151
|
Qin K, Honjo K, Sherrill-Mix S, Liu W, Stoltz R, Oman AK, Hall LA, Li R, Sterrett S, Frederick ER, Lancaster JR, Narkhede M, Mehta A, Ogunsile FJ, Patel RB, Ketas TJ, Cruz Portillo VM, Cupo A, Larimer BM, Bansal A, Goepfert PA, Hahn BH, Davis RS. SARS-CoV-2 mRNA vaccination exposes progressive adaptive immune dysfunction in patients with chronic lymphocytic leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.19.22283645. [PMID: 36597532 PMCID: PMC9810225 DOI: 10.1101/2022.12.19.22283645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response. Interestingly, 26% were seropositive, but had no detectable NAbs, suggesting the maintenance of pre-existing endemic human coronavirus-specific antibodies that cross-react with the S2 domain of the SARS-CoV-2 spike. These individuals had more advanced disease. In treatment-naïve CLL patients, mRNA-2173 induced 12-fold higher NAb titers and 1.7-fold higher response rates than BNT162b2. These data reveal a graded loss of immune function, with pre-existing memory being preserved longer than the capacity to respond to new antigens, and identify mRNA-2173 as a superior vaccine for CLL patients.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,These authors contributed equally
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,These authors contributed equally
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Regina Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Allisa K. Oman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucinda A. Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ellen R. Frederick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R. Lancaster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mayur Narkhede
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amitkumar Mehta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Foluso J. Ogunsile
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rima B. Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Lead Contact,Correspondence: (R.S.D.)
| |
Collapse
|
152
|
Yu H, Li L, Huffman A, Beverley J, Hur J, Merrell E, Huang HH, Wang Y, Liu Y, Ong E, Cheng L, Zeng T, Zhang J, Li P, Liu Z, Wang Z, Zhang X, Ye X, Handelman SK, Sexton J, Eaton K, Higgins G, Omenn GS, Athey B, Smith B, Chen L, He Y. A new framework for host-pathogen interaction research. Front Immunol 2022; 13:1066733. [PMID: 36591248 PMCID: PMC9797517 DOI: 10.3389/fimmu.2022.1066733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved in HPIs, the dynamic nature of HPI outcomes, roles that HPI components may occupy leading to such outcomes, and HPI checkpoints that are critical for specific disease outcomes. Based on these postulates, an HPI Postulate and Ontology (HPIPO) framework is proposed to apply interoperable ontologies to systematically model and represent various granular details and knowledge within the scope of the HPI postulates, in a way that will support AI-ready data standardization, sharing, integration, and analysis. As a demonstration, the HPI postulates and the HPIPO framework were applied to study COVID-19 with the Coronavirus Infectious Disease Ontology (CIDO), leading to a novel approach to rational design of drug/vaccine cocktails aimed at interrupting processes occurring at critical host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus protein-protein interactions (PPIs) relevant to COVID-19 were predicted and evaluated based on prior knowledge of curated PPIs and domain-domain interactions, and how such studies can be further explored with the HPI postulates and the HPIPO framework is discussed.
Collapse
Affiliation(s)
- Hong Yu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
| | - Li Li
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Anthony Huffman
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - John Beverley
- Department of Philosophy, University at Buffalo, Buffalo, NY, United States
- Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Eric Merrell
- Department of Philosophy, University at Buffalo, Buffalo, NY, United States
| | - Hsin-hui Huang
- University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yang Wang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yingtong Liu
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Edison Ong
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Liang Cheng
- Department of Bioinformatics, Harbin Medical University, Harbin, Helongjian, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jingsong Zhang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pengpai Li
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhiping Liu
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhigang Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
| | | | - Jonathan Sexton
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kathryn Eaton
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerry Higgins
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gilbert S. Omenn
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brian Athey
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Barry Smith
- Department of Philosophy, University at Buffalo, Buffalo, NY, United States
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yongqun He
- University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
153
|
Grifoni A, Zhang Y, Tarke A, Sidney J, Rubiro P, Reina-Campos M, Filaci G, Dan JM, Scheuermann RH, Sette A. Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe 2022; 30:1662-1670.e4. [PMID: 36463861 PMCID: PMC9718645 DOI: 10.1016/j.chom.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The monkeypox virus (MPXV) outbreak confirmed in May 2022 in non-endemic countries is raising concern about the pandemic potential of novel orthopoxviruses. Little is known regarding MPXV immunity in the context of MPXV infection or vaccination with vaccinia-based vaccines (VACV). As with vaccinia, T cells are likely to provide an important contribution to overall immunity to MPXV. Here, we leveraged the epitope information available in the Immune Epitope Database (IEDB) on VACV to predict potential MPXV targets recognized by CD4+ and CD8+ T cell responses. We found a high degree of conservation between VACV epitopes and MPXV and defined T cell immunodominant targets. These analyses enabled the design of peptide pools able to experimentally detect VACV-specific T cell responses and MPXV cross-reactive T cells in a cohort of vaccinated individuals. Our findings will facilitate the monitoring of cellular immunity following MPXV infection and vaccination.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Center of Excellence for Biomedical Research, Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Maria Reina-Campos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy,Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard H. Scheuermann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA,Global Virus Network, Baltimore, MD 21201, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
154
|
Dimou A. Areas of Uncertainty in SARS-CoV-2 Vaccination for Cancer Patients. Vaccines (Basel) 2022; 10:vaccines10122117. [PMID: 36560527 PMCID: PMC9784623 DOI: 10.3390/vaccines10122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Early in the COVID-19 pandemic, it was recognized that infection with SARS-CoV-2 is associated with increased morbidity and mortality in patients with cancer; therefore, preventive vaccination in cancer survivors is expected to be particularly impactful. Heterogeneity in how a neoplastic disease diagnosis and treatment interferes with humoral and cellular immunity, however, poses a number of challenges in vaccination strategies. Herein, the available literature on the effectiveness of COVID-19 vaccines among patients with cancer is critically appraised under the lens of anti-neoplastic treatment optimization. The objective of this review is to highlight areas of uncertainty, where more research could inform future SARS-CoV-2 immunization programs and maximize benefits in the high-risk cancer survivor population, and also minimize cancer treatment deviations from standard practices.
Collapse
Affiliation(s)
- Anastasios Dimou
- Division of Medical Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
155
|
Abu Fanne R, Lidawi G, Maraga E, Moed M, Roguin A, Meisel SR. Correlation between Baseline 25(OH) Vitamin D Levels and Both Humoral Immunity and Breakthrough Infection Post-COVID-19 Vaccination. Vaccines (Basel) 2022; 10:vaccines10122116. [PMID: 36560526 PMCID: PMC9784151 DOI: 10.3390/vaccines10122116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: Vaccines against COVID-19 induce specific antibodies whose titer is perceived as a reliable correlate of protection. Vitamin D confers complex regulatory effects on the innate and adaptive immunity. In this study, we explored a plausible impact of baseline vitamin D content on achieved immunity following COVID-19 vaccination. Methods: A retrospective observational study comprising 73,254 naïve subjects insured by the Leumit Health Service HMO, who were vaccinated between 1 February 2020 and 30 January 2022, with one available vitamin D level prior to vaccination, was performed. The association between 25(OH) vitamin D levels, SARS-CoV-2 antibody titer, and post-vaccination PCR results were evaluated. Results: Of the study population, 5026 (6.9%) tested positive for COVID-19. The proportion of low 25(OH)D levels (<30 ng/mL) was significantly higher in the PCR-positive group (81.5% vs. 79%, p < 0.001). Multivariate analysis showed a higher incidence of breakthrough infection among non-smokers [1.37 (95% CI 1.22−1.54, p < 0.001)] and lower incidences among subjects with sufficient 25(OH)D levels (>30 ng/mL) [0.87 (95% CI 0.79−0.95, p—0.004)], hyperlipidemia [0.84 (95% CI 0.76−0.93, p < 0.001], depression [OR-0.87 (95% CI: 0.79−0.96, p < 0.005], socio-economic status >10 [0.67 (95% CI 0.61−0.73, p < 0.001)], and age >44 years. SARS-CoV-2 antibody titers were available in 3659 vaccinated individuals. The prevalence of antibody titers (<50 AU) among PCR-positive subjects was 42% compared to 28% among PCR-negative subjects (p < 0.001). Baseline 25(OH)D levels showed an inverse relation to total antibody titers. However, no association was found with an antibody titer <50 AU/mL fraction. Conclusion Baseline 25(OH)D levels correlated with the vaccination-associated protective COVID-19 immunity. Antibody titers <50 AU/mL were significantly linked to breakthrough infection but did not correlate with 25(OH)D levels.
Collapse
Affiliation(s)
- Rami Abu Fanne
- Leumit Health Services, Tel Aviv 6473817, Israel
- Heart Institute, Hillel Yaffe Medical Center, Hadera 3810101, Israel
- Correspondence:
| | - Ghalib Lidawi
- Urology Department, Hillel Yaffe Medical Center, Hadera 3810101, Israel
| | - Emad Maraga
- Clinical Biochemistry Department, Hadassah Medical Center, Jerusalem 9103102, Israel
| | - Mahmud Moed
- Leumit Health Services, Tel Aviv 6473817, Israel
| | - Ariel Roguin
- Heart Institute, Hillel Yaffe Medical Center, Hadera 3810101, Israel
| | - Simcha-Ron Meisel
- Heart Institute, Hillel Yaffe Medical Center, Hadera 3810101, Israel
| |
Collapse
|
156
|
Li L, Gao M, Li J, Xie X, Zhao H, Wang Y, Xu X, Zu S, Chen C, Wan D, Duan J, Wang J, Aliyari SR, Gold S, Zhang J, Qin CF, Shi PY, Yang H, Cheng G. Identification of an immunogenic epitope and protective antibody against the furin cleavage site of SARS-CoV-2. EBioMedicine 2022; 87:104401. [PMID: 36508877 PMCID: PMC9732504 DOI: 10.1016/j.ebiom.2022.104401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic, contains a unique, four amino acid (aa) "PRRA" insertion in the spike (S) protein that creates a transmembrane protease serine 2 (TMPRSS2)/furin cleavage site and enhances viral infectivity. More research into immunogenic epitopes and protective antibodies against this SARS-CoV-2 furin cleavage site is needed. METHODS Combining computational and experimental methods, we identified and characterized an immunogenic epitope overlapping the furin cleavage site that detects antibodies in COVID-19 patients and elicits strong antibody responses in immunized mice. We also identified a high-affinity monoclonal antibody from COVID-19 patient peripheral blood mononuclear cells; the antibody directly binds the furin cleavage site and protects against SARS-CoV-2 infection in a mouse model. FINDINGS The presence of "PRRA" amino acids in the S protein of SARS-CoV-2 not only creates a furin cleavage site but also generates an immunogenic epitope that elicits an antibody response in COVID-19 patients. An antibody against this epitope protected against SARS-CoV-2 infection in mice. INTERPRETATION The immunogenic epitope and protective antibody we have identified may augment our strategy in handling COVID-19 epidemic. FUNDING The National Natural Science Foundation of China (82102371, 91542201, 81925025, 82073181, and 81802870), the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-1-047 and 2022-I2M-2-004), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2020-PT310-006, 2019XK310002, and 2018TX31001), the National Key Research and Development Project of China (2020YFC0841700), US National Institute of Health (NIH) funds grant AI158154, University of California Los Angeles (UCLA) AI and Charity Treks, and UCLA DGSOM BSCRC COVID-19 Award Program. H.Y. is supported by Natural Science Foundation of Jiangsu Province (BK20211554 andBE2022728).
Collapse
Affiliation(s)
- Lili Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Meiling Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuping Xie
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | | | - Xin Xu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Shulong Zu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | | | - Dingyi Wan
- AtaGenix Laboratories (Wuhan) Co., Ltd., Wuhan, China
| | - Jing Duan
- AtaGenix Laboratories (Wuhan) Co., Ltd., Wuhan, China
| | - Jingfeng Wang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China,Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Saba R. Aliyari
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Sarah Gold
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China,Corresponding author.
| | - Pei-Yong Shi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA,Corresponding author.
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China,Corresponding author.
| | - Genhong Cheng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA,Corresponding author.
| |
Collapse
|
157
|
Dicks MD, Rose LM, Russell RA, Bowman LA, Graham C, Jimenez-Guardeño JM, Doores KJ, Malim MH, Draper SJ, Howarth M, Biswas S. Modular capsid decoration boosts adenovirus vaccine-induced humoral immunity against SARS-CoV-2. Mol Ther 2022; 30:3639-3657. [PMID: 35949171 PMCID: PMC9364715 DOI: 10.1016/j.ymthe.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Matthew D.J. Dicks
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Corresponding author: Matthew D. J. Dicks, SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK.
| | - Louisa M. Rose
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Rebecca A. Russell
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Lesley A.H. Bowman
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jose M. Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Simon J. Draper
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark Howarth
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sumi Biswas
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
158
|
Phetsouphanh C, Khoo WH, Jackson K, Klemm V, Howe A, Aggarwal A, Akerman A, Milogiannakis V, Stella AO, Rouet R, Schofield P, Faulks ML, Law H, Danwilai T, Starr M, Munier CML, Christ D, Singh M, Croucher PI, Brilot-Turville F, Turville S, Phan TG, Dore GJ, Darley D, Cunningham P, Matthews GV, Kelleher AD, Zaunders JJ. High titre neutralizing antibodies in response to SARS-CoV-2 infection require RBD-specific CD4 T cells that include proliferative memory cells. Front Immunol 2022; 13:1032911. [PMID: 36544780 PMCID: PMC9762180 DOI: 10.3389/fimmu.2022.1032911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Collapse
Affiliation(s)
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Vera Klemm
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Annett Howe
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Megan L. Faulks
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hannah Law
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Thidarat Danwilai
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Mitchell Starr
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - C. Mee Ling Munier
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Fabienne Brilot-Turville
- Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Gregory J. Dore
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - David Darley
- Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Philip Cunningham
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Gail V. Matthews
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Immunology, St Vincent's Hospital, Sydney, NSW, Australia
| | - John J. Zaunders
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia,*Correspondence: John J. Zaunders,
| |
Collapse
|
159
|
Tye EXC, Jinks E, Haigh TA, Kaul B, Patel P, Parry HM, Newby ML, Crispin M, Kaur N, Moss P, Drennan SJ, Taylor GS, Long HM. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4 + T cell recognition. Nat Immunol 2022; 23:1726-1734. [PMID: 36456735 DOI: 10.1038/s41590-022-01351-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
Abstract
CD4+ T cells are essential for protection against viruses, including SARS-CoV-2. The sensitivity of CD4+ T cells to mutations in SARS-CoV-2 variants of concern (VOCs) is poorly understood. Here, we isolated 159 SARS-CoV-2-specific CD4+ T cell clones from healthcare workers previously infected with wild-type SARS-CoV-2 (D614G) and defined 21 epitopes in spike, membrane and nucleoprotein. Lack of CD4+ T cell cross-reactivity between SARS-CoV-2 and endemic beta-coronaviruses suggested these responses arose from naïve rather than pre-existing cross-reactive coronavirus-specific T cells. Of the 17 epitopes located in the spike protein, 10 were mutated in VOCs and CD4+ T cell clone recognition of 7 of them was impaired, including 3 of the 4 epitopes mutated in omicron. Our results indicated that broad targeting of epitopes by CD4+ T cells likely limits evasion by current VOCs. However, continued genomic surveillance is vital to identify new mutations able to evade CD4+ T cell immunity.
Collapse
Affiliation(s)
- Emily X C Tye
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tracey A Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Baksho Kaul
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Prashant Patel
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Helen M Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Nayandeep Kaur
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Samantha J Drennan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
160
|
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. Int J Mol Sci 2022; 23:ijms232315122. [PMID: 36499448 PMCID: PMC9737069 DOI: 10.3390/ijms232315122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
Collapse
|
161
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.01.518643. [PMID: 36482973 PMCID: PMC9727760 DOI: 10.1101/2022.12.01.518643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines. Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
162
|
Lu X, Yamasaki S. Current understanding of T cell immunity against SARS-CoV-2. Inflamm Regen 2022; 42:51. [PMID: 36447270 PMCID: PMC9706904 DOI: 10.1186/s41232-022-00242-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
As an important part of adaptive immunity, T cells are indispensable in the defense against pathogens including viruses. SARS-CoV-2 is a new human coronavirus that occurred at the end of 2019 and has caused the COVID-19 pandemic. Nevertheless, most of the infected patients recovered without any antiviral therapies, suggesting an effective immunity developed in the bodies. T cell immunity responds upon SARS-CoV-2 infection or vaccination and plays crucial roles in eliminating the viruses and generating T cell memory. Specifically, a subpopulation of CD4+ T cells could support the production of anti-SARS-CoV-2 antibodies, and cytotoxic CD8+ T cells are also protective against the infection. SARS-CoV-2-recognizing T cells could be detected in SARS-CoV-2-unexposed donors, but the role of these cross-reactive T cells is still in debate. T cell responses could be diverse across individuals, mainly due to the polymorphism of HLAs. Thus, compared to antibodies, T cell responses are generally less affected by the mutations of SARS-CoV-2 variants. Up to now, a huge number of studies on SARS-CoV-2-responsive T cells have been published. In this review, we introduced some major findings addressing the questions in the main aspects about T cell responses elicited by SARS-CoV-2, to summarize the current understanding of COVID-19.
Collapse
Affiliation(s)
- Xiuyuan Lu
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Epitope Analysis Team, Center for Advanced Modalities and DDS, Osaka University, Suita, 565-0871 Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Epitope Analysis Team, Center for Advanced Modalities and DDS, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871 Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
163
|
Fujii SI, Yamasaki S, Iyoda T, Shimizu K. Association of cellular immunity with severity of COVID-19 from the perspective of antigen-specific memory T cell responses and cross-reactivity. Inflamm Regen 2022; 42:50. [PMCID: PMC9706959 DOI: 10.1186/s41232-022-00239-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
AbstractCoronaviruses regularly cause outbreaks of zoonotic diseases characterized by severe pneumonia. The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the global pandemic disease COVID-19 that began at the end of 2019 and spread rapidly owing to its infectious nature and rapidly progressing pneumonia. Although the infectivity of SARS-CoV-2 is high, indicated by the worldwide spread of the disease in a very short period, many individuals displayed only subclinical infection, and some of them transmitted the disease to individuals who then developed a severe symptomatic infection. Furthermore, there are differences in the severity of infection across countries, which can be attributed to factors such as the emergence of viral mutations in a short period of time as well as to the immune responses to viral factors. Anti-viral immunity generally consists of neutralizing antibodies that block viral infection and cytotoxic CD8+ T cells that eliminate the virus-infected cells. There is compelling evidence for the role of neutralizing antibodies in protective immunity in SARS-CoV-2 infection. However, the role of CD4+ and CD8+ T cells after the viral entry is complex and warrants a comprehensive discussion. Here, we discuss the protection afforded by cellular immunity against initial infection and development of severe disease. The initial failure of cellular immunity to control the infection worsens the clinical outcomes and functional profiles that inflict tissue damage without effectively eliminating viral reservoirs, while robust T cell responses are associated with mild outcomes. We also discuss persistent long-lasting memory T cell-mediated protection after infection or vaccination, which is rather complicated as it may involve SARS-CoV-2-specific cytotoxic T lymphocytes or cross-reactivity with previously infected seasonal coronaviruses, which are largely related to HLA genotypes. In addition, cross-reactivity with mutant strains is also discussed. Lastly, we discuss appropriate measures to be taken against the disease for immunocompromised patients. In conclusion, we provide evidence and discuss the causal relationship between natural infection- or vaccine-mediated memory T cell immunity and severity of COVID-19. This review is expected to provide a basis to develop strategies for the next generation of T cell-focused vaccines and aid in ending the current pandemic.
Collapse
|
164
|
Benet S, Blanch-Lombarte O, Ainsua-Enrich E, Pedreño-Lopez N, Muñoz-Basagoiti J, Raïch-Regué D, Perez-Zsolt D, Peña R, Jiménez E, de la Concepción MLR, Ávila C, Cedeño S, Escribà T, Romero-Martín L, Alarcón-Soto Y, Rodriguez-Lozano GF, Miranda C, González S, Bailón L, Blanco J, Massanella M, Brander C, Clotet B, Paredes R, Esteve M, Izquierdo- Useros N, Carrillo J, Prado JG, Moltó J, Mothe B. Limited Humoral and Specific T-Cell Responses After SARS-CoV-2 Vaccination in PWH With Poor Immune Reconstitution. J Infect Dis 2022; 226:1913-1923. [PMID: 36200261 PMCID: PMC9619620 DOI: 10.1093/infdis/jiac406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We analyzed humoral and cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in people with human immunodeficiency virus (HIV; PWH) who had CD4+ T-cell counts <200/µL (HIV<200 group). METHODS This prospective cohort study included 58 PWH in the HIV<200 group, 36 with CD4+ T-cell counts >500/µL (HIV>500 group), and 33 HIV-1-negative controls (control group). Antibodies against the SARS-CoV-2 spike protein (anti-S immunoglobulin [Ig] G) and the receptor-binding domain (anti-RBD IgG) were quantified before and 4 weeks after the first and the second doses of BNT162b2 or mRNA-1273 (at week 8). Viral neutralization activity and T-cell responses were also determined. RESULTS At week 8, anti-S/anti-RBD IgG responses increased in all groups (P < .001). Median (interquartile range) anti-S and anti-RBD IgG levels at week 8 were 153.6 (26.4-654.9) and 171.9 (61.8-425.8) binding antibody units (BAU)/mL, respectively, in the HIV<200 group, compared with 245.6 (145-824) and 555.8 (166.4-1751) BAU/mL in the HIV>500 group and 274.7 (193.7-680.4) and 281.6 (181-831.8) BAU/mL in controls (P < .05). Neutralizing capacity and specific T-cell immune responses were absent or reduced in 33% of those in the HIV<200 group, compared with 3.7% in the HIV>500 group (P < .01). CONCLUSIONS One-third of PWH with CD4+ T-cell counts <200/µL show low anti-S/anti-RBD IgG levels, reduced in vitro neutralization activity against SARS-CoV-2, and no vaccine-induced T cells after receiving coronavirus disease 2019 mRNA vaccines.
Collapse
Affiliation(s)
- Susana Benet
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Erola Ainsua-Enrich
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Núria Pedreño-Lopez
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | | | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Esther Jiménez
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | | | - Carlos Ávila
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Samandhy Cedeño
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Tuixent Escribà
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Luis Romero-Martín
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Yovaninna Alarcón-Soto
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | | | - Cristina Miranda
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Sandra González
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
| | - Lucía Bailón
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Autonomous UniversityBarcelona. Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Bonaventura Clotet
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Roger Paredes
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Esteve
- Preventive Medicine Service. Hospital Universitari Germans Trias I Pujol, 08916, Badalona, Spain
- Autonomous UniversityBarcelona. Spain
| | - Nuria Izquierdo- Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Moltó
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Mothe
- Fundació lluita contra la sida, Infectious Diseases Department, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, 08916, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
165
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
166
|
Resch MD, Wen K, Mazboudi R, Mulhall Maasz H, Persaud M, Garvey K, Gallardo L, Gottlieb P, Alimova A, Khayat R, Morales J, Bielefeldt-Ohmann H, Bowen RA, Galarza JM. Immunogenicity and Efficacy of Monovalent and Bivalent Formulations of a Virus-Like Particle Vaccine against SARS-CoV-2. Vaccines (Basel) 2022; 10:1997. [PMID: 36560407 PMCID: PMC9782034 DOI: 10.3390/vaccines10121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Virus-like particles (VLPs) offer great potential as a safe and effective vaccine platform against SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 VLPs can be generated by expression of the four viral structural proteins in a mammalian expression system. Immunization of mice with a monovalent VLP vaccine elicited a potent humoral response, showing neutralizing activity against multiple variants of SARS-CoV-2. Subsequent immunogenicity and efficacy studies were performed in the Golden Syrian hamster model, which closely resembles the pathology and progression of COVID-19 in humans. Hamsters immunized with a bivalent VLP vaccine were significantly protected from infection with the Beta or Delta variant of SARS-CoV-2. Vaccinated hamsters showed reduced viral load, shedding, replication, and pathology in the respiratory tract. Immunized hamsters also showed variable levels of cross-neutralizing activity against the Omicron variant. Overall, the VLP vaccine elicited robust protective efficacy against SARS-CoV-2. These promising results warrant further study of multivalent VLP vaccines in Phase I clinical trials in humans.
Collapse
Affiliation(s)
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Ryan Mazboudi
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | | | - Mirjana Persaud
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Kaitlyn Garvey
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Leslie Gallardo
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Jorge Morales
- Microscopy Facility, Division of Science, The City College of New York, New York, NY 10031, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Jose M. Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| |
Collapse
|
167
|
Natalini A, Simonetti S, Sher C, D’Oro U, Hayday AC, Di Rosa F. Durable CD8 T Cell Memory against SARS-CoV-2 by Prime/Boost and Multi-Dose Vaccination: Considerations on Inter-Dose Time Intervals. Int J Mol Sci 2022; 23:14367. [PMID: 36430845 PMCID: PMC9698736 DOI: 10.3390/ijms232214367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Facing the COVID-19 pandemic, anti-SARS-CoV-2 vaccines were developed at unprecedented pace, productively exploiting contemporary fundamental research and prior art. Large-scale use of anti-SARS-CoV-2 vaccines has greatly limited severe morbidity and mortality. Protection has been correlated with high serum titres of neutralizing antibodies capable of blocking the interaction between the viral surface protein spike and the host SARS-CoV-2 receptor, ACE-2. Yet, vaccine-induced protection subsides over time, and breakthrough infections are commonly observed, mostly reflecting the decay of neutralizing antibodies and the emergence of variant viruses with mutant spike proteins. Memory CD8 T cells are a potent weapon against viruses, as they are against tumour cells. Anti-SARS-CoV-2 memory CD8 T cells are induced by either natural infection or vaccination and can be potentially exploited against spike-mutated viruses. We offer here an overview of current research about the induction of anti-SARS-CoV-2 memory CD8 T cells by vaccination, in the context of prior knowledge on vaccines and on fundamental mechanisms of immunological memory. We focus particularly on how vaccination by two doses (prime/boost) or more (boosters) promotes differentiation of memory CD8 T cells, and on how the time-length of inter-dose intervals may influence the magnitude and persistence of CD8 T cell memory.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Medical Oncology Department, Campus Bio-Medico University, 00128 Rome, Italy
| | - Carmel Sher
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Adrian C. Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Peter Gorer Department of Immunobiology, King’s College London, London WC2R 2LS, UK
- National Institute for Health and Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London WC2R 2LS, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
| |
Collapse
|
168
|
Swaminathan S, Lineburg KE, Panikkar A, Raju J, Murdolo LD, Szeto C, Crooks P, Le Texier L, Rehan S, Dewar-Oldis MJ, Barnard PJ, Ambalathingal GR, Neller MA, Short KR, Gras S, Khanna R, Smith C. Ablation of CD8 + T cell recognition of an immunodominant epitope in SARS-CoV-2 Omicron variants BA.1, BA.2 and BA.3. Nat Commun 2022; 13:6387. [PMID: 36302758 PMCID: PMC9607807 DOI: 10.1038/s41467-022-34180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
The emergence of the SARS-CoV-2 Omicron variant has raised concerns of escape from vaccine-induced immunity. A number of studies have demonstrated a reduction in antibody-mediated neutralization of the Omicron variant in vaccinated individuals. Preliminary observations have suggested that T cells are less likely to be affected by changes in Omicron. However, the complexity of human leukocyte antigen genetics and its impact upon immunodominant T cell epitope selection suggests that the maintenance of T cell immunity may not be universal. In this study, we describe the impact that changes in Omicron BA.1, BA.2 and BA.3 have on recognition by spike-specific T cells. These T cells constitute the immunodominant CD8+ T cell response in HLA-A*29:02+ COVID-19 convalescent and vaccinated individuals; however, they fail to recognize the Omicron-encoded sequence. These observations demonstrate that in addition to evasion of antibody-mediated immunity, changes in Omicron variants can also lead to evasion of recognition by immunodominant T cell responses.
Collapse
Affiliation(s)
- Srividhya Swaminathan
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, The University of Queensland, Herston, QLD 4006 Australia
| | - Katie E. Lineburg
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Archana Panikkar
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Jyothy Raju
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Lawton D. Murdolo
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Christopher Szeto
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Pauline Crooks
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Laetitia Le Texier
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Sweera Rehan
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Michael J. Dewar-Oldis
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Peter J. Barnard
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - George R. Ambalathingal
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Michelle A. Neller
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Kirsty R. Short
- grid.1003.20000 0000 9320 7537School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Stephanie Gras
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Rajiv Khanna
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, The University of Queensland, Herston, QLD 4006 Australia
| | - Corey Smith
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, The University of Queensland, Herston, QLD 4006 Australia
| |
Collapse
|
169
|
Dagotto G, Ventura JD, Martinez DR, Anioke T, Chung BS, Siamatu M, Barrett J, Miller J, Schäfer A, Yu J, Tostanoski LH, Wagh K, Baric RS, Korber B, Barouch DH. Immunogenicity and protective efficacy of a rhesus adenoviral vaccine targeting conserved COVID-19 replication transcription complex. NPJ Vaccines 2022; 7:125. [PMID: 36302778 PMCID: PMC9610341 DOI: 10.1038/s41541-022-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
The COVID-19 pandemic marks the third coronavirus pandemic this century (SARS-CoV-1, MERS, SARS-CoV-2), emphasizing the need to identify and evaluate conserved immunogens for a pan-sarbecovirus vaccine. Here we investigate the potential utility of a T-cell vaccine strategy targeting conserved regions of the sarbecovirus proteome. We identified the most conserved regions of the sarbecovirus proteome as portions of the RNA-dependent RNA polymerase (RdRp) and Helicase proteins, both of which are part of the coronavirus replication transcription complex (RTC). Fitness constraints suggest that as SARS-CoV-2 continues to evolve these regions may better preserve cross-reactive potential of T-cell responses than Spike, Nucleocapsid, or Membrane proteins. We sought to determine if vaccine-elicited T-cell responses to the highly conserved regions of the RTC would reduce viral loads following challenge with SARS-CoV-2 in mice using a rhesus adenovirus serotype 52 (RhAd52) vector. The RhAd52.CoV.Consv vaccine generated robust cellular immunity in mice and led to significant reductions in viral loads in the nasal turbinates following challenge with a mouse-adapted SARS-CoV-2. These data suggest the potential utility of T-cell targeting of conserved regions for a pan-sarbecovirus vaccine.
Collapse
Affiliation(s)
- Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin S Chung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mazuba Siamatu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- The New Mexico Consortium, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- The New Mexico Consortium, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
170
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
171
|
Sedegah M, Porter C, Goguet E, Ganeshan H, Belmonte M, Huang J, Belmonte A, Inoue S, Acheampong N, Malloy AMW, Hollis-Perry M, Jackson-Thompson B, Ramsey KF, Alcorta Y, Maiolatesi SE, Wang G, Reyes AE, Illinik L, Sanchez-Edwards M, Burgess TH, Broder CC, Laing ED, Pollett SD, Villasante E, Mitre E, Hollingdale MR. Cellular interferon-gamma and interleukin-2 responses to SARS-CoV-2 structural proteins are broader and higher in those vaccinated after SARS-CoV-2 infection compared to vaccinees without prior SARS-CoV-2 infection. PLoS One 2022; 17:e0276241. [PMID: 36251675 PMCID: PMC9576055 DOI: 10.1371/journal.pone.0276241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.
Collapse
Affiliation(s)
- Martha Sedegah
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Chad Porter
- Translational Clinical Research Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Harini Ganeshan
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Maria Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Jun Huang
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Arnel Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Sandra Inoue
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Neda Acheampong
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Monique Hollis-Perry
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Belinda Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Kathy F. Ramsey
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Yolanda Alcorta
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Santina E. Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Gregory Wang
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Anatolio E. Reyes
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Luca Illinik
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Margaret Sanchez-Edwards
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Timothy H. Burgess
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eileen Villasante
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael R. Hollingdale
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- * E-mail: ,
| |
Collapse
|
172
|
van den Dijssel J, Hagen RR, de Jongh R, Steenhuis M, Rispens T, Geerdes DM, Mok JY, Kragten AHM, Duurland MC, Verstegen NJM, van Ham SM, van Esch WJE, van Gisbergen KPJM, Hombrink P, ten Brinke A, van de Sandt CE. Parallel detection of SARS-CoV-2 epitopes reveals dynamic immunodominance profiles of CD8 + T memory cells in convalescent COVID-19 donors. Clin Transl Immunology 2022; 11:e1423. [PMID: 36254196 PMCID: PMC9568370 DOI: 10.1002/cti2.1423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Ruth R Hagen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Rivka de Jongh
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Maurice Steenhuis
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Theo Rispens
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V.AmsterdamThe Netherlands
| | | | - Mariël C Duurland
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - S Marieke van Ham
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas PJM van Gisbergen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Pleun Hombrink
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Anja ten Brinke
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Carolien E van de Sandt
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
173
|
Palatnik-de-Sousa I, Wallace ZS, Cavalcante SC, Ribeiro MPF, Silva JABM, Cavalcante RC, Scheuermann RH, Palatnik-de-Sousa CB. A novel vaccine based on SARS-CoV-2 CD4 + and CD8 + T cell conserved epitopes from variants Alpha to Omicron. Sci Rep 2022; 12:16731. [PMID: 36202985 PMCID: PMC9537284 DOI: 10.1038/s41598-022-21207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 caused, as of September, 1rst, 2022, 599,825,400 confirmed cases, including 6,469,458 deaths. Currently used vaccines reduced severity and mortality but not virus transmission or reinfection by different strains. They are based on the Spike protein of the Wuhan reference virus, which although highly antigenic suffered many mutations in SARS-CoV-2 variants, escaping vaccine-generated immune responses. Multiepitope vaccines based on 100% conserved epitopes of multiple proteins of all SARS-CoV-2 variants, rather than a single highly mutating antigen, could offer more long-lasting protection. In this study, a multiepitope multivariant vaccine was designed using immunoinformatics and in silico approaches. It is composed of highly promiscuous and strong HLA binding CD4+ and CD8+ T cell epitopes of the S, M, N, E, ORF1ab, ORF 6 and ORF8 proteins. Based on the analysis of one genome per WHO clade, the epitopes were 100% conserved among the Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. An extended epitope-conservancy analysis performed using GISAID metadata of 3,630,666 SARS-CoV-2 genomes of these variants and the additional genomes of the Epsilon, Lota, Theta, Eta, Kappa and GH490 R clades, confirmed the high conservancy of the epitopes. All but one of the CD4 peptides showed a level of conservation greater than 97% among all genomes. All but one of the CD8 epitopes showed a level of conservation greater than 96% among all genomes, with the vast majority greater than 99%. A multiepitope and multivariant recombinant vaccine was designed and it was stable, mildly hydrophobic and non-toxic. The vaccine has good molecular docking with TLR4 and promoted, without adjuvant, strong B and Th1 memory immune responses and secretion of high levels of IL-2, IFN-γ, lower levels of IL-12, TGF-β and IL-10, and no IL-6. Experimental in vivo studies should validate the vaccine's further use as preventive tool with cross-protective properties.
Collapse
Affiliation(s)
- Iam Palatnik-de-Sousa
- Department of Electrical Engeneering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Stephany Christiny Cavalcante
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Paula Fonseca Ribeiro
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Antônio Barbosa Martins Silva
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Ciro Cavalcante
- Department of Pharmacy, Campus Professor Antônio Garcia Filho, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Virus Network, Baltimore, MD, USA
| | - Clarisa Beatriz Palatnik-de-Sousa
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute for Immunological Investigation (III), INCT, National Council for Scientific and Technological Development (CNPq), São Paulo, Brazil.
| |
Collapse
|
174
|
Desikan R, Linderman SL, Davis C, Zarnitsyna VI, Ahmed H, Antia R. Vaccine models predict rules for updating vaccines against evolving pathogens such as SARS-CoV-2 and influenza in the context of pre-existing immunity. Front Immunol 2022; 13:985478. [PMID: 36263031 PMCID: PMC9574365 DOI: 10.3389/fimmu.2022.985478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, vaccines for SARS-CoV-2 and influenza viruses are updated if the new vaccine induces higher antibody-titers to circulating variants than current vaccines. This approach does not account for complex dynamics of how prior immunity skews recall responses to the updated vaccine. We: (i) use computational models to mechanistically dissect how prior immunity influences recall responses; (ii) explore how this affects the rules for evaluating and deploying updated vaccines; and (iii) apply this to SARS-CoV-2. Our analysis of existing data suggests that there is a strong benefit to updating the current SARS-CoV-2 vaccines to match the currently circulating variants. We propose a general two-dose strategy for determining if vaccines need updating as well as for vaccinating high-risk individuals. Finally, we directly validate our model by reanalysis of earlier human H5N1 influenza vaccine studies.
Collapse
Affiliation(s)
- Rajat Desikan
- Clinical Pharmacology Modeling & Simulation, GlaxoSmithKline (GSK), Stevenage, Hertfordshire, United Kingdom
| | - Susanne L. Linderman
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Carl Davis
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | | | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
175
|
Peluso MJ, Spinelli MA, Deveau TM, Forman CA, Munter SE, Mathur S, Tang AF, Lu S, Goldberg SA, Arreguin MI, Hoh R, Tai V, Chen JY, Martinez EO, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Sette A, Weiskopf D, Kumar N, Lynch KL, Hunt PW, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Glidden DV, Gandhi M, Deeks SG, Rutishauser RL, Henrich TJ. Postacute sequelae and adaptive immune responses in people with HIV recovering from SARS-COV-2 infection. AIDS 2022; 36:F7-F16. [PMID: 35866847 PMCID: PMC9444925 DOI: 10.1097/qad.0000000000003338] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Limited data are available on the long-term clinical and immunologic consequences of SARS-CoV-2 infection in people with HIV (PWH). METHODS We measured SARS-CoV-2-specific humoral and cellular responses in people with and without HIV recovering from COVID-19 ( n = 39 and n = 43, respectively) using binding antibody, surrogate virus neutralization, intracellular cytokine staining, and inflammatory marker assays. We identified individuals experiencing postacute sequelae of SARS-CoV-2 infection (PASC) and evaluated immunologic parameters. We used linear regression and generalized linear models to examine differences by HIV status in the magnitude of inflammatory and virus-specific antibody and T-cell responses, as well as differences in the prevalence of PASC. RESULTS Among PWH, we found broadly similar SARS-CoV-2-specific antibody and T-cell responses as compared with a well matched group of HIV-negative individuals. PWH had 70% lower relative levels of SARS-CoV-2-specific memory CD8 + T cells ( P = 0.007) and 53% higher relative levels of PD-1+ SARS-CoV-2-specific CD4 + T cells ( P = 0.007). Higher CD4 + /CD8 + ratio was associated with lower PD-1 expression on SARS-CoV-2-specific CD8 + T cells (0.34-fold effect, P = 0.02). HIV status was strongly associated with PASC (odds ratio 4.01, P = 0.008), and levels of certain inflammatory markers (IL-6, TNF-alpha, and IP-10) were associated with persistent symptoms. CONCLUSION We identified potentially important differences in SARS-CoV-2-specific CD4 + and CD8 + T cells in PWH and HIV-negative participants that might have implications for long-term immunity conferred by natural infection. HIV status strongly predicted the presence of PASC. Larger and more detailed studies of PASC in PWH are urgently needed.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Matthew A. Spinelli
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Carrie A. Forman
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Sujata Mathur
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Alex F. Tang
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mireya I. Arreguin
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Jessica Y. Chen
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Enrique O. Martinez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | | | - Ahmed Chenna
- Monogram Biosciences, South San Francisco, CA, USA
| | | | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Daniella Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Kara L. Lynch
- Division of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | | | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, CA, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - David V. Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | | | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
176
|
Li H, Chen Z, Liu X, Hu P. T cell epitopes are largely conserved in the SARS-CoV-2 Omicron subvariant (BA.1, BA.2, BA.3, and GKA). J Med Virol 2022; 94:4591-4592. [PMID: 35676232 PMCID: PMC9348460 DOI: 10.1002/jmv.27925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hu Li
- Department of Infectious DiseasesInstitute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhiwei Chen
- Department of Infectious DiseasesInstitute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoqing Liu
- Department of Infectious DiseasesInstitute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Peng Hu
- Department of Infectious DiseasesInstitute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
177
|
Khatamzas E, Antwerpen MH, Rehn A, Graf A, Hellmuth JC, Hollaus A, Mohr AW, Gaitzsch E, Weiglein T, Georgi E, Scherer C, Stecher SS, Gruetzner S, Blum H, Krebs S, Reischer A, Leutbecher A, Subklewe M, Dick A, Zange S, Girl P, Müller K, Weigert O, Hopfner KP, Stemmler HJ, von Bergwelt-Baildon M, Keppler OT, Wölfel R, Muenchhoff M, Moosmann A. Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nat Commun 2022; 13:5586. [PMID: 36151076 PMCID: PMC9508331 DOI: 10.1038/s41467-022-32772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.
Collapse
Affiliation(s)
- Elham Khatamzas
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
- Division of Infectious Diseases and Tropical Medicine, Center for Infectious Diseases, Heidelberg Hospital, Heidelberg, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Markus H Antwerpen
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Alexandra Rehn
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Johannes Christian Hellmuth
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexandra Hollaus
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Anne-Wiebe Mohr
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Erik Gaitzsch
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tobias Weiglein
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Enrico Georgi
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephanie-Susanne Stecher
- Department of Medicine II, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefanie Gruetzner
- Institute for Transfusion Medicine and Haemostasis, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anna Reischer
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexandra Leutbecher
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andrea Dick
- Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany
| | - Sabine Zange
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Philipp Girl
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Katharina Müller
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Joachim Stemmler
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Oliver T Keppler
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Roman Wölfel
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Moosmann
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| |
Collapse
|
178
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
179
|
Yu ED, Narowski TM, Wang E, Garrigan E, Mateus J, Frazier A, Weiskopf D, Grifoni A, Premkumar L, da Silva Antunes R, Sette A. Immunological memory to common cold coronaviruses assessed longitudinally over a three-year period pre-COVID19 pandemic. Cell Host Microbe 2022; 30:1269-1278.e4. [PMID: 35932763 PMCID: PMC9296686 DOI: 10.1016/j.chom.2022.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
Abstract
The immune memory to common cold coronaviruses (CCCs) influences SARS-CoV-2 infection outcome, and understanding its effect is crucial for pan-coronavirus vaccine development. We performed a longitudinal analysis of pre-COVID19-pandemic samples from 2016-2019 in young adults and assessed CCC-specific CD4+ T cell and antibody responses. Notably, CCC responses were commonly detected with comparable frequencies as with other common antigens and were sustained over time. CCC-specific CD4+ T cell responses were associated with low HLA-DR+CD38+ signals, and their magnitude did not correlate with yearly CCC infection prevalence. Similarly, CCC-specific and spike RBD-specific IgG responses were stable in time. Finally, high CCC-specific CD4+ T cell reactivity, but not antibody titers, was associated with pre-existing SARS-CoV-2 immunity. These results provide a valuable reference for understanding the immune response to endemic coronaviruses and suggest that steady and sustained CCC responses are likely from a stable pool of memory CD4+ T cells due to repeated earlier exposures and possibly occasional reinfections.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
180
|
On the Origins of Omicron's Unique Spike Gene Insertion. Vaccines (Basel) 2022; 10:vaccines10091509. [PMID: 36146586 PMCID: PMC9504260 DOI: 10.3390/vaccines10091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/28/2023] Open
Abstract
The emergence of a heavily mutated SARS-CoV-2 variant (Omicron; Pango lineage B.1.1.529 and BA sublineages) and its rapid spread to over 75 countries raised a global public health alarm. Characterizing the mutational profile of Omicron is necessary to interpret its clinical phenotypes which are shared with or distinctive from those of other SARS-CoV-2 variants. We compared the mutations of the initially circulating Omicron variant (now known as BA.1) with prior variants of concern (Alpha, Beta, Gamma, and Delta), variants of interest (Lambda, Mu, Eta, Iota, and Kappa), and ~1500 SARS-CoV-2 lineages constituting ~5.8 million SARS-CoV-2 genomes. Omicron's Spike protein harbors 26 amino acid mutations (23 substitutions, 2 deletions, and 1 insertion) that are distinct compared to other variants of concern. While the substitution and deletion mutations appeared in previous SARS-CoV-2 lineages, the insertion mutation (ins214EPE) was not previously observed in any other SARS-CoV-2 lineage. Here, we consider and discuss various mechanisms through which the nucleotide sequence encoding for ins214EPE could have been acquired, including local duplication, polymerase slippage, and template switching. Although we are not able to definitively determine the mechanism, we highlight the plausibility of template switching. Analysis of the homology of the inserted nucleotide sequence and flanking regions suggests that this template-switching event could have involved the genomes of SARS-CoV-2 variants (e.g., the B.1.1 strain), other human coronaviruses that infect the same host cells as SARS-CoV-2 (e.g., HCoV-OC43 or HCoV-229E), or a human transcript expressed in a host cell that was infected by the Omicron precursor.
Collapse
|
181
|
Long-term memory CD8 + T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA vaccine. Nat Commun 2022; 13:5251. [PMID: 36068240 PMCID: PMC9447987 DOI: 10.1038/s41467-022-32989-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term memory T cells have not been well analyzed in individuals vaccinated with a COVID-19 vaccine although analysis of these T cells is necessary to evaluate vaccine efficacy. Here, investigate HLA-A*24:02-restricted CD8+ T cells specific for SARS-CoV-2-derived spike (S) epitopes in individuals immunized with the BNT162b2 mRNA vaccine. T cells specific for the S-QI9 and S-NF9 immunodominant epitopes have higher ability to recognize epitopes than other epitope-specific T cell populations. This higher recognition of S-QI9-specific T cells is due to the high stability of the S-QI9 peptide for HLA-A*24:02, whereas that of S-NF9-specific T cells results from the high affinity of T cell receptor. T cells specific for S-QI9 and S-NF9 are detectable >30 weeks after the second vaccination, indicating that the vaccine induces long-term memory T cells specific for these epitopes. Because the S-QI9 epitope is highly conserved among SARS-CoV-2 variants, S-QI9-specific T cells may help prevent infection with SARS-CoV-2 variants. mRNA vaccines have been shown to prevent SARS-CoV-2 infection and reduce hospitalization and mortality rates. Here, the authors show evidence of long-term memory CD8 + T cells in individuals who received the BNT162b2 SARS-CoV-2 mRNA vaccine.
Collapse
|
182
|
Young A. T cells in SARS-CoV-2 infection and vaccination. Ther Adv Vaccines Immunother 2022; 10:25151355221115011. [PMID: 36051003 PMCID: PMC9425900 DOI: 10.1177/25151355221115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
While antibodies garner the lion’s share of attention in SARS-CoV-2 immunity, cellular immunity (T cells) may be equally, if not more important, in controlling infection. Both CD8+ and CD4+ T cells are elicited earlier and are associated with milder disease, than antibodies, and T-cell activation appears to be necessary for control of infection. Variants of concern (VOCs) such as Omicron have escaped the neutralizing antibody responses after two mRNA vaccine doses, but T-cell immunity is largely intact. The breadth and patient-specific nature of the latter offers a formidable line of defense that can limit the severity of illness, and are likely to be responsible for most of the protection from natural infection or vaccination against VOCs which have evaded the antibody response. Comprehensive searches for T-cell epitopes, T-cell activation from infection and vaccination of specific patient groups, and elicitation of cellular immunity by various alternative vaccine modalities are here reviewed. Development of vaccines that specifically target T cells is called for, to meet the needs of patient groups for whom cellular immunity is weaker, such as the elderly and the immunosuppressed. While VOCs have not yet fully escaped T-cell immunity elicited by natural infection and vaccines, some early reports of partial escape suggest that future VOCs may achieve the dreaded result, dislodging a substantial proportion of cellular immunity, enough to cause a grave public health burden. A proactive, rather than reactive, solution which identifies and targets immutable sequences in SARS-CoV-2, not just those which are conserved, may be the only recourse humankind has to disarm these future VOCs before they disarm us.
Collapse
Affiliation(s)
- Arthur Young
- InvVax, 2265 E. Foohill Blvd., Pasadena, CA 91107, USA
| |
Collapse
|
183
|
Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022; 13:964976. [PMID: 36119105 PMCID: PMC9478577 DOI: 10.3389/fimmu.2022.964976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
184
|
Tang PCH, Ng WH, King NJC, Mahalingam S. Can live-attenuated SARS-CoV-2 vaccine contribute to stopping the pandemic? PLoS Pathog 2022; 18:e1010821. [PMID: 36129963 PMCID: PMC9491521 DOI: 10.1371/journal.ppat.1010821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Patrick Chun Hean Tang
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Nicholas J. C. King
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
- The Discipline of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
185
|
Goldblatt D, Alter G, Crotty S, Plotkin SA. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol Rev 2022; 310:6-26. [PMID: 35661178 PMCID: PMC9348242 DOI: 10.1111/imr.13091] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS-CoV-2 coronavirus. Measurement of those antibodies by neutralization or binding assays both have predictive value, with binding antibody titers giving the highest statistical correlation. However, the protective functions of antibodies are multiple. Antibodies with multiple functions other than neutralization influence efficacy. The role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with respect to CD8+ cells with regard to control of viral replication, particularly in the presence of insufficient antibody. More information is needed on mucosal responses.
Collapse
Affiliation(s)
- David Goldblatt
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Galit Alter
- Massachusetts General HospitalRagon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCaliforniaUSA
- Department of Medicine, Division of Infectious Diseases and Global Public HealthUniversity of California San Diego (UCSD)La JollaCaliforniaUSA
| | | |
Collapse
|
186
|
Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev 2022; 310:27-46. [PMID: 35733376 PMCID: PMC9349657 DOI: 10.1111/imr.13089] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
187
|
Della Pia A, Zhao C, Jandir P, Gupta A, Batistick M, Kim GY(G, Xia Y, Ahn J, Magarelli G, Lukasik B, Leslie LA, Goy AH, Ip A, Feldman TA. Improved Survival of Lymphoma Patients with COVID-19 in the Modern Treatment and Vaccination Era. Cancers (Basel) 2022; 14:cancers14174252. [PMID: 36077782 PMCID: PMC9454633 DOI: 10.3390/cancers14174252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Patients with lymphoma are at greater risk of complications from COVID-19 infection. However, limited data exists on COVID-19-related outcomes in lymphoma patients since the use of COVID-19 vaccines and treatments began. Our study reports the real-world outcomes of 68 lymphoma or CLL patients who developed COVID-19 infection during the omicron surge in the US. We found that 34% of patients were hospitalized due to COVID-19 infection. The COVID-19-associated death rate was 9% (6/68) in all patients and 26% (6/23) in hospitalized patients, which was much lower compared to rates earlier in the pandemic prior to the introduction of COVID-19 vaccines and treatments. In 30 patients with data available, 60% did not make antibodies after COVID-19 vaccination. Most patients (74%, 17/23) who were hospitalized did not receive COVID-19 monoclonal antibody treatment. Our results pointed to important differences and the need for a new approach to treating cancer patients with COVID-19 infection. Abstract Lymphoma patients are at greater risk of severe consequences from COVID-19 infection, yet most reports of COVID-19-associated outcomes were published before the advent of COVID-19 vaccinations and monoclonal antibodies (mAbs). In this retrospective study, we report the real-world outcomes of 68 lymphoma or CLL patients who developed COVID-19 infection during the omicron surge in the US. We found that 34% of patients were hospitalized as a result of COVID-19 infection. The death rate due to COVID-19 was 9% (6/68) in the overall population and 26% (6/23) in hospitalized patients. During the preintervention COVID-19 era, the mortality rate reported in cancer patients was 34%, which increased to 60.2% in hospitalized patients. Thus, the death rates in our study were much lower when compared to those in cancer patients earlier in the pandemic, and may be attributed to modern interventions. In our study, 60% (18/30) of patients with serology data available did not develop anti-COVID-19 spike protein antibodies following vaccination. Most patients (74%, 17/23) who were hospitalized due to COVID-19 infection did not receive COVID-19 mAb treatment. Our results pointed to the importance of humoral immunity and the protective effect of COVID-19 mAbs in improving outcomes in lymphoma patients.
Collapse
Affiliation(s)
- Alexandra Della Pia
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles Zhao
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Parul Jandir
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Amolika Gupta
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Mark Batistick
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Gee Youn (Geeny) Kim
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Xia
- Department of Biostatistics, Bioninformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioninformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Gabriella Magarelli
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | - Lori A. Leslie
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Andre H. Goy
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Andrew Ip
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Tatyana A. Feldman
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Correspondence:
| |
Collapse
|
188
|
Vergori A, Cozzi Lepri A, Cicalini S, Matusali G, Bordoni V, Lanini S, Meschi S, Iannazzo R, Mazzotta V, Colavita F, Mastrorosa I, Cimini E, Mariotti D, De Pascale L, Marani A, Gallì P, Garbuglia A, Castilletti C, Puro V, Agrati C, Girardi E, Vaia F, Antinori A. Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV. Nat Commun 2022; 13:4922. [PMID: 35995780 PMCID: PMC9395398 DOI: 10.1038/s41467-022-32263-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
In order to investigate safety and immunogenicity of SARS-CoV-2 vaccine third dose in people living with HIV (PLWH), we analyze anti-RBD, microneutralization assay and IFN-γ production in 216 PLWH on ART with advanced disease (CD4 count <200 cell/mm3 and/or previous AIDS) receiving the third dose of a mRNA vaccine (BNT162b2 or mRNA-1273) after a median of 142 days from the second dose. Median age is 54 years, median CD4 nadir 45 cell/mm3 (20-122), 93% HIV-RNA < 50 c/mL. In 68% of PLWH at least one side-effect, generally mild, is recorded. Humoral response after the third dose was strong and higher than that achieved with the second dose (>2 log2 difference), especially when a heterologous combination with mRNA-1273 as third shot is used. In contrast, cell-mediated immunity remain stable. Our data support usefulness of third dose in PLWH currently receiving suppressive ART who presented with severe immune dysregulation.
Collapse
Affiliation(s)
- Alessandra Vergori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Alessandro Cozzi Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK
| | - Stefania Cicalini
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Simone Lanini
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Roberta Iannazzo
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ilaria Mastrorosa
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Davide Mariotti
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Lydia De Pascale
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Marani
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Paola Gallì
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - AnnaRosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Vincenzo Puro
- Risk Management Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Francesco Vaia
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
189
|
Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines (Basel) 2022; 10:1367. [PMID: 36016254 PMCID: PMC9413345 DOI: 10.3390/vaccines10081367] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of T cell-mediated immunity is crucial in vaccine development. The most effective vaccine is likely to employ both cellular and humoral immune responses. The efficacy of a vaccine depends on T cells activated by antigen-presenting cells. T cells also play a critical role in the duration and cross-reactivity of vaccines. Moreover, pre-existing T-cell immunity is associated with a decreased severity of infectious diseases. Many technical and delivery platforms have been designed to induce T cell-mediated vaccine immunity. The immunogenicity of vaccines is enhanced by controlling the kinetics and targeted delivery. Viral vectors are attractive tools that enable the intracellular expression of foreign antigens and induce robust immunity. However, it is necessary to select an appropriate viral vector considering the existing anti-vector immunity that impairs vaccine efficacy. mRNA vaccines have the advantage of rapid and low-cost manufacturing and have been approved for clinical use as COVID-19 vaccines for the first time. mRNA modification and nanomaterial encapsulation can help address mRNA instability and translation efficacy. This review summarizes the T cell responses of vaccines against various infectious diseases based on vaccine technologies and delivery platforms and discusses the future directions of these cutting-edge platforms.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Ophthalmology and Visual Science, School of Medicine, St. Marianna University, Kawazaki 216-8511, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
190
|
Appelberg S, Ahlén G, Yan J, Nikouyan N, Weber S, Larsson O, Höglund U, Aleman S, Weber F, Perlhamre E, Apro J, Gidlund E, Tuvesson O, Salati S, Cadossi M, Tegel H, Hober S, Frelin L, Mirazimi A, Sallberg M. A universal
SARS‐CoV DNA
vaccine inducing highly crossreactive neutralizing antibodies and T cells. EMBO Mol Med 2022; 14:e15821. [PMID: 35986481 PMCID: PMC9538582 DOI: 10.15252/emmm.202215821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
New variants in the SARS‐CoV‐2 pandemic are more contagious (Alpha/Delta), evade neutralizing antibodies (Beta), or both (Omicron). This poses a challenge in vaccine development according to WHO. We designed a more universal SARS‐CoV‐2 DNA vaccine containing receptor‐binding domain loops from the huCoV‐19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins. The vaccine induced spike antibodies crossreactive between huCoV‐19/WH01, Beta, and Delta spike proteins that neutralized huCoV‐19/WH01, Beta, Delta, and Omicron virus in vitro. The vaccine primed nucleoprotein‐specific T cells, unlike spike‐specific T cells, recognized Bat‐CoV sequences. The vaccine protected mice carrying the human ACE2 receptor against lethal infection with the SARS‐CoV‐2 Beta variant. Interestingly, priming of cross‐reactive nucleoprotein‐specific T cells alone was 60% protective, verifying observations from humans that T cells protect against lethal disease. This SARS‐CoV vaccine induces a uniquely broad and functional immunity that adds to currently used vaccines.
Collapse
Affiliation(s)
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Jingyi Yan
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Negin Nikouyan
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | | | | | | | - Soo Aleman
- Department of Infectious Disease Karolinska University Hospital and Department of Medicine Huddinge, Karolinska Institutet Sweden
| | - Friedemann Weber
- Institute for Virology FB10‐Veterinary Medicine, Justus‐Liebing University Giessen Germany
| | - Emma Perlhamre
- Karolinska Trial Alliance Karolinska University Hospital Sweden
| | - Johanna Apro
- Karolinska Trial Alliance Karolinska University Hospital Sweden
| | | | | | | | | | - Hanna Tegel
- Department of Protein Science Royal Institute of Technology Stockholm Sweden
| | - Sophia Hober
- Department of Protein Science Royal Institute of Technology Stockholm Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Ali Mirazimi
- Public Health Agency of Sweden Solna Sweden
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| | - Matti Sallberg
- Department of Laboratory Medicine, Karolinska Institutet Sweden
| |
Collapse
|
191
|
Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein. Nat Commun 2022; 13:4831. [PMID: 35977933 PMCID: PMC9382605 DOI: 10.1038/s41467-022-32547-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Both T cells and B cells have been shown to be generated after infection with SARS-CoV-2 yet protocols or experimental models to study one or the other are less common. Here, we generate a chimeric protein (SpiN) that comprises the receptor binding domain (RBD) from Spike (S) and the nucleocapsid (N) antigens from SARS-CoV-2. Memory CD4+ and CD8+ T cells specific for SpiN could be detected in the blood of both individuals vaccinated with Coronavac SARS-CoV-2 vaccine and COVID-19 convalescent donors. In mice, SpiN elicited a strong IFN-γ response by T cells and high levels of antibodies to the inactivated virus, but not detectable neutralizing antibodies (nAbs). Importantly, immunization of Syrian hamsters and the human Angiotensin Convertase Enzyme-2-transgenic (K18-ACE-2) mice with Poly ICLC-adjuvanted SpiN promotes robust resistance to the wild type SARS-CoV-2, as indicated by viral load, lung inflammation, clinical outcome and reduction of lethality. The protection induced by SpiN was ablated by depletion of CD4+ and CD8+ T cells and not transferred by antibodies from vaccinated mice. Finally, vaccination with SpiN also protects the K18-ACE-2 mice against infection with Delta and Omicron SARS-CoV-2 isolates. Hence, vaccine formulations that elicit effector T cells specific for the N and RBD proteins may be used to improve COVID-19 vaccines and potentially circumvent the immune escape by variants of concern. Protection against SARS-CoV-2 infection involves T cell and B cell responses but only studying one or the other has proved difficult. Here the authors immunise with a fusion protein construct of N and RBD proteins from SARS-CoV-2 and find that this promotes protection in animal models preferentially via T cells.
Collapse
|
192
|
Pogorelyy MV, Rosati E, Minervina AA, Mettelman RC, Scheffold A, Franke A, Bacher P, Thomas PG. Resolving SARS-CoV-2 CD4 + T cell specificity via reverse epitope discovery. Cell Rep Med 2022; 3:100697. [PMID: 35841887 PMCID: PMC9247234 DOI: 10.1016/j.xcrm.2022.100697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/08/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
The current strategy to detect immunodominant T cell responses focuses on the antigen, employing large peptide pools to screen for functional cell activation. However, these approaches are labor and sample intensive and scale poorly with increasing size of the pathogen peptidome. T cell receptors (TCRs) recognizing the same epitope frequently have highly similar sequences, and thus, the presence of large sequence similarity clusters in the TCR repertoire likely identify the most public and immunodominant responses. Here, we perform a meta-analysis of large, publicly available single-cell and bulk TCR datasets from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals to identify public CD4+ responses. We report more than 1,200 αβTCRs forming six prominent similarity clusters and validate histocompatibility leukocyte antigen (HLA) restriction and epitope specificity predictions for five clusters using transgenic T cell lines. Collectively, these data provide information on immunodominant CD4+ T cell responses to SARS-CoV-2 and demonstrate the utility of the reverse epitope discovery approach.
Collapse
Affiliation(s)
- Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany; Institute of Immunology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany; Institute of Immunology, Christian-Albrecht University of Kiel, Kiel, Germany.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA.
| |
Collapse
|
193
|
Karsten H, Cords L, Westphal T, Knapp M, Brehm TT, Hermanussen L, Omansen TF, Schmiedel S, Woost R, Ditt V, Peine S, Lütgehetmann M, Huber S, Ackermann C, Wittner M, Addo MM, Sette A, Sidney J, Schulze zur Wiesch J. High-resolution analysis of individual spike peptide-specific CD4 + T-cell responses in vaccine recipients and COVID-19 patients. Clin Transl Immunology 2022; 11:e1410. [PMID: 35957961 PMCID: PMC9363231 DOI: 10.1002/cti2.1410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.
Collapse
Affiliation(s)
- Hendrik Karsten
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leon Cords
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Westphal
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Maximilian Knapp
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Lennart Hermanussen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Frederik Omansen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Stefan Schmiedel
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robin Woost
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Vanessa Ditt
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sven Peine
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Samuel Huber
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christin Ackermann
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Melanie Wittner
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Marylyn Martina Addo
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - John Sidney
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| |
Collapse
|
194
|
Renia L, Goh YS, Rouers A, Le Bert N, Chia WN, Chavatte JM, Fong SW, Chang ZW, Zhuo NZ, Tay MZ, Chan YH, Tan CW, Yeo NKW, Amrun SN, Huang Y, Wong JXE, Hor PX, Loh CY, Wang B, Ngoh EZX, Salleh SNM, Carissimo G, Dowla S, Lim AJ, Zhang J, Lim JME, Wang CI, Ding Y, Pada S, Sun LJ, Somani J, Lee ES, Ong DLS, Leo YS, MacAry PA, Lin RTP, Wang LF, Ren EC, Lye DC, Bertoletti A, Young BE, Ng LFP. Lower vaccine-acquired immunity in the elderly population following two-dose BNT162b2 vaccination is alleviated by a third vaccine dose. Nat Commun 2022; 13:4615. [PMID: 35941158 PMCID: PMC9358634 DOI: 10.1038/s41467-022-32312-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the impact of age on vaccinations is essential for the design and delivery of vaccines against SARS-CoV-2. Here, we present findings from a comprehensive analysis of multiple compartments of the memory immune response in 312 individuals vaccinated with the BNT162b2 SARS-CoV-2 mRNA vaccine. Two vaccine doses induce high antibody and T cell responses in most individuals. However, antibody recognition of the Spike protein of the Delta and Omicron variants is less efficient than that of the ancestral Wuhan strain. Age-stratified analyses identify a group of low antibody responders where individuals ≥60 years are overrepresented. Waning of the antibody and cellular responses is observed in 30% of the vaccinees after 6 months. However, age does not influence the waning of these responses. Taken together, while individuals ≥60 years old take longer to acquire vaccine-induced immunity, they develop more sustained acquired immunity at 6 months post-vaccination. A third dose strongly boosts the low antibody responses in the older individuals against the ancestral Wuhan strain, Delta and Omicron variants.
Collapse
Affiliation(s)
- Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Angeline Rouers
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nicole Ziyi Zhuo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim-Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuling Huang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Xu En Wong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Xiang Hor
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chiew Yee Loh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eve Zi Xian Ngoh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siti Nazihah Mohd Salleh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Samanzer Dowla
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alicia Jieling Lim
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Joey Ming Er Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ying Ding
- National Centre for Infectious Diseases, Singapore, Singapore
| | | | | | - Jyoti Somani
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Eng Sing Lee
- National healthcare group polyclinic, Jurong, Singapore
| | - Desmond Luan Seng Ong
- National University Polyclinics, National University of Singapore, Singapore, Singapore
| | - Yee-Sin Leo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Raymond Tzer Pin Lin
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David C Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Barnaby Edward Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
195
|
Semelka CT, DeWitt ME, Blevins MW, Holbrook BC, Sanders JW, Alexander-Miller MA. Frailty and Age Impact Immune Responses to Moderna COVID-19 mRNA Vaccine. RESEARCH SQUARE 2022:rs.3.rs-1883093. [PMID: 35982657 PMCID: PMC9387536 DOI: 10.21203/rs.3.rs-1883093/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Immune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses. METHODS We followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose. Outcomes were antibody titers, antibody avidity, and AIM+ T cell function and phenotype. Statistical analysis used antibody titers in linear mixed-effects linear regression with clinical predictors including, age, sex, prior infection status, and clinical frailty scale (CFS) score. T cell function analysis used clinical predictors and cellular phenotype variables in linear regression models. RESULTS Participants (n=15) had median age of 90 years and mild, moderate, or severe frailty scores (n=3, 7, or 5 respectively). After 2 vaccine doses, anti-spike antibody titers were higher in 5-fold higher in individuals with mild frailty compared to severe frailty and 9-fold higher in individuals with prior COVID-19 infection compared to uninfected (p=0.02 and p<0.001). Following the booster, titers improved regardless of COVID-19 infection or frailty. Antibody avidity significantly declined following 2 vaccine doses regardless of frailty status, but reached maximal avidity after the booster. Spike-specific CD4+ T cell responses were modulated by frailty and terminally differentiated effector memory TEMRA cells, and spike-specific TFH cell responses were inversely correlated with age. Additionally, an immune-senescent memory T cell phenotype was correlated with frailty and functional decline. CONCLUSIONS We described the separate influences of frailty and age on adaptive immune responses to the Moderna COVID-19 mRNA vaccine. Though overall antibody responses were robust, higher frailty diminished initial antibody quantity, and all older adults had impaired antibody avidity. Following the booster, antibody responses improved, overcoming the effects of age and frailty. CD4+ T cell responses were independently impacted by age, frailty, and burden of immune-senescence. Frailty was correlated with increased burden of immune-senescence, suggesting an immune-mediated mechanism for physiological decline.
Collapse
|
196
|
Nkosi T, Chasara C, Papadopoulos AO, Nguni TL, Karim F, Moosa MYS, Gazy I, Jambo K, COMMIT-KZN-Team, Hanekom W, Sigal A, Ndhlovu ZM. Unsuppressed HIV infection impairs T cell responses to SARS-CoV-2 infection and abrogates T cell cross-recognition. eLife 2022; 11:e78374. [PMID: 35880744 PMCID: PMC9355563 DOI: 10.7554/elife.78374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
In some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following peripheral blood mononuclear cell stimulation with SARS-CoV-2 peptide pools. Culture expansion was used to determine T cell immunodominance hierarchies and to assess potential SARS-CoV-2 escape from T cell recognition. HIV-seronegative individuals had significantly greater CD4+ T cell responses against the Spike protein compared to the viremic people living with HIV (PLWH). Absolute CD4 count correlated positively with SARS-CoV-2-specific CD4+ and CD8+ T cell responses (CD4 r=0.5, p=0.03; CD8 r=0.5, p=0.001), whereas T cell activation was negatively correlated with CD4+ T cell responses (CD4 r=-0.7, p=0.04). There was diminished T cell cross-recognition between the two waves, which was more pronounced in individuals with unsuppressed HIV infection. Importantly, we identify four mutations in the Beta variant that resulted in abrogation of T cell recognition. Taken together, we show that unsuppressed HIV infection markedly impairs T cell responses to SARS-Cov-2 infection and diminishes T cell cross-recognition. These findings may partly explain the increased susceptibility of PLWH to severe COVID-19 and also highlights their vulnerability to emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Thandeka Nkosi
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Caroline Chasara
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Andrea O Papadopoulos
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Tiza L Nguni
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Farina Karim
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Mahomed-Yunus S Moosa
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | - Inbal Gazy
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-NatalDurbanSouth Africa
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - COMMIT-KZN-Team
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Willem Hanekom
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Alex Sigal
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Zaza M Ndhlovu
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
197
|
Emmelot ME, Vos M, Boer MC, Rots NY, de Wit J, van Els CACM, Kaaijk P. Omicron BA.1 Mutations in SARS-CoV-2 Spike Lead to Reduced T-Cell Response in Vaccinated and Convalescent Individuals. Viruses 2022; 14:v14071570. [PMID: 35891550 PMCID: PMC9318964 DOI: 10.3390/v14071570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023] Open
Abstract
Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.
Collapse
Affiliation(s)
- Maarten E. Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Mardi C. Boer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (M.E.E.); (M.V.); (M.C.B.); (N.Y.R.); (J.d.W.); (C.A.C.M.v.E.)
- Correspondence:
| |
Collapse
|
198
|
Development of a T Cell-Based COVID-19 Vaccine Using a Live Attenuated Influenza Vaccine Viral Vector. Vaccines (Basel) 2022; 10:vaccines10071142. [PMID: 35891306 PMCID: PMC9318028 DOI: 10.3390/vaccines10071142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.
Collapse
|
199
|
Kedl RM. An immunological autobiography: my year as a COVID-19 vaccine trial participant. NPJ Vaccines 2022; 7:80. [PMID: 35851389 PMCID: PMC9293989 DOI: 10.1038/s41541-022-00502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
200
|
Rice A, Verma M, Voigt E, Battisti P, Beaver S, Reed S, Dinkins K, Mody S, Zakin L, Tanaka S, Morimoto B, Olson CA, Gabitzsch E, Safrit JT, Spilman P, Casper C, Soon-Shiong P. Heterologous saRNA Prime, DNA Dual-Antigen Boost SARS-CoV-2 Vaccination Elicits Robust Cellular Immunogenicity and Cross-Variant Neutralizing Antibodies. Front Immunol 2022; 13:910136. [PMID: 35911728 PMCID: PMC9335885 DOI: 10.3389/fimmu.2022.910136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
We assessed if immune responses are enhanced in CD-1 mice by heterologous vaccination with two different nucleic acid-based COVID-19 vaccines: a next-generation human adenovirus serotype 5 (hAd5)-vectored dual-antigen spike (S) and nucleocapsid (N) vaccine (AdS+N) and a self-amplifying and -adjuvanted S RNA vaccine (AAHI-SC2) delivered by a nanostructured lipid carrier. The AdS+N vaccine encodes S modified with a fusion motif to increase cell-surface expression and an N antigen modified with an Enhanced T-cell Stimulation Domain (N-ETSD) to direct N to the endosomal/lysosomal compartment and increase MHC class I and II stimulation potential. The S sequence in the AAHI-SC2 vaccine comprises the D614G mutation, two prolines to stabilize S in the prefusion conformation, and 3 glutamines in the furin cleavage region to confer protease resistance. CD-1 mice received vaccination by homologous and heterologous prime > boost combinations. Humoral responses to S were the highest with any regimen that included the AAHI-SC2 vaccine, and IgG bound to wild type and Delta (B.1.617.2) variant S1 at similar levels. An AAHI-SC2 prime followed by an AdS+N boost particularly enhanced CD4+ and CD8+ T-cell responses to both wild type and Delta S peptides relative to all other vaccine regimens. Sera from mice receiving AAHI-SC2 homologous or heterologous vaccination were found to be highly neutralizing for all pseudovirus strains tested: Wuhan, Beta, Delta, and Omicron strains. The findings here, taken in consideration with the availability of both vaccines in thermostable formulations, support the testing of heterologous vaccination by an AAHI-SC2 > AdS+N regimen in animal models of SARS-CoV-2 infection to assess its potential to provide increased protection against emerging SARS-CoV-2 variants particularly in regions of the world where the need for cold-chain storage has limited the distribution of other vaccines.
Collapse
Affiliation(s)
- Adrian Rice
- ImmunityBio, Inc., Culver City, CA, United States
| | - Mohit Verma
- ImmunityBio, Inc., Culver City, CA, United States
| | - Emily Voigt
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | - Peter Battisti
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | - Sam Beaver
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | - Sierra Reed
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | - Kyle Dinkins
- ImmunityBio, Inc., Culver City, CA, United States
| | - Shivani Mody
- ImmunityBio, Inc., Culver City, CA, United States
| | - Lise Zakin
- ImmunityBio, Inc., Culver City, CA, United States
| | - Shiho Tanaka
- ImmunityBio, Inc., Culver City, CA, United States
| | | | | | | | | | | | - Corey Casper
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
- Departments of Medicine and Global Health, University of Washington, Seattle, WA, United States
| | | |
Collapse
|