the ability of the chaperone to switch conformations. The assay was adapted and optimized for high-throughput screening. Greater than 20,000 compounds were screened to demonstrate the feasibility of using this assay on a large scale. The assay was reproducible (av Z-factor=0.62) and identified 120 compounds that inhibited luciferase renaturation by greater than 70% at a concentration of 12.5 microg/mL. IC50 values for twenty compounds with varying structures were determined for inhibition of luciferase refolding and in cell-based assays for Hsp90 inhibition. Several compounds had IC50 values <10 microM and represent a number of new lead structures with the potential for further development and optimization as potent Hsp90 inhibitors.
Collapse
Affiliation(s)
- Lakshmi Galam
- Department of Biochemistry and Molecular Biology, NRC 246, Oklahoma State University, Stillwater, Oklahoma, U.S.A. 74078
| | - M. Kyle Hadden
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas, U.S.A. 66045-7563
| | - Zeqiang Ma
- High-Throughput Screening Laboratory, The University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, U.S.A. 66047
| | - Qi–Zhuang Ye
- High-Throughput Screening Laboratory, The University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, U.S.A. 66047
| | - Bo-Geon Yun
- Department of Biochemistry and Molecular Biology, NRC 246, Oklahoma State University, Stillwater, Oklahoma, U.S.A. 74078
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas, U.S.A. 66045-7563
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, NRC 246, Oklahoma State University, Stillwater, Oklahoma, U.S.A. 74078
| |
Collapse
|