151
|
Ghosh A, Bhattacharyya D, Bhunia A. Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:335-346. [PMID: 29038024 PMCID: PMC7094419 DOI: 10.1016/j.bbamem.2017.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Abstract
In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T55VYVYSRVK63) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.
Collapse
Affiliation(s)
- Anirban Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.
| |
Collapse
|
152
|
Xie Q, Cao Y, Su J, Wu J, Wu X, Wan C, He M, Ke C, Zhang B, Zhao W. Two deletion variants of Middle East respiratory syndrome coronavirus found in a patient with characteristic symptoms. Arch Virol 2017; 162:2445-2449. [PMID: 28421366 PMCID: PMC5506503 DOI: 10.1007/s00705-017-3361-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/27/2017] [Indexed: 02/04/2023]
Abstract
Significant sequence variation of Middle East respiratory syndrome coronavirus (MERS CoV) has never been detected since it was first reported in 2012. A MERS patient came from Korea to China in late May 2015. The patient was 44 years old and had symptoms including high fever, dry cough with a little phlegm, and shortness of breath, which are roughly consistent with those associated with MERS, and had had close contact with individuals with confirmed cases of MERS.After one month of therapy with antiviral, anti-infection, and immune-enhancing agents, the patient recovered in the hospital and was discharged. A nasopharyngeal swab sample was collected for direct sequencing, which revealed two deletion variants of MERS CoV. Deletions of 414 and 419 nt occurred between ORF5 and the E protein, resulting in a partial protein fusion or truncation of ORF5 and the E protein. Functional analysis by bioinformatics and comparison to previous studies implied that the two variants might be defective in their ability to package MERS CoV. However, the mechanism of how these deletions occurred and what effects they have need to be further investigated.
Collapse
Affiliation(s)
- Qian Xie
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, People's Republic of China.,Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, People's Republic of China.,Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Juan Su
- Medical Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jie Wu
- Medical Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xianbo Wu
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, People's Republic of China.,Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chengsong Wan
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, People's Republic of China.,Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mingliang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Changwen Ke
- Medical Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Bao Zhang
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, People's Republic of China. .,Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zhao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, People's Republic of China. .,Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
153
|
To J, Surya W, Fung TS, Li Y, Verdià-Bàguena C, Queralt-Martin M, Aguilella VM, Liu DX, Torres J. Channel-Inactivating Mutations and Their Revertant Mutants in the Envelope Protein of Infectious Bronchitis Virus. J Virol 2017; 91:e02158-16. [PMID: 27974570 PMCID: PMC5309962 DOI: 10.1128/jvi.02158-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
It has been shown previously in the severe acute respiratory syndrome coronavirus (SARS-CoV) that two point mutations, N15A and V25F, in the transmembrane domain (TMD) of the envelope (E) protein abolished channel activity and led to in vivo attenuation. Pathogenicity was recovered in mutants that also regained E protein channel activity. In particular, V25F was rapidly compensated by changes at multiple V25F-facing TMD residues located on a neighboring monomer, consistent with a recovery of oligomerization. Here, we show using infected cells that the same mutations, T16A and A26F, in the gamma-CoV infectious bronchitis virus (IBV) lead to, in principle, similar results. However, IBV E A26F did not abolish oligomer formation and was compensated by mutations at N- and C-terminal extramembrane domains (EMDs). The C-terminal EMD mutations clustered along an insertion sequence specific to gamma-CoVs. Nuclear magnetic resonance data are consistent with the presence of only one TMD in IBV E, suggesting that recovery of channel activity and fitness in these IBV E revertant mutants is through an allosteric interaction between EMDs and TMD. The present results are important for the development of IBV live attenuated vaccines when channel-inactivating mutations are introduced in the E protein.IMPORTANCE The ion channel activity of SARS-CoV E protein is a determinant of virulence, and abolishment of channel activity leads to viral attenuation. E deletion may be a strategy for generating live attenuated vaccines but can trigger undesirable compensatory mechanisms through modifications of other viral proteins to regain virulence. Therefore, a more suitable approach may be to introduce small but critical attenuating mutations. For this, the stability of attenuating mutations should be examined to understand the mechanisms of reversion. Here, we show that channel-inactivating mutations of the avian infectious bronchitis virus E protein introduced in a recombinant virus system are deficient in viral release and fitness and that revertant mutations also restored channel activity. Unexpectedly, most of the revertant mutations appeared at extramembrane domains, particularly along an insertion specific for gammacoronaviruses. Our structural data propose a single transmembrane domain in IBV E, suggesting an allosteric interaction between extramembrane and transmembrane domains.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carmina Verdià-Bàguena
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Maria Queralt-Martin
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
154
|
Abstract
Coronavirus particles serve three fundamentally important functions in infection. The virion provides the means to deliver the viral genome across the plasma membrane of a host cell. The virion is also a means of escape for newly synthesized genomes. Lastly, the virion is a durable vessel that protects the genome on its journey between cells. This review summarizes the available X-ray crystallography, NMR, and cryoelectron microscopy structural data for coronavirus structural proteins, and looks at the role of each of the major structural proteins in virus entry and assembly. The potential wider conservation of the nucleoprotein fold identified in the Arteriviridae and Coronaviridae families and a speculative model for the evolution of corona-like virus architecture are discussed.
Collapse
Affiliation(s)
- B W Neuman
- School of Biological Sciences, University of Reading, Reading, United Kingdom; College of STEM, Texas A&M University, Texarkana, Texarkana, TX, United States.
| | - M J Buchmeier
- University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
155
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
156
|
Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, Perlman S, Enjuanes L. Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine. PLoS Pathog 2015; 11:e1005215. [PMID: 26513244 PMCID: PMC4626112 DOI: 10.1371/journal.ppat.1005215] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. Zoonotic coronaviruses, including SARS-CoV, Middle East respiratory syndrome (MERS-CoV), porcine epidemic diarrhea virus (PEDV) and swine delta coronavirus (SDCoV) have recently emerged causing high morbidity and mortality in human or piglets. No fully protective therapy is still available for these CoVs. Therefore, the development of efficient vaccines is a high priority. Live attenuated vaccines are considered most effective compared to other types of vaccines, as they induce a long-lived, balanced immune response. However, safety is the main concern of this type of vaccines because attenuated viruses can eventually revert to a virulent phenotype. Therefore, an essential feature of any live attenuated vaccine candidate is its stability. In addition, introduction of several safety guards is advisable to increase vaccine safety. In this manuscript, we analyzed the mechanisms by which an attenuated SARS-CoV reverted to a virulent phenotype and describe the introduction of attenuating deletions that maintained virus stability. The virus, engineered with two safety guards, provided full protection against challenge with a lethal SARS-CoV. Understanding the molecular mechanisms leading to pathogenicity and the in vivo evaluation of vaccine genetic stability contributed to a rational design of a promising SARS-CoV vaccine.
Collapse
Affiliation(s)
- Jose M. Jimenez-Guardeño
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A. Regla-Nava
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose L. Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
157
|
Stobart CC, Moore ML. Development of next-generation respiratory virus vaccines through targeted modifications to viral immunomodulatory genes. Expert Rev Vaccines 2015; 14:1563-72. [PMID: 26434947 DOI: 10.1586/14760584.2015.1095096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus.
Collapse
Affiliation(s)
- Christopher C Stobart
- a 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,b 2 Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Martin L Moore
- a 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,b 2 Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
158
|
Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Torres J, Aguilella VM, Enjuanes L. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015; 485:330-9. [PMID: 26331680 PMCID: PMC4619128 DOI: 10.1016/j.virol.2015.08.010] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein–lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism. SARS-CoV E protein forms calcium ion channels, a novel highly relevant function. Transport of calcium ions through E protein channel stimulates the inflammasome. Inflammasome derived exacerbated proinflammation causes SARS worsening. E protein ion channel and its driven proinflammation may be targets to treat SARS.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmina Verdiá-Báguena
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, 12071 Castellón, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaume Torres
- School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551, Singapore
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, 12071 Castellón, Spain.
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
159
|
Nieto-Torres JL, Verdiá-Báguena C, Castaño-Rodriguez C, Aguilella VM, Enjuanes L. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis. Viruses 2015; 7:3552-73. [PMID: 26151305 PMCID: PMC4517115 DOI: 10.3390/v7072786] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022] Open
Abstract
Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Carmina Verdiá-Báguena
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
160
|
Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 2015; 7:3261-84. [PMID: 26110585 PMCID: PMC4488738 DOI: 10.3390/v7062771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022] Open
Abstract
Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses’ replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.
Collapse
|
161
|
The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction during Virus Infection. Viruses 2015; 7:2834-57. [PMID: 26053926 PMCID: PMC4488716 DOI: 10.3390/v7062749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023] Open
Abstract
Viroporins are small hydrophobic viral proteins that oligomerize to form aqueous pores on cellular membranes. Studies in recent years have demonstrated that viroporins serve important functions during virus replication and contribute to viral pathogenicity. A number of viroporins have also been shown to localize to the endoplasmic reticulum (ER) and/or its associated membranous organelles. In fact, replication of most RNA viruses is closely linked to the ER, and has been found to cause ER stress in the infected cells. On the other hand, autophagy is an evolutionarily conserved "self-eating" mechanism that is also observed in cells infected with RNA viruses. Both ER stress and autophagy are also known to modulate a wide variety of signaling pathways including pro-inflammatory and innate immune response, thereby constituting a major aspect of host-virus interactions. In this review, the potential involvement of viroporins in virus-induced ER stress and autophagy will be discussed.
Collapse
|
162
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
163
|
Ghosh A, Pithadia AS, Bhat J, Bera S, Midya A, Fierke CA, Ramamoorthy A, Bhunia A. Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP. Biochemistry 2015; 54:2249-2261. [PMID: 25785896 DOI: 10.1021/acs.biochem.5b00061] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported.
Collapse
Affiliation(s)
- Anirban Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Amit S Pithadia
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Jyotsna Bhat
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Supriyo Bera
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Anupam Midya
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
164
|
Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG. Coronavirus envelope (E) protein remains at the site of assembly. Virology 2015; 478:75-85. [PMID: 25726972 PMCID: PMC4550588 DOI: 10.1016/j.virol.2015.02.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/19/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. MHV-CoV E does not transport to the cell surface. MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. First FRAP and correlative light electron microscopy of a CoV E protein. Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.
Collapse
Affiliation(s)
- Pavithra Venkatagopalan
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States; Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Sasha M Daskalova
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Lisa A Lopez
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States; Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Kelly A Dolezal
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States; Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401, United States
| | - Brenda G Hogue
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, United States.
| |
Collapse
|
165
|
Surya W, Li Y, Verdià-Bàguena C, Aguilella VM, Torres J. MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res 2015; 201:61-6. [PMID: 25733052 PMCID: PMC7114494 DOI: 10.1016/j.virusres.2015.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
Abstract
The envelope protein of MERS coronavirus (MERS-CoV E protein) has been purified. MERS-CoV E protein forms pentameric ion channels. MERS-CoV E protein has one transmembrane domain. The full length construct obtained is amenable to structural determination by NMR in detergents.
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified pathogen able of human transmission that causes a mortality of almost 40%. As in the case of SARS-CoV, MERS virus lacking E protein represents a potential vaccine. In both cases, abolishment of channel activity may be a contributor to the attenuation observed in E-deleted viruses. Herein, we report that purified MERS-CoV E protein, like SARS-CoV E protein, is almost fully α-helical, has a single α-helical transmembrane domain, and forms pentameric ion channels in lipid bilayers. Based on these similarities, and the proposed involvement of channel activity as virulence factor in SARS-CoV E protein, MERS-CoV E protein may constitute a potential drug target.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Carmina Verdià-Bàguena
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
166
|
Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J Virol 2015; 89:3870-87. [PMID: 25609816 DOI: 10.1128/jvi.03566-14] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a respiratory disease with a mortality rate of 10%. A mouse-adapted SARS-CoV (SARS-CoV-MA15) lacking the envelope (E) protein (rSARS-CoV-MA15-ΔE) is attenuated in vivo. To identify E protein regions and host responses that contribute to rSARS-CoV-MA15-ΔE attenuation, several mutants (rSARS-CoV-MA15-E*) containing point mutations or deletions in the amino-terminal or the carboxy-terminal regions of the E protein were generated. Amino acid substitutions in the amino terminus, or deletion of regions in the internal carboxy-terminal region of E protein, led to virus attenuation. Attenuated viruses induced minimal lung injury, diminished limited neutrophil influx, and increased CD4(+) and CD8(+) T cell counts in the lungs of BALB/c mice, compared to mice infected with the wild-type virus. To analyze the host responses leading to rSARS-CoV-MA15-E* attenuation, differences in gene expression elicited by the native and mutant viruses in the lungs of infected mice were determined. Expression levels of a large number of proinflammatory cytokines associated with lung injury were reduced in the lungs of rSARS-CoV-MA15-E*-infected mice, whereas the levels of anti-inflammatory cytokines were increased, both at the mRNA and protein levels. These results suggested that the reduction in lung inflammation together with a more robust antiviral T cell response contributed to rSARS-CoV-MA15-E* attenuation. The attenuated viruses completely protected mice against challenge with the lethal parental virus, indicating that these viruses are promising vaccine candidates. IMPORTANCE Human coronaviruses are important zoonotic pathogens. SARS-CoV caused a worldwide epidemic infecting more than 8,000 people with a mortality of around 10%. Therefore, understanding the virulence mechanisms of this pathogen and developing efficacious vaccines are of high importance to prevent epidemics from this and other human coronaviruses. Previously, we demonstrated that a SARS-CoV lacking the E protein was attenuated in vivo. Here, we show that small deletions and modifications within the E protein led to virus attenuation, manifested by minimal lung injury, limited neutrophil influx to the lungs, reduced expression of proinflammatory cytokines, increased anti-inflammatory cytokine levels, and enhanced CD4(+) and CD8(+) T cell counts in vivo, suggesting that these phenomena contribute to virus attenuation. The attenuated mutants fully protected mice from challenge with virulent virus. These studies show that mutations in the E protein are not well tolerated and indicate that this protein is an excellent target for vaccine development.
Collapse
|
167
|
Abstract
Virus encoded ion channels, termed viroporins, are expressed by a diverse set of viruses and have been found to target nearly every host cell membrane and compartment, including endocytic/exocytic vesicles, ER, mitochondria, Golgi, and the plasma membrane. Viroporins are generally very small (<100 amino acids) integral membrane proteins that share common structure motifs (conserved cluster of basic residues adjacent to an amphipathic alpha-helix) but only limited sequence homology between viruses. Ion channel activity of viroporins is either required for replication or greatly enhances replication and pathogenesis. Channel characteristics have been investigated using standard electrophysiological techniques, including planar lipid bilayer, liposome patch clamp or whole-cell voltage clamp. In general, viroporins are voltage-independent non-specific monovalent cation channels, with the exception of the influenza A virus M2 channel that forms a highly specific proton channel due to a conserved HXXXW motif. Viroporin channel currents range between highly variable (‘burst-like’) fluctuations to well resolved unitary (‘square-top’) transitions, and emerging data indicates the quality of channel activity is influenced by many factors, including viroporin synthesis/solubilization, the lipid environment and the ionic composition of the buffers, as well as intrinsic differences between the viroporins themselves. Compounds that block viroporin channel activity are effective antiviral drugs both in vitro and in vivo. Surprisingly distinct viroporins are inhibited by the same compounds (e.g., amantadines and amiloride derivatives), despite wide sequence divergence, raising the possibility of broadly acting antiviral drugs that target viroporins. Electrophysiology of viroporins will continue to play a critical role in elucidating the functional roles viroporins play in pathogenesis and to develop new drugs to combat viroporin-encoding pathogens.
Collapse
Affiliation(s)
- Anne H. Delcour
- Dept. of Biology and Biochemistry, University of Houston, Houston, Texas USA
| |
Collapse
|
168
|
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 2014; 194:124-37. [PMID: 25093995 PMCID: PMC4261026 DOI: 10.1016/j.virusres.2014.07.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Fernando Usera
- Department of Biosafety, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
169
|
Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Enjuanes L. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 2014; 10:e1004320. [PMID: 25122212 PMCID: PMC4133396 DOI: 10.1371/journal.ppat.1004320] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/08/2014] [Indexed: 01/24/2023] Open
Abstract
A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. SARS-CoV caused a worldwide epidemic infecting 8000 people with a mortality of about 10%. A recombinant SARS-CoV lacking the E protein was attenuated in vivo. The E protein contains a PDZ-binding motif (PBM), a domain potentially involved in the interaction with more than 400 cellular proteins, which highlights its relevance in modulating host-cell behavior. To analyze the contributions of this motif to virulence, recombinant viruses with or without E protein PBM were generated. Recombinant SARS-CoVs lacking E protein PBM caused minimal lung damage and were attenuated, in contrast to viruses containing this motif, indicating that E protein PBM is a virulence determinant. E protein PBM induces the deleterious exacerbated immune response triggered during SARS-CoV infection, and interacts with the cellular protein syntenin, as demonstrated using proteomic analyses. Interestingly, syntenin redistributed from nucleus to cytoplasm during SARS-CoV infection, activating p38 MAPK and triggering the overexpression of inflammatory cytokines. Furthermore, silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation. In addition, administration of a p38 MAPK inhibitor led to an increase in mice survival after SARS-CoV infection. These results indicate that syntenin and p38 MAPK are potential therapeutic targets to reduce the exacerbated immune response during SARS-CoV infection.
Collapse
Affiliation(s)
- Jose M. Jimenez-Guardeño
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose L. Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A. Regla-Nava
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
170
|
Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment. J Virol 2014; 88:11899-914. [PMID: 25100835 DOI: 10.1128/jvi.00839-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small hydrophobic (SH) protein is a 64-amino-acid polypeptide encoded by the human respiratory syncytial virus (hRSV). SH protein has a single α-helical transmembrane (TM) domain that forms pentameric ion channels. Herein, we report the first inhibitor of the SH protein channel, pyronin B, and we have mapped its binding site to a conserved surface of the RSV SH pentamer, at the C-terminal end of the transmembrane domain. The validity of the SH protein structural model used has been confirmed by using a bicellar membrane-mimicking environment. However, in bicelles the α-helical stretch of the TM domain extends up to His-51, and by comparison with previous models both His-22 and His-51 adopt an interhelical/lumenal orientation relative to the channel pore. Neither His residue was found to be essential for channel activity although His-51 protonation reduced channel activity at low pH, with His-22 adopting a more structural role. The latter results are in contrast with previous patch clamp data showing channel activation at low pH, which could not be reproduced in the present work. Overall, these results establish a solid ground for future drug development targeting this important viroporin. Importance: The human respiratory syncytial virus (hRSV) is responsible for 64 million reported cases of infection and 160,000 deaths each year. Lack of adequate antivirals fuels the search for new targets for treatment. The small hydrophobic (SH) protein is a 64-amino-acid polypeptide encoded by hRSV and other paramyxoviruses, and its absence leads to viral attenuation in vivo and early apoptosis in infected cells. SH protein forms pentameric ion channels that may constitute novel drug targets, but no inhibitor for this channel activity has been reported so far. A small-molecule inhibitor, pyronin B, can reduce SH channel activity, and its likely binding site on the SH protein channel has been identified. Black lipid membrane (BLM) experiments confirm that protonation of both histidine residues reduces stability and channel activity. These results contrast with previous patch clamp data that showed low-pH activation, which we have not been able to reproduce.
Collapse
|
171
|
Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Alcaraz A, Torres J, Aguilella VM, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 2014; 10:e1004077. [PMID: 24788150 PMCID: PMC4006877 DOI: 10.1371/journal.ppat.1004077] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/05/2014] [Indexed: 01/12/2023] Open
Abstract
Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. Several highly pathogenic viruses encode small transmembrane proteins with ion-conduction properties named viroporins. Viroporins are generally involved in virus production and maturation processes, which many times are achieved by altering the ion homeostasis of cell organelles. Cells have evolved mechanisms to sense these imbalances in ion concentrations as a danger signal, and consequently trigger the innate immune system. Recently, it has been demonstrated that viroporins are inducers of cytosolic macromolecular complexes named inflammasomes that trigger the activation of key inflammatory cytokines such as IL-1β. The repercussions of this system in viral pathogenesis or disease outcome are currently being explored. SARS-CoV infection induces an uncontrolled inflammatory response leading to pulmonary damage, edema accumulation, severe hypoxemia and eventually death. In this study, we report that SARS-CoV E protein ion channel activity is a determinant of virulence, as the elimination of this function attenuated the virus, reducing the harmful inflammatory cytokine burst produced after infection, in which inflammasome activation plays a critical role. This led to less pulmonary damage and to disease resolution. These novel findings may be of relevance for other viral infections and can possibly be translated in order to find therapies for their associated diseases.
Collapse
Affiliation(s)
- Jose L. Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmina Verdiá-Báguena
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castellón, Spain
| | - Jose M. Jimenez-Guardeño
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A. Regla-Nava
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Alcaraz
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castellón, Spain
| | - Jaume Torres
- School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore, Singapore
| | - Vicente M. Aguilella
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castellón, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
172
|
Li Y, Surya W, Claudine S, Torres J. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J Biol Chem 2014; 289:12535-49. [PMID: 24668816 PMCID: PMC4007446 DOI: 10.1074/jbc.m114.560094] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coronavirus envelope (CoV E) proteins are ∼100-residue polypeptides with at least one channel-forming α-helical transmembrane (TM) domain. The extramembrane C-terminal tail contains a completely conserved proline, at the center of a predicted β-coil-β motif. This hydrophobic motif has been reported to constitute a Golgi-targeting signal or a second TM domain. However, no structural data for this or other extramembrane domains in CoV E proteins is available. Herein, we show that the E protein in the severe acute respiratory syndrome virus has only one TM domain in micelles, whereas the predicted β-coil-β motif forms a short membrane-bound α-helix connected by a disordered loop to the TM domain. However, complementary results suggest that this motif is potentially poised for conformational change or in dynamic exchange with other conformations.
Collapse
Affiliation(s)
- Yan Li
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | | | | |
Collapse
|
173
|
Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, Zhao Z, Tan W. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 2013; 4:951-61. [PMID: 24318862 PMCID: PMC4875403 DOI: 10.1007/s13238-013-3096-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/01/2013] [Indexed: 12/24/2022] Open
Abstract
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus with pathogenic mechanisms that may be driven by innate immune pathways. The goal of this study is to characterize the expression of the structural (S, E, M, N) and accessory (ORF 3, ORF 4a, ORF 4b, ORF 5) proteins of MERS-CoV and to determine whether any of these proteins acts as an interferon antagonist. Individual structural and accessory protein-coding plasmids with an N-terminal HA tag were constructed and transiently transfected into cells, and their native expression and subcellular localization were assessed using Wes tern blotting and indirect immunofluorescence. While ORF 4b demonstrated majorly nuclear localization, all of the other proteins demonstrated cytoplasmic localization. In addition, for the first time, our experiments revealed that the M, ORF 4a, ORF 4b, and ORF 5 proteins are potent interferon antagonists. Further examination revealed that the ORF 4a protein of MERS-CoV has the most potential to counteract the antiviral effects of IFN via the inhibition of both the interferon production (IFN-β promoter activity, IRF-3/7 and NF-κB activation) and ISRE promoter element signaling pathways. Together, our results provide new insights into the function and pathogenic role of the structural and accessory proteins of MERS-CoV.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
In mammalian cells, the Golgi complex has an elaborate structure consisting of stacked, flattened cisternal membranes collected into a ribbon in the center of the cell. Amazingly, the flattened cisternae can rapidly dilate to accommodate large cargo as it traffics through the organelle. The mechanism by which this occurs is unknown. Exocytosis of large cargo is essential for many physiological processes, including collagen and lipoprotein secretion, and defects in the process lead to disease. In addition, enveloped viruses that bud into the endoplasmic reticulum or Golgi complex must also be transported through Golgi cisternae for secretion from the infected cell. This review summarizes our understanding of intra-Golgi transport of large cargo, and outlines current questions open for experimentation.
Collapse
Affiliation(s)
- Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 20205, USA.
| |
Collapse
|
175
|
Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2026-31. [PMID: 23688394 PMCID: PMC3715572 DOI: 10.1016/j.bbamem.2013.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 11/30/2022]
Abstract
A partial characterization of the ion channels formed by the SARS coronavirus (CoV) envelope (E) protein was previously reported (C. Verdiá-Báguena et al., 2012 [12]). Here, we provide new significant insights on the involvement of lipids in the structure and function of the CoV E protein channel on the basis of three series of experiments. First, reversal potential measurements over a wide range of pH allow the dissection of the contributions to channel selectivity coming from ionizable residues of the protein transmembrane domain and also from the negatively charged groups of diphytanoyl phosphatidylserine (DPhPS) lipid. The corresponding effective pKas are consistent with the model pKas of the acidic residue candidates for titration. Second, the change of channel conductance with salt concentration reveals two distinct regimes (Donnan-controlled electrodiffusion and bulk-like electrodiffusion) fully compatible with the outcomes of selectivity experiments. Third, by measuring channel conductance in mixtures of neutral diphytanoyl phosphatidylcholine (DPhPC) lipids and negatively charged DPhPS lipids in low and high salt concentrations we conclude that the protein–lipid conformation in the channel is likely the same in charged and neutral lipids. Overall, the whole set of experiments supports the proteolipidic structure of SARS-CoV E channels and explains the large difference in channel conductance observed between neutral and charged membranes. SARS-CoV E protein channel structure is analyzed by tuning lipid charge. Proteolipidic channel conformation is similar in charged and neutral lipids. Lipid charge modulation of conductance is biphasic.
Collapse
|
176
|
Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol 2013; 87:6551-9. [PMID: 23576515 DOI: 10.1128/jvi.00087-13] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Zoonotic coronaviruses, including the one that caused severe acute respiratory syndrome (SARS), cause significant morbidity and mortality in humans. No specific therapy for any human coronavirus is available, making vaccine development critical for protection against these viruses. We previously showed that recombinant SARS coronavirus (SARS-CoV) (Urbani strain based) lacking envelope (E) protein expression (rU-ΔE) provided good but not perfect protection in young mice against challenge with virulent mouse-adapted SARS-CoV (MA15). To improve vaccine efficacy, we developed a second set of E-deleted vaccine candidates on an MA15 background (rMA15-ΔE). rMA15-ΔE is safe, causing no disease in 6-week-, 12-month-, or 18-month-old BALB/c mice. Immunization with this virus completely protected mice of three ages from lethal disease and effected more-rapid virus clearance. Compared to rU-ΔE, rMA15-ΔE immunization resulted in significantly greater neutralizing antibody and SARS-CoV-specific CD4 and CD8 T cell responses. After challenge, inflammatory cell infiltration, edema, and lung destruction were decreased in the lungs of rMA15-ΔE-immunized mice compared to those in rU-ΔE-immunized 12-month-old mice. Collectively, these results show that immunization with a species-adapted attenuated coronavirus lacking E protein expression is safe and provides optimal immunogenicity and long-term protection against challenge with lethal virus. This approach will be generally useful for development of vaccines protective against human coronaviruses as well as against coronaviruses that cause disease in domestic and companion animals.
Collapse
|
177
|
Mao X, Ren XF. Functions of proteins of porcine epidemic diarrhea virus. Shijie Huaren Xiaohua Zazhi 2013; 21:44-53. [DOI: 10.11569/wcjd.v21.i1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is caused by porcine epidemic diarrhea virus (PEDV), which belongs to the order Nidovirales in the family Coronaviridae. Since PED was first discovered in Europe in 1987, it has become a severe infectious disease in Asian countries (including China, Korea, Japan, Philippines and Thailand) and has caused great economic losses in swine industry. Although bivalent vaccine for PEDV and transmissible gastroenteritis virus (TGEV, another porcine coronavirus) can decrease the incidence of both diseases, PED is still increasing annually in China. Unfortunately, there have been few studies on viral proteins and pathogenesis of PEDV. This review aims to provide some functional insights on PEDV viral proteins based on the available information from coronaviruse studies.
Collapse
|
178
|
Verdiá-Báguena C, Nieto-Torres JL, Alcaraz A, DeDiego ML, Torres J, Aguilella VM, Enjuanes L. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 2012; 432:485-94. [PMID: 22832120 PMCID: PMC3438407 DOI: 10.1016/j.virol.2012.07.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 12/28/2022]
Abstract
Coronavirus (CoV) envelope (E) protein ion channel activity was determined in channels formed in planar lipid bilayers by peptides representing either the transmembrane domain of severe acute respiratory syndrome CoV (SARS-CoV) E protein, or the full-length E protein. Both of them formed a voltage independent ion conductive pore with symmetric ion transport properties. Mutations N15A and V25F located in the transmembrane domain prevented the ion conductivity. E protein derived channels showed no cation preference in non-charged lipid membranes, whereas they behaved as pores with mild cation selectivity in negatively-charged lipid membranes. The ion conductance was also controlled by the lipid composition of the membrane. Lipid charge also regulated the selectivity of a HCoV-229E E protein derived peptide. These results suggested that the lipids are functionally involved in E protein ion channel activity, forming a protein-lipid pore, a novel concept for CoV E protein ion channel entity.
Collapse
Affiliation(s)
- Carmina Verdiá-Báguena
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
179
|
Viral targets of acylguanidines. Drug Discov Today 2012; 17:1039-43. [PMID: 22580299 PMCID: PMC7108427 DOI: 10.1016/j.drudis.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/12/2012] [Accepted: 05/02/2012] [Indexed: 01/01/2023]
Abstract
Acylguanidines are a new class of antiviral compounds with the unique ability to target both RNA polymerase and transmembrane proteins of viruses from different families. Importantly, they inhibit proteins which are not targeted by existing antiviral therapies, for example, Vpu of HIV type 1, p7 of hepatitis C virus, E of severe acute respiratory syndrome coronavirus and RNA-dependent RNA polymerase of coxsackievirus B3. BIT225, developed by Biotron Limited, is the first acylguanidine in clinical trials against HIV type 1 and hepatitis C virus. In this article we focus on the mechanisms of inhibition of viral proteins by acylguanidines.
Collapse
|
180
|
A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus E protein. PLoS Pathog 2012; 8:e1002674. [PMID: 22570613 PMCID: PMC3343006 DOI: 10.1371/journal.ppat.1002674] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection. Coronaviruses are enveloped viruses that bud and assemble intracellularly, and therefore must use the host secretory pathway for release. Coronavirus E is a small protein that contains a single predicted hydrophobic domain and is targeted to the Golgi region. The E protein has been implicated in the assembly of coronavirus particles, as well as in virus release after assembly. The mechanism of action is not understood, but may involve ion channel activity. The membrane topology of the E protein is also unclear, and the protein may adopt distinct topologies that have different functions. We previously showed that the E protein from the infectious bronchitis virus could disrupt the secretory pathway to the apparent advantage of the virus. Here we have mapped this activity to a single, essential residue within the hydrophobic domain. Additionally, we developed mutant versions of IBV E that adopt a single membrane topology, and showed that a transmembrane topology is required for disruption of the secretory pathway. Our results broaden the understanding of E protein function and will impact the development of antiviral strategies.
Collapse
|
181
|
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4:557-80. [PMID: 22590686 PMCID: PMC3347323 DOI: 10.3390/v4040557] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/16/2022] Open
Abstract
Coronavirus-cell entry programs involve virus-cell membrane fusions mediated by viral spike (S) proteins. Coronavirus S proteins acquire membrane fusion competence by receptor interactions, proteolysis, and acidification in endosomes. This review describes our current understanding of the S proteins, their interactions with and their responses to these entry triggers. We focus on receptors and proteases in prompting entry and highlight the type II transmembrane serine proteases (TTSPs) known to activate several virus fusion proteins. These and other proteases are essential cofactors permitting coronavirus infection, conceivably being in proximity to cell-surface receptors and thus poised to split entering spike proteins into the fragments that refold to mediate membrane fusion. The review concludes by noting how understanding of coronavirus entry informs antiviral therapies.
Collapse
Affiliation(s)
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA;
| |
Collapse
|
182
|
The coronavirus E protein: assembly and beyond. Viruses 2012; 4:363-82. [PMID: 22590676 PMCID: PMC3347032 DOI: 10.3390/v4030363] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022] Open
Abstract
The coronavirus E protein is a small membrane protein that has an important role in the assembly of virions. Recent studies have indicated that the E protein has functions during infection beyond assembly, including in virus egress and in the host stress response. Additionally, the E protein has ion channel activity, interacts with host proteins, and may have multiple membrane topologies. The goal of this review is to highlight the properties and functions of the E protein, and speculate on how they may be related.
Collapse
|
183
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
184
|
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Regla-Nava JA, Alvarez E, Oliveros JC, Zhao J, Fett C, Perlman S, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog 2011; 7:e1002315. [PMID: 22028656 PMCID: PMC3197621 DOI: 10.1371/journal.ppat.1002315] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE. To identify potential mechanisms mediating the in vivo attenuation of SARS-CoV lacking the E gene (rSARS-CoV-ΔE), the effect of the presence of the E gene on host gene expression was studied. In rSARS-CoV-ΔE-infected cells, the expression of at least 25 stress response genes was preferentially upregulated, compared to cells infected with rSARS-CoV. E protein supplied in trans reversed the increase in stress response genes observed in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, and by treatment with drugs causing stress by different mechanisms. Furthermore, in the presence of the E protein a subset (IRE-1 pathway), but not two others (PERK and ATF-6), of the unfolded protein response was also reduced. Nevertheless, the activation of the unfolded protein response to control cell homeostasis was not sufficient to alleviate cell stress, and an increase in cell apoptosis in cells infected with the virus lacking E protein was observed. This apoptotic response was probably induced to protect the host by limiting virus production and dissemination. In cells infected with rSARS-CoV-ΔE, genes associated with the proinflammatory pathway were down-regulated compared to cells infected with virus expressing E protein, supporting the idea that a reduction in inflammation was also relevant in the attenuation of the virus deletion mutant.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|